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Abstract

Assessing the predictive uncertainty of deep
neural networks is crucial for safety-related
applications of deep learning. Although
Bayesian deep learning offers a principled
framework for estimating model uncertainty,
the common approaches that approximate the
parameter posterior often fail to deliver reli-
able estimates of predictive uncertainty. In
this paper, we propose a novel criterion for
reliable predictive uncertainty: a model’s pre-
dictive variance should be grounded in the
empirical density of the input. That is, the
model should produce higher uncertainty for
inputs that are improbable in the training
data and lower uncertainty for inputs that
are more probable. To operationalize this
criterion, we develop the density uncertainty
layer, a stochastic neural network architec-
ture that satisfies the density uncertain crite-
rion by design. We study density uncertainty
layers on the UCI and CIFAR-10/100 uncer-
tainty benchmarks. Compared to existing ap-
proaches, density uncertainty layers provide
more reliable uncertainty estimates and robust
out-of-distribution detection performance.

1 Introduction

The success of deep learning models in a range of appli-
cations has spurred significant interest in deploying the
for real-world predictions. But in high-stakes domains,
such as healthcare, finance, and autonomous systems,
both the model’s prediction and its predictive uncer-
tainty are crucial. A challenge is that conventional
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neural networks lack a robust mechanism for quantify-
ing uncertainty, and they tend to produce overconfident
predictions [Guo et al., 2017, Ovadia et al., 2019]. This
paper is about how to produce reliable estimates of
predictive uncertainty with deep neural networks.

Why is this a problem? Bayesian deep learning offers a
principled framework for quantifying predictive uncer-
tainty by incorporating uncertainty about the model
parameters [Graves, 2011, Welling and Teh, 2011, Neal,
2012, Blundell et al., 2015]. However, the common vari-
ational inference (VI) approaches that approximate the
parameter posterior in Bayesian deep learning [Graves,
2011, Blundell et al., 2015, Kingma et al., 2015, Dusen-
berry et al., 2020] often fall short of providing reliable
predictive uncertainty [Foong et al., 2019b, Ober and
Rasmussen, 2019]. For example, Figure 1a-c demon-
strate that these methods produce either collapsed
or flat predictive uncertainty around the origin, even
though no training data were observed in that region.

In this work, we propose a novel criterion for reliable
predictive uncertainty and a new stochastic neural net-
work architecture to satisfy the criterion. The density
uncertainty criterion posits that a model’s predictive
uncertainty should be grounded in the empirical density
of the input. That is, we should see higher uncertainty
for improbable inputs and lower for more probable
ones. As motivation, we will show how Bayesian linear
regression inherently adheres to the criterion.

We then develop the density uncertainty layer, a
stochastic neural network architecture that is designed
to satisfy the density uncertainty criterion. The idea is
to fit an energy-based model of input and then satisfy
the density uncertainty criterion via a constraint on
the predictive variance produced by the approximate
posterior. Density uncertainty layers serve as a flexible
building block for density-aware deep neural networks.
See Figure 1d for how Density Uncertainty produces
high predictive uncertainty in the low-density region
in the input space around the origin.
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(a) MFVI (b) Variational Dropout (c) Rank 1 BNN (d) Density Uncertainty

Figure 1: Predictive uncertainty of a two-layer MLP on a toy regression problem. The red dots denote the training
data and the blue shades mark the 95th and 99th percentiles of the predictive variance. All baselines other than
Density Uncertainty fail to account for the in-between uncertainty in the low-density region around the origin

We study density uncertainty layers on the UCI and
CIFAR-10/100 uncertainty benchmarks. We compare
the proposed method to popular uncertainty estima-
tion methods for neural networks [Blundell et al., 2015,
Kingma et al., 2015, Gal and Ghahramani, 2016, Dusen-
berry et al., 2020]. We find that the proposed density-
aware neural networks provide more reliable predictive
uncertainty estimates and robust out-of-distribution
(OOD) detection performance.

Contributions. In summary, this paper makes the
following contributions.

1. We propose the density uncertainty criterion for
reliable predictive uncertainty, asserting that a
model’s predictive uncertainty should be grounded
in the training density of the input.

2. We present the density uncertainty layer whose
predictive uncertainty adheres to the density un-
certainty criterion and serves as a general building
block for uncertainty-aware neural networks.

3. We study the proposed density uncertainty layers
on the UCI and CIFAR-10/100 uncertainty esti-
mation benchmarks. On both benchmarks, this
method performs better than existing approaches.

2 Density Uncertainty Layers

2.1 Motivation: Bayesian Linear Regression

We first illustrate how Bayesian uncertainty for linear
regression is grounded in the empirical density of the in-
put. In the next section, this observation will motivate
a novel criterion for reliable predictive uncertainty.

Consider a Bayesian linear regression model with input
X ∈ RN×D, target y ∈ RN , and weight w ∈ RD:

p(w) = N (w|0, α−1I), (1)

p(y|X, w) =

N∏
i=1

N (yi|wTxi, β−1), (2)

The posterior distribution of the weight w given the
observations D = {X,y} is

p(w|D) = N (w|µ,Λ−1), (3)

where µ = βΛ−1XTy and Λ = βXTX + αI. (4)

The posterior predictive distribution for a test input
x∗ is obtained by marginalizing out the weight from
the posterior joint

p(y∗|x∗,D) =

∫
p(y∗, w|x∗,D)dw (5)

= N (y∗|µTx∗, β−1 + xT∗ Λ−1x∗). (6)

Equation (6) helps establish the connection between
the Bayesian predictive uncertainty for linear regres-
sion and the empirical input density. Rewriting the
predictive variance in Equation (6),

Var[y∗|x∗,D] =
1

β
+

2

βN
E(x∗), (7)

where E(x∗) =
1

2
xT∗ Σ−1x∗, (8)

