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Abstract

Proper scoring rules evaluate the quality of
probabilistic predictions, playing an essen-
tial role in the pursuit of accurate and well-
calibrated models. Every proper score de-
composes into two fundamental components –
proper calibration error and refinement – uti-
lizing a Bregman divergence. While uncer-
tainty calibration has gained significant atten-
tion, current literature lacks a general estima-
tor for these quantities with known statistical
properties. To address this gap, we propose a
method that allows consistent, and asymptoti-
cally unbiased estimation of all proper calibra-
tion errors and refinement terms. In particu-
lar, we introduce Kullback–Leibler calibration
error, induced by the commonly used cross-
entropy loss. As part of our results, we prove a
relation between refinement and f-divergences,
which implies information monotonicity in
neural networks, regardless of which proper
scoring rule is optimized. Our experiments
validate empirically the claimed properties
of the proposed estimator and suggest that
the selection of a post-hoc calibration method
should be determined by the particular cali-
bration error of interest.

∗Shared first authorship. The authors can change the order
for their own purposes. Proceedings of the 27th International
Conference on Artificial Intelligence and Statistics (AIS-
TATS) 2024, Valencia, Spain. PMLR: Volume 238. Copy-
right 2024 by the author(s).

1 INTRODUCTION

Risk minimization is the cornerstone of machine learn-
ing, where the goal is to develop models that are accu-
rate and provide well-calibrated uncertainty estimates.
Central to this pursuit are proper scoring rules (Gneit-
ing & Raftery, 2007), which measure the quality of
probabilistic predictions via dissimilarity measures of
probability distributions, known as Bregman diver-
gences (Bregman, 1967; Ovcharov, 2018). A significant
breakthrough in this realm is the decomposition of
the expected loss associated with a proper score into
calibration and refinement (Murphy, 1973; DeGroot &
Fienberg, 1981; Blattenberger & Lad, 1985; Bröcker,
2009). Facilitated by this result, understanding and
mitigating calibration error (CE) has become one of the
key concerns for applications like healthcare (Haggen-
müller et al., 2021; Katsaouni et al., 2021), climate
modelling (Gneiting & Raftery, 2005; Kashinath et al.,
2021) and autonomous driving (Yurtsever et al., 2020).

On the most fundamental level, calibration errors com-
pare a predictive distribution with a conditional target
distribution (Gruber & Buettner, 2022). For this, the
machine learning literature proposed a wide range of
different calibration errors in the multi-class setting
(Bröcker, 2009; Kull & Flach, 2015; Naeini et al., 2015;
Vaicenavicius et al., 2019; Kumar et al., 2018, 2019;
Widmann et al., 2019; Gupta et al., 2020; Zhang et al.,
2020; Popordanoska et al., 2022; Gruber & Buettner,
2022). The most common ones are based on absolute or
squared differences. However, current literature lacks
a general estimator of calibration error and refinement
induced by any Bregman divergence.
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Figure 1: Proper losses decompose into calibration er-
ror (CE) and refinement. We propose consistent and
asymtotically unbiased estimators for all proper CE
and refinement terms. Moreover, we derive a novel
connection between refinement and information mono-
tonicity via f-divergences. The proposed estimators
can be used to track training dynamics, information
flow during training, and model calibration.

We approach the study of calibration errors through
the notion of proper calibration errors (Gruber &
Buettner, 2022), which is a general class of calibration
errors derived from risk minimization via proper scores.
For example, the Brier score induces the squared L2

calibration error, for which there exists a consistent
estimator (Popordanoska et al., 2022). Estimating the
KL calibration error, which is induced by the most
common proper score in classification – the categorical
negative log likelihood1, remains an open challenge.

In this work, we introduce a consistent and asymptoti-
cally unbiased estimator for all proper calibration errors
and refinement terms. Additionally, our proposed es-
timator can also be used for estimating the so-called
model sharpness. Similar to how every proper score
generates a proper calibration error, a sharpness term is
generated. For example, the sharpness induced by the
log loss is the mutual information between prediction
and target variable (Huszar, 2013). It is investigated
in the context of general forecasts, but is not well un-
derstood for neural networks (DeGroot & Fienberg,
1983; Murphy & Winkler, 1977; Blattenberger & Lad,
1985; Bröcker, 2009; Murphy, 1973). We show that any
model sharpness is identical to an f-divergence (Csiszár,
1972). Through the information monotonicity of the
f-divergence, we then derive the concept of general in-
formation monotonicity in neural networks. This gives
a novel perspective into the workings of neural networks
and illustrates how the information bottleneck theory
is a more general concept beyond mutual information.

1We use the terms categorical negative log-likelihood,
log-loss and cross-entropy loss interchangeably.

Our contributions are depicted in Figure 1 and can
be summarized as follows:

1. We provide a general estimator for all proper cali-
bration errors and refinement terms in classifica-
tion, which is consistent and its bias converges
with rate O

(
n−1

)
.

2. We show that model sharpness can be formulated
as a multi-distribution f-divergence. Based on
this result, we derive the concept of information
monotonicity in neural networks beyond mutual
information.

3. We conduct experiments showcasing the empirical
properties of our estimator, as well as its utility
in selecting an appropriate post-hoc calibration
method for the desired calibration error.

2 RELATED WORK

In this section, we give a brief overview of estimating
calibration errors. Calibration errors are notoriously
difficult to estimate since they compare a prediction
g (X) with the conditional expectation E [Y | g (X)],
where Y is the one-hot encoded target variable, X the
input variable, and g the predictive model. The dif-
ficulty arises since g (X) is in general a multivariate
continuous random variable. Originally, model calibra-
tion was only considered for a finite set of predictions
(Murphy, 1973), simplifying the estimation since g (X)
is then a discrete random variable. Platt (1999) used
histogram estimation, which transforms the continu-
ous prediction space to a discrete one, to assess the
calibration of a continuous binary model. Different
ways to define the histogram bins are equal width or
equal mass binning techniques (Nguyen & O’Connor,
2015). The number of bins and the binning scheme
can significantly influence the estimated value (Kumar
et al., 2019) and there is no optimal default since every
setting has a different bias-variance tradeoff (Nixon
et al., 2019). Further, using a fixed binning scheme
represents a lower bound of the respective calibration
error (Kumar et al., 2019; Vaicenavicius et al., 2019;
Ma & Blaschko, 2021). In consequence, Vaicenavicius
et al. (2019) propose to use adaptive binning similar
to other approaches in histogram estimation (Nobel,
1996). Dimitriadis et al. (2021) and Roelofs et al. (2022)
introduce approaches to optimize the number of bins.
Zhang et al. (2020) circumvent binning schemes by
using kernel density estimation via Bayes’ theorem.
The first calibration error estimator for a multi-class
model was given by Naeini et al. (2015) and is still the
most commonly used measure to quantify calibration,
known as expected calibration error (ECE) (Guo et al.,
2017).
The ECE is a special case of top-label confidence
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calibration since it only uses the predicted top-label
confidence maxi∈Y gi (X) and compares it with the
conditional accuracy E [YC | maxi∈Y gi (X)] with C =
argmaxi∈Y gi (X). In contrast, class-wise calibration
estimation uses all predicted classes, but only in iso-
lation from each other, since it compares gi (X) with
E [Yi | gi (X)] for each class i. Both notions depend on
estimating a conditional distribution given a univariate
continuous random variable. Consequently, estimation
schemes of one notion can be applied to the other. For
example, Kull et al. (2019) and Nixon et al. (2019) use
histogram binning estimation to estimate class-wise
calibration. To circumvent the need of binning, Kumar
et al. (2018) propose the maximum mean calibration er-
ror, based on positive definite kernels, and Gupta et al.
(2020) introduce the Kolmogorov-Smirnov calibration
error. In contrast to top-label and class-wise calibra-
tion, canonical calibration refers to the case when the
model prediction g (X) matches the conditional target
E [Y | g (X)] almost surely (Vaicenavicius et al., 2019;
Popordanoska et al., 2022). It is substantially more
difficult to estimate with increasing classes since g (X)
also increases in dimensionality. This makes histogram
based approaches infeasible and kernel density estima-
tion strongly dependent on the scalability of the kernel
to higher dimensions. Popordanoska et al. (2022) pro-
pose a specific kernel choice to estimate canonical Lp

calibration errors. Further, Widmann et al. (2019) in-
troduce the kernel calibration error based on positive
definite kernels. It can be seen as a canonical extension
of the maximum mean calibration error.

3 PROPER CALIBRATION ERRORS

In classification, it is common to use a loss function of
the form L : ∆k×Y , where ∆k is the (k−1) dimensional
simplex and Y the sample space of the one-hot encoded
target variable Y . Further, assume X is the feature
variable with realizations in a space X . To optimize
a model g : X → ∆k mapping from the feature space
into the probability simplex, we use the expected loss

R (g) := E [L (g (X) , Y )] , (1)

which is referred to as risk. If L is minimized by
the Bayes classifier g∗ (x) := E [Y | X = x], then −L
is a proper score (Gneiting & Raftery, 2007). In
that case, we may also refer to L as a proper loss
(Williamson, 2014). The best achievable (negative)
risk for a given target distribution q is given by
F (q) := − infp∈∆k EY∼q [L (p, Y )]. The function F
is convex if and only if −L is a proper score (Gneiting
& Raftery, 2007).

