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Abstract

Scientific imaging problems are often severely
ill-posed and hence have significant intrinsic
uncertainty. Accurately quantifying the un-
certainty in the solutions to such problems
is therefore critical for the rigorous interpre-
tation of experimental results as well as for
reliably using the reconstructed images as
scientific evidence. Unfortunately, existing
imaging methods are unable to quantify the
uncertainty in the reconstructed images in a
way that is robust to experiment replications.
This paper presents a new uncertainty quan-
tification methodology based on an equivari-
ant formulation of the parametric bootstrap
algorithm that leverages symmetries and in-
variance properties commonly encountered
in imaging problems. Additionally, the pro-
posed methodology is general and can be eas-
ily applied with any image reconstruction tech-
nique, including unsupervised training strate-
gies that can be trained from observed data
alone, thus enabling uncertainty quantifica-
tion in situations where there is no ground
truth data available. We demonstrate the pro-
posed approach with a series of experiments
and comparisons with alternative state-of-the-
art uncertainty quantification strategies. In
all our experiments, the proposed equivari-
ant bootstrap delivers remarkably accurate
high-dimensional confidence regions and out-
performs the competing approaches in terms
of estimation accuracy, uncertainty quantifi-
cation accuracy, and computing time. These
empirical findings are supported by a detailed
theoretical analysis of equivariant bootstrap
for linear estimators.
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1 Introduction

Digital images inform decisions that have a major im-
pact on the economy, society, and the environment (e.g.,
in medicine, agriculture, forestry, astronomy, defense).
Early uses of images as evidence in decision-marking
or science were predominantly qualitative. However,
modern strategies increasingly adopt a so-called quan-
titative imaging approach which recognises images as
high-dimensional physical measurements and seeks to
use the images as quantitative evidence. The approach
is particularly prominent in scientific applications.

Performing inference in imaging problems usually re-
quires solving a high-dimensional inverse problem that
is severely ill-posed. In particular, many commonly
encountered tasks related to image restoration and
reconstruction involve performing inference on an un-
known image x⋆ taking values in a signal set X ⊂ Rn,
from a single measurement y ∈ Rm modelled as a
realization of

Y ∼ P (Ax⋆) (1)

where P is a statistical model describing stochastic as-
pects of the data acquisition process (e.g., Gaussian or
Poisson measurement noise) and A ∈ Rm×n describes
deterministic instrumental aspects of the observation
process. For example, such models are frequently en-
countered in problems related to image deblurring,
inpainting, super-resolution, compressive sensing recon-
struction, and tomographic reconstruction (see, e.g.,
(Kaipio and Somersalo, 2005; Ongie et al., 2020)), as
well as the examples provided in Appendix A). Unfor-
tunately, the models that accurately describe the data
acquisition process are usually either weakly or not
identifiable, and hence there is significant uncertainty
about x⋆ after observing y.

State-of-the-art imaging methods address this difficulty
by intimately combining computational imaging and
machine learning techniques, which learn to recover x⋆

from y by leveraging information from large training
datasets (Ongie et al., 2020; Mukherjee et al., 2023).
Early learning-based imaging methods required abun-
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Figure 1: Illustration of the equivariant bootstrap method. Additional measurement vectors are boot-
strapped by applying random transformations such as translations and/or rotations, which are then used to
quantify the error associated with the reconstruction network.

dant ground truth data for training. However, new
unsupervised strategies exploit symmetries or equivari-
ance properties in the problem to learn estimators of
x⋆ from the observed data alone (Chen et al., 2023).

Despite sustained progress in image estimation accu-
racy, important aspects of quantitative imaging sci-
ences are still in their infancy. In particular, most
imaging methods cannot reliably quantify the uncer-
tainty in the delivered solutions, which is essential for
the rigorous interpretation of experiments and robust
interfacing of imaging pipelines with decision-making
processes. Furthermore, as we illustrate through nu-
merical experiments in Section 5, even the most power-
ful uncertainty quantification (UQ) methods currently
available cannot meaningfully quantify the uncertainty
in the reconstructed images in a manner that is robust
to frequentist validation and experiment replications.
This critical limitation hinders the value of images as
quantitative evidence for decision-making and science.

This paper presents the following main contributions:

1. We propose the equivariant bootstrap algorithm,
a new parametric bootstrapping technique that
exploits symmetries in the problem in order to
construct accurate confidence regions for x⋆, even
in situations where the model is not identifiable.

2. We present a theoretical analysis of the equivariant
bootstrap for the case of a linear estimator, which
provides clear insights into the key factors driving
the accuracy of the method.

3. We demonstrate the effectiveness of the proposed
equivariant bootstrap through a series of exper-
iments involving three different imaging inverse

problems, where the method consistently outper-
forms alternative strategies from the state-of-the-
art in terms of estimation accuracy, uncertainty
quantification accuracy, and computing time.