Σ =
1

N
(XTX +

α

β
I). (9)

Here E(x) is an energy function, an unnormalized neg-
ative log density of x such that

penergy(x) ∝ exp(−E(x)) (10)

Specifically, Equations (8) to (9) describe an instance of
Gaussian energy model N (0,Σ), where Σ is the MAP
estimate of the input covariance matrix given the ob-
servations X. This shows that Bayesian linear model
derives its predictive uncertainty from the Gaussian
energy model of the input that is fitted to the train-
ing data. Consequently, predictive uncertainty will be
high for test inputs that are improbable in the train-
ing density and low for those that are more probable,
providing intuitive and reliable predictive uncertainty.
In the following sections, we build upon this principle.
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2.2 Variational Inference for BNNs

A Bayesian Neural Network (BNN) Ω(x; θ) treats
its parameters θ of neural networks as random vari-
ables from a prior p(θ). Combined with a likeli-
hood function p(y|Ω(x; θ)) and the observations D =
{(x1, y1), ..., (xN , yN )}, the posterior distribution of the
parameters is defined by the Bayes’ rule:

p(θ|D) ∝ p(θ)
N∏
i=1

p(yi|Ω(xi; θ)) (11)

However, the posterior is highly complex and in-
tractable in BNNs. Variational inference (VI) circum-
vents this problem by optimizing a tractable approxi-
mation to the posterior. For example, the approximate
distribution q(θ) commonly takes the form of fully-
factorized Gaussians whose parameters are denoted by
φ. VI fits the approximate posterior by maximizing the
evidence lower-bound (ELBO) [Blundell et al., 2015]:

Lφ = Eq(θ)
[ N∑
i=1

log p(yi|Ω(xi; θ))
]
−D(q(θ)‖p(θ)),

where D is the Kullback-Leibler divergence. At test
time, the posterior predictive distribution is approxi-
mated with M Monte Carlo samples from q(θ):

p(y∗|x∗,D) ≈ 1

M

M∑
m=1

p(y∗|Ω(x∗; θm)), (12)

2.3 The Density Uncertainty Criterion

We have shown that Bayesian predictive uncertainty
has desirable properties for a linear model. However,
VI-based BNNs often fails to provide reliable uncer-
tainty estimates [Foong et al., 2019a, Ober and Ras-
mussen, 2019] as demonstrated in Figure 1 where the
VI baselines fail to accurately capture the density of
the data in their predictive uncertainty.

To address this, we propose a novel uncertainty crite-
rion that asserts model’s predictive uncertainty should
be grounded in the training density of the input. To
formalize the concept, we first introduce an auxiliary
energy-based generative model of the input:

penergy(x;ω) ∝ exp(−E(x;ω)), (13)

where the generative parameter ω is fitted to the train-
ing data x1, ..., xN . We omit ω for simplicity hereafter.

We now establish the density uncertainty criterion.

Definition 1 (Density uncertainty criterion). For
a parameterized model f(x; θ) with a distribution on
the parameters q(θ) and an non-negative energy model

E(x) ≥ 0 fitted to the training data, the model f(x; θ)
adheres to the density uncertainty criterion if

Varq(θ)[f(x; θ)] ∝ E(x) for all x ∈ X . (14)

The criterion posits that the predictive uncertainty
should be proportional to the energy of the input, pro-
ducing high predictive uncertainty for inputs that are
improbable in the training distribution and low uncer-
tainty for inputs that are more probable. As illustrated
in Section 2.1, Bayesian linear regression inherently sat-
isfies the density uncertainty criterion of Equation (14).

Incorporating the density uncertainty criterion into the
ELBO objective yields

arg max
q∈Q

Eq(θ)
[ N∑
i=1

log p(yi|f(xi; θ))
]
−D(q(θ)‖p(θ))

s.t. Varq(θ)[f(x; θ)] ∝ E(x) for all x ∈ X , (15)

where D is the Kullback-Leibler divergence and p is
a prior. The constraint in Equation (15) ensures the
predictive uncertainty adheres to the density uncer-
tainty criterion, so that its predictive uncertainty is
consistently derived from the training density of the
input, yielding reliable uncertainty estimates.

Example: Bayesian linear regression Revisiting
the Bayesian linear regression example (Section 2.1),
the family of parameter distribution q(w) that satisfies
the density uncertainty criterion is

q(w) = N (µ, γΣ−1), (16)

where Σ =
1

N
(XTX +

α

β
I), (17)

where γ is a scaling scalar and µ is a trainable parame-
ter. The posterior precision of the weight is now tied
to the training covariance estimate of the input. This
results in the predictive variance of

Varq(w)[f(x∗;w)] ∝ E(x∗) =
1

2
x∗Σ̂

−1x∗, (18)

satisfying the density uncertainty criterion for a Gaus-
sian energy model E. Notably, the constrained parame-
ter posterior (Equation (16)) recovers the true posterior
in Bayesian linear regression (Equation (3)).

Reparametrized objective More generally, we in-
troduce a reparametrized version of the objective in
Equation (15). Consider a stochastic function f(x, ε;φ)
but now with a deterministic parameter φ, exogenous
noise variable ε, and a noise distribution q(ε):

arg max
φ

Eq(ε)
[ N∑
i=1

log p(yi|f(xi, ε;φ))
]
−D(q(ε)‖p(ε))

s.t. Varq(ε)[f(x, ε;φ)] ∝ E(x) for all x ∈ X , (19)
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A broad class of q(θ) such as normal distribu-
tions admits this kind of reparametrization. The
reparametrized objective offers more flexibility in how
we incorporate noise into the model while adhering
to the density uncertainty criterion. For example,
we may choose to directly inject noise into the low-
dimensional function output instead of sampling the
high-dimensional parameters, thereby improving the
computational efficiency and reducing the gradient vari-
ance (e.g. Kingma et al. [2015]). Therefore, we default
to this form in the remainder of the paper.