Every differentiable proper score is uniquely associ-
ated with a Bregman divergence. A Bregman di-
vergence (Bregman, 1967) in a k-dimensional space

U ⊂ Rk is characterized by a continuously differ-
entiable, strictly convex function F : U → R, with
DF (p, q) := F (p)−F (q)−⟨∇F (q), p− q⟩. Special cases
are the squared Euclidean distance with F (p) = ∥p∥22
as 2-norm, and the Kullback–Leibler divergence with
F (p) =

∑k
i=1 pi log (pi) as negative Shannon entropy.

Following Ovcharov (2018), the risk related to a proper
loss is connected to a Bregman divergence via

R(g)+E [F (E [Y |X])] = E [DF (E [Y |X] , g(X))] . (2)

Consequently, risk minimization is equivalent to min-
imizing an expected Bregman divergence since they
only differ by a model independent constant. The
most prominent example as risk is the expected log
loss, which induces the Kullback–Leibler divergence as
Bregman divergence (Ovcharov, 2018).

We can use Bregman divergences to assess the canonical
calibration of a model. Bröcker (2009) showed that
proper scores in classification can be decomposed into
calibration and refinement terms. Similarly, we can do
the same for the risk, namely

R (g) =E [DF (E [Y | g (X)] , g (X))]︸ ︷︷ ︸
Calibration

+ E [−F (E [Y | g (X)])]︸ ︷︷ ︸
=:REFF (g) (Refinement)

. (3)

The sharpness of a model is defined via (DeGroot &
Fienberg, 1981)

SHARPF (g) = E [DF (E [Y | g (X)] ,E [Y ])] . (4)

It is zero for non-informative classifiers. If F is the
negative Shannon entropy, then the sharpness is equiva-
lent to the mutual information between output variable
and target variable. Model sharpness is related to the
refinement term (DeGroot & Fienberg, 1981, 1983; Kull
& Flach, 2015; Kuleshov & Deshpande, 2022) by

− SHARPF (g) = F (E [Y ]) + E [−F (E [Y | g (X)])]︸ ︷︷ ︸
(Refinement)

.

(5)
Thus, sharpness is maximized via risk minimization.

Gruber & Buettner (2022) defined a calibration error
of the form

CEF (g) := E [DF (E [Y | g (X)] , g (X))] (6)

as proper calibration error. Since any convex func-
tion defined on the simplex can be related to a proper
score (Ovcharov, 2015), any Bregman divergence can
be used to define a proper calibration error. Murphy
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(1973) derived the squared calibration error from the
Brier score. It is defined as

CE2
2(g) = E

[∥∥∥E[Y | g(X)]− g(X)
∥∥∥2
2

]
. (7)

With the square root applied, it is also member of
the so-called Lp calibration errors, where the 2-norm
is replaced by a general p-norm (Naeini et al., 2015;
Kumar et al., 2019; Wenger et al., 2020; Popordanoska
et al., 2022). Popordanoska et al. (2022) propose an
estimator of Lp calibration errors via kernel density
estimation and offer evaluations of the squared calibra-
tion error. Another example of a proper calibration
error can be derived from the log-likelihood and results
in a calibration error based on the Kullback–Leibler
divergence DKL given by

CEKL(g) = E [DKL (E[Y | g(X)], g(X))] . (8)

As all differentiable proper calibration errors are in-
duced by a Bregman divergence, non-negativity ap-
plies immediately, but the range is dependent on
which divergence is employed: CE2

2(g) ∈ [0, 2], while
CEKL(g) ∈ [0,∞). Since we are only using distribu-
tions as inputs for calibration errors, the Kullback–
Leibler CE is more principled according to information
theory than the squared calibration error (MacKay,
2003). The squared error implies a Euclidean geometry
for its inputs since the input space is non-bounded.
But, distributions are non-negative and normalized,
and, consequently, exist in a bounded space. The
Kullback–Leibler divergence is a better representation
of these restrictions, since it is also not defined for neg-
ative inputs (MacKay, 2003). Currently, no estimator
for general proper calibration errors exist, including the
Kullback–Leibler case. As part of this work we propose
a consistent, asymptotically unbiased and differentiable
estimator for any proper calibration error.

4 ESTIMATING PROPER
CALIBRATION ERRORS

Given an i.i.d. labeled data sample {(xi, yi)}1≤i≤n, a
generic Bregman divergence calibration error estimator
can be defined via

CEF (g)≈
1

n

n∑
h=1

(
F
(

̂E[Y | g(xh)]
)
− F (g(xh)) (9)

−
〈
∇F (g(xh)) , ̂E[Y | g(xh)]−g(xh)

〉)
.

It is straightforward to verify that the application of
F (x) = ∥x∥22 recovers exactly the L2 special case of

the estimator given by (Popordanoska et al., 2022,
Equation (9)), while setting F (p) = ⟨p, log(p)⟩ yields

CEKL(g)≈
1

n

n∑
h=1

〈
̂E[Y | g(xh)], log

(
̂E[Y | g(xh)]

g(xh)

)〉
,

(10)

where log and division operations are taken element-
wise, and we may interpret the inner product using
limy↘0 y log y = 0 to ensure that it remains well defined
on the vertices of the probability simplex. In Table 1
we show our derived estimators for calibration error
and refinement induced by Brier score and log loss.
Detailed derivations can be found in Appendix E. In
the sequel, our notation will use capital letters for
unbounded random variables, and lower case variables
with subscripts for elements of our data sample. Note
that we may still treat elements of the data sample as
random variables.

We define the finite sample estimator for the condi-
tional expectation as in Popordanoska et al. (2022,
Equation (3))

̂E[Y | g(X)] :=

∑n
j=1 k(g(X), g(xj))yj∑n
j=1 k(g(X), g(xj))

, (11)

where a natural choice for k can be the Dirichlet kernel
(Popordanoska et al., 2022), defined as

kDir(g(xi), g(xj)) =
Γ(
∑K

k=1 αjk)∏K
k=1 Γ(αjk)

K∏
k=1

g(xi)
αjk−1
k (12)

with αj =
g(xj)
h +1 (Ouimet & Tolosana-Delgado, 2022).

This results in a differentiable, asymptotically unbiased
and consistent estimator of the conditional expectation.

Another common choice for estimating the conditional
expectation is by using a binning kernel (which returns
1 if g(xi) and g(xj) fall in the same bin, and 0 other-
wise), resulting in an estimator given by ̂E[Y | g(X)] =

1
|Bg(xh)|

∑
j∈Bg(xh)

yj , where Bg(xh) denotes the bin into
which g(xh) is assigned. Although this approach allows
for faster computation, the estimator is not differen-
tiable, thus preventing it to be directly used as part of
calibration regularized training or differentiable recal-
ibration methods. In addition, several papers (Vaice-
navicius et al., 2019; Widmann et al., 2019; Ashukha
et al., 2020) have raised concerns about asymptotic in-
consistency of binned estimators, as well as sensitivity
to the binning scheme, and limited scalability with the
number of classes.

5 STATISTICAL PROPERTIES

We show here the existence of consistent and asymp-
totically unbiased estimators of arbitrary proper cali-
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Table 1: Proposed estimators of calibration error and refinement, induced by Brier score (first row) and log loss
(second row) for a classifier g, one-hot encoded label y, and dataset size n. The term ̂E[Y | g(xh)] is defined in
Equation (11) via kernel density estimation.

Loss L (g (x) , y) Calibration error estimator ĈEF (g) Refinement estimator R̂EFF (g)

∥g (x)− y∥22
1
n

n∑
h=1

∥∥∥ ̂E[Y | g(xh)]− g(xh)
∥∥∥2
2

− 1
n

n∑
h=1

∥∥∥ ̂E[Y | g(xh)]
∥∥∥2
2

−⟨log g (x) , y⟩ 1
n

n∑
h=1

〈
̂E[Y | g(xh)], log

̂E[Y |g(xh)]
g(xh)

〉
− 1

n

n∑
h=1

〈
̂E[Y | g(xh)], log ̂E[Y | g(xh)]

〉

bration errors. We first show in Section 5.1 that the
optimal big-O convergence rates for estimators of CEF

and REFF are the same and that a consistent estimator
of one can be used to construct an estimator of the
other. We then prove in Section 5.2 via a Taylor series
approach that an estimator via REFF gives asymptotic
unbiasedness for all Bregman divergences, giving a con-
structive proof that a single software implementation
can provide a good baseline estimator for any proper
calibration error, using a function reference for F to pa-
rameterize the Bregman divergence. We first show this
property for an estimate via REFF , as it gives the core
ideas and is a more compact proof. We subsequently
extend our analysis to show the same rates for direct
estimation via Equation (9) in Appendix B.

