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Abstract

Quantile regression (QR) is a statistical tool
for distribution-free estimation of conditional
quantiles of a target variable given explana-
tory features. QR is limited by the assump-
tion that the target distribution is univariate
and defined on an Euclidean domain. Al-
though the notion of quantiles was recently
extended to multi-variate distributions, QR
for multi-variate distributions on manifolds
remains underexplored, even though many im-
portant applications inherently involve data
distributed on, e.g., spheres (climate and geo-
logical phenomena), and tori (dihedral angles
in proteins). By leveraging optimal transport
theory and c-concave functions, we meaning-
fully define conditional vector quantile func-
tions of high-dimensional variables on mani-
folds (M-CVQFs). Our approach allows for
quantile estimation, regression, and computa-
tion of conditional confidence sets and likeli-
hoods. We demonstrate the approach’s effi-
cacy and provide insights regarding the mean-
ing of non-Euclidean quantiles through syn-
thetic and real data experiments.

1 INTRODUCTION

Quantile regression (QR) (Koenker and Bassett, 1978)
is a powerful statistical tool that estimates conditional
quantiles of a target variable Y, given covariates X. QR
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is usually formulated as a regression problem minimiz-
ing the pinball loss, the definition of which inherently
assumes both scalar and Euclidean data. QR has been
extensively employed in applications with scalar target
variables in the Euclidean domain, where the notion of
a quantile is both well-defined and widely understood.
However, there exist many real-world applications in
which the target data are distributed on a manifold,
such as a sphere or a cylinder in case of climate mea-
surements (Lagona, 2018; Scher and Messori, 2020),
a torus in case of protein dihedral angles (Rosenberg
et al., 2022), or more general manifolds for medical
images (Pennec et al., 2019). These datasets are better
represented as points lying on manifolds, which are
geometric spaces with nontrivial topological and geo-
metric properties. A meaningful extension of QR to
manifolds would, therefore, unlock the power of this
statistical tool for a broader range of applications.

Recently, new perspectives on quantile functions
have emerged, allowing for their extension into high-
dimensional data. Notably, Carlier et al. (2016) pro-
posed vector quantile regression (VQR), defining the
vector quantile function (VQF) as a co-monotonic map—
which can be obtained by solving a suitable optimal
transport (OT) problem—between a multivariate uni-
form distribution and the target distribution of interest.
They further showed that quantile regression can be
framed as a conditional OT problem where a family of
OT maps, parametrized by covariates X, are solved for
simultaneously. The resulting maps are the conditional
vector quantile functions (CVQFs) of the multivariate
target variable Y|X. This approach is, however, limited
by the assumption of linearity and the use of the primal
OT formulation, which is hard to scale. More recently,
Rosenberg et al. (2023) extended VQR by proposing a
non-linear extension and introducing a more scalable
solver which exploits the entropic-regularized dual of
the conditional OT problem. Although this work intro-
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Figure 1: Sampling and confidence sets for the ‘Scaled Heart’ and ‘Scaled Star’ distributions Y|X
on S2 and T2, under different conditioning values. The conditioning variable x controls the scale of the
distribution. τ -contours shown as colored lines. The probability of Y|X falling inside a τ -contour is τ .

duced a learned embedding, to incorporate inductive
bias through the structure of X, the approach is unable
to exploit any intrinsic structure present in Y.

Leveraging the OT-based formulation of quantile func-
tions, Hallin et al. (2022) proposed quantile estimation
for spherical data, by solving OT between the base and
target distributions on the n-sphere. However, their
approach has the following limitations: (i) it is limited
to quantile estimation, as opposed to regression (only
supports unconditional quantile functions); (ii) it is
defined only for the sphere, and (iii) it requires solving
the primal OT formulation, resulting in a large-scale
linear program which becomes impractical even for
moderately-sized problems. Despite these limitations,
Hallin et al. provide a motivating example for the po-
tential of OT methods for estimating distributions on
manifolds, and is, to our knowledge, the only approach
proposed so far for defining non-Euclidean quantiles.

Contributions. We propose a novel, scalable ap-
proach for estimating multi-dimensional conditional
quantile functions on manifolds. We build upon a dual
formulation of the Riemannian conditional OT problem
to solve for a family of OT maps parametrized in X.
We model the conditional OT maps as gradients of
c-convex potentials, which are represented by partially
input c-convex neural networks. Thus, we address the
major limitations of both previous works (Hallin et al.,
2022; Rosenberg et al., 2023), in a holistic framework
supporting multivariate distributions on any manifold
for which the exponential map is known. To the best
of our knowledge, this is the first work to estimate
conditional VQFs on manifolds, and, more generally,
to address the problem of conditional OT on mani-
folds. Furthermore, our method extends beyond the
capabilities of existing approaches by not only comput-
ing quantiles but also addressing additional aspects,
including sampling and likelihood computation. This
ability distinguishes our work and aligns with recent
advancements in generative modeling on Riemannian
geometries (Brehmer and Cranmer, 2020; Chen and
Lipman, 2023). We demonstrate the effectiveness of our
approach through extensive experiments on synthetic

and real datasets on the sphere and torus. The code is
available at https://github.com/Marco-Peg/mvqr.

2 BACKGROUND

In the upcoming section, we offer a concise introduc-
tion to fundamental concepts: quantile regression, c-
convexity, and Riemannian Optimal Transport (OT).
For a more extensive overview of Riemannian manifolds
and all the pertinent formulas employed throughout
this paper, we refer to Section A of the Appendix and
Do Carmo and Flaherty Francis (1992).

Notation. Throughout, Y, X denote random vari-
ables and vectors, respectively; deterministic scalars,
vectors and matrices are denoted as y, x, and X. pY
denotes the density of the random vector Y and p(Y,X)

denotes the joint density of X and Y. 1N denotes
an N -dimensional vector of ones, ⊙ denotes the ele-
mentwise (Hadamard) product, and IA is the indicator
function of a set A. QY|X(u;x) is the manifold condi-
tional vector quantile function M-CVQF (defined in the
sequel) of the variable Y|X, evaluated at the vector
quantile level u, for X = x. P(M) denotes the set of
probability measures over M.

Quantile functions. The quantile function QY of
a scalar-valued random variable Y ∈ R is commonly
defined as QY(u) = inf{y ∈ R : P [Y ≤ y] ≥ u}. Of
note are two important facts concerning QY: (i) it is a
unique monotonic map that maps a uniform random
variable U ∼ [0, 1] to Y; and (ii) it is the optimal
transport map between U and Y where the ground cost
is the negative inner product.