2.4 The Density Uncertainty Layer

We now select an appropriate energy model E(x) and
the structure of a stochastic function Ω(x, ε;φ) for deep
neural networks. In this work, we consider a popular
form of residual network architecture

a1 = f1(x, ε1;φ1), (20)
h` = π(a`), (21)

a`+1 = a` + f`(h`, ε`;φ`), for l = 1, ..., L (22)

where fl is a stochastic linear layer with deterministic
parameter φ` and exogenous noise variable ε`. π is a
nonlinear activation function such as ReLU.

Section 2.1 shows that Bayesian linear regression de-
rives its predictive uncertainty from a Gaussian energy
model. Motivated by this insight, we pair each linear
layer f` with a Gaussian energy model E` and make
the individual linear layers f1, f2, ..., fL adhere to the
density uncertainty criterion layer-wise:

arg max
φ

Eq
[ N∑
i=1

log p(yi|Ω(xi, ε;φ))
]
−D(q(ε)‖p(ε))

s.t. Varq(ε`)[f
j
` (h`, ε`;φ`)] ∝ E`(h`) (23)

for all h` ∈ H, j = 1, ..., D, and ` = 1, ..., L, (24)

where j indexes the hidden units and D is the width of
the layers. φ encompasses the deterministic weights of
the neural network and the posterior parameters of the
noise distributions, and ε involves all noise variables.

This design is based on several key observations: First,
the Gaussian energy facilitates efficient training and
energy evaluation. Second, making the individual layers
stochastic fosters functional diversity and stochastic
regularization effect. Third, the complexity of the
uncertainty landscape grows naturally with the model
complexity with size of in the neural network. Lastly,
a relaxed version of the density uncertainty criterion
holds at the network level which we describe next.
Proposition 1 (Density Uncertainty Criterion
for Residual Networks). Define the total energy
E(x, h1, ..., h`) =

∑L
`=1E`(h`). Assume the followings:

1. There exist α, β ∈ R+ such that for all j, `

αE`(h`) ≤ Varq(ε`)[f
j
` (h`, ε`;φ`)] ≤ βE`(h`)

2. There exists M ∈ R+ such that ‖wj`‖22 ≤ M for
all j, `, where wj` is the deterministic weight for
j-th hidden unit at layer l.

3. φ is a 1-Lipschitz activation fucntion (e.g. ReLU).

Then the dimension-wise variance of the network output
aL+1 is bounded from below by the expected total energy:

Varq(θ)[a
j
L+1|x] ≥ C Eq(θ)[E(x, h1, ..., h`)] (25)

for some constant C. Proof is in the appendix.

We now introduce the density uncertainty layer, a
stochastic architecture that by design satisfies the den-
sity uncertainty criterion layer-wise (Equation (23)):

f j` (h`, ε`;w
j
`) = wj` · h` + εj`

√
E(h`) + ηj` ,

where E`(h`) =
1

2
hT` Σ−1` h`, (26)

q(εj`) = N (0, γj` ), q(η
j
` ) = N (0, βj` ), (27)

where · denotes dot product, wj` is the deterministic
weight for the j-th hidden unit at layer `, and E`(h`)
is the Gaussian energy model with the covariance pa-
rameter Σ`. The layer has two noise components εj`
and ηj` , and the predictive variance of

Varq(ε`)[f
j
` (h`, ε`;φ`)] = γj`E`(h`) + βj` , (28)

which satisfies the density uncertainty criterion as the
bias term βj` can be always absorbed into the energy
function. The posterior noise variance parameters
γj` , β

j
` are optimized using the ELBO, granting the

model the flexibility to adjust the noise scale for in-
dividual hidden units in the layer. While we assume
Gaussian noise for simplicity, we may potentially incor-
porate other noise distributions such as heavy-tailed
ones [Dusenberry et al., 2020] for enhanced robustness.

Gaussian energy We adopt the LDL parametriza-
tion of the precision matrix Σ−1` = L`D`L

T
` for the

layer-wise Gaussian energy models, where L` is a lower
unit triangular matrix, and D` is a non-negative diago-
nal matrix. This admits efficient energy evaluation

E`(h`) =
1

2
hT` Σ−1` h` =

1

2
‖D

1
2

` L
T
` h`‖22,

without computing the inverse of the covariance matrix
and simplifies the log determinant of the covariance
matrix as log |Σ`| = −

∑
j logDjj

` . For convolutional
architectures, we replace the matrix-vector product
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LT` h` with a masked convolution [Van den Oord et al.,
2016] to build a convolutional energy model. The
main computational overhead of density uncertainty
layers comes from the matrix-vector product LT` h` with
O(D2) complexity, same as regular linear layers.

Mixture of rank-1 Gaussians When the compu-
tational overhead is a major consideration, we propose
to use a mixture of rank-1 Gaussians as an alternative
layer-wise energy model. More specifically, the rank-1
Gaussian has the covariance matrix of the form:

Σ = vvT +D, (29)

where v is the rank-1 factor and D is a non-negative
diagonal matrix. Using the rank-1 construction, the
inverse can be computed as

Σ−1 = D−1 − D−1vvTD−1

1 + vTD−1v
, (30)

and the log determinant is also simplified as

log |Σ| = log(1 + vTD−1v) +
∑

logDjj , (31)

reducing the computational overhead to O(D). How-
ever, as the rank-1 construction may be overly restric-
tive in practice, we choose a K mixture of rank-1
Gaussians as our layer-wise generative model, with
the computational complexity of O(KD). We set K
as a fraction of the layer’s width and show that it can
be as small as ≈ 1% with negligible performance drop.