5.1 Estimation via refinement

Equation (9) provides a calibration error estimate di-
rectly from the definition of a Bregman divergence, but
we show here that we can also use an estimate based on
refinement using the decomposition (cf. Equation (53))

E [DF (Y, g(X))]−CEF (g) = E[F (Y )−F (E[Y |g(X)])].
(13)

From this decomposition and that E [DF (Y, g(X))] can
be estimated with an empirical average achieving an
unbiased estimator with O(n−1/2) rate of convergence,
we see that the difficulty of estimating refinement or
CE is essentially the same, as the rate of bias and con-
vergence for an estimator of one can be transferred to
the other by subtracting from the empirical estimate
of the risk. Furthermore, we note that a simple empiri-
cal mean over {F (yi)}1≤i≤n is the Minimum-Variance
Unbiased Estimator (MVUE) of E[F (Y )] for a finite
sample, and it is the estimate of −E[F (E[Y | g(X)])]
that is the primary challenge.

To summarize, assuming an empirical estimator of the
refinement (cf. Equation (15)) R̂EFF (g) ≈ E[−F (E[Y |

g(X)])], we may compute

ĈEF (g) :=−R̂EFF (g) +
1

n

n∑
i=1

(DF (yi, g(xi))− F (yi)) ,

(14)

and the rates of convergence of ĈEF (g) and its bias
will be determined by the rates of R̂EFF (g).

5.2 Asymptotic unbiasedness and rate of bias

If we use the empirical estimator of E[Y | g(X)] in
Equation (11), the bias converges as O(n−1) while the
estimator itself has a rate of O(n−1/2). By the same
argument as Gruber & Buettner (2022, Footnote 2),

R̂EFF (g) :=− 1

n

n∑
h=1

F

(∑
j ̸=h k(g(xh), g(xj))yj∑
j ̸=h k(g(xh), g(xj))

)
(15)

is a consistent and asymptotically unbiased estimator
of the refinement E[−F (E[Y | g(X)])] for all F . We
note that continuity of F , a condition required for the
argument of Gruber & Buettner (2022, Footnote 2),
is guaranteed for all Bregman divergences, as F is
differentiable by assumption.

Proposition 5.1. Estimation of proper calibration
errors both by Equation (14) and by Equation (9) has
a O(n−1/2) convergence rate.

Proof. Both the empirical refinement of Equation (15)
and the direct estimator of Equation (9) are differen-
tiable non-linear functions of the same ratio estimator
of conditional expectation. This ratio estimator has a
known convergence of O(n−1/2) (Scott & Wu, 1981).
Therefore, direct application of the multivariate delta
method to each function yields the desired result.

Proposition 5.2. For all proper calibration errors
parameterized by some F satisfying the requirements
of a Bregman divergence, estimation of CE by Equa-
tions (14) & (15) has a bias that converges as O(n−1).
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Proof. We show the asymptotic rate of bias using a Tay-
lor series expansion. First, define ∆ = ̂E[Y | g(xh)]−
E[Y | g(xh)]. The rate of bias of R̂EFF (g) is deter-
mined by the rate of bias of each of the summands in
Equation (15)

E
[
F
(

̂E [Y | g(xh)]
)]

= E [F (E[Y | g(xh)] + ∆)]

≈ F (E[Y | g(xh)]) + E [DF (E[Y | g(xh)])∆]

+ E
[
1

2
∆T D2 F (E[Y | g(xh)])∆

]
+ . . . (16)

where D is the differential operator (Magnus &
Neudecker, 1999, Chapt. 5). It is well known that
the bias of the 1st order term (a ratio estimator) is
O(n−1) and the remaining bias will be dominated by
the 2nd order term (Wolter, 2007, Theorem 6.2.5).
When D2 F (E[Y | g(xh)]) ̸= 0, this yields

E
[
∆T D2 F (E[Y | g(xh)])∆

]
≍ Trace

[
Cov

(
̂E[Y | g(xh)]

)]
+
∥∥∥E [ ̂E[Y | g(xh)]

]
− E[Y | g(xh)]

∥∥∥2︸ ︷︷ ︸
=
∥∥∥Bias

(
̂E[Y |g(xh)]

)∥∥∥2
=O(n−2)

,
(17)

where the notation ≍ is taken here to mean that the
left and right side have the same asymptotic rate
of convergence in n, and the r.h.s. is due to a bias-
variance decomposition of the l.h.s. Finally, we have
Var

(
̂E[Y | g(xh)]i

)
= O(n−1), which implies∣∣∣Bias(R̂EFF (g)

)∣∣∣ = O(n−1) (18)

irrespective of F .

We therefore conclude that estimation of any proper cal-
ibration error via Equation (14) results in a consistent
and asymptotically unbiased estimator with conver-
gence O(n−1/2), and bias that converges as O(n−1).
In Appendix B, we extend this result to show the same
rates for estimation via Equation (9) as well.

6 RELATIONSHIP WITH
INFORMATION MONOTONICITY
IN NEURAL NETWORKS

A key part of this work is to relate uncertainty cali-
bration to information theoretic principles. First, we
summarize relevant concepts and provide the necessary
foundation to derive our contributions.

6.1 Background on information monotonicity

In machine learning, information monotonicity is most
commonly known through the information bottleneck

theory (Slonim & Tishby, 1999; Bialek et al., 2001;
Gilad-Bachrach et al., 2003; Chechik et al., 2003;
Shamir et al., 2010; Shwartz-Ziv & Tishby, 2017; Saxe
et al., 2018). Information monotonicity states that each
layer in a neural network is indirectly optimized by the
mutual information of the output, resulting in a so-
called information flow, or information plane dynamics,
throughout the network (Saxe et al., 2018; Goldfeld
et al., 2019).

Further, Csiszár (1972) derived the class of f-
divergences according to several principles, including in-
formation monotonicity. These divergences between dis-
tributions are widely applicable, for example through-
out statistics (Liese & Vajda, 2006) and in generative
modelling (Creswell et al., 2018). Similar to Garcia-
Garcia & Williamson (2012) and Duchi et al. (2018), we
use the following definition for multiple distributions.
Given a convex function f : [0,∞)

k → (−∞,∞] with
f (1, . . . , 1) = 0, the f-divergence between distribu-
tions P1, . . . , Pk and Q is defined by

If (P1, . . . , Pk ∥ Q) =

∫
f

(
dP1

dQ
, . . . ,

dPk

dQ

)
dQ. (19)

Following the property of f , we have
If (P1, . . . , Pk ∥ Q) ≥ 0 with equality if
P1 = · · · = Pk = Q. Let M be a Markov ker-
nel transforming a distribution P into a distribution
MP , then Garcia-Garcia & Williamson (2012) show
that the information monotonicity is given by

If (MP1, . . . ,MPk ∥ MQ) ≤ If (P1, . . . , Pk ∥ Q) .
(20)

In the following, we make the novel connection between
f-divergences and refinement via model sharpness.

6.2 A novel generalization of neural network
information monotonicity

We now present our contribution regarding the exis-
tence of information monotonicity in neural networks.
As a preliminary step, we first show that model sharp-
ness has the form of an f-divergence. We defer proofs
to Appendix C.

Proposition 6.1 (Sharpness as f-divergence). Let
F : ∆k → R be a convex function and g : X →
∆k a classifier with prediction distributions Py :=
P (g (X) | Y = y), and P := P (g (X)). Then, the
model sharpness can be represented as an f-divergence
via

SHARPF (g) = IFY (P1, . . . , Pk ∥ P ) , (21)

where FY (x) := F (E [Y1]x1, . . . ,E [Yk]xk) −
F (E [Y1] , . . . ,E [Yk]).
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Thus, we can interpret the classifier sharpness as the
f -divergence between the class-conditional prediction
distributions and the marginal prediction distribution.
The marginal class distribution determines the weight
of each ratio. For a given classification task, it is
constant across all models. We can now provide the
key result of this section.
Theorem 6.2 (Information monotonicity in neural net-
works). For a neural network g (X) = hl (. . . (h1 (X)))
with layers hi, i ∈ {1, . . . , l}, conditional distributions
P i
y := P (hi (. . . (h1 (X))) | Y = y), and marginal dis-

tributions P i := E
[
P i
Y

]
, we have

SHARPF (g) = IFY

(
P l
1, . . . , P

l
k ∥ P l

)
≤ IFY

(
P l−1
1 , . . . , P l−1

k ∥ P l−1
)

≤ · · · ≤ IFY

(
P 1
1 , . . . , P

1
k ∥ P 1

)
.

(22)

This theorem offers a generalization of the information
flow in neural networks. Since sharpness is maximized
via risk minimization, the information (as quantified
by an f-divergence) is implicitly also maximized in each
layer, no matter the proper loss. The signal, which is
forward propagated in each layer, follows the known
information flow of the information bottleneck theory.
A rich literature exists on information bottleneck exper-
iments (Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018;
Goldfeld et al., 2019; Wu & Fischer, 2020; Wu et al.,
2020; Wang et al., 2022). In Section 7 we will extend
on that by monitoring the model sharpness via the
refinement term throughout training and by assessing
information monotonicity beyond mutual information.