Quantile regression. Given a scalar-valued re-
sponse Y and covariates X, quantile regression (QR)
aims to estimate the quantile of a variable Y|X. The
standard approach for solving QR is via the minimiza-
tion of the pinball loss. Carlier et al. (2016) showed that
QR can be equivalently written as an optimal transport
problem between U and Y, with the ground cost as
the negative inner product, and subject to additional

https://github.com/Marco-Peg/mvqr
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mean-independence constraint on the transport plan
which depends on X. While the pinball loss, being
a pointwise loss, is not well-defined for vector-valued
targets, the optimal transport formulation of QR can
be generalized to vector-valued targets by simply modi-
fying the ground cost. This gave rise to vector quantile
regression (VQR), a multivariate analogue of QR. The
goal of the current work is to further generalize VQR
to densities defined on manifolds.

c-convexity. In this paper, we consider Riemannian
d-dimensional manifolds (M, g) with the Riemannian
metric g, embedded in RD. A function φ : M →
R ∪ {+∞} is c-convex with respect to cost c if and
only if it is not identically +∞ and there exists an
α : M → R ∪ {±∞} such that,

φ(y) = sup
z∈M

{−c(z,y) + α(z)}.

Similarly, a c-concave function φ̃ : M → R ∪ {−∞} is
defined as,

φ̃(y) = inf
z∈M

{c(z,y) + α(z)}.

Furthermore, if φ is c-convex, then −φ is c-concave,
and a convex-combination of c-convex functions is c-
convex (Villani, 2021). The c-transform of a function
φ : M → R is defined via infimal convolution,

φc(u) = inf
z∈M

{c(z,u)− φ(z)}.

Lastly, a function φ is c-convex if and only if it satis-
fies the involution property: φcc = φ. In the case of
squared Euclidean cost, c-convexity reduces to standard
convexity, and c-transform becomes the well-known
Legendre-Fenchel transform.

Riemannian optimal transport. Given two prob-
ability distributions and a cost function, the optimal
transport (OT) problem consists of finding the map-
ping that pushes one distribution into the other while
minimizing the overall cost. Here we are interested
in distributions defined on M, and a cost function
given by c(y, z) = 1

2dM(y, z)2, where dM is a geodesic
distance on M. We refer to the associated optimal
transport problem as Riemannian OT. Formally, we
define S(µ, ν) as the set of maps from M to M, pushing
a base probability measure µ ∈ P(M) to a target mea-
sure ν ∈ P(M), i.e. S(µ, ν) = {s : M → M|s#µ = ν}.
The Monge problem on M with cost c consists of find-
ing

inf
s∈S(µ,ν)

∫
M
c(u, s(u))dµ(u). (1)

The optimal s(u) in (1) is the optimal transport map.
To avoid the non-convex optimization in Monge’s for-
mulation, we consider the Kantorovich relaxation, in

which we search for a joint distribution of the measures
instead of a map between them. Denoting by Γ(µ, ν)
the set of joint distributions on M × M that admit
µ and ν as marginals, the Kantorovich formulation is
given by

inf
γ∈Γ(µ,ν)

∫
M×M

c(u,y)dγ(u,y), (2)

and its dual formulation is given by,

sup
φ,ψ

∫
M
φ(u)dµ(u) +

∫
M
ψ(y)dν(y)

s.t. φ(u) + ψ(y) ≤ c(u,y),

(3)

where φ,ψ : M → R are bounded and continuous c-
concave functions, referred to as the potential functions.
As shown in Theorem 9 of McCann (2001), the optimal
transport map s : M → M is a unique minimizer of
the Monge problem (1) and can be obtained from the
potential φ as,

s(u) = expu[−∇uφ(u)] (4)

where ∇ is the intrinsic gradient on M, and exp is the
exponential map. The optimal dual potentials, referred
to as φ∗ and ψ∗, are each other’s c-transform:

φ∗(y) = inf
z∈M

{c(z,y)− ψ∗(z)}

ψ∗(y) = inf
z∈M

{c(z,y)− φ∗(z)}

and, therefore, both c-concave. For a more extensive
overview of Optimal Transport and c-convexity, we
refer to Villani et al. (2009) and Santambrogio (2015).

3 QUANTILE REGRESSION ON
MANIFOLDS

3.1 Vector quantile functions on manifolds

Let Y be a random variable supported on the manifold
M, with distribution ν. We define the manifold uni-
form distribution UM on A ⊆ M as the distribution
having the density pY(y) = IA(y)/V (A), where V (A)
denotes the volume of A. The manifold vector quantile
function (M-VQF) of Y, QY : M → M, is defined by
the OT map obtained as a solution to the Riemannian
OT problem (1), where the base distribution is µ = UM
and the target distribution ν is that of Y (Hallin et al.,
2022). We refer to this problem as manifold vector
quantile estimation (M-VQE). The resulting M-VQF
can therefore be written as,

QY(u) = expu [−∇uφ(u)] .

In the Euclidean case, the exponential map is identity
and c-convexity is simply convexity, so the M-VQF
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reduces to the Euclidean vector quantile function as
defined in Carlier et al. (2016); Chernozhukov et al.
(2017); Rosenberg et al. (2023). Moreover, when the
random variable is Euclidean and scalar-valued, this
definition naturally recovers the one-dimensional quan-
tile function.

3.2 Extension to quantile regression

In the regression case, we estimate the conditional
quantile function of Y|X = x, denoted by QY|X. This
requires solving a family of OT problems parameterized
by x. Following the approach of Carlier et al. (2016) for
the Euclidean domain, we average the OT losses over
x. Denoting by ξ the distribution of the joint variable
(X,Y) and by µ = UM, the uniform base distribution,
the quantile regression problem on manifolds becomes:

sup
φ,ψ

∫
(X×M)×M

(φ(u;x) + ψ(y;x)) dξ(x,y)dµ(u)

s.t. ∀ x,y,u φ(u;x) + ψ(y;x) ≤ c(u,y)

(5)

where φ,ψ : M×X → R are bounded and continuous
c-concave functions in u. The manifold conditional
vector quantile function (M-CVQF) will thus be a map
M×X → M such that:

QY|X(u,x) = expu[−∇uφ(u,x)].

Discretization. We can dicretize Equation 5 by sam-
pling {ui}Ti=1 ∼ UM from µ and {(yj ,xj)}Nj=1 from ξ,
getting:

max
φ,ψ

T∑
i=1

µi

N∑
j=1

ξjφ(ui;xj) +

N∑
j=1

ξjψ(yj ;xj)

s.t. ∀i, j : φ(ui;xj) + ψ(yj ;xj) ≤ c(ui,yj).