Optimization The construction of the density uncer-
tainty layer (Equation (27)) inherently satisfies the den-
sity uncertainty constraint, simplifying the constrained
optimization objective (Equation (23)) to

Lφ = Eq(ε)
[ N∑
i=1

log p(yi|Ω(xi, ε;φ))
]

+D(q(ε)‖p(ε))

We assume Gaussian priors with a shared variance for
the noise variables. Concurrently, the layer-wise energy
models are optimized using the generative objective:

Lω =

N∑
i=1

L∑
`=1

Eq(ε)[log penergy(h`;ω`)] + log p(ω`),

where penergy(h`;ω`) = exp(−E(h`)) is the Gaussian
energy distribution for the input at layer ` and p(ω`) is
a prior on the generative parameter. The two objectives
are jointly optimized during training.

3 Related Work

This paper contributes to Bayesian deep learning and
uncertainty estimation for deep learning.

Bayesian Neural Networks and Uncertainty
Bayesian Neural Networks (BNNs) establish a prin-
cipled framework for estimating the uncertainty of neu-
ral networks by assuming their parameters are latent
variables that follow a prior distribution. Bayes’ rule,
combined with a likelihood function and observations,
defines the posterior distribution of the parameters.
However, as exact posterior inference in BNNs is in-
tractable, the problem boils down to approximating the
parameter posterior distribution. For example, Markov
Chain Monte Carlo (MCMC) [Welling and Teh, 2011,
Chen et al., 2014] simulates samples from the posterior
distribution, using Langevin [Welling and Teh, 2011]
or Hamiltonian [Chen et al., 2014] dynamics. On the
other hand, the Laplace approximation [Ritter et al.,
2018] applies a second-order approximation at a mode
of the posterior distribution.

Variational inference (VI) is a popular approach that
reformulates inference as an optimization problem. It
seeks the best approximating distribution within a dis-
tribution family that minimizes a discrepancy metric to
the true posterior, such as the Kullback-Leibler (KL) di-
vergence. Graves [2011] adopt fully-factorized Gaussian
posteriors for the network’s parameters, and Blundell
et al. [2015] further incorporate the reparametrization
trick [Kingma and Welling, 2014, Rezende et al., 2014]
to obtain unbiased, low-variance gradient estimates
with automatic differentiation. Louizos and Welling
[2016] enhance the expressiveness of the posteriors by
utilizing matrix Gaussian distributions for structured
modeling of parameter correlations within each layer.
More recently, Ritter et al. [2021] propose sparse repre-
sentations of matrix Gaussian posteriors using inducing
points [Snelson and Ghahramani, 2005, Titsias, 2009].

However, VI often fails to provide reliable uncertainty
estimates for neural networks in practice [Foong et al.,
2019b, Ober and Rasmussen, 2019]. This failure might
stem from the disconnect between Bayesian parameter
uncertainty and predictive uncertainty—while Bayesian
methods focus on the posterior parameter uncertainty,
the practical interest often lies in estimating the model’s
predictive uncertainty. This gap may be further exacer-
bated by the the restrictive independence assumptions
[Trippe and Turner, 2017, Foong et al., 2019a, 2020]
and the mode-seeking behavior of the evidence lower-
bound (ELBO) [Bishop, 2006]. Sun et al. [2019] tries
to bridge the gap by performing variational inference
in the function space, albeit this requires additional
approximations to the intractable functional KL diver-
gence. In contrast, the density uncertainty criterion
directly imposes a constraint on the model’s predictive
uncertainty, so that the predictive uncertainty is al-
ways grounded in the training density of the input and
provides reliable estimates of predictive uncertainty.
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Uncertainty Estimation for Deep Learning
This paper proposes a new methodology for estimating
uncertainty in deep learning models. Other alternatives
for uncertainty estimation include Monte Carlo dropout
[Gal and Ghahramani, 2016], which interprets dropout
regularization as approximate Bayesian inference and
estimates predictive uncertainty by performing Monte
Carlo integration using dropout at test time. Varia-
tional Gaussian dropout Kingma et al. [2015], moti-
vated by a continuous approximation to dropout [Wang
and Manning, 2013], applies multiplicative noise to the
preactivations. The authors show this corresponds to
assuming a degenerate parameter posterior distribu-
tion and propose a variational inference method for
adapting the dropout rates. Recently, Dusenberry et al.
[2020] propose to model only the uncertainty of rank-
1 factors in the network’s parameters by introducing
dimension-wise multiplicative noise to both the input
and the output at each layer.

On the other hand, deep kernel learning methods (DKL)
[Snoek et al., 2015, Wilson et al., 2016, Liu et al., 2020,
van Amersfoort et al., 2021] combine the expressive
power of neural networks with the uncertainty estima-
tion capability of Gaussian Processes (GPs) by using a
deterministic neural network as a feature extractor and
applying the GP in the resulting feature space. How-
ever, Ober et al. [2021] show that such construction is
prone to overfitting as it ignores any uncertainty asso-
ciated with the neural network feature extractor. To
alleviate the problem, Liu et al. [2020], van Amersfoort
et al. [2021] limit the expressive power of the neural
network feature extractor using spectral normalization
[Miyato et al., 2018] and apply approximations to the
GP posterior to circumvent the cubic complexity of
GP inference. While DKL methods provide interesting
alternatives for uncertainty estimation, in this work we
primarily focus on the BNN and the related methods
[Blundell et al., 2015, Kingma et al., 2015, Gal and
Ghahramani, 2016, Dusenberry et al., 2020] that model
the uncertainty of the neural network as a whole.

4 Empirical Studies

In this section, we empirically demonstrate that the den-
sity uncertainty layer delivers reliable predictive uncer-
tainty estimates compared to the existing approaches.
The empirical studies are structured as follows:

1. We visualize the predictive uncertainty landscape
of different uncertainty estimation methods and
their failure modes, on a toy regression problem.