In Section 2, we have seen that calibration and sharp-
ness are two different yet related concepts derived from
risk minimization. Theorem 6.2 presents a novel link
between information bottleneck theory and uncertainty
calibration – two key research areas in deep learning,
which consist of rich literature but little exchange. For
example, according to our result, optimizing via the
information bottleneck theory does not offer calibrated
predictions and requires post-hoc uncertainty calibra-
tion for trustworthy probability forecasts. This under-
lines the general importance of calibration estimation.

7 EXPERIMENTS

The outline of the experiments is as follows. We (i) com-
pare the choices of kernel for the conditional expecta-
tion estimator, discussed in Section 4; (ii) compare the
direct estimator from Equation (9) with the estimator
derived via risk in Equation (14); (iii) analyse the em-
pirical properties of the proposed estimator, derived in
Section 5.2; (iv) show new insights regarding the choice
of post-hoc calibration method, depending on the cho-
sen calibration error; (v) demonstrate the information

monotonicity in neural networks, discussed in Section
6.2, for the L2 case via our proposed estimator.

In all experiments we evaluate class-wise CE, which
can be derived from One-vs-Rest risk minimization
(cf. Appendix D). The CE estimator obtained by set-
ting F (x) = ∥x∥22 in Equation 14 will be denoted as
ĈE2

2, while the one derived from F (p) = ⟨p, log(p)⟩
will be referred to as ĈEKL. The bandwidth of the
Dirichlet kernel is determined through a combination
of a leave-one-out maximum likelihood estimation and
visual inspection of the resulting density. Typical val-
ues range from 0.01 to 0.0001. The source code and
trained models can be found at: https://github.com/
tpopordanoska/proper-calibration-error.

7.1 Empirical properties

To analyze the empirical properties of the proposed
estimator, we create synthetic data with miscalibrated
scores, for which the ground truth CE is known, fol-
lowing Popordanoska et al. (2022). First, we sample
uniform points from the simplex and we apply temper-
ature scaling with t1 = 0.9 to ensure that the scores
are closer to the boundaries of the simplex. Then, we
generate ground truth labels based on the sampled prob-
abilities, resulting in a perfectly calibrated classifier.
Finally, to intentionally introduce miscalibration, we
apply an additional temperature scaling with t2 = 0.6.

In Figure 2a we compare the performance of two pro-
posed choices of kernel, kDir and kbin, for increasing
number of samples used for the estimation. We observe
that the Dirichlet-based estimator not only has better
properties, like differentiability, consistency and asymp-
totic unbiasedness, but also has better empirical perfor-
mance. Figure 2b compares the direct implementation
of the estimator, as given in Equation (9), with the esti-
mator derived via the risk, given in Equation (14). We
derived theoretically the statistical properties of both
estimators, while empirically the direct implementation
(orange curve) performs better than the estimator de-
rived via risk (blue curve). Finally, Figure 2c shows the
convergence of the bias of ĈEKL as a function of the
number of points used for the estimation. We observe
that regardless of the number of classes, the estimator
consistently provides reliable estimates of class-wise
calibration error.

7.2 Post-hoc calibration

Here we demonstrate the application of our
proposed estimator for evaluating CE on CI-
FAR10/100 (Krizhevsky & Hinton, 2009), after per-
forming post-hoc calibration. Following standard prac-
tice, we trained various PreResNet (He et al., 2016),

https://github.com/tpopordanoska/proper-calibration-error
https://github.com/tpopordanoska/proper-calibration-error
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Figure 2: (a) A comparison of the binning-based estimator and the KDE-based estimator with Dirichelt kernel. (b)
A comparison of the CE estimator using Equation (14) and direct estimation via Equation (9). (c) Convergence
of the bias as a function of the number of points used for the estimation.

Table 2: Performance evaluation (ĈEKL × 100 and ĈE2
2 × 100, lower is better) of various network architectures on

CIFAR-10/100 with no calibration, and after recalibrating with IR and TS. The number in the bracket represents
the change of CE (in %) relative to the uncalibrated score. The results are averaged over 5 seeds.

No calibration Isotonic regression Temperature scaling
Dataset Model ĈEKL ĈE2

2 ĈEKL ĈE2
2 ĈEKL ĈE2

2

CIFAR-10

PreResNet20 2.74±0.06 1.12±0.01 1.57±0.05(↓ 43%) 0.58±0.01(↓ 48%) 1.26±0.02(↓ 54%) 0.66±0.01(↓ 41%)
PreResNet56 1.94±0.04 0.84±0.03 1.30±0.03(↓ 33%) 0.50±0.03(↓ 41%) 1.03±0.02(↓ 47%) 0.54±0.02(↓ 36%)
PreResNet110 1.76±0.03 0.77±0.01 1.26±0.03(↓ 29%) 0.49±0.01(↓ 37%) 0.98±0.01(↓ 44%) 0.51±0.01(↓ 33%)
PreResNet164 1.58±0.02 0.70±0.01 1.20±0.02(↓ 24%) 0.43±0.02(↓ 38%) 0.91±0.02(↓ 42%) 0.47±0.01(↓ 32%)

VGG16BN 2.85±0.05 1.00±0.02 1.36±0.03(↓ 52%) 0.57±0.01(↓ 42%) 1.38±0.03(↓ 52%) 0.80±0.02(↓ 20%)
WideResNet28x10 1.21±0.02 0.61±0.01 1.09±0.03(↓ 10%) 0.41±0.01(↓ 34%) 0.93±0.01(↓ 23%) 0.49±0.01(↓ 19%)

CIFAR-100

PreResNet20 0.76±0.01 0.38±0.00 0.96±0.02(↑ 26%) 0.35±0.00(↓ 9%) 0.70±0.00(↓ 8%) 0.35±0.00(↓ 8%)
PreResNet56 0.78±0.02 0.35±0.01 0.88±0.01(↑ 13%) 0.28±0.00(↓ 21%) 0.61±0.01(↓ 22%) 0.30±0.00(↓ 14%)
PreResNet110 0.76±0.01 0.34±0.00 0.85±0.01(↑ 12%) 0.27±0.00(↓ 20%) 0.60±0.00(↓ 21%) 0.30±0.00(↓ 12%)
PreResNet164 0.74±0.00 0.33±0.00 0.86±0.01(↑ 16%) 0.26±0.00(↓ 21%) 0.59±0.01(↓ 20%) 0.29±0.00(↓ 11%)

VGG16BN 1.23±0.01 0.43±0.00 0.95±0.01(↓ 23%) 0.34±0.00(↓ 21%) 0.75±0.00(↓ 39%) 0.38±0.00(↓ 11%)
WideResNet28x10 0.62±0.01 0.30±0.00 0.72±0.02(↑ 15%) 0.22±0.00(↓ 27%) 0.60±0.01(↓ 3%) 0.30±0.00(↓ 1%)

Table 3: Accuracy on CIFAR-10.

Model No calibration Isotonic regression

PreResNet20 91.95±0.05 91.94±0.07

PreResNet56 94.38±0.13 94.34±0.13

PreResNet110 94.86±0.04 94.83±0.05

PreResNet164 95.24±0.05 95.14±0.06

VGG16BN 93.26±0.04 93.23±0.04

WideResNet28x10 95.54±0.05 95.53±0.04

VGG16 (Simonyan & Zisserman, 2014) and WideRes-
Net (Zagoruyko & Komodakis, 2016) architectures. De-
tails about the training can be found in Appendix F.

In Table 2 we present a comparison of ĈEKL and ĈE2
2

for models before and after calibration with temper-
ature scaling (TS) and isotonic regression (IR) (Guo
et al., 2017). We focus on these methods because of
their distinct optimization objectives during calibra-
tion: TS minimizes the NLL loss, while IR aims to

optimize a weighted Brier score. It is notable that we
obtain a much better ĈEKL score with TS across all
architectures on both datasets. For instance, we report
42% improvement from the uncalibrated score using
TS, compared with 24% decrease in CE using IR for
PreResNet164 on CIFAR-10. The effect is opposite for
ĈE2

2: IR is a better suited calibration technique if one
aims to minimize this metric. For example, calibration
with IR on VGG16BN results in 42% decrease in CE,
compared to only 20% decrease with TS. On the other
hand, if the goal is to optimize ĈEKL, the results on
CIFAR-100 indicate that IR may even harm this metric.
Table 3 summarizes the accuracy on CIFAR-10 before
and after calibration with IR. We notice that while
TS is known to be accuracy-perserving, IR also retains
accuracy in practice for this setting. In summary, these
findings suggest that the choice of calibration method
should be influenced by the specific calibration error of
interest, i.e., IR is more suitable for minimizing ĈE2

2,
whereas TS should be preferred for ĈEKL.
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The full table evaluating accuracy, NLL and Brier score
is in Appendix F. Additional experiments involving con-
vergence of bias, monitoring CE and sharpness during
training, performing model selection, and measuring
class-wise CE are also discussed in that Appendix.

7.3 Information monotonicity

We illustrate the information monotonicity in neural
networks via our refinement estimator. We can apply
our refinement estimator also to the sharpness of
random vectors not located in the simplex. For this,
note that E [f (E [Y | X])] = E [f (E [Y | g (X)])] for
any function f and injective function g (Gruber &
Buettner, 2022, Appendix D.8). In our case, f is the
convex function of a refinement term and g is chosen
to be an invertible version of the softmax function and
X are the activations of an intermediate layer.