2 Related Work

Bayesian Methods Modern imaging methods rely
strongly on the Bayesian statistical framework to per-
form UQ tasks. In particular, Bayesian imaging strate-
gies with data-driven priors encoded by neural net-
works have received a lot of attention lately. Within
this context, state-of-the-art methods involve the prior
through its score function, which can be related to an
image denoising network via Tweedie’s formula (see,
e.g., plug-and-play ULA (Laumont et al., 2022), and
the denoising diffusion methods DPS (Chung et al.,
2022), DDRM (Kawar et al., 2022), and DiffDIPR (Zhu
et al., 2023)). Alternatively, many modern methods
rely on deep generative architectures; e.g., variational
autoencoders (Holden et al., 2022; Zhang et al., 2021),
generative adversarial networks (Arridge et al., 2019),
and normalizing flows (Altekrüger and Hertrich, 2023).
These can be used to encode the prior within a Bayesian
model or to approximate the posterior distribution
directly. Otherwise, some methods perform UQ via
Laplace approximations (e.g., (Antorán et al., 2022)).

Stein’s Unbiased Risk Estimator (SURE)
SURE is a highly effective approach for estimating the
mean squared error (MSE) in denoising problems (Stein,
1981). The method can be extended to other inverse
problems (Eldar, 2008), but it can only reliably quan-
tify the error in the range space of the forward operator.
As a result, it is not directly useful for UQ in inverse
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problems with a non-trivial nullspace.

Conformal Prediction Conformal prediction is a
model-free UQ approach that leverages a calibration
dataset and exchangeability to build marginally exact
confidence intervals (i.e., probabilities are computed
w.r.t. the joint distribution of the unknown image
and the measurement data, without conditioning of
the observed measurement data). Several recent pa-
pers propose conformal methods for imaging problems
(see, e.g., Angelopoulos et al. (2022)), focusing pre-
dominantly on UQ tasks at the scale of a single pixel.
Scaling conformal prediction to large image structures
requires careful construction of the conformity function
that determines the shape of the confidence region, a
difficulty that is usually addressed by using the regions
provided by a different UQ technique and applying a
conformal calibration step (see, e.g., (Narnhofer et al.,
2022)). The method proposed in this paper could be
easily combined with a conformal correction step if a
calibration set is available.

Bootstrap Methods Bootstrap resampling is a pow-
erful general strategy for assessing the variability of
estimators and other statistics w.r.t. the data sampling
distribution (Efron and Tibshirani, 1994). Although
widely used for UQ in other disciplines, the bootstrap is
difficult to apply directly to imaging problems, as these
are often severely ill-posed because of identifiability
issues in the likelihood function. The method proposed
in this paper builds on the parametric formulation of
the bootstrap, which we adapt in order to tackle models
that are weakly or not identifiable (i.e., with a forward
operator A that is not invertible).

Equivariant Imaging Equivariance plays an impor-
tant role in imaging inverse problems, enabling unsu-
pervised learning (Chen et al., 2021, 2022) and im-
proving the generalization of the estimators (Mohan
et al., 2019; Celledoni et al., 2021) (e.g., see the recent
tutorial Chen et al. (2023)). The proposed bootstrap
endows the equivariant imaging approach (Chen et al.,
2021, 2022) with powerful UQ capabilities.

3 Parametric Bootstrap

The standard parametric bootstrap method probes
the accuracy of x̂(y) by constructing an i.i.d sample
{x̃(1), . . . , x̃(n)} which approximates the sampling dis-
tribution of x̂(Y ) when Y ∼ P (Ax⋆). The sample is
constructed as follows: for any i = {1, . . . , N}

1. Given x̂(y), draw a bootstrap measurement ỹ(i)

from the sampling distribution

Ỹ (i) ∼ P (Ax̂(y)) .

2. Given the bootstrap measurement ỹ(i), compute

x̃(i) = x̂(ỹ(i)) .

The realized sample {x̃(1), . . . , x̃(n)} can then be used,
for example, to construct confidence regions for x⋆. In
our experiments, we consider the confidence region

Cα = {x ∈ X : ∥x− x̂(y)∥22 < qα} , (2)

with qα set to the top α-quantile of the sample {∥x̃(i)−
x̂(y)∥2}ni=1. One can also design more compact and
geometrically interesting regions by using the sample
covariance of {x̃(1), . . . , x̃(n)}. The sample is also useful
for exploring the accuracy of x̂(Y ) (e.g., bias, variance).

Although widely used in other settings, the parametric
bootstrap often performs poorly in imaging problems.
In particular, it severely underestimates the uncertainty
in the solution because of the bias arising from using
an estimate x̂(y) of x⋆ in the sampling distribution of
Y , as opposed to the true value x⋆ which generated y.

For illustration, consider a severely under-determined
problem of the form y = Ax⋆ + e where m ≪ n and
e is a realization of Gaussian noise. In such problems,
there is significant uncertainty about the solution on
the nullspace of A. For simplicity, consider the linear
estimator x̂(y) = My for all y ∈ Rm, that seeks to
invert A on X . Suppose that we use the conventional
parametric bootstrap to estimate the MSE ∥x̂(y)−x⋆∥22.
For the considered setup, we have that the true MSE
is given by

∥x̂(y)− x⋆∥22 = ∥MAx⋆ +Me− x⋆∥22 , (3)

which is approximately

∥x̂(y)− x⋆∥22 ≈ ∥(MA− I)x⋆∥22 , (4)

when the error stemming from the noise e is negligible
relative to the error from incorrectly inverting A on
X . Conversely, in that same scenario, the parametric
bootstrap produces the estimate