2. We evaluate the uncertainty estimation perfor-
mance on CIFAR-10/100 classification benchmarks
[Krizhevsky and Hinton, 2009] using the ResNet-14

[He et al., 2016] and the Wide ResNet-28 (WRN-
28) [Zagoruyko and Komodakis, 2016] architecture.

3. We evaluate the out-of-distribution (OOD) detec-
tion performance on SVHN [Netzer et al., 2011]
using the models trained on CIFAR-10/100.

In the appendix, we include the results on the UCI
regression benchmarks using a MLP architecture.

We compare our method to the following popular un-
certainty methods for deep learning:

1. Mean-field Variational Inference (MFVI)
[Blundell et al., 2015] assumes fully factorized nor-
mal posteriors on the neural network parameters.

2. Monte Carlo Dropout (MCDropout) [Gal and
Ghahramani, 2016] views dropout as approximate
Bayesian inference and applies dropout at test time
in order to estimate the predictive uncertainty.

3. Variational Dropout (VDropout) [Kingma
et al., 2015] applies Gaussian multiplicative noise
εj` ∼ N (1, α) to the output of linear layers.

4. Rank-1 BNN [Dusenberry et al., 2020] further
extends Variational Dropout by introducing multi-
plicative noise for both the layer’s input and out-
put, dimension-wise. We assume Gaussian noise.

In addition, we include the last-layer GP methods of
SNGP [Liu et al., 2020] and DUE [van Amersfoort
et al., 2021] for the WRN-28 experiments. We use the
DUE authors’ implementation for SNGP and DUE.

Experimental details for CIFAR-10/100 For the
CIFAR-10/100 experiments, we use the standard con-
volutional ResNet-14 architecture [He et al., 2016]
and also the significantly larger WRN-28 architecture
[Zagoruyko and Komodakis, 2016] with 2× depth and
10× width. We default to the full-rank Gaussian en-
ergy models using LDL parametrization but also in-
clude the efficient rank-1 mixture Gaussians for the
larger WRN-28 experiments. We use the ADAM op-
timizer with learning rate 0.1 with batch size of 128
except for MFVI where the learning rate is reduced
to 0.01 as higher learning rate led to divergence. We
train the models for 200 epochs with cosine learning
rate schedule without restarts [Loshchilov and Hutter,
2017]. During training, we apply random cropping and
padding, and horizontal flipping data augmentations.
The input pixel values are normalized using the train-
ing pixel means and standard deviations, channel-wise.
We do not employ KL annealing or posterior temper-
ing but initialize the posterior standard deviation to a
sufficiently small value (e.g. 10−3) to stabilize training
[Dusenberry et al., 2020]. The weight decay is set to
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Table 1: CIFAR-10 classification using the ResNet-14 architecture and 25 posterior samples. The average and the
standard deviation over 3 random seeds are shown. Density Uncertainty significantly reduces the calibration error

Method Accuracy (↑) ECE (↓) NLL (↓)
MFVI 91.9 ± 0.1 0.080 ± 0.002 0.291 ± 0.004
MCDropout 91.0 ± 0.1 0.016 ± 0.001 0.261 ± 0.001
VDropout 92.2 ± 0.0 0.013 ± 0.001 0.233 ± 0.002
Rank-1 BNN 92.2 ± 0.0 0.017 ± 0.002 0.231 ± 0.002

Density Uncertainty 92.2 ± 0.3 0.004 ± 0.000 0.226 ± 0.003

Table 2: CIFAR-100 classification using the ResNet-14 architecture and 25 posterior samples. The average and
the standard deviation over 3 random seeds are shown. Density Uncertainty improves all three metrics

Method Accuracy (↑) ECE (↓) NLL (↓)
MFVI 67.9 ± 0.4 0.132 ± 0.002 1.212 ± 0.017
MCDropout 66.3 ± 0.3 0.066 ± 0.001 1.205 ± 0.005
VDropout 67.8 ± 0.1 0.051 ± 0.002 1.167 ± 0.002
Rank-1 BNN 68.0 ± 0.5 0.041 ± 0.003 1.132 ± 0.002

Density Uncertainty 68.8 ± 0.2 0.011 ± 0.003 1.110 ± 0.006

0.0001 for CIFAR-10 and 0.0002 for CIFAR-100 exper-
iments. For WRN-28, we use weight decay of 0.0005,
learning rate of 0.05, and batch size of 64.

Model-specific hyperparameters are searched on a grid
on a randomly sampled held-out set of CIFAR-10. The
dropout rate for Monte Carlo Dropout is searched over
{0.1, 0.2, 0.3} and set to 0.1. For Variational Dropout,
we find that adapting the noise variance leads to under-
fitting and thus fix the noise variance. The multi-
plicative noise variance is searched over {0.1, 0.25, 0.5}
and set to 0.1. For Rank-1 BNN, the prior standard
deviation for the multiplicative noise distributions is
searched over {0.01, 0.1, 1} and set to 0.1. For Den-
sity Uncertainty, the prior noise standard deviation is
searched over {0.1, 1, 10} and set to 1.

All experiments are implemented in PyTorch [Paszke
et al., 2019] and executed on a single Titan X GPU. The
code is available at https://github.com/yookoon/
density_uncertainty_layers

4.1 Toy Regression

We generate a toy regression problem in 1-D to illus-
trate the predictive uncertainty landscapes of different
uncertainty estimation methods. We uniformly sam-
ple xi from [−4,−2] ∪ [2, 4] and generate the target as
yi = x3i +ε. This leaves a in-between low density region
in [−2, 2]. We normalize the input and the target to
have zero-mean and unit variance. We use a MLP with
one hidden layer of width 50 as the base architecture.