We train a fully connected neural network on MNIST
via stochastic gradient descent. The model has four
hidden layers with nine nodes each. In Figure 3, we
show that the model accuracy and L2 sharpness of
each intermediate layer throughout training. Note that
sharpness can also be interpreted as mutual informa-
tion. At the beginning of training, the information in
each layer increases sharply similar to the accuracy.
But, the initial increase of information holds no longer
for layers one and two, while layers three and four
experience a slow-down in information gain. This in-
formation gap is then reduced for longer periods of
training. We conclude that the information in each
layer is not optimized uniformly throughout training,
which can be monitored via our refinement estimator.
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Figure 3: Accuracy and information monotonicity
throughout training via our sharpness estimator (here:
L2). Each consecutive layer’s sharpness is lower
bounded by the next layer. The sharpness of the whole
model is optimized implicitly via a proper score.

8 DISCUSSION AND CONCLUSION

In this paper, we proposed a consistent and differen-
tiable estimator for all proper calibration errors. The
estimator is asymptotically unbiased, has a conver-

gence rate of O(n−1/2), and the bias decreases at a
rate of O(n−1). Specifically, we introduce the Kullback–
Leibler CE as a theoretically justified choice in stan-
dard neural network training procedures that utilize
log loss. Furthermore, we showed that model sharpness,
a generalization of mutual information, is equal to a
multi-distribution f-divergence. Via this relation, we
proved that information monotonicity in neural net-
works is a general concept beyond log minimization and
can be monitored via sharpness during model training.

Our work has several limitations. It is an open research
question to find bias corrections for proper CE estima-
tors. Although Popordanoska et al. (2022) provided a
debiasing strategy for ĈE2

2, it does not transfer directly
to our more general case. Further, an intrinsic problem
of density estimators for CE is the O(n2) complexity.
In our experiments, we demonstrate that evaluation
can be effectively computed on subsets of reasonable
size. However, assessing larger sets becomes compu-
tationally expensive. Improved debiasing could make
block estimators feasible (Zaremba et al., 2013), leading
also to improved computational properties.

In summary, we show that there exist asymptotically
unbiased estimators for an entire landscape of proper
CEs. The experimental results demonstrate the empiri-
cal behavior of the proposed approach and showcase its
properties in assessing CE and sharpness. This makes
it a valuable component for designing calibration meth-
ods which aim to minimize a specific CE.
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A UNCERTAINTY CALIBRATION IN CLASSIFICATION

In this section, we give a more detailed overview of calibration errors compared to the main paper. To introduce
calibration formally, we consider a classifier g : X → ∆k, where ∆k :=

{
(p1, . . . , pk)

⊺ ∈ [0, 1]
k |
∑k

i=1 pi = 1
}

is
a probability simplex with k vertices, and X is a feature space with feature variable X. We denote class labels
as one-hot encoded variables of Y = {1, . . . , k}, i.e. the target variable Y has observations y ∈ {0, 1}k ⊂ ∆k with
∥y∥1 = 1. In the literature, there exist multiple notions of calibration of different strength (Vaicenavicius et al.,
2019; Kull et al., 2019). Calibration errors assess the degree of violation of a respective notion.

The strongest notion of calibration is the canonical calibration, which compares the probability vector prediction
g (X) with the target distribution E [Y | g (X)] given this prediction. A class of canonical calibration errors, which
was studied recently in several works (Naeini et al., 2015; Kumar et al., 2019; Wenger et al., 2020; Popordanoska
et al., 2022; Gruber & Buettner, 2022), is referred to as Lp calibration error and defined as

CEp(f) =
(
E
[
∥E [Y | g(X)]− g(X)∥pp

]) 1
p

. (23)

The special case ĈE2
2, as given in Equation (7), can be derived from the Brier score (Murphy, 1973).

Canonical calibration errors are notoriously difficult to estimate and represent a calibration strictness which may
not be necessary in practice (Vaicenavicius et al., 2019). One common and less constraining notion is class-wise
calibration, which compares the individual prediction gi (X) of class i ∈ Y with the target class distribution
P (Y = i | gi (X)) given the individual class prediction. The class-wise calibration error with respect to a given
Lp space is defined as

CWCEp (g) =

(
1

k

k∑
i=1

E [(P (Y = i | gi (X))− gi (X))
p
]

) 1
p

. (24)

The definition is formalized based on Kumar et al. (2019) and Gruber & Buettner (2022), while the class-wise
concept was introduced independently by Kull et al. (2019) and Nixon et al. (2019).

While class-wise calibration is easier to evaluate than canonical calibration, it still scales linearly in complexity
with the number of classes, which can be problematic for tasks with a very high number of classes. In contrast, the
most common approach in the machine learning literature is top-label confidence calibration (Naeini et al., 2015;
Guo et al., 2017; Joo et al., 2020; Kristiadi et al., 2020; Rahimi et al., 2020; Tomani et al., 2021; Minderer et al.,
2021; Tian et al., 2021; Islam et al., 2021; Menon et al., 2021; Morales-Álvarez et al., 2021; Gupta et al., 2021;
Wang et al., 2021; Fan et al., 2022), which is not affected by this issue. In this notion, we compare if the predicted
top-label confidence maxi∈Y gi (X) matches the conditional accuracy P (Y = argmaxi∈Y gi (X) | maxi∈Y gi (X))
given the predicted top-label confidence. It is known in the literature that top-label confidence calibration
represents the weakest notion of calibration (Vaicenavicius et al., 2019; Widmann et al., 2019; Gruber & Buettner,
2022). The top-label confidence calibration error based on an Lp space is defined as (Kumar et al., 2019; Gruber
& Buettner, 2022)

TCEp (g) =

(
E
[(

P
(
Y = argmax

j∈Y
gj (X) | max

j∈Y
gj (X)

)
−max

j∈Y
gj (X)

)p]) 1
p

. (25)

For p = 1, its binning based estimator is commonly referred to as expected calibration error (Naeini et al., 2015;
Guo et al., 2017).

Besides the Lp based calibration errors presented above, there also exist other calibration errors, like maximum
mean calibration error (Kumar et al., 2018), Kolmogorov-Smirnov calibration error (Gupta et al., 2020), and
kernel calibration error (Widmann et al., 2019). We exclude these errors from our analysis and experiments as
they are not related to risk minimization.
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B RATE OF BIAS OF PROPER CALIBRATION ERROR ESTIMATION

We have already shown the existence of a consistent and asymptotically unbiased estimator via the refinement in
Section 5.2. We now show that direct estimation via the Bregman divergence definition of a proper calibration
error via Equation (9) also yields the same asymptotic rates.

ĈEF (g) :=
1

n

n∑
h=1

(
F

(∑
j ̸=h k(g(xh), g(xj))yj∑
j ̸=h k(g(xh), g(xj))

)
− F (g(xh))−

〈
∇F (g(xh)) ,

∑
j ̸=h k(g(xh), g(xj))yj∑
j ̸=h k(g(xh), g(xj))

− g(xh)

〉)
(26)

=− R̂EFF (g)−
1

n

n∑
h=1

(
F (g(xh)) +

〈
∇F (g(xh)) ,

∑
j ̸=h k(g(xh), g(xj))yj∑
j ̸=h k(g(xh), g(xj))

〉
− ⟨∇F (g(xh)) , g(xh)⟩

)
.

(27)

We have already shown the empirical refinement estimator to have bias that decreases as O(n−1) in Section 5.2,
and the sums over F (g(xh)) and ⟨∇F (g(xh)) , g(xh)⟩ are unbiased. We therefore focus on the term

n∑
h=1

〈
∇F (g(xh)) ,

∑
j ̸=h k(g(xh), g(xj))yj∑
j ̸=h k(g(xh), g(xj))

〉
. (28)

The second argument to the inner product is a ratio estimator with asymptotic Gaussian distribution (Scott &
Wu, 1981), which is known to have bias that converges as O(n−1).

E

[〈
∇F (g(xh)) ,

∑
j ̸=h k(g(xh), g(xj))yj∑
j ̸=h k(g(xh), g(xj))

〉]
=

〈
E [∇F (g(xh))] ,E

[∑
j ̸=h k(g(xh), g(xj))yj∑
j ̸=h k(g(xh), g(xj))

]〉
(29)

for each h, as the arguments to the inner product are independent of each other. We consequently conclude that
the rate of bias of the inner product is the same as the rate of bias of the ratio estimator, as the first argument is
unbiased. Therefore, the overall rate of bias for direct estimation of arbitrary proper calibration errors using
Equation (9) is also O(n−1).

C PROOFS FOR INFORMATION MONOTONICITY

In this section, we provide detailed proofs about the f-divergence representation of the model sharpness and the
information monotonicity in neural networks. Since we will require the target variable Y in categorical encoding
and one-hot encoding, we will write Y for the former and Y⃗ for the latter. This notation is exclusive to this
section.