EỸ {∥x̂(Ỹ )− x̂(y)∥22} ≈ ∥(MA− In)MAx⋆∥22 , (5)

which can be potentially much smaller than the true er-
ror ∥(MA−I)x⋆∥22. For example, if MA is a projection
matrix, the bootstrap error ∥(MA− In)MAx⋆∥22 = 0
regardless of the true error. This drawback of the
parametric bootstrap is illustrated through a series of
experiments in Section 4, where we consistently observe
an underestimation of the uncertainty in the solution.
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4 Equivariant Bootstrap

4.1 Proposed method

The proposed equivariant bootstrap method is a para-
metric bootstrapping technique designed for situations
in which the set of signals X is known to be invariant
to a certain group of transformations. The aim is to
leverage these symmetries to mitigate the bias arising
from using an estimate x̂(y) of x⋆ in the approxima-
tion of the sampling distribution of Y . The method is
particularly useful in situations where access to ground
truth data is difficult or not possible, and it is necessary
to quantify the uncertainty in the delivered solutions
from the observed measurement data alone.

Let G be a compact group acting on X , whose action is
represented by the invertible linear mappings Tg. We
assume that X is G-invariant; i.e., for all x ∈ X and all
g ∈ G, we have that

Tgx ∈ X .

In a manner akin to the conventional parametric boot-
strap, the proposed equivariant bootstrap method
probes the accuracy of x̂(y) by constructing an i.i.d sam-
ple {x̃(1), . . . , x̃(n)} which approximates the sampling
distribution of x̂(Y ) when Y ∼ P (Ax⋆). The sample
is constructed as follows: for any i = {1, . . . , N}

1. Draw a random transform gi uniformly from G.

2. Given gi and x̂(y), draw a bootstrap measurement
ỹ(i) from the sampling distribution

Ỹ (i) ∼ P (ATgi x̂(y)) .

3. Given the generated bootstrap measurement ỹ(i)

and gi, compute

x̃(i) = T−1
gi x̂(ỹ(i)) .

where T−1
gi inverts the action gi.

It is useful to view the equivariant bootstrap procedure
as a data augmentation strategy that constructs an
augmented sampling distribution

G ∼ U(G), (Y |G = g, x) ∼ P (ATgx) ,

where G is an auxiliary variable that takes values uni-
formly in G. Without loss of generality, we view the
observed data y is a realization of this augmented model
with g = 1G , the identity element of G.

As mentioned previously, in many imaging inverse prob-
lems the uncertainty about the solution stems predomi-
nantly from the fact that A has a large nullspace, which

leads to significant non-identifiability issues in the like-
lihood function. The equivariant bootstrap exploits the
fact that when A is not G-equivariant, the composition
ATg can span a different subspace than A, such that
the operator resulting from averaging ATg over G can
be full rank. The equivariant bootstrap leverages this
property to probe the variability of the estimator x̂(Y )
and characterise the uncertainty in x⋆.

4.2 Analysis With a Linear Estimator

In order to develop an intuition for the equivariant
bootstrap and the effect of introducing the actions G,
we consider a noise-free problem y = Ax⋆ with m ≪ n,
where there is significant uncertainty about the solution
because A has non-trivial nullspace. For simplicity, we
consider again a linear estimator x̂(y) = My for all y ∈
Rm that seeks to invert A on X , and use the proposed
equivariant bootstrap to estimate the MSE ∥x̂(y)−x⋆∥22.
We assume that X is a low-dimensional subspace that
is G-invariant for some compact group G. For example,
G could be the group of cyclic shifts associated with
circulant matrices Tg which shift the image by g pixels,
with g ∈ {0, . . . , n − 1} (see (Tachella et al., 2023a,
Section 4.1) for other commonly encountered examples).
In practice, X is unknown so the estimator M will
fail to perfectly invert A. We let B = MA, and use
the decomposition B = B⋆ + R, where B⋆ is a G-
equivariant orthogonal projection onto X , and R =
B − B⋆ is a residual term representing the estimator
error. We will see that the equivariant bootstrap is
effective when R is small but also far from being G-
equivariant. In that case, the actions of G will “average
out” the bias introduced by R and improve the quality
of the bootstrap sample as a result.

We now introduce some elements of linear representa-
tion theory that are essential to our analysis (Serre,
1977). For any compact group G, Tg with g ∈ G admits
a linear representation Tg = F−1ΛgF where Λg is a
block-diagonal matrix and F is an orthonormal basis
on Cn associated with G, but independent of g. For ex-
ample, when G represents the group of cyclic shifts, we
have that F is the discrete Fourier transform and Λg is
a diagonal matrix containing the Fourier transform of
the discrete shift operation (see (Tachella et al., 2023a,
Section 4.1) for more details and other examples). More
generally, any G-equivariant matrix C ∈ Rn×n also ad-
mits a linear representation C = F−1ΛCF , where ΛC

is a block-diagonal with the same structure or support
as Λg. It follows that any G-equivariant matrix C com-
mutes with Tg for any g ∈ G. Conversely, R is not
G-equivariant, and therefore FRF−1 is usually a dense
matrix that does not commute with Tg for any g ∈ G.