By writing one of the potentials as the c-transform of
the other we obtain the following optimization problem,

max
φ

T∑
i=1

µi

N∑
j=1

ξjφ(ui;xj) (6)

+

N∑
j=1

ξj min
u∈M

{c(u,yj)− φ(u;xj)} ,

with µ = 1
T 1T , ξ = 1

N 1N and where φ(u;x) : M ×
X → R is a partial c-concave function in u. We refer
to this problem as manifold vector quantile regression
(M-VQR). The other potential can be retrieved via the
c-transform,

ψ(y;xj) = min
u∈M

{c(u,y)− φ(u;xj)} . (7)

3.3 Confidence sets

With the estimated quantile function QY|X, we can
compute confidence sets on the target distribution.
To define a set of nested regions with a µ-probability
content of τ ∈ [0, 1] on M, we must first choose a
central point, or pole, ω ∈ M. This point will play the
role of the median for ν, around which the contours
will be nested. We opted to compute the pole using
the Fréchet mean of ν, defined as

ω = argmin
y∈M

Ey∼ν [c(y,y)]; (8)

other choices are also possible. Under the base distri-
bution, the τ -contour, containing µ-probability of τ
and centered at ω, can be defined as

CU
τ = {u ∈ M : C∗

ω(u) = τ} (9)

where C∗
ω is a function mapping the geodesic distance

of u from the pole ω to the probability τ . A more de-
tailed explanation on how we define C∗

ω is provided in
Section D.2 of the Appendix. The τ conditional quan-
tile contour, under the target distribution of Y|X, can
then be obtained via the image CY|X

τ := QY|X(CU
τ ;x).

Figure 1 shows CY|X
τ for multiple distributions and

values of τ .

3.4 Likelihood

Once the conditional quantile function has been esti-
mated, we can use it to also obtain the conditional
likelihood function pY|X(y;x):

pY|X(y;x) =
1

V (M)
·
∣∣∣∇yQ

−1
Y|X(y;x)

∣∣∣
where ∇ denotes the Jacobian on M and U ∼ UM
(with a slight abuse of notation).

4 IMPLEMENTATION DETAILS

Below we discuss details related to the implementation
of c-concave functions, partial input c-concave neural
networks, and regularization techniques employed.

Discrete c-concave functions. The fundamen-
tal building block for our input c-concave poten-
tials are c-concave functions. Following Cohen et al.
(2021), we parameterize each c-concave function φ with
{(zi, αi)}Mi=1 ⊂ M × R, where αi = α(zi) are the
(learned) values of an implicitly defined function on M,
and zi are the (learned) points on which it is sampled.
A c-concave function is thus obtained by applying the
c-transform to the implicit function α(z):

φ(u) = min
i=1,...,M

{c(zi,u) + α(zi)} . (10)
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This formulation results in a piecewise smooth approx-
imation of the c-concave potential. Cohen et al. (2021)
prove that this discrete approximation of c-concave po-
tential has the expressive power to represent arbitrary
c-concave potentials on compact manifolds.

Input c-concave networks. We use two properties
of c-concave functions to build input c-concave neu-
ral networks: (i) a convex combination of c-concave
functions is c-concave, and (ii) applying a concave and
monotone function to a c-concave function retains its
c-concavity. This is similar in spirit to input-convex
neural networks (Amos et al., 2017). An L-layered
c-concave function β can be obtained by combining
L+ 1 c-concave functions φi, as follows:

β0(u) =φ0(u)

βl(u) = (1− ωl)φl(u) + ωlσ(βl−1(u)),
(11)

where l ∈ {1, . . . , L}, ωl ∈ [0, 1] are learnable weights,
and σ(s) = min{0, s} is a concave monotone function.

Partial input c-concave networks. In the regres-
sion setting, we model the potentials as a partially
input c-convex neural networks: c-convex in u but
not in x. A similar approach was also used in Bunne
et al. (2022) where they model conditional OT maps on
Euclidean domain using partially input convex neural
networks. Assuming X = Rk, we implement a partial
c-concave potential φ(u;x) as a non-negative sum of
n + 1 functions which are c-concave in u, and apply
non-linear trainable transformations on x:

φ0(u;x) =β0(u), β0 : M → R
φi(u;x) =φi−1(u;x) + βi(u)

⊤gi ◦ ... ◦ g1(x),
φ(u;x) =φn(u;x)

(12)

with i ∈ {1, . . . , n}, βi : M → Rki and gi(x) : Rki−1 →
Rki+ (k0 = k) parametrized using neural networks. In
particular, each βi is implemented as a ki-stack of
c-concave functions (10): βi = (βi1, . . . , βiki) where
βij : M → R with j ∈ {1, . . . , ki}. Conversely, the gi’s
can be arbitrary learned embedding functions. For ex-
ample if X are images, a CNN-based g(x) can be used
to leverage translation equivariance and the hierarchi-
cal nature of image features. In our experiments, we
implement the gi’s as a multilayer perceptron (MLP)
with rectified linear unit (ReLU) activation as the last
layer to ensure non-negative values.

Computing convex conjugates. Given a c-concave
potential φ(u,x), its convex conjugate is defined by
the c-transform,

φc(y;x) = inf
y∈M

{c(u,y)− φ(u;x)} .
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Figure 2: Impact of involution regularization. The
results are from a M-VQE trained on S2, where the
target distribution is a von-Mises distribution and the
c-concave potential consists of 3 layers and γ = 0.1.
Involution error is dramatically reduced when training
with the involution regularization.

In practice, we compute this conjugate numerically
by sampling several points on M, and evaluating the
conjugate explicitly, i.e.,

φc(y;x) = min
i=1...T

{c(ui,y)− φ(ui;x)} , (13)

where u1 . . .uT ∼ UM.

Both in Equation 10 and 13, we replace the minimum
with a soft-minimum to maintain differentiability:

min
γ

(a1, · · · , an) = −γ log
n∑
i=1

exp

(
−ai
γ

)
with minγ → min as γ → 0. Notice that using the
soft-minimum is equivalent to performing entropic OT
(see Appendix A.4, A.5 in Rosenberg et al. (2023)).