C.1 Proof of Proposition 6.1

Let F : ∆k → R be a convex function and g : X → ∆k a classifier with prediction distributions Py :=
P (g (X) | Y = y), and P := P (g (X)). Then, the model sharpness can be represented as an f-divergence
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via

SHARPF (g)

= E
[
DF

(
E
[
Y⃗ | g (X)

]
,E
[
Y⃗
])]

def
= E

[
F
(
E
[
Y⃗ | g (X)

])
− F

(
E
[
Y⃗
])

−
〈
∇F

(
E
[
Y⃗
])

,E
[
Y⃗
]
− E

[
Y⃗ | g (X)

]〉]
= E

[
F
(
E
[
Y⃗ | g (X)

])]
− F

(
E
[
Y⃗
])

=

∫
X

F
(
E
[
Y⃗ | g (X)

])
− F

(
E
[
Y⃗
])

dP (g (X))

=

∫
X

F

(
E
[
Y⃗1

] dP (g (X) | Y = 1)

dP (g (X))
, . . . ,E

[
Y⃗k

] dP (g (X) | Y = k)

dP (g (X))

)
− F

(
E
[
Y⃗
])

dP (g (X))

=

∫
X

F

(
E
[
Y⃗1

] dP1

dP
, . . . ,E

[
Y⃗k

] dPk

dP

)
− F

(
E
[
Y⃗
])

dP

= IFY (P1, . . . , Pk ∥ P )

(30)

where FY (x) := F
(
E
[
Y⃗1

]
x1, . . . ,E

[
Y⃗k

]
xk

)
− F

(
E
[
Y⃗1

]
, . . . ,E

[
Y⃗k

])
and by using Bayes’ theorem. The

function IFY is a multi-distribution f-divergence since FY is convex (follows from F being convex) and
FY (1, . . . , 1) = F

(
E
[
Y⃗1

]
, . . . ,E

[
Y⃗k

])
− F

(
E
[
Y⃗1

]
, . . . ,E

[
Y⃗k

])
= 0.

C.2 Proof of Theorem 6.2

For a neural network g (X) = hl (. . . (h1 (X))) with layers hi, i ∈ {1, . . . , l}, conditional distributions P i
y :=

P (hi (. . . (h1 (X))) | Y = y), and marginal distributions P i := E
[
P i
Y

]
, we have

SHARPF (g) = IFY

(
P l
1, . . . , P

l
k ∥ P l

)
≤ IFY

(
P l−1
1 , . . . , P l−1

k ∥ P l−1
)

≤ · · · ≤ IFY

(
P 1
1 , . . . , P

1
k ∥ P 1

)
≤ SIF (X;Y ) .

(31)

Proof. Since a neural network in our context is simply a chain of function, it is sufficient to prove that the
inequality holds for a single arbitrary function f transforming a sample space Ω with σ-field F . For this, assume
we are in the context of a probability space (Ω,F ,P) and measurable space (Ωf ,Ff ) such that f : Ω → Ωf is
a measurable function. Define the function Mf : Ω × Ff → R via Mf (ω,A) = 1{ω∈Ω|f(ω)∈A} (ω), where 1 is
the indicator function. Similar as Garcia-Garcia & Williamson (2012), we write MfP (A) =

∫
Ω
Mf (ω,A) dP (ω).

Now, we simply have to show that Mf is a Markov kernel, which then proves the statement via the information
monotonicity of f-divergences.
For A ∈ Ff we have

MfP (A) =

∫
Ω

Mf (ω,A) dP (ω)

=

∫
Ω

1{ω∈Ω|f(ω)∈A} (ω) dP (ω)

=

∫
{ω∈Ω|f(ω)∈A}

dP

= P ({ω ∈ Ω | f (ω) ∈ A}) .

(32)

The last line shows that MfP is a distribution, which fulfills the definition of a Markov kernel as given in
(Garcia-Garcia & Williamson, 2012).
Now, using the information monotonicity of f-divergences, we get for i ∈ {2, . . . , l}

IFY

(
P i
1, . . . , P

i
k ∥ P i

)
= IFY

(
MgiP

i−1
1 , . . . ,MgiP

i−1
k ∥ MgiP

i−1
)

≤ IFY

(
P i−1
1 , . . . , P i−1

k ∥ P i−1
)
,

(33)
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which proves the inequality chain. It is upper bounded by the statistical information SIF (X;Y ) :=

E
[
F
(
E
[
Y⃗ | X

])]
− F

(
E
[
Y⃗
])

since

IFY

(
P 1
1 , . . . , P

1
k ∥ P 1

)
= IFY (Mg1P (X | Y = 1) , . . . ,Mg1P (X | Y = k) ∥ Mg1P (X))

≤ IFY (P (X | Y = 1) , . . . ,P (X | Y = k) ∥ P (X))

=

∫
X

F

(
E
[
Y⃗1

] dP (X | Y = 1)

dP (X)
, . . . ,E

[
Y⃗k

] dP (X | Y = k)

dP (X)

)
− F

(
E
[
Y⃗
])

dP (X)

= E
[
F
(
E
[
Y⃗ | X

])]
− F

(
E
[
Y⃗
])

.

(34)

D CLASS-WISE CALIBRATION INDUCED BY ONE-VS-REST RISK

In this section, we derive class-wise calibration errors from One-vs-Rest risk minimization. We do so by decomposing
the One-vs-Rest risk into calibration and sharpness terms analogous to the standard risk minimization case. This
is a novel contribution towards better understanding of class-wise calibration errors. Specifically, this suggests to
use class-wise calibration in predictive scenarios when the multi-class prediction consists of probabilities, which
do not sum up to one.

For a binary loss L : [0, 1]× {0, 1} → R, we define the risk of class i vs the rest as

Ri (g) := E [L (g (X) ,1 {Y = i})] , (35)

where g : X → [0, 1] is a binary classifier and Y takes values in {1, . . . , k}.

In the following, we assume −L is a proper score, i.e. it is minimized by the Bayes classifier.

Analogous, the negative Bayes risk for a q ∈ [0, 1] is given by

F (q) := − inf
p∈[0,1]

EY∼q [L (p, Y )] . (36)

Like in the canonical case, F is convex as long as −L is a proper score. Consequently, DF is a Bregman divergence.
The Brier score and the squared Euclidean distance are recovered by F (q) = q2 + (1− q)

2. The negative log
likelihood and the Kullback–Leibler divergence are given by the case F (q) = q log q + (1− q) log (1− q). As a
novel contribution, we derive class-wise calibration errors from the mean of the class-wise One-vs-Rest risk of
binary classifiers g1, . . . , gk as

1

k

k∑
i=1

Ri (gi) =
1

k

k∑
i=1

−F (P (Y = i)) + CWCEF (g1, . . . , gk)− SHARPF (g1, . . . , gk) (37)

where we have a class-wise calibration error CWCEF (g1, . . . , gk) := 1
k

∑k
i=1 E [DF (P (Y = i | gi (X)) , gi (X))]

and a class-wise sharpness SHARPF (g1, . . . , gk) :=
1
k

∑k
i=1 E [DF (P (Y = i | gi (X) ,P (Y = i)))]. Analogous to

the canonical case, we have CWCEF (g1, . . . , gk) = CWCE2
2 (g) for F (q) = q2 and g (x) := (g1 (x) , . . . , gk (x))

⊺.
Surprisingly, the associated negative Bayes risk is not symmetric unlike other common cases (Gneiting & Raftery,
2007). Note that the factor 1

k systematically decreases the class-wise calibration error with growing k if the
class-wise predictions are normalized to a probability vector (Gruber & Buettner, 2022).

Proof. We first show that the decomposition holds. Note that we implied F is differentiable, but the decomposition
still holds under general conditions by replacing Bregman divergences with score divergences (Gneiting & Raftery,
2007). Since by assumption L is a negative proper score, we have L (p, y) = −F (p)− F ′ (p) (y − p) for p ∈ [0, 1]
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and y ∈ {0, 1} (c.f. Schervish representation (Gneiting & Raftery, 2007)).
Further, note that for i ∈ {1, . . . , k} we have

Ri (gi)

def
= E [L (gi (X) ,1 {Y = i})]
= E [−F (gi (X))− F ′ (gi (X)) (1 {Y = i} − gi (X))]

LOTUS
= E [−F (gi (X))− F ′ (gi (X)) (P (Y = i | gi (X))− gi (X))]

= E [DF (P (Y = i | gi (X)) , gi (X))]− E [F (E (Y = i | gi (X)))]

= E [DF (P (Y = i | gi (X)) , gi (X))]− E [DF (P (Y = i | gi (X)) ,P (Y = i))]

− E [F (P (Y = i | gi (X)))] ,

(38)

where we used the law of the unconscious statistician (LOTUS) and the definition of Bregman divergences.
Now, we use this result to get

1

k

k∑
i=1

Ri (gi) =
1

k

k∑
i=1

−F (P (Y = i))

+
1

k

k∑
i=1

E [DF (P (Y = i | gi (X)) , gi (X))]

− 1

k

k∑
i=1

E [DF (P (Y = i | gi (X)) ,P (Y = i))]

def
=

1

k

k∑
i=1

−F (P (Y = i)) + CWCEF (g1, . . . , gk)− SHARPF (g1, . . . , gk) .