The predictive uncertainty landscapes on a toy regres-

sion problem are visualized in Figure 1. The baselines
fail to produce reliable in-between uncertainty in the
low-density region around the origin. For example,
MFVI gives collapsed in-between uncertainty while
Variational Dropout and Rank 1 BNNs produce flat
uncertainty in the low-density region. Theses two meth-
ods both apply input-independent noise to the layers
and lack a robust mechanism for adjusting their uncer-
tainty depending on the empirical density of the input.
In contrast, Density Uncertainty captures the density
of the training data and produces higher predictive
uncertainty in the low-density regions. This is because
it derives its uncertainty from the energy model of the
input, adhering to the density uncertainty criterion.

4.2 CIFAR-10 and CIFAR-100

For the CIFAR-10/100 experiments, we report accu-
racy, Expected Calibration Error (ECE) [Naeini et al.,
2015] and Negative Log-Likelihood (NLL). ECE as-
sesses the quality of the model’s predictive uncertainty
estimates by measuring how well-calibrated the model’s
predictions are. NLL is a proper scoring rule [Gneiting
and Raftery, 2007] which favors predictions that are
both accurate and well-calibrated.

The results using ResNet-14 are summarized in Ta-
ble 1 and Table 2. On CIFAR-10, Density Uncertainty
significantly reduces ECE compared to the baselines
while maintaining comparable accuracy and slightly im-
proving NLL. This indicates that Density Uncertainty
provides more precise uncertainty estimates with lower
calibration error. On CIFAR-100, Density Uncertainty

https://github.com/yookoon/density_uncertainty_layers
https://github.com/yookoon/density_uncertainty_layers
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Table 3: CIFAR-10 classification using the WRN28 architecture and 25 posterior samples. The average and the
standard deviation over 3 random seeds are shown. Density Uncertainty improves all three metrics

Method Accuracy (↑) ECE (↓) NLL (↓)
MFVI 89.3 ± 1.4 0.310 ± 0.011 0.668 ± 0.024
MCDropout 96.0 ± 0.2 0.013 ± 0.001 0.135 ± 0.002
VDropout 96.2 ± 0.2 0.012 ± 0.001 0.128 ± 0.002
Rank-1 BNN 95.8 ± 0.1 0.011 ± 0.002 0.143 ± 0.004

SNGP 95.9 ± 0.1 0.015 ± 0.001 0.143 ± 0.002
DUE 95.6 ± 0.1 0.014 ± 0.006 0.170 ± 0.005

Density Uncertainty
Full-rank LDL 96.4 ± 0.1 0.010 ± 0.001 0.119 ± 0.003
Rank-1 Mixture (1.25%) 96.5 ± 0.0 0.011 ± 0.001 0.118 ± 0.001

Table 4: CIFAR-100 classification using the WRN28 architecture and 25 posterior samples. The average and the
standard deviation over 3 random seeds are shown. Density Uncertainty improves all three metrics

Method Accuracy (↑) ECE (↓) NLL (↓)
MFVI 74.2 ± 0.8 0.260 ± 0.006 1.197 ± 0.023
MCDropout 80.2 ± 0.3 0.033 ± 0.003 0.766 ± 0.005
VDropout 81.1 ± 0.3 0.036 ± 0.002 0.756 ± 0.011
Rank-1 BNN 79.7 ± 0.2 0.032 ± 0.001 0.815 ± 0.008

SNGP 80.5 ± 0.3 0.035 ± 0.006 0.782 ± 0.017
DUE Out of memory error

Density Uncertainty
Full-rank LDL 82.3 ± 0.2 0.029 ± 0.003 0.684 ± 0.005
Rank-1 Mixture (1.25%) 82.3 ± 0.0 0.032 ± 0.003 0.692 ± 0.001

improves the performance on metrics. Notably, Density
Uncertainty again reduces ECE significantly. These
results show that Density Uncertainty delivers the most
reliable uncertainty estimates among the baselines.

Table 3 and Table 4 present the results using the larger
WRN-28 architecture, including the additional last
layer GP baselines of SNGP [Liu et al., 2020] and DUE
[van Amersfoort et al., 2021]. For Density Uncertainty,
we also experiment with the efficient rank-1 mixture
Gaussians energy model to test the scalability of the
method in addition to the default LDL parametriza-
tion. We set the number of mixture components to
only 1.25% of the layers’ width, adding only negligible
amount of parameter and computational overhead to
the neural network. Density Uncertainty brings the
best performance in all three metrics. Surprisingly, the
rank-1 mixture with only 1.25% number of components
achieves performance comparable with the full-rank
energy model, demonstrating the effectiveness of low-
rank approximations in neural networks [Maddox et al.,
2019, Dusenberry et al., 2020] and the scalability of the
method. Table 5 shows the results on CIFAR-10 clas-
sification using the WRN28 architecture with varying

number of rank-1 mixture components. We find that
the performance is robust for a wide range of values,
ranging from 1.25% to 20%, and is comparable to the
full-rank LDL model.

4.3 Out-of-Distribution Detection on SVHN

Can we deploy the energy models of the density uncer-
tainty layers for detecting out-of-distribution (OOD)
inputs? Table 6 summarizes the the OOD detection
performance on SVHN, using the models trained on
CIFAR-10/100. We report the area under the precision-
recall curve (AUPRC) and the receiver operator charac-
teristic (AUROC). Following the previous work [Ritter
et al., 2021], the baselines use the maximum predicted
probability heuristic for OOD detection. On the other
hand, Density Uncertainty, equipped with layer-wise
generative energy models, can inherently perform OOD
detection using the energy statistics. Specifically, the
energy at layer ` can be represented as the squared
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Table 5: Varying the number of components for rank-1 Gaussian mixture energy on CIFAR-10 classification
using the WRN28 architecture. The average and the standard deviation over 3 random seeds are shown. The
performance of rank-1 Gaussian mixure is robust for a wide range of values