Involution regularization. The use of the soft-
minimum, while improving gradient computation over
the c-concave function parameters, may compromise
the c-concavity of the network. This compromise can
lead to a violation of the involution property dur-
ing training, as already noted in Cohen et al. (2021)
and demonstrated in Figure 2. To address this is-
sue, we introduce an extra term in the VQR loss (6)
which penalizes deviations the learned c-concave po-
tentials may have from the involution property. Given
{ui}Ti=1 ∼ UM and {yj ,xj}Ni=1 ∼ P(Y,X), we compute
the involution regularization as:

N∑
j=1

T∑
i=1

||φcc(ui;xj)− φ(ui;xj)||, (14)

where φcc is obtained by computing the numerical con-
jugate via equation (13) twice on φ. This regularization
is conceptually similar to the cycle-consistency regu-
larization proposed by Korotin et al. (2019). However,
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Figure 3: M-VQE approximation of the quantile function QY of the ‘Multimodal von-Mises’
distribution produces nested, smooth, and valid contours and correctly estimates the likelihood
function. Subfigure (a) shows ground truth and estimated likelihood functions. We use the Mollweide projection
to plot the whole sphere surface. Subfigure (b) shows τ -contours overlayed on the ground truth samples, for
different values of τ . Graph (c) plots the requested coverage level on the horizontal axis and the coverage achieved
by the model on the vertical axis.

our approaches differ in two ways: (i) cycle consistency
implies involution but only up to a constant, and (ii)
we train a single c-convex potential and involution regu-
larizer is used to ensure the c-convexity of the potential,
whereas Korotin et al. (2019) train two potentials and
cycle consistency is employed for promoting convex-
conjugacy between them. Figure 2 demonstrates that
this regularizer effectively reduces the involution error,
and thus strongly promotes c-concavity of the learned
potentials.

Identity initialization. Similarly to Korotin et al.
(2019) and Cohen et al. (2021), we pre-train our model
to represent the identity map. In practice, we observe
that this serves as a good initialization for training.

5 EXPERIMENTS

We validate our method on synthetic and real-world
datasets, and on two different manifolds: the sphere
S2 and the 2-dimensional torus T 2 = S1 × S1. Both
manifolds have a closed-form expression for distances,
exp/log-maps, and the ground cost is the squared
geodesic distance. We report all the formulas in Sec-
tion A of the Appendix. For the synthetic datasets,
where we have access to the data generating process, we
measure the quality of sampling, likelihood estimation,
and confidence sets constructed from the estimated
M-CVQFs. In real-world scenarios, where ground truth
likelihood are unavailable, we quantify sampling quality
and confidence set validity, and visually present the
estimated likelihoods.

5.1 Evaluation Metrics

Below we describe the quantitative metrics used to
evaluate Q̂Y|X, the estimated M-CVQF.

Sampling. We assess sampling quality by computing
L1 distance between kernel density estimates (KDE) ob-
tained using samples drawn from the groundtruth and
estimated distributions. We employ manifold-specific
kernels for the KDEs. The KDE-L1 distance is mea-
sured as:

KDE-L1(Y,Y(gt)) =
∣∣pKDE

Y − pKDE
Ygt

∣∣ ,
where Y,Ygt are equally-sized sets of samples drawn
from the estimated and true distribution, respectively.
In the conditional setting, we first sample {xi}Mi=1 ∼ X.
For each xi, we sample a set of points Yxi

from Q̂Y|X,
a set of points Y(gt)

xi from the true pY|X=xi
, and report

the mean KDE-L1 distance over all xi.

Likelihood. When groundtruth likelihood is avail-
able, we assess the quality of the model’s likelihood
using estimated sample size (ESS), originally proposed
by Kish (1968) as also used in Cohen et al. (2021). It
is computed as follows:

ESS% = 100×
(
∑N
j wj)

2

N ·
∑N
j w

2
j

with wj =
pgtY|X(yj ,xj)

pY|X(yj ,xj)
,

where {yj ,xj}Nj=1 ∼ p(Y,X), p
gt
Y|X and pY|X are the

groundtruth and estimated conditional likelihoods, re-
spectively.

Confidence sets. Estimating the validity of a con-
fidence set CY|X

τ requires computing P
[
y ∈ CY|X

τ

]
,

which is non-trivial because confidence sets on the
target distribution assume an arbitrary shape on the
manifold. However, checking whether a point is inside
a τ confidence set for U, i.e., CU

τ , is straightforward:
it can be verified by checking that C∗

ω(u) ≤ τ . To
exploit this property we use the inverse M-CVQF,
which maps Y|X back to U ∼ UM, computed as
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Table 1: M-VQR approximation of QY|X allows building confidence sets with good marginal coverage,
to perform good quality conditional sampling, and to approximate the likelihood accurately. The
table reports on the left marginal coverage values for different confidence sets built using the estimated quantile
function QY|X, averaged over 50 values of the continuous conditioning X, with relative standard deviation.
KDE−L1 values in the are also averages over 50 values of X. The last column reports the ESS% computed over
samples drawn from the whole distribution Y|X.

Coverage (%) KDE-L1 ESS%

M Y|X 20 30 60 Mean error (×10−4)

S2
Cond. Multimodal 20.22± 0.44 40.28± 0.56 60.22± 0.49 0.44± 0.34 14.2± 2.09 94.93%

Scaled Star 19.50± 0.51 38.40± 0.63 59.35± 0.70 0.86± 0.64 2.25± 0.99 89.30%
Scaled Heart 20.57± 0.46 40.82± 0.60 60.02± 0.53 0.60± 0.42 4.46± 1.18 89.84%

T 2
Cond. Multimodal 20.06± 0.43 40.68± 0.61 60.46± 0.68 0.54± 0.43 17.5± 2.92 96.82%

Scaled Star 19.81± 0.50 39.86± 0.55 60.39± 0.61 0.47± 0.35 5.85± 1.92 84.79%
Scaled Heart 19.95± 0.47 40.50± 0.65 61.18± 0.60 0.61± 0.49 7.93± 2.14 88.05%
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Figure 4: Likelihood function pY|X for the ‘Conditional Multimodal’ distribution. The covariate X
controls the scale of the distribution. ESS% values are also reported. We use the mollweide projection to plot
the whole sphere surface.

Q−1
Y|X(y;x) = expy[−∇yψ(y;x)]. The coverage of the

confidence set CY|X
τ is then estimated by:

P
[
y ∈ CY|X

τ

]
= P

[
Q−1

Y|X(y;x) ∈ CU
τ

]
= EU[IC∗

ω(U)≤τ ] ≈
1

N

N∑
i=1

IC∗
ω(ui)≤τ

where ui = Q−1
Y |X(yi;xi).

5.2 Datasets

Synthetic datasets. For synthetic data experiments,
we defined three data generating processes. The ‘Condi-
tional Multimodal’ distribution is a mixture of four von-
Mises distributions on M, conditioned on X ∈ R which
controls the covariance of the distributions. ‘Scaled
Heart’ and ‘Scaled Star’ are uniform distributions on a
subset A ⊂ M which is heart-shaped and star-shaped,
respectively. The conditioning variable X ∈ R controls

the scale of A. All aforementioned distributions are
defined both on S2 and T 2.