(39)

Last, we show CWCEF (g1, . . . , gk) = CWCE2
2 (g) for F (q) = q2 and g (x) := (g1 (x) , . . . , gk (x))

⊺. Since
DF (x, y) = (x− y)

2, we have

CWCEF (g1, . . . , gk)
def
=

1

k

k∑
i=1

E [DF (P (Y = i | gi (X)) , gi (X))]

=
1

k

k∑
i=1

E
[
(P (Y = i | gi (X))− gi (X))

2
]

def
= CWCE2

2 (g) .

(40)

E PROPER CALIBRATION ERROR ESTIMATORS VIA KDE

E.1 The Dirichlet kernel in estimating E[Y | g(x)]

The Dirichlet kernel is defined as:

kDir(g(xh), g(xj)) =
Γ(
∑K

k=1 αjk)∏K
k=1 Γ(αjk)

K∏
k=1

g(xh)
αjk−1
k (41)

with αj =
g(xj)

γ +1, γ > 0 being a bandwidth parameter (Ouimet & Tolosana-Delgado, 2022; Popordanoska et al.,
2022). We note that popular libraries such as PyTorch provide only log Γ2 and not Γ directly (Paszke et al.,

2https://pytorch.org/docs/stable/generated/torch.lgamma.html

https://pytorch.org/docs/stable/generated/torch.lgamma.html
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2019). It will therefore be useful to consider

log(k(g(xh), g(xj))) = log
Γ(
∑K

k=1 αjk)∏K
k=1 Γ(αjk)

K∏
k=1

g(xh)
αjk−1
k (42)

= log Γ

(
K∑

k=1

αjk

)
−

K∑
k=1

log Γ (αjk) +

K∑
k=1

(αjk − 1) log g(xh)k (43)

= log Γ

(
K +

K∑
k=1

g(xj)k
γ

)
−

K∑
k=1

log Γ

(
g(xj)k

γ
+ 1

)
+

1

γ
⟨g(xj), log(g(xh))⟩ (44)

and we can further apply the log to the softmax function in the last log(g(xh)) inside the inner product.

We subsequently focus on terms of the form

log

∑
j ̸=h

k(g(xh), g(xj))

 =LogSumExpj ̸=h (log(k(g(xh), g(xj)))) . (45)

Computation of terms of the form log
(∑

j ̸=h k(g(xh), g(xj))yj

)
are essentially the same, but the LogSumExp

operation should only be performed over indices where yjk ̸= 0.

E.2 Bregman derivation of the L2 calibration error estimator

For the Bregman formulation of squared L2 error, we have F (x) = ∥x∥22, and the r.h.s. of Equation (9) becomes

1

n

n∑
h=1

(∥∥∥∥∥
∑

j ̸=h k(g(xh), g(xj))yj∑
j ̸=h k(g(xh), g(xj))

∥∥∥∥∥
2

2

+ ∥g(xh)∥22 − 2

〈
g(xh),

∑
j ̸=h k(g(xh), g(xj))yj∑
j ̸=h k(g(xh), g(xj))

〉)

=
1

n

n∑
h=1

∥∥∥∥∥
∑

j ̸=h k(g(xh), g(xj))yj∑
j ̸=h k(g(xh), g(xj))

− g(xh)

∥∥∥∥∥
2

2

. (46)

We see that this recovers exactly the L2 special case of the estimator given by (Popordanoska et al., 2022,
Equation(9)). That paper shows that the resulting estimator is consistent, and has a convergence of O(n−1/2)
with a bias that converges as O(n−1).

E.3 Bregman derivation of the KL calibration error estimator

Recall from above that the Bregman KL divergence is generated by F (p) = ⟨p, log(p)⟩, where the log operation is
applied element-wise.

The Bregman formulation of KL calibration error is

1

n

n∑
h=1

(〈∑
j ̸=h k(g(xh), g(xj))yj∑
j ̸=h k(g(xh), g(xj))

, log

(∑
j ̸=h k(g(xh), g(xj))yj∑
j ̸=h k(g(xh), g(xj))

)〉
− ⟨g(xh), log(g(xh))⟩−〈

log(g(xh)) + e,

∑
j ̸=h k(g(xh), g(xj))yj∑
j ̸=h k(g(xh), g(xj))

− g(xh)

〉)

=
1

n

n∑
h=1

〈∑
j ̸=h k(g(xh), g(xj))yj∑
j ̸=h k(g(xh), g(xj))

, log

( ∑
j ̸=h k(g(xh), g(xj))yj∑

j ̸=h k(g(xh), g(xj))g(xh)

)〉
(47)

where e is a vector of all ones and division of two vectors is assumed to be element-wise. The result is an estimator
identical to Equation (10).
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E.4 General Sharpness-Calibration error decompositions of expectations of Bregman divergences

In general, we can define a statistical risk measure based on a Bregman divergence as

E(X,Y )∼p[DF (Y, g(X))] = E(X,Y )[F (Y )− F (g(X))− ⟨∇F (g(X)), Y − g(X)⟩]. (48)

If we subtract out the associated Bregman calibration error (cf. Equation (9)), we have

E[DF (Y, g(X))]− CEF (g) =E(X,Y )[DF (Y, g(X))]− EX [DF (E[Y | g(X)], g(X))] (49)
=E[F (Y )− F (g(X))− ⟨∇F (g(X)), Y − g(X)⟩] (50)
− E[F (E[Y | g(X)])− F (g(X))− ⟨∇F (g(X)),E[Y | g(X)]− g(X)⟩]

=E[F (Y )− F (E[Y | g(X)])]− E[⟨∇F (g(X)), Y − E[Y | g(X)]⟩]. (51)

It is a well known property of conditional expectation that E[f(Z) · Y | Z] = f(Z)E[Y | Z], which yields

E[⟨∇F (g(X)), Y − E[Y | g(X)]⟩] =E[⟨∇F (g(X)), Y ⟩]− E[E[⟨∇F (g(X)), Y ⟩ | g(X)]]︸ ︷︷ ︸
=E[⟨∇F (g(X)),Y ⟩] by law of total expectation

= 0, (52)

and our equation simplifies to

E[DF (Y, g(X))]− CEF (g) = E[F (Y )− F (E[Y | g(X)])]. (53)

E.4.1 Recovery of L2 refinement

Setting F (p) = ∥p∥2, the risk becomes the Brier score and we obtain

E[∥Y ∥2 − ∥E[Y | g(X)]∥2] =1− EX [∥E[Y | g(X)]∥2] (54)

Popordanoska et al. (2022) show the L2 refinement to be E[(1−E[Y | g(X))]E[Y | g(X)]] = E[E[Y | g(X)]−E[Y |
g(X)]2] = E[Y ]− E[E[Y | g(X)]2]. This is in fact the first term of the above if we expand the norm as a sum over
elements and split into expectations of terms from each dimension of Y .

E.4.2 Recovery of KL refinement

Setting F (p) = ⟨p, log(p)⟩, the risk corresponds with cross-entropy loss, and we obtain

E[⟨Y, log(Y )⟩︸ ︷︷ ︸
=0

−⟨E[Y | g(X)], log(E[Y | g(X)]⟩] =− E[⟨E[Y | g(X)], log(E[Y | g(X)]⟩] (55)

=E[H(E[Y | g(X)])], (56)

where H denotes entropy, we interpret the first inner product involving Y using limY↘0 Y log Y = 0 as it is
otherwise undefined, and we additionally assume categorical labels Y without uncertainty.

F EXPERIMENTS

In this section, we first provide a detailed description of the empirical setup. Subsequently, we further investigate
the bias convergence of our estimator, both on simulated and real-world datasets. Then, we show a table
evaluating accuracy, NLL and Brier score on CIFAR 10/100 before and after calibration with isotonic regression
and temperature scaling. Finally, we present additional results for several use-cases of the estimator: monitoring
model training, model selection, and assessing calibration error.

F.1 Empirical setup

Datasets The experiments in the main text rely on two widely used benchmark datasets, CIFAR-10/100
(Krizhevsky & Hinton, 2009), which consist of 32× 32 natural images divided into 10 and 100 classes, respectively.
We split the data into train/validation/test sets of 45000/5000/10000.
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Models We trained PreResNet20, PreResNet56, PreResNet110, PreResNet164 (He et al., 2016), VGG16 (with
BatchNorm) (Simonyan & Zisserman, 2014) and WideResNet28x10 (Zagoruyko & Komodakis, 2016) for 250
epochs with Stochastic Gradient Descent optimizer using PyTorch (Paszke et al., 2017). The learning rate was
reduced by a factor of 10 at 150th and 225th epochs. The WideResNet and the PreResNet models were trained
with the learning rate of 1e−1, batch size of 128, weighted decay (WD) of 1e−10 and Nesterov’s momentum of
0.9. During the first epoch, we warmed up the training with the learning rate of 0.01. The VGG model was
trained with the learning rate of 5e−2, WD of 5e−5, batch size of 128, and momentum of 0.05. The training was
carried out with NVIDIA V100 GPU.