We analyze the estimation by equivariant bootstrapping
of the MSE between x̂(y)− x⋆, which also underpins
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Cα. For the considered setup,

∥x̂(y)− x⋆∥2 = ∥Bx⋆ − x⋆∥2 = ∥Rx⋆∥2 . (6)

The equivariant bootstrap estimate of (6) is given by1

EŶ ∥x̃(Ỹ )−Bx⋆∥22

=
1

|G|
∑
g∈G

∥T−1
g BTgBx⋆ −Bx⋆∥22

=
1

|G|
∑
g∈G

x⊤
⋆ B

⊤(In + T−1
g B⊤BTg − 2T−1

g BTg)Bx⋆

= x⊤
⋆ B

⊤ (
In +ΠG(B

⊤B)− 2ΠG(B)
)
Bx⋆ ,

where for any matrix C ∈ Rn×n, ΠG(C) ≜∑
g T

−1
g CTg/|G| denotes the so-called Reynolds aver-

aging operator associated with G (Serre, 1977). ΠG
is a projection operator onto the linear subspace of
matrices that are diagonal on the basis F associated
with G. Consequently, ΠG(C) = C for any matrix
C ∈ Rn×n that is G-equivariant. Note that if C is not
G-equivariant, ΠG will potentially significantly shrink
the Frobenius norm of C by setting all its off-block-
diagonal elements (in the basis F ) to zero.

By using the decomposition B = B⋆ + R introduced
previously and that ΠG is a linear operator, we obtain

EŶ ∥x̃(Ỹ )−Bx⋆∥22 = ∥Rx⋆∥2︸ ︷︷ ︸
true error

− ∥Rx⋆∥2B⋆︸ ︷︷ ︸
bias term 1

+ x⊤
⋆ B

⊤ΠG
(
R⊤R+R⊤B⋆ +B⋆R− 2R

)
Bx⋆︸ ︷︷ ︸

bias term 2

where we have also used the that B⋆ is the orthogonal
projection onto X and therefore B⋆x⋆ = x⋆, B⊤

⋆ = B⋆

and ΠG(B⋆) = B⋆.

We now analyze the two bias terms which can lead to
a biased estimation of the true error. If the estimator
is measurement consistent, i.e., if it verifies Ax̂(y) = y,
then the first bias term is zero, see appendix B for
a detailed derivation. This is a simple property that
most estimators verify in practice.

The second bias term depends on whether the matrix R
is G-equivariant or not. Due to the averaging operator,
we can rewrite this second term as

x⊤
⋆ B

⊤F−1ΛFBx⋆,

where F is an orthonormal basis and Λ is a block-
diagonal matrix with

0 ≤ ∥Λ∥Frob ≤ ∥R⊤R+R⊤B⋆ +B⋆R− 2R∥Frob.

1We use a finite group here for the sake of simplicity,
however, the results presented here apply also to any infinite
compact group by replacing sums for integrals, see (Serre,
1977, Chapter 4).

If the error term R is not G-equivariant (and thus
dense on the basis F ), then the norm of Λ will be
much smaller than the norm of R, and consequently,
the second bias term will be small. Conversely, if R is
G-equivariant, Λ will have a norm similar to R and the
averaging will not mitigate the second bias term.

We conclude that the equivariant bootstrap can po-
tentially significantly reduce the bias inherent in para-
metric bootstrapping, especially when the estimator
is measurement consistent, the signal X is G-invariant
and low-dimensional and either the forward operator
and/or the estimator are not G equivariant. Natural
signal sets often exhibit a range of symmetries (e.g.,
invariance to rotation, translations, permutations, etc.
(Tachella et al., 2023a)). The key to leveraging these
symmetries to reduce the bootstrap bias is to identify
a symmetry group G that “averages out” the estimation
error while leaving the signal set X unchanged. This
arises when X is G-invariant but the estimation error
is far from G-equivariance.

5 Experimental Results

We now present a series of numerical experiments and
comparisons with alternative statistical UQ imaging ap-
proaches from the state of the art. We use each method
to compute a confidence region for x⋆, derived from the
pivotal statistic ∥x⋆− x̂(Y )∥22 related to the estimation
MSE. We evaluate the accuracy of these confidence
regions by calculating the empirical coverage proba-
bilities on a test set, as measured by the proportion
of test images that lie within the confidence regions
for a range of specified confidence levels between 0%
and 100%. We perform three types of experiments:
compressed sensing image reconstruction, sparse-angle
tomography, and image inpainting. All our experi-
ments were performed using the deepinv open-source
library (Tachella et al., 2023b) on a local cluster with
4 NVIDIA RTX 3090 GPUs.

Compressed Sensing We use the MNIST dataset,
which consists of images of 28×28 pixels. We use 6×104

images for training, and 384 images for testing. The for-
ward operator is defined using m = 256 measurements
with entries sampled from a Gaussian distribution with
zero mean and variance 1/m. Measurements are cor-
rupted with Gaussian noise of standard deviation 0.05.

Inpainting The DIV2K dataset (Agustsson and Tim-
ofte, 2017) contains 1000 high-resolution RGB images.
We generate a dataset of 2× 104 crops of 256× 256 pix-
els for training and 200 for testing. The measurement
data is obtained by applying an inpainting mask with
binary entries sampled from a Bernoulli distribution
with a probability of 0.5 and adding white Gaussian
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Table 1: Average test PSNR in dB for the evaluated methods.
Diffusion
(DDRM)

Diffusion
(DiffPIR) ULA Proposed bstrap

(unsup. model)
Proposed bstrap

(sup. model)
C. Sensing
(MNIST) - - 28.54± 2.25 34.11 ± 2.09 33.9± 2.32

Inpainting
(DIV2K) 32.27± 3.95 30.51± 3.74 30.52± 3.35 31.56± 4.12 32.47 ± 3.87

Tomography
(LIDC) - 37.02± 0.79 35.85± 0.54 37.38± 0.65 41.03 ± 0.91

noise with a standard deviation of 0.05.