Real-world datasets. As a candidate for distribu-
tions defined on S2, we consider the ‘Continental drift’
dataset, consisting of continental drift measured over
26 eras. We consider the era as the conditioning vari-
able, and continental drift as the target variable. The
source maps are taken from the 2020 Colorado Plateau
Geosystems 1. We convert each Mollweide earth im-
age into a spherical point cloud and into Euclidean
coordinates.

As a real-world use case on the torus T = S1 × S1,
we consider a dataset of local dihedral angles (φ,ψ ∈
[0, 2π]) measured in the backbone of folded protein
structures. Pairs of angles can be naturally represented
as points of on a torus, because each angle is represented
by a point on S1. Protein structures are composed of

1https://deeptimemaps.com/

https://deeptimemaps.com/
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Figure 5: τ -confidence sets constructed with M-VQR on the ‘Continental Drift’ dataset are smooth,
nested, and valid. Subfigures (a) and (b) report τ -contours overlayed on the ground truth samples, for different
values of τ ; each subfigure represents conditioning on a different era. Mollweide projection is used to visualize the
whole sphere. Graph (c) shows the coverage achieved by the model as a function of the requested coverage level,
averaged over the different conditionings with relative confidence bars.
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Figure 6: τ -contours constructed with M-VQR on the ‘Dihedral Angles’ dataset are smooth, nested,
and valid. Subfigures (a), (b) and (c) report τ -contours overlayed on the ground truth samples, for different
values of τ ; each subfigure depicts conditioning by a different amino acid. The dihedral angles are plotted on
a “flat torus”, with the axes representing the dihedral angles in degrees. The wrap-around, due to the toroidal
domain, is clearly visible in the contours. Graph (d) shows the the coverage achieved by the model as a function
of the requested coverage level, averaged over the different conditionings with relative confidence bars.

chains of common amino acids (AAs), with each AA in
the chain assuming different dihedral angles depending
on its location, chemistry, context, and other biological
factors. We use the AA identity as the conditioning
variable, and the corresponding dihedral angles as the
target. Note that here X is categorical, with 20 possible
values indicating the AA identity. We use the dihedral
angle dataset curated by Rosenberg et al. (2022) and
group the dihedral angles by their AA identity.

5.3 Synthetic data experiments

Below we report results both for unconditional estima-
tion (approximating QY, without covariates) and for
regression (approximating QY|X).

Quantile estimation. Though it is not the primary
focus of this paper, evaluating the performance of our
approach in the simpler quantile estimation scenario
is worthwhile, because until now the only existing ap-
proach for this problem was that of Hallin et al. (2022),
which is limited to the sphere and neither scalable
nor differentiable. Figure 3 visually and quantitatively

demonstrates that the estimated M-VQF results in
smooth, nested, and valid contours. Both the likeli-
hood visualization and the ESS value (93%) indicate
a close approximation to the ground truth likelihood.
We also report a KDE-L1 distance of 3.9× 10−3; com-
pared to an upper bound of 0.7× 10−3 when measured
between two independent pairs of groundtruth samples.
This indicates good sampling quality of the M-VQF.

With regard to scalability, in Section C.1 of the Ap-
pendix, we demonstrate that our approach, based on
the relaxed dual OT problem, is substantially more
scalable than the previous approach of Hallin et al.
(2022), which involves solving a discrete OT problem
as a linear-program.

Quantile regression. Quantitative results for cover-
age, sampling, and likelihood in the regression setting
are reported in Table 1. We observe that the confi-
dence sets constructed by estimated M-CVQFs result
in a maximum coverage violation of 1.5% with respect
to the nominal coverage. KDE-L1 shows an order of
magnitude of 10−3 at maximum against a magnitude
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of 10−4 for KDE-L1 between ground truth samples,
indicating good sampling. ESS is between 84%-96%,
demonstrating that the conditional likelihoods com-
puted from the estimated M-CVQFs are reasonably
accurate compared to the groundtruth.

Figure 1 provides a visualization of conditional contours
for the ‘Scaled Heart’ and ‘Scaled Star’ distributions.
Figures 13c and 13f depict the estimated conditional
likelihoods for the ‘Conditional Multimodal’ distribu-
tion dataset on S2 and T2, respectively. Additional
visualizations are provided in Section E of the Ap-
pendix.

5.4 Real data experiments

Figure 5 presents results on the ‘Continental Drift’
dataset, reporting the coverage and confidence sets
visualizations for two different conditioning values. Fig-
ure 6 reports the same results for the ‘Dihedral Angles’
dataset. In both cases, the resulting contours are nested
and smooth, as desired. The coverage values are almost
perfectly aligned with the ground truth, and demon-
strate low variance over the conditioning variables. In
Figure 6, the wrap-around of the confidence sets due to
the manifold structure of the domain is clearly visible.
The mean KDE-L1 for the ‘Continental Drift’ dataset
is (1.72 ± 0.26) × 10−3 against (9.45 ± 1.05) × 10−4

from the ground truth samples; while for the ‘Dihe-
dral Angles’ dataset we obtain a mean KDE-L1 of
(2.61± 0.56)× 10−3 against (7.34± 2.88)× 10−4. The
likelihood plots for both datasets are provided in Sec-
tion E of the Appendix.

6 DISCUSSION AND
CONCLUSIONS

Our work provides the first formulation of conditional
vector quantile functions on manifolds, by extending
non-linear VQR to non-Euclidean domains, together
with conditional OT and quantile regression on mani-
folds. Our key contributions are the novel formulation
of nonlinear VQR as a Riemannian OT problem, its
parametrization with partial input c-concave neural
networks, and the involution regularization approach
for training.

One potential limitation of this work is that the es-
timated potential functions might not be c-concave,
as this property is only promoted, but not enforced,
through the regularized objective. In future studies,
we hope to analyze it theoretically and provide ways
to overcome this limitation. Another avenue for explo-
ration is extending the proposed approach to domains
possessing closed-form formulations for computing c-
concave functions, such as Lie groups.

In summary, our approach enables the estimation of
conditional quantiles and construction of confidence
sets on general manifolds for which the exponential
map is known by fitting data sampled directly from
the joint distribution. These capabilities may open the
door to exciting new applications in diverse domains
such as pose estimation, weather modeling, and protein
structure prediction. We believe that M-VQR is thus
a powerful and useful new addition to the toolbox of
directional statistics.
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APPENDIX

A DIFFERENTIAL GEOMETRY

In this Section, we provide an overview of the main concepts of differential geometry used in the main paper.