F.2 Convergence of bias

In addition to our empirical analysis for the convergence of bias on simulated data in the main part, here we
present the calibration error and the relative bias, computed as ĈE−CE

CE ∗ 100, with ĈE the estimated and CE
the ground truth calibration error. The averaged results across 20 iterations of sampling new points for the
estimation, together with the standard errors, are shown in Figure 4.
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2 bias

0 5000 10000 15000
0.05

0.10

0.15

0.20

0.25

Number of points

C
E
K
L

Ground truth
CEKL

(e) 2 classes

0 5000 10000 15000
0.05

0.10

0.15

0.20

0.25

Number of points

C
E
K
L

Ground truth
CEKL

(f) 5 classes

0 5000 10000 15000
0.05

0.10

0.15

0.20

0.25

Number of points

C
E
K
L

Ground truth
CEKL

(g) 10 classes

0 5000 10000 15000
0

50

100

150

200

250

Number of points

R
el

at
iv

e
C
E
K
L

bi
as

(%
)

2 classes
5 classes
10 classes

(h) Relative ĈEKL bias

Figure 4: Calibration error and relative bias (%) on simulated data for different number of classes. Each plot
shows the estimate as a function of the sample size. The top row evaluates ĈE2

2, while the bottom row ĈEKL.

Similarly, in Figure 5 we evaluate the calibration error, bias and relative bias on the test set of CIFAR-10, as a
function of the number of points used for the estimation. The ground truth is calculated from the whole test
set (10000 images). The bandwidth of the Dirichlet kernel is set to 0.02. The results reveal that the estimator
achieves values that closely align with the ground truth, even with as few as a (couple of) hundred points.

F.3 Post-hoc calibration

In addition to the experiment in the main text, where we evaluate ĈE2
2 and ĈEKL before and after calibration, in

Table 4 we show accuracy, NLL and Brier score of various network architectures on CIFAR-10/100.

F.4 Additional experiments

Monitoring calibration error during training Monitoring accuracy and loss during the training of a
deep neural network is essential for various reasons, including performance evaluation and model selection. We
argue that monitoring calibration error and sharpness/refinement, in addition to the standard metrics, provides
additional insights into the reliability and performance of the model.
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Figure 5: Calibration error, bias, and relative bias (%) evaluated on the test set of CIFAR 10, using predictions of
trained PreResNet56 architectures with four different seeds. The ground truth is obtained from the whole test set.

Table 4: Performance evaluation (Acc ×100, NLL ×100 and Brier score ×100) of various network architectures
on CIFAR-10/100 with no calibration, and recalibration with Isotonic Regression and Temperature Scaling.

No calibration Isotonic Regression Temperature Scaling
Dataset Model Acc NLL Brier Acc NLL Brier Acc NLL Brier

CIFAR-10

PreResNet20 91.95±0.05 32.65±0.45 12.75±0.08 91.94±0.07 26.92±0.09 11.99±0.07 91.95±0.05 24.11±0.14 11.74±0.07

PreResNet56 94.38±0.13 22.46±0.25 9.03±0.18 94.34±0.13 19.58±0.19 8.61±0.14 94.38±0.13 17.48±0.17 8.41±0.13

PreResNet110 94.86±0.04 20.42±0.18 8.24±0.06 94.83±0.05 18.06±0.34 7.91±0.04 94.86±0.04 16.11±0.07 7.72±0.06

PreResNet164 95.24±0.05 18.61±0.29 7.58±0.06 95.14±0.06 17.39±0.33 7.33±0.07 95.24±0.05 14.96±0.17 7.13±0.06

VGG16BN 93.26±0.04 33.76±0.29 11.61±0.10 93.23±0.04 25.15±0.33 10.42±0.08 93.26±0.04 24.55±0.16 10.48±0.09

WideResNet28x10 95.54±0.05 15.69±0.16 7.00±0.07 95.53±0.04 16.49±0.44 6.86±0.08 95.54±0.05 14.50±0.17 6.80±0.09

CIFAR-100

PreResNet20 68.01±0.15 121.48±1.12 44.38±0.15 67.58±0.13 134.53±1.92 44.60±0.07 68.01±0.15 113.17±0.30 42.95±0.09

PreResNet56 74.38±0.10 112.80±2.88 38.24±0.43 74.00±0.09 115.75±1.44 36.88±0.17 74.38±0.10 93.10±1.02 35.41±0.21

PreResNet110 75.62±0.14 106.74±0.53 36.44±0.17 75.26±0.09 108.38±1.00 35.25±0.15 75.62±0.14 88.82±0.45 33.83±0.15

PreResNet164 76.54±0.05 103.19±0.55 35.12±0.13 76.11±0.10 108.24±0.85 34.18±0.12 76.54±0.05 86.30±0.54 32.68±0.13

VGG16BN 71.36±0.08 167.78±0.98 46.45±0.16 71.08±0.18 137.77±0.91 40.96±0.14 71.36±0.08 120.41±0.51 39.77±0.13

WideResNet28x10 79.56±0.22 84.17±0.80 29.93±0.31 79.23±0.21 99.28±1.49 29.92±0.28 79.56±0.22 81.83±0.68 29.44±0.29

We trained VGG16 (Simonyan & Zisserman, 2014) on a binary classification task, using a publicly available
dataset of breast histopathology images (Janowczyk & Madabhushi, 2016). We used 10% of the image patches
from the dataset, ensuring that the original 70:30 ratio of negative to positive points is maintained. We apply
a smoothing technique (exponential moving average) to improve clarity. In Figure 6 we show the training and
validation metrics per epoch and we observe several trends. For instance, we notice that as the model overfits
and validation loss increases, the refinement remains fairly flat, and the increase in validation loss is only due to
the increasing calibration error. ĈEKL not only correctly uncovers an early stopping point (same as the loss), but
it also offers a more refined view of the nature of overfitting: while the validation accuracy remains constant, the
CE considerably increases. For these reasons, we advocate for incorporating the calibration metric induced by the
given loss as part of the standard practice for monitoring the training process.

Model selection In practical settings, achieving high accuracy alone is often not sufficient for deploying
machine learning models in decision-making pipelines. Obtaining a low calibration error becomes an equally
important aspect in the evaluation of the model’s performance. In such multi-objective optimization problems,
the Pareto front is a useful tool to determine the set of optimal solutions. Figure 7 shows the Pareto front of
snapshots evaluated at every 10th epoch of training a VGG16 architecture on CIFAR-10 for a total of 250 epochs.
Each point represents the mean and standard error across four seeds. The orange points are Pareto optimal (or
Pareto efficient), meaning that no other snapshots can improve one objective without degrading the other. In



Popordanoska, Gruber, Tiulpin, Buettner, Blaschko

0 50 100 150 200
0.1

0.2

0.3

0.4

0.5

Epochs

Lo
ss

Training loss
Validation loss

0 50 100 150 200

80

85

90

95

Epochs

A
cc

Training accuracy
Validation accuracy

0 50 100 150 200

0

0.1

0.2

0.3

Epochs

Train loss
Train CEKL

Train refinement

0 50 100 150 200

0

0.05

0.1

0.15

0.2

Epochs

C
E
K
L

Training CEKL

Validation CEKL

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

Epochs

C
E
2 2

Training CE2
2

Validation CE2
2

0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

Epochs

Val loss
Val CEKL

Val refinement

Figure 6: Training and validation trends monitoring loss, accuracy, calibration error and refinement. The
calibration error is an effective tool for detecting overfitting. Observing the loss together with the induced
calibration error and refinement offers unique insights for the performance of the model.

other words, the orange points represent the best possible trade-off between accuracy and calibration error.

Assessing calibration error In this part, we investigate the ranking performance of the class-wise versions of
ĈEKL and ĈE2

2 via kernel density estimation, and CE1 with a binned estimator (Kull et al., 2019; Nixon et al.,
2019). The latter can be seen as the class-wise version of the commonly used ECE (Naeini et al., 2015; Guo
et al., 2017). Specifically, we evaluate calibration error using the three estimators for each of the ten classes
within the CIFAR-10 dataset. The similarity of their performance in terms of ranking the classes can be observed
in Table 5, where the numbers in the brackets represent the ranking order. We used 15 bins with equal-width
binning scheme for CE1, and the bandwidth for the KDE estimators was set to 0.02. Additionally, Figure 8 show
the corresponding class-wise reliability diagrams for the models evaluated in the table. The blue bars represent
the accuracy per bin. The red bars represent the gap of each bin to perfect calibration, i.e., the difference between
accuracy and confidence for a given bin (darker shades signify under-confidence, while brighter red colors denote
over-confidence).

Table 5: Calibration error evaluated using three estimators for each of the classes within CIFAR-10. The values
are averaged over four seeds. The numbers in the brackets represent the ranking order.

Model Metric Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

PreResNet56
ĈEKL × 100 1.58 (6) 0.91 (1) 2.13 (8) 4.28 (10) 1.78 (7) 3.59 (9) 1.30 (4) 1.09 (2) 1.12 (3) 1.