Method Accuracy (↑) ECE (↓) NLL (↓)
Rank-1 Mixture (1.25%) 96.5 ± 0.0 0.011 ± 0.001 0.118 ± 0.001
Rank-1 Mixture (2.5%) 96.4 ± 0.1 0.012 ± 0.001 0.124 ± 0.002
Rank-1 Mixture (5%) 96.4 ± 0.1 0.012 ± 0.001 0.122 ± 0.001
Rank-1 Mixture (10%) 96.5± 0.0 0.012 ± 0.001 0.122 ± 0.001
Rank-1 Mixture (20%) 96.5± 0.0 0.013 ± 0.000 0.121 ± 0.003

Full-rank LDL 96.4 ± 0.1 0.010 ± 0.001 0.119 ± 0.003

Table 6: Out-of-distribution detection performance on SVHN using ResNet-14 models trained on CIFAR-10/100.
The average and the standard deviation over 3 random seeds are shown. Using the energy statistics, Density
Uncertainty gives the most robust out-of-distribution detection performance

CIFAR-10 → SVHN CIFAR-100 → SVHN

Method AUPRC (↑) AUROC (↑) AUPRC (↑) AUROC (↑)
MFVI 0.903 ± 0.009 0.830 ± 0.014 0.803 ± 0.008 0.640 ± 0.017
MCDropout 0.892 ± 0.006 0.832 ± 0.010 0.817 ± 0.005 0.666 ± 0.009
VDropout 0.917 ± 0.011 0.866 ± 0.018 0.822 ± 0.028 0.677 ± 0.052
Rank-1 BNN 0.925 ± 0.003 0.880 ± 0.001 0.822 ± 0.027 0.681 ± 0.047

Density Uncertainty 0.952 ± 0.026 0.893 ± 0.056 0.908 ± 0.015 0.800 ± 0.024

sum of random variables:

E`(h`) =

D∑
j=1

(zj` )
2 where z` = Σ

− 1
2

` h`, (32)

where z` can be thought of as whitened input with
Σ
−1/2
` decorrelating the layer’s input h`. Based on

the NN-GP equivalence in the infinite width limit,
we expect the energy to be approximately normally-
distributed. Therefore, we use the squared deviation
of energy from the in-distribution average

|E`(h`)− µ`|2 (33)

as a test statistic for OOD detection where the in-
distribution average energy µ` is estimated using a in-
distribution held-out set. We use the energy of the last
convolutional layer as it reflects the most high-level,
semantic information of the input. Table 6 demon-
strates that Density Uncertainty can most robustly
detect OOD input among the baselines.

5 Conclusion

We proposed a novel density criterion for reliable uncer-
tainty estimation, asserting that the predictive uncer-
tainty of a model should be grounded in the empirical
density of the input. A model that adheres to the cri-
terion will produce higher uncertainty for inputs that

are improbable in the training data, and lower uncer-
tainty for those inputs that are more probable. We
formalized the concept as a constraint on the predic-
tive variance of a stochastic function and developed the
density uncertainty layer as a flexible building block for
uncertainty-aware deep learning. Through the empiri-
cal studies, we demonstrated that the proposed method
provides the most reliable uncertainty estimates and ro-
bust out-of-distribution detection performance among
the baselines. This could have practical applications
in various fields where robust uncertainty estimation is
crucial, such as medical diagnosis, autonomous driving,
and financial forecasting.
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A UCI Regression Results

We perform additional experiments on the UCI regres-
sion benchmarks [Dua and Graff, 2017], one of the stan-
dard uncertainty estimation benchmarks for Bayesian
neural networks. We follow the experiment protocol of
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Table 7: Test NLL on UCI Regression. Lower is better. The average and the standard deviation over the 20
random train-test splits are shown

Dataset MCDropout VDropout Rank1-BNN Density Uncertainty

Boston Housing 2.794 ± 0.141 2.815 ± 0.092 2.588 ± 0.236 2.523 ± 0.205
Concrete Strength 3.533 ± 0.037 3.497 ± 0.050 3.112 ± 0.081 3.093 ± 0.116
Energy Efficiency 2.604 ± 0.065 2.525 ± 0.057 2.044 ± 0.099 2.034 ± 0.087
Kin8nm -0.590 ± 0.012 -0.792 ± 0.015 -1.194 ± 0.028 -1.234 ± 0.036
Naval Propulsion -3.437 ± 0.048 -4.019 ± 0.008 -4.956 ± 0.033 -5.274 ± 0.036
Protein Structure 2.935 ± 0.006 2.852 ± 0.005 2.771 ± 0.010 2.821 ± 0.001
Wine Quality Red 0.952 ± 0.062 0.950 ± 0.067 0.954 ± 0.108 0.981 ± 0.109
Yacht Hydrodynamics 3.205 ± 0.062 3.206 ± 0.071 2.712 ± 0.084 2.593 ± 0.067
Year Prediction MSD 3.568 ± NA 3.558 ± NA 3.566 ± NA 3.570 ± NA

Table 8: Test RMSE on UCI Regression. Lower is better. The average and the standard deviation over the 20
random train-test splits are shown

Dataset MCDropout VDropout Rank1-BNN Density Uncertainty

Boston Housing 3.715 ± 0.952 3.710 ± 0.729 3.212 ± 0.758 2.957 ± 0.606
Concrete Strength 7.589 ± 0.630 7.154 ± 0.672 5.348 ± 0.552 5.290 ± 0.639
Energy Efficiency 3.073 ± 0.360 3.209 ± 0.429 1.718 ± 0.246 1.690 ± 0.268
Kin8nm 0.121 ± 0.003 0.094 ± 0.003 0.073 ± 0.003 0.070 ± 0.002
Naval Propulsion 0.007 ± 0.000 0.003 ± 0.000 0.010 ± 0.000 0.001 ± 0.000
Protein Structure 4.549 ± 0.033 4.123 ± 0.028 3.894 ± 0.046 4.077 ± 0.043
Wine Quality Red 0.626 ± 0.046 0.626 ± 0.049 0.623 ± 0.051 0.630 ± 0.050
Yacht Hydrodynamics 5.060 ± 1.328 4.820 ± 1.175 3.070 ± 0.082 2.505 ± 0.060
Year Prediction MSD 8.726 ± NA 8.700 ± NA 8.712 ± NA 8.710 ± NA

Gal and Ghahramani [2016]. The benchmark includes
regression datasets of varying size ranging from 300 to
515K, and input dimensions ranging from 4 to 90, as
summarized in Table 9.