Manifolds. In this paper, we consider Riemannian d-dimensional manifolds (M, g) with the Riemannian
metric g, embedded in RD. Given a point y ∈ M, the tangent space TyM is defined as the linear subspace
TyM =

{
v ∈ RD : v⊤y = 0

}
. The Riemannian metric defines an inner product ⟨·, ·⟩g : TyM× TyM 7→ R on

the tangent space, which induces a geodesic distance dM(y, z) between every pair of points y, z ∈ M, as the
minimum length of a curve connecting the two points,

dM(y, z) = inf
γ

∫ 1

0

∥γ̇(t)∥g dt,

where γ : [0, 1] → M and γ(0) = y, γ(1) = z.

The exponential map of a manifold projects an infinitesimal displacement of y along the tangent vector v back to
the manifold. Given a point y ∈ M with a tangent vector v ∈ TyM, and given the unique geodesic γ : [0, 1] → M
such that γ(0) = y and γ̇(0) = v, the exponential map at y is defined as expy(v) = γ(1). The tangent space
inner product structure also allows one to define the intrinsic gradient and Jacobian over the manifold.

Manifold uniform distribution. Given the volume measure dM(y) representing the infinitesimal volume
element at each point y of the manifold, a random variable Y follows a manifold uniform distribution UA on the
bounded subset A ⊆ M if its probability density function (PDF) is constant within A:

pY(y) =
IA(y)
V (A)

(15)

where V (A) is the volume of the set A with respect to the volume measure dM. The uniform distribution on the
manifold, with respect to the volume measure, assigns probabilities to subsets of the manifold based on their
intrinsic volumes.

Sphere. On the n-sphere Sn, the exponential map and the intrinsic distance are provided as closed-form
expressions. If y,u ∈ Sn and v ∈ TySn,

expSn

y (v) = y cos(∥v∥) + v

∥v∥
sin(∥v∥) (16)

dSn(y,u) = arccos(uTv), (17)

where ∥·∥ is the standard Euclidean norm.

Torus. The torus T 2 can be defines as a product manifold between two 1-sphere: T 2 = S1 × S1. On general
product manifolds of the form M = M1 × . . .×Ml, the squared intrinsic distance is simply

d2M(y,u) = d2M1
(y1,u1) + . . .+ d2Ml

(yl,ul). (18)

where y = (y1, . . . ,yl), and uj ∈ Mj , j ∈ [l] (and similarly for y). The exponential map on the product manifold
is the cartesian product of exponential maps on the individual manifolds. Therefore, the exponential map and
intrinsic distance on the torus T 2 is defined as:

expT 2

y (v) = expS1

y1
(v1)× expS1

y2
(v2) (19)

dT 2(y,u) =
√
d2S1(y1,u1) + d2S1(y2,u2). (20)
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B DERIVATION OF MANIFOLD VQR LOSS FUNCTION

The dual formulation of the Kantarovich problem is given by

sup
φ,ψ

∫
M
φ(u)dµ(u) +

∫
M
ψ(y)dν(y)

s.t. φ(u) + ψ(y) ≤ c(u,y),

(21)

due to the linearity of integration we have

sup
φ,ψ

∫
M×M

(φ(u) + ψ(y)) dµ(u)dν(y)

s.t. φ(u) + ψ(y) ≤ c(u,y)

In the regression setting, φ and ψ are c-concave functions, parametric in x and concave in u, and we denote the
measure corresponding to the joint distribution of X,Y as ξ(x,y). The manifold vector quantile regression loss
is simply obtained by taking an expectation of Equation 21 with respect to x,

sup
φ,ψ

∫
X×M×M

φ(u;x)dξ(x,y)dµ(u) +

∫
X×M

ψ(x;y)dξ(x,y)

s.t. φ(u;x) + ψ(y;x) ≤ c(u,y).

In the finite sample setting where {u}Ti=1 ∼ UM, {xj ,yj} ∼ p{X,Y}, the above can be written as

max
φ,ψ

N∑
j=1

ξj

T∑
i=1

µiφ(ui;xj) +

N∑
j=1

ξjψ(yj ;xj)

s.t. ∀i, j : φ(ui;xj) + ψ(yj ;xj) ≤ c(ui,yj),

(22)

where µ = 1
T 1T , ξ = 1

N 1N , are measures corresponding to the respective sample densities.

Estimation. In the main paper, we evaluated the performance of example of manifold vector quantile estimation.
For convenience, below we provide the finite-sample version of the loss function in the unconditional case.
Given samples {ui}Ti=1 ∼ UM and {yj}Nj=1 ∼ Y from a random target variable Y, the dual formulation of the
Kantorovich problem can be discretized as

max
φ,ψ

T∑
i=1

µiφ(ui) +

N∑
j=1

νjψ(yj)

s.t. ∀i, j : φ(ui) + ψ(yj) ≤ c(ui,yj),

(23)

where µ = 1
T 1T , ν = 1

N 1N .

By writing one of the potentials in terms of the other leveraging the c-transform, we obtain the following max-min
optimization problem,

max
φ

T∑
i=1

µiφ(ui) +

N∑
j=i

νj min
u∈M

{c(u,yj)− φ(u)} . (24)

C COMPARISON TO PRIOR WORKS

In this section, we compare our method to two prior works, Hallin et al. (2022) and Cohen et al. (2021). We
evaluate the scalability of our method in comparison to Hallin et al. (2022). We then study the impact of different
training loss functions, to offer insights into how our approach compares to Cohen et al. (2021). Through this
comparative exploration, we aim to provide a holistic view of our method’s strengths and capabilities in relation
to the existing state-of-the-art. It is important to note that these comparisons are carried out on manifold vector
quantile estimation (M-VQE), as neither aforementioned works train conditional maps (M-VQR).
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Figure 7: Probability contained in the contours computed using the inner distance dM(ω,u) (left)
and the mapping function C∗

ω(u) (right). The distances are normalized to be in the range [0, 1]. The
mapping function C∗

ω creates a linear dependency between the distance of the points in a contour and the amount
of probability contained.