Sparse-Angle Tomography The LIDC-IDRI
dataset (Armato III et al., 2011) consists of computed
tomography scans from 1010 patients. We re-scale the
2D slices to a size of 256×256 pixels and use the central
slices of 100 patients for testing and 5000 slices from
the remaining patients for training. The measurement
data are obtained by using 40 projections, taken at
equally-distanced angles, corrupted with Gaussian
noise of standard deviation 0.1.

Moreover, we report comparisons between our method
and the following techniques from the state of the art:

1. Diffusion methods: We evaluate two recently
proposed score-based diffusion models, namely
DDRM (Kawar et al., 2022) and DiffPIR Zhu
et al. (2023). These are Bayesian posterior sam-
pling strategies that rely on pre-trained denoising
score-matching networks that encode the prior in-
formation available. We use the denoiser network
in (Choi et al., 2021) for RGB images and the
one in (Zhang et al., 2017b) for single-channel
images. By running the diffusion model multi-
ple times we obtain a set of Monte Carlo samples
from the posterior distribution associated with
each method, which we then use to approximate
the posterior mean x̂(y) = E{x|y} as well as a pos-
terior credible region based on an ℓ2-ball around
x̂(y), derived from the posterior distribution of the
error ∥x− x̂(y)∥22.

2. Unadjusted Langavin Algorithm: We consider
the plug-and-play Unadjusted Langevin Algorithm
(ULA) introduced by Laumont et al. (2022). This
Bayesian posterior sampling strategy implements
a Langevin MCMC scheme with a pre-trained
MMSE denoiser in lieu of the gradient of the log-
prior density. For stability, the denoiser is trained
with a controlled Lipschitz constant. We use the
stable DnCNN denoiser introduced in (Terris et al.,
2020). As with the diffusion methods, we use the
Monte Carlo samples generated by ULA to approx-
imate x̂(y) = E{x|y} and to compute a posterior

credible region based on an ℓ2-ball around x̂(y).

3. Equivariant bootstrap: We evaluate the pro-
posed method on estimator networks x̂(y) trained
to minimize the reconstruction MSE. We consider
both standard supervised training using a dataset
pairs {(xi, yi)}i, as well as a unsupervised training
using the method in Chen et al. (2022) which only
requires a dataset of measurement vectors {yi}i.
We consider two forms of group actions: rotations
and two-dimensional shifts. Rotations are sampled
from a Gaussian distribution with zero mean and
standard deviation of σθ, while horizontal and ver-
tical shifts are sampled from a uniform distribution
on [−∆t,∆t] pixels. In practice, we compute the
MSE samples as ∥Tgi x̂(y) − x̂(ỹ(i))∥2, avoiding2

the use of the inverse transform T−1
gi .

4. Naive bootstrap: For completeness, we also
evaluate the conventional parametric bootstrap
introduced in Section 3, based on the sampling
distribution Ỹ ∼ P (Ax̂(y)), without using a group
action. We use the bootstrap sample to determine
the sampling distribution of the error ∥x̂(Ỹ ) −
x̂(y)∥22. The only source of randomness in this
case is the stochasticity from P (e.g., measurement
noise).

All methods are used to generate 100 independent
Monte Carlo samples, from which we compute the con-
fidence regions for various confidence levels (in the case
of PnP-ULA we achieve quasi-independent samples by
applying thinning). Using a larger number of Monte
Calo samples was not possible because of the large
amount of repetitions and deep neural function evalua-
tions (NFEs) required by the diffusion models. Table 2
compares the computational load of the evaluated meth-
ods in terms of the number of NFEs. Diffusion-based
methods require 100 NFEs per sample, and they are the
most computationally demanding method across the
evaluated algorithms. ULA requires a single NFE per
MCMC iteration, however, we use a 1-in-30 thinning

2This bypasses interpolation or border artifacts associ-
ated with rotations that are not multiple of 90 degrees.



Julián Tachella, Marcelo Pereyra

Figure 2: Coverage plots for all the evaluated methods on 3 inverse problems. Methods with a coverage closer to
the dotted line provide a more precise quantification of the uncertainty of the estimates.

factor to reduce the correlation in the chain, so the cost
is approximately 30 NFEs per sample. Remarkably,
the bootstrap method requires only a single NFE per
sample and thus can obtain uncertainty estimates in
the order of seconds even for large images.

Table 2: Neural function evaluations (NFEs) per Monte
Carlo (MC) sample.
Method Diffusion ULA Bootstrap
NFEs/MC sample 100 30 1

Table 1 shows the peak signal-to-noise ratio (PSNR)
for each evaluated method and each imaging problem
considered, while Figure 2 shows the coverage prob-
abilities of their delivered confidence regions. Exam-
ples of measurements and reconstructed images are
included in Appendix D. For these experiments, the
hyper-parameters of all the methods (bootstrap pa-
rameters in Table 3, regularisation parameter in ULA,
etc.), were calibrated on a small evaluation set of 16
images per problem.