Experiment details We follow the experiment proto-
col of Gal and Ghahramani [2016]. We report the neg-
ative log-likelihood (NLL) and the root mean squared
error (RMSE) on the test split using 10 posterior sam-
ples. For each dataset, the results are averaged over 20
random train-test splits of the data (except for Protein
which uses 5 splits and Year which uses a single split).
We normalize the input using the mean and the stan-
dard deviation of the training split. We use MLPs with
two hidden layers of width 50. We increase the width
to 100 for the larger datasets of Protein and Year. All
models are trained for 100 epochs with learning rate of
0.01 using momentum optimizer. We use batch size of
128 and weight decay of 0.0001. We treat the output
variance as a trainable parameter. In order to minimize
hyperparameter tuning, we use the same hyperparam-
eters used in the CIFAR-10/100 experiments except
that we initialize the posterior standard deviations to
a higher value of 0.1 as lower values led to overfitting.

Results Table 7 and Table 8 present the test NLL and
the test RMSE on the datasets. Overall, Density Un-
certainty gives the best results, outperforming the base-
lines on 6 of 9 datasets in both NLL and RMSE. These
results demonstrate that density uncertainty layers can

also bring benefits for regression problems potentially
in low-data regimes besides the natural image classifica-
tion problems studied in the paper. However, a caveat
is that the variance of results are high on some datasets
due to their small sizes and the performance on these
datasets can be sensitive to the hyperparameters.

B Proof of Proposition 1

For brevity, we omit the noise variable ε` and the param-
eter φ` from the layer f`(h`; ε`;φ`). First decompose
the network output variance as

Var[ajL+1|x] (34)

= Var[ajL + f jL(hL)|x] (35)

= Var[ajL|x] + Var[f jL(hL)|x] + 2Cov[ajL, f
j
L(hL)|x]

The second term can be decomposed as

Var[f jL(hL)|x] (36)

= E[Var[f jL(hL)|hL]] + Var[E[f jL(hL)|hL]]. (37)

Each of these components are bounded as

αE[EL(hL)] ≤ E[Var[f jL(hL)|hL]] ≤ βE[EL(hL)],

by assumption, and

0 ≤ Var[E[f jL(hL)|hL]] ≤MDmax
k

Var[akL|x] (38)
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Table 9: The size and the dimensionality of the UCI regression datasets

Dataset Size Dimension

Boston Housing 506 13
Concrete Strength 1,030 8
Energy Efficiency 768 8
Kin8nm 8,192 8
Naval Propulsion 11,934 16
Protein Structure 45,730 9
Wine Quality Red 1,599 11
Yacht Hydrodynamics 308 6
Year Prediction MSD 515,345 90

On the other hand, the covariance term is bounded as∣∣∣Cov[ajL, f
j
L(hL)|x]

∣∣∣ ≤ √MDmax
k

Var[akL|x] (39)

If there exist CL, C ′L such that for all j,

CLE[E(x1, ..., hL−1)] ≤ Var[ajL|x] (40)

and

Var[ajL|x] ≤ C ′L E[E(x1, ..., hL−1)]. (41)

Combining the above, we have

Var[ajL+1|x] ≥ C E[E(x1, ..., hL)], (42)

for some constant C by induction.

C Bayesian Uncertainty in Linear
Classification

In the paper, we demonstrated that the Bayesian uncer-
tainty for linear regression is grounded in the density
estimate of input. But how about in classification? We
show that the Bayesian uncertainty in classification is
also based on a density estimate but with a weighted
generative objective.

Consider a logistic classification problem, with the
input X ∈ RN×D, the target y ∈ RN , and the weight
w ∈ RD:

p(w) = N (w|0, α−1I), (43)

p(y|X, w) =

N∏
i=1

y
σ(wT xi)
i (1− yi)1−σ(w

T xi), (44)

where σ is the logistic sigmoid function: σ(x) =
1/(1 + e−x). Although the exact posterior distribution
is intractable in this case, we can obtain a Gaussian ap-
proximation using the Laplace’s approximation [Bishop,
2006]:

q(w) = N (w|µMAP,Λ
−1), (45)

Λ =

N∑
i=1

σ(wTxi)(1− σ(wTxi))xix
T
i + αI, (46)

and µMAP is the MAP estimate of the weight. Com-
paring the posterior precision (Equation (46)) to that
of the regression in the paper Λ = β

∑
i xix

T
i + αI,

we find that the precision matrix in classification is a
weighted estimate of the input covariance. Noting that
the weight σ(wTxi)(1− σ(wTxi)) is higher for inputs
with more uncertain predictions (i.e., σ(wTxi) is closer
to 0.5), Bayesian classification prioritizes inputs that
give higher prediction uncertainty, in contrast to the re-
gression case where all inputs were weighted uniformly.
Recall that the posterior precision essentially serves
as a Gaussian density estimate of the input. Equa-
tion (46) shows that Bayesian logistic classification
performs weighted generative modeling of the input,
and by prioritizing inputs that are more informative,
it can potentially better utilize the capacity of the
Gaussian energy model.

Despite this finding, in this work we choose to use the
unweighted generative objective for density uncertainty
layers because (1) the weighted objective can lead to
an unfaithful estimate of the input density and (2) the
capacity of the generative model is not a major concern
for density uncertainty layers, as the complexity of the
uncertainty landscape naturally grows with the number
of layers in the network.
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