C.1 Comparison to Hallin et al. (2022)

Hallin et al. (2022) propose solving the OT problem resulting from manifold vector quantile estimation (M-VQE)
as a linear assignment problem with the ground cost set to be the squared geodesic distance. Given {ui}Ti=1 ∼ UM
and {yj}Nj=1 ∼ PY, the primal OT formulation proposed by Hallin et al. (2022) solves the following optimization
problem

min
Π≥0

N∑
j=1

T∑
i=1

πijc(ui,yj)

s.t. Π1N = 1T ,Π
⊤1T = 1N ,

where Π ∈ RT×N is the assignment matrix, and c(ui,yj) = d2M(ui,yj). This approach has several limitations.
First, the aforementioned problem solves a discrete optimal transport problem, thus it recovers the transport
map only at pre-specified points. This discrete representation of the map does not allow computation of the
likelihood which is defined as the determinent of the Jacobian of the inverse map. In contrast, we solve a
continuous optimal transport problem, we recover a continuous, differentiable, and invertible formulation of the
transport map. Second, the primal OT formulation is solved using a linear program solver. As a result, their
approach scales poorly with the number of samples, both in the number of optimization variables and run-time.
Instead our approach solves the relaxed formulation of the dual optimal transport problem which is amenable
to gradient-based optimization and scales to large sample sizes. For example, when N,T = 10000, our M-VQE
solver converges in 8 minutes, whereas the linear program solver, which estimates over 100 million parameters,
does not converge even in 3 hours. Finally, Hallin et al. (2022) solve only the estimation problem, whereas our
approach solves the more general regression problem.

C.2 Comparison to Cohen et al. (2021)

While we adopt the parametrization strategy for c-concave function introduced by Cohen et al. (2021), our work
differs from Cohen et al. (2021) in two crucial ways: (i) we employ a different training strategy; (ii) we retrieve a
family of maps conditioned on covariates X, whereas Cohen et al. (2021) retrieve a single map.

Cohen et al. (2021) propose two alternative strategies to train a normalizing flow between the base and target
distributions: (i) training only the forward map by minimizing the KL-divergence w.r.to the groundtruth
target samples, (ii) training only the inverse map by performing maximum likelihood in with respect to the
base distribution. In contrast to these both training strategies, we retrieve both forward and inverse maps
simultaneously by solving the optimal transport problem.

In Figure 8, we compare these three training strategies, both visually and quantitatively, by evaluating the
likelihood and sampling quality on the ‘Multimodal von-Mises’ distribution. Across all strategies, to allow for a
fair comparison, we train a single c-concave potential discretized at 200 points ({zi, αi}2i=100). Likelihoods are
computed by leveraging the Jacobian of the inverse of the quantile function Q−1

Y . For RCPM with KL-divergence
(RCPM-KL), we train the forward potential φ and then calculate the backward potential using the c-transform to
compute the likelihood. Conversely, for RCPM with maximum likelihood (RCPM-LH), we sample points using the
c-transform of the trained backward potential. The results highlight that our method attains a comparable ESS%

and the smallest KDE-L1 error. Notably, RCPM-LH achieves a nearly perfect likelihood, possibly attributed to
the chosen loss function. However, in terms of sampling quality, our model, M-VQE, remains superior.
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(a) Ground truth
83%

(b) RCPM-KL
99%

(c) RCPM-LH
93%

(d) M-VQE

(e) Likelihood (ESS%)

(f) Ground Truth
6.67

(g) RCPM-KL
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(h) RCPM-LH
3.84

(i) M-VQE

(j) Sampling (KDE-L1 ×10−5)

Figure 8: Likelihood and Sampling on the ‘Multimodal von-Mises’ distribution. We compare the results
obtain with our M-VQE and the RCPM method (Cohen et al., 2021) trained with KL-divergence (RCPM-KL)
and Maximum log-likelihood (RCPM-LH). We also report the ESS% and KDE-L1 (×10−5) values.

D EXPERIMENTAL DETAILS

D.1 Hyperparameters

We train all models for 5×104 iterations, using Adam optimizer with a learning rate set at 10−3. We discretize the
c-concave potentials using 200 points (α’s) and approximate the potentials with 4-6 layered c-concave functions.

Multimodal von-Mises. For the Multimodal von-Mises dataset, we train an M-CVQF with a learning rate of
0.001, incorporating a single c-concave β potential.

Synthetic datasets. In the case of the synthetic datasets, our approach involves training an M-CVQF with
a learning rate of 0.001, implementing a c-concave β potential comprising 4 layers. The c-concave function is
further augmented with inner sizes of [2, 4, 8].

Continental drift. For the Continental Drift dataset, we train an M-CVQF using a learning rate of 0.0005.
The c-concave β potential is composed of 6 layers, while the c-concave function encompasses inner sizes of
[4, 8, 12, 16, 20, 24]. The dataset contains 3.8M samples.

Dihedral angles. In the context of the Dihedral Angles dataset, our approach involves training an M-CVQF
with a learning rate of 0.0005. Similar to the Continental Drift dataset, the c-concave β potential consists of 6
layers, and the c-concave function’s inner sizes are specified as [4, 8, 12, 16, 20]. The dataset contains 350k samples.

Spherical uniform distribution USn . We compute the manifold uniform distribution on the n-sphere sampling
each component of the vector v ∈ Rn from a random uniform distribution and then normalizing v such that
∥ v ∥= 1.

Torus uniform distribution UT 2 . We compute the manifold uniform distribution on the torus sampling from
the spherical uniform distributions US1 on the S1 and then concatenating the results: u = [u1,u2] ∼ UT 2 with
u1,u2 ∼ US1 .

D.2 Creating confidence sets

Given a point ω ∈ M, we define a confidence set with a level of confidence (1 − τ) on a manifold uniform
distribution as the set of points contained in a τ -contour with pole ω:

CU
(1−τ) = {u ∈ M : C∗

ω(u) ≤ τ} (25)

C∗
ω is a function that maps distances dM(ω,u), with u ∈ M, to the probabilities τ ∈ [0, 1]. We build this function

empirically for each pole ω. We compute the set of points C∗
κ = {u ∈ M : dM(ω,u) = κ} and the amount of
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(a) Sn

τ

(b) T 2

Figure 9: τ-contours of the Manifold Uniform Distributions UM

Table 2: KDE-L1 (×10−4) computed over samples of M-VQR and GT. We report the values for all the
conditional distributions considered in the paper.

M Y|X M-VQR GT

S2
Cond. Multimodal 14.2± 2.09 8.21± 2.69

Scaled Star 2.25± 0.99 2.95± 1.25
Scaled Heart 4.46± 1.18 3.59± 1.21

Continental Drift 17.2± 2.6 9.45± 1.06

T 2
Cond. Multimodal 17.5± 2.92 11.4± 4.87

Scaled Star 5.85± 1.92 3.44± 2.07
Scaled Heart 7.93± 2.14 4.17± 2.1

Dihedral angles 26.1± 5.6 7.34± 2.88

probability τκ contained in C∗
κ as the percentage of points u ∈ M with dM(ω,u) ≤ κ. The function C∗

ω is then
the interpolation of the pairs {(κ, τκ)}Nκ

i=1. Figure 7 shows the amount of probability contained in the contours as
their distance from the pole increases with and without using C∗

ω.