Notice that while most competing methods produce
relatively accurate UQ results for the moderately low-
dimensional images of the MNIST dataset, they per-
form poorly in the high-dimensional setting of DIV2K
and LIDC. Conversely, the proposed equivariant boot-
strap algorithm delivers remarkably accurate UQ re-
sults even in large-scale problems. ULA tends to pro-
vide confidence regions that are only accurate at a spe-
cific confidence level, and fail at other levels, whereas
diffusion-based methods provide over-confident confi-
dence regions that severely underestimate the uncer-
tainty in the solution. The naive bootstrap also severely
underestimates uncertainty, as discussed in Section 3.

Remarkably, the proposed method, applied with a
supervised reconstruction network, simultaneously

achieves the most accurate uncertainty quantification
results across all tasks as well as the highest image
estimation accuracy. The proposed approach also deliv-
ers accurate uncertainty estimates when used with an
unsupervised network that has been trained from ob-
served data alone, thus removing the need for extensive
ground-truth data (we only require a small calibration
dataset to set hyperparameters σθ and ∆t).

Diffusion-based methods provide the most accurate
point estimation results in the inpainting problem. This
is related to the fact that the denoisers underpinning
the diffusion method were trained on large datasets of
natural images which are similar to those in the DIV2K
dataset. However, their performance deteriorates in
domain-specific images such as tomography scans, even
after fine-tuning. For the tomography task, we fine-
tuned the DRUNet denoiser Zhang et al. (2017b) used
by diffPIR on the LIDC training set, resulting in an
improvement of 0.3 dB in test PSNR (note that Table 1
shows the performance after fine-tuning).

Table 3: Bootstrap parameters.
Unsup. model Sup. model

C. Sensing σθ = 4
∆t = 3

σθ = 0
∆t = 3

Inpainting σθ = 5
∆t = 10

σθ = 5
∆t = 10

Tomography σθ = 10
∆t = 5

σθ = 8
∆t = 0

Lastly, Figure 3 show the reconstructions, the estima-
tion of the marginal per-pixel error (as calculated by
the standard deviation), and the true absolute error
for each of the evaluated methods. In order to avoid
boundary issues in the estimation of the per-pixel er-
rors, we restricted the rotations in the equivariant
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Figure 3: Per-pixel estimation of the error by the evaluated methods. The last row shows the true estimation
error. The reader can zoom in to observe the details of the uncertainty maps.

bootstrap method to multiples of 90 degrees, which
have an exact inverse. We observe that the per-pixel
error estimates3 produced by the proposed approach
are in good agreement with the true per-pixel errors,
whereas the competing methods deliver per-pixel error
estimates that are less accurate.

Figure 4: Coverage plots for the anisotropic deblurring
problem obtained by bootstrapping with shifts only,
rotations only, and no transformations (noise only).

Role of Equivariance We now present a final ex-
periment designed to demonstrate the role of the group
action in the uncertainty estimates. We consider a
deblurring inverse problem with a highly anisotropic
blur kernel, using the MNIST dataset (see appendix C
for more details). We use the equivariant bootstrap
with an estimator x̂ that is implemented by using a
fully convolutional network, which is by construction
shift-equivariant and is trained in a supervised fashion.
Figure 4 shows the coverage obtained by the proposed
equivariant bootstrap technique when G includes: i)
shifts only (∆t = 5 and σθ = 0), and ii) rotations only
(∆t = 0 and σθ = 5). As suggested by the analysis
in Section 4.2, the bootstrap estimates obtained with

3This uncertainty visualization analysis can be easily
conducted in a multi-resolution manner (see, e.g., Laumont
et al. (2022)).

the shifts obtain the same performance as the naive
bootstrap approach, thus under-estimating the true er-
ror, as the composition of the forward operator and the
reconstruction network is G-equivariant. Conversely,
using rotations provides excellent UQ results.

6 Limitations and future extensions

The performance of the proposed method is sensitive
to the choice of group action. This involves selecting
the type of group action (e.g., rotation, shifts), but also
choosing the specific actions that will be included in G
(e.g., angles, magnitude of shifts). This calibration can
be done on a small evaluation set. However, in some
applications, obtaining a reliable evaluation set might
be difficult. We leave for future work the study of
automatic calibration techniques that can completely
bypass the need for ground-truth data.

The proposed method also requires knowledge of the
forward operator and noise distribution, which might
be mildly misspecified or not fully known in some appli-
cations. We leave the analysis of the impact of model
misspecification for future work. Future work could also
explore blind and semi-blind variants of the proposed
equivariant bootstrap.

Beyond imaging problems, we envisage applying the
proposed method to inverse problems involving other
data structures, such as time series by relying on trans-
lations as group actions, or graphs, where permutations
are often used as group symmetries.

7 Conclusion

Uncertainty quantification is a critical missing compo-
nent in the modern computational imaging toolbox. Ac-
curately quantifying the uncertainty in restored images
is a highly challenging task because of the dimensional-
ity involved and because uncertainty estimates depend
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strongly on tail probabilities and higher-order moments
that are difficult to estimate precisely. The proposed
equivariant bootstrap method offers a conceptually sim-
ple, yet highly effective strategy for obtaining accurate
uncertainty quantification results in imaging inverse
problems. The method is also very computationally
efficient and scales seamlessly to large settings.