D.2.1 τ-contours

The τ -contours are computed using the vector quantile function Q̂Y. First of all, we compute the τ -contours
CU
τ on the base distribution µ (Figure 9). Then we map CU

τ to the target distribution using the learned vector
quantile function Q̂Y: CY

τ := Q̂Y(CU
τ ).

E ADDITIONAL EXPERIMENTS RESULTS

In this section, we present additional experimental results and accompanying plots that extend upon the findings
reported in the main paper.

KDE-L1 scores. Table 2 provides a detailed breakdown of the KDE-L1 scores for all the conditional distributions
featured in the primary paper. Specifically, we furnish both the mean and standard deviation of the KDE-L1

values, calculated for two distinct scenarios: (1) between ground truth samples and samples generated by our
method (M-VQR), and (2) solely among samples drawn from the ground truth distribution (GT). The latter value
aids us in determining the extent to which any discrepancies are attributed to finite sampling, thus allowing us to
measure the effectiveness of our method in accurately capturing the ground truth distribution through sampling.

Sample complexity. For M-VQE, we experimented with ablating the number of samples, and observed that
the estimation accuracy (ESS, KDE-L1) saturates at N = 1k. In contrast, M-VQR has much higher sample
complexity. This is intuitive because modeling conditional distributions is significantly harder than estimating a
single distribution (as in M-VQE). To demonstrate this, we performed an ablation study of M-VQR on conditional
multi-modal distributions with increasing number of samples, as presented in Figure 10. The results suggest that
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the Coverage error and ESS saturate at N = 12.5k, while KDE-L1 error drops as N increases.
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Figure 10: Performance variation as the number of training samples increases. We report the Coverage
error, KDE-L1 and ESS(%) for the M-VQR trained on the Conditional Multimodal distribution on a sphere.
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Figure 11: τ -confidence sets and Likelihood computed with M-VQR on the ‘Translated Multimodal’
dataset. Subfigures (a) and (b) report τ -contours overlayed on the ground truth samples, for different values of τ .
Mollweide projection is used to visualize the whole sphere. Graph (c) shows the coverage achieved by the model
as a function of the requested coverage level, averaged over the different conditionings with relative confidence
bars. Subfigures (d) and (e) show the likelihood and the ESS%.

Translated Multimodal. In the main paper, we considered synthetic datasets where conditioning governed the
scale of the distribution. Here, we consider a more intricate scenario: a mixture of four von-Mises distributions
defined on the manifold M, where the conditioning controls the positions of the modes. Figure 11 showcases
the results on the S2 sphere. We train an M-VQR model employing a c-concave β potential with 4 layers. The
c-concave function is further enriched with inner sizes of [2, 4, 8]. Remarkably, our method consistently generates
contours with all the desired characteristics: they are nested, smooth, and constitute valid contours, with a mean
coverage error of 1.01%±0.97%. Additionally, we present the likelihood, which achieves a notable ESS% of 93.72%
and a mean KDE-L1 value of (14.38± 5.03)× 10−4. The ground truth KDE-L1 stands at (7.759± 1.52)× 10−4.
These results further demonstrate our approach accurately captures the conditional distribution.

Transformation of samples vs learned points of the c-concave function. We explore the impact of a
transformation denoted as T on the learned c-concave function, focusing on the S2 sphere and two von-Mises
distributions, Y1 and Y2. The second distribution, Y2, is derived by applying a 3D rotation to the first, signifying
the effect of T . We train two separate models, M-VQE1 and M-VQE2, on these distributions and investigate
the consequences of applying the inverse transformation T−1 to the second model. Specifically, we apply T−1 to
both the contours estimated by M-VQE2 (T−1Y2) and the learned support points, denoted as z2, from M-VQE2

(T−1z2). The final two plots in Figure 12 reveal that the results are remarkably close to the contours estimated
by M-VQE1. To quantify this closeness, we compare the coverage error of M-VQE1 with T−1Y2 and T−1z2,
resulting in mean differences of 0.60%± 0.43% and 0.93%± 0.65%, respectively. Furthermore, we compute the
KDE-L1 error for all four cases and observe that the error remains consistent across these scenarios. This analysis
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Figure 12: Impact of Transformation T on Estimated Contours. In this visualization, the first two plots
depict the contours derived from two distinct M-VQE models, each trained on different distributions. The second
distribution is obtained by applying a transformation T to the first, i.e., Y2 = TY1. The third plot showcases the
contours produced using the second model and subsequently applying the inverse transformation to these contours,
yielding T−1Y2. The fourth plot illustrates the contours generated by applying the inverse transformation to
the support points z2 learned by the second model, resulting in T−1z2. Under each plot, we report the KDE-L1

(×10−3) error.

highlights the learned points where the c-concave function is discretized roughly corresponds to the location of
the density that is being modeled.

M-VQR: synthetic data experiments. Figure 13 showcases the likelihood alongside the ESS% (Effective
Sample Size as a percentage) for two distinct conditioning examples within each synthetic distribution featured
in the main paper. Notably, in all cases presented, the ESS% exceeds 84%, demonstrating that our method
efficiently computes the likelihood of the target conditional distribution. This effectiveness is further illustrated
in the accompanying plots.

M-VQR: Real data experiments. Figure 14 and 15 present the results of likelihood and sampling calculations
by our method, M-VQR, applied to the real data distributions examined in the primary paper. It is evident
that, in all cases, M-VQR’s sampled data closely aligns with the ground truth, with a few outliers that may
be attributed to discrete formulation approximations. Moreover, we illustrate the likelihoods pY|X computed
using M-VQR. In this context, we lack a ground truth likelihood for direct comparison, as these distributions
are derived from finite sets of samples. However, by comparing the computed likelihoods with the ground truth
sampling, we observe that higher values of pY|X tend to correspond to regions with a denser concentration of
samples.
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Figure 13: Likelihood function pY|X for the Synthetic distributions. The covariate X controls the
distribution scale. ESS% values are also reported.
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Figure 14: Sampling and Likelihood pY|X from M-VQR on the ‘Continental Drift’ dataset.
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Figure 15: Sampling and Likelihood pY|X from M-VQR on the ‘Dihedral Angles’ dataset.
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