In addition, the method does not require ground-truth
data, or a very small amount for calibration tests.
When combined with modern unsupervised learning
techniques that require measurement data only for
training, this enables, for the first time to the best of
our knowledge, to perform image point estimation and
uncertainty quantification reliably in a fully unsuper-
vised manner. This potent combination is of paramount
importance to a wide range of impactful application
domains. In particular, applications in science and
medicine, where uncertainty quantification is critically
important and where obtaining reliable ground-truth
data can be extremely expensive or even impossible.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes] We detail the inverse problem setting
in Equation (1) and provide a detailed descrip-
tion of the standard bootstrap in Section 3
and the proposed equivariant bootstrap in
Section 4.1.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes] The mathematical properties of the pro-
posed method (in the setting of a linear es-
timator) are presented in Section 4.2. The
complexity of all evaluated methods is sum-
marized in Table 2.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes] We have included the
Pytorch source code in our submission.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Not Applicable] We
do not have proofs, however we provide all
the assumptions in the analysis of the linear
predictor in Section 4.2.

(b) Complete proofs of all theoretical results. [Not
Applicable] We do not have formal proofs in
this work.

(c) Clear explanations of any assumptions. [Yes]
The assumptions used in the analysis of the
linear estimator are clearly stated in Sec-
tion 4.2.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).



Julián Tachella, Marcelo Pereyra

[Yes] The source code included in the sub-
mission can reproduce all the results stated
in Section 5.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]
The training details are included in the sup-
plementary materials.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes] We provide the stan-
dard deviation of the test PSNR of all evalu-
ated algorithms in Table 1.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster,
or cloud provider). [Yes] We detail the local
cluster of 4 GPUs used for the experiments
in Section 5.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes] We have cited the pub-
lic datasets (Armato III et al., 2011; Agusts-
son and Timofte, 2017) and open-source li-
braries Tachella et al. (2023b) used in the
paper.

(b) The license information of the assets, if ap-
plicable. [Not Applicable] The assets do not
require providing license information.

(c) New assets either in the supplemental material
or as a URL, if applicable. [Yes] We have
provided all the codes used in this paper in
the official submission.

(d) Information about consent from data
providers/curators. [Not Applicable] We only
use public datasets in this work, which do
not require providing such information.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable] We have not
used new datasets that could involve sensible
content.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable] We
have not conducted research with human sub-
jects or used crowdsourcing. All our experi-
ments were performed on public datasets.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]



Equivariant Bootstrapping for Uncertainty Quantification in Imaging Inverse Problems

A Examples of Inverse Problems in Imaging Sciences

Inverse problems commonly encountered in image restoration are often addressed by assuming an additive white
Gaussian noise degradation model. In that case, (1) takes the form Y ∼ N (Ax⋆, σ

2I) where σ is related to the
intensity of the observation noise. Four canonical examples include image denoising (A is the identify matrix I);
image inpainting (i.e., the problem of recovering a full image from a subset of observed pixels - A is a diagonal
binary matrix encoding the pattern of observed and unobserved pixels); image deblurring (i.e., the problem of
restoring fine detail in an image that has been degraded by blur stemming from limited resolution or motion - A
is often a Toeplitz matrix chosen to model the blurring operation); and tomographic image (i.e., the problem
of recovering an image from a set of finite projections - A is often the discrete Radon transform). We refer the
reader to (Kaipio and Somersalo, 2005; Chambolle and Pock, 2016) for an excellent introduction to the topic.

B Detailed Proofs (Section 4.2)

We begin by providing a detailed derivation of the following equality shown in Section 4.2 of the main paper:

EŶ ∥x̃(Ỹ )−Bx⋆∥22 = ∥Rx⋆∥2 − ∥Rx⋆∥2B⋆
+ x⊤

⋆ B
⊤ΠG

(
R⊤R+R⊤B⋆ +B⋆R− 2R

)
Bx⋆

Starting with the definition of the expectation of the equivariant bootstrap error, we have

EŶ ∥x̃(Ỹ )−Bx⋆∥22 =
1

|G|
∑
g∈G

∥T−1
g BTgBx⋆ −Bx⋆∥22 (7)

=
1

|G|
∑
g∈G

[
x⊤
⋆ B

⊤(In + T−1
g B⊤BTg − 2T−1

g BTg)Bx⋆

]
(8)

= x⊤
⋆ B

⊤ (
In +ΠG(B

⊤B − 2B)
)
Bx⋆ (9)

Using the decomposition B = B⋆ +R, we have that

ΠG(B
⊤B − 2B) = ΠG(B

⊤
⋆ B⋆ +B⊤

⋆ R+R⊤B⋆ +R⊤R− 2B⋆ − 2R)

= ΠG(B
⊤
⋆ R+R⊤B⋆ +R⊤R−B⋆ − 2R)

= −ΠG(B⋆) + ΠG(B
⊤
⋆ R+R⊤B⋆ +R⊤R− 2R)

= −B⋆ +ΠG(B
⊤
⋆ R+R⊤B⋆ +R⊤R− 2R)

where we used that B⊤
⋆ B⋆ = B⋆ and ΠG(B⋆) = B⋆. Plugging-in this result into Equation (9), we obtain

EŶ ∥x̃(Ỹ )−Bx⋆∥22 = x⊤
⋆ B(I −B⋆)Bx+ x⊤

⋆ B
⊤ΠG

(
B⊤

⋆ R+R⊤B⋆ +R⊤R− 2R
)
Bx⋆ ,

We can conclude our derivation by showing that the first term can be written as

x⊤
⋆ B(I −B⋆)Bx = (Rx⋆ + x⋆)

⊤(I −B⋆)(Rx⋆ + x⋆) (10)

= (Rx⋆)
⊤Rx⋆ − (Rx⋆)

⊤B⋆Rx⋆ + ∥x⋆∥2 − ∥B⋆x⋆∥2︸ ︷︷ ︸
=0

+2x⊤
⋆ R

⊤x⋆ − 2x⊤
⋆ R

⊤B⋆x⋆︸ ︷︷ ︸
=0

(11)

= ∥Rx⋆∥2 − ∥Rx⋆∥2B⋆
(12)

We now show that an estimator x̂(·) verifying Ax̂(y) = y implies that ∥Rx⋆∥2B⋆
= 0, which is used in the analysis

of the equivariant bootstrap with a linear estimator in Section 4.2 of the main paper.

Using that x̂(y) = Bx⋆ and y = Ax⋆, we have that

Ax̂(y) = y (13)
ABx⋆ = Ax⋆ (14)

A(Bx⋆ − x⋆) = 0 (15)
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Applying the decomposition B = B⋆ +R where B⋆x⋆ = x⋆, we obtain

A ((B⋆ +R)x⋆ − x⋆) = 0 (16)
ARx⋆ = 0 (17)

Thus, writing B⋆ = M⋆A where M⋆ ∈ Rn×n is the oracle linear estimator, we have

M⋆ARx⋆ = 0 (18)
B⋆Rx⋆ = 0 (19)

and consequently ∥Rx⋆∥2B⋆
= 0 since B⋆ is positive semi-definite.

C Architecture and Training Details

1. ULA: We use the DnCNN denoiser introduced by Terris et al. (2020) which is trained on the dataset in (Zhang
et al., 2017b), with a dedicated loss that forces the network to be firmly non-expansive.

2. DiffPIR: For the tomography problem (single channel images), we finetune the (pretrained) DRUNet
denoiser (Zhang et al., 2017b) on the LIDC train set. For the inpainting task (RGB images), we use the
attention-based denoiser introduced by Choi et al. (2021) trained on the FFHQ dataset.

3. DDRM: We use the same denoiser as diffPIR (Choi et al., 2021) for the image inpainting task. We didn’t
evaluate the DDRM method on the compressed sensing and tomography problems since the algorithm can
only be applied to problems with a simple singular value decomposition of the forward operator.

4. Reconstruction networks:

(a) Compressed Sensing (MNIST): For this task, we use an architecture based on an unrolled proximal
gradient algorithm with 4 iterations, where the proximal operator was replaced by a trainable U-Net
architecture with 4 scales. The same proximal operator network is applied at each iteration (i.e.,
weight-tied). The resulting unrolled network has 2065033 trainable parameters. The unsupervised
network is trained using the robust EI loss (Chen et al., 2022) with random shifts as transformations.

(b) Inpainting (DIV2K): We use an architecture based on an unrolled proximal half-quadratic splitting
algorithm with 3 iterations, where the proximal operator was replaced by a trainable U-Net architecture
with 4 scales. The same proximal operator network is applied at each iteration (i.e., weight-tied). The
resulting unrolled network has 8554375 trainable parameters. The unsupervised network is trained using
the robust EI loss (Chen et al., 2022) with random shifts as transformations.

(c) Tomography (LIDC-IDRI): We use a U-Net architecture applied to the filtered-back projected images,
similarly to Jin et al. (2017). The unsupervised network is trained using the robust EI loss (Chen et al.,
2022) with random rotations as transformations. The network has 8553088 trainable parameters.

(d) Anistropping deblurring (MNIST): We choose a blur forward operator with a vertical 7 × 1 kernel
with entries 1

7 (i.e., summing to one). We use an architecture based on an unrolled proximal gradient
algorithm with 3 iterations, where the proximal operator was replaced by a DnCNN architecture (Zhang
et al., 2017a) with circular padding. The same proximal operator network is applied at each iteration (i.e.,
weight-tied). The resulting unrolled network has 664711 trainable parameters and is fully shift-equivariant
(see (Celledoni et al., 2021) for more details on unrolled equivariant networks).

The unrolled architectures are generated using the DeepInverse library (Tachella et al., 2023b). We use
the same architecture for supervised and unsupervised learning. All the U-Net architectures used for the
supervised and unsupervised reconstruction networks are based on the backbone in (Chen et al., 2021). All
networks are trained using the Adam optimizer with standard hyper-parameters (β1 = 0.9 and β2 = 0.999)
and a step size of 10−4.

D Additional Results

Figures 5 to 7 show test reconstructions obtained by the different evaluated methods for the problems of compressed
sensing, image inpainting, and sparse-angle tomography.
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Figure 5: Reconstructed test images by the different evaluated methods for the compressed sensing task using
MNIST. The first column shows a simple a simple linear reconstruction of the measurements, i.e., x̂(y) = A⊤y.

Figure 6: Reconstructed test images by the different evaluated methods for the image inpainting task using the
DIV2K dataset.
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Figure 7: Reconstructed test images by the different evaluated methods for the sparse angle tomography task
using the LIDC-IDRI dataset. The first column shows the sinograms y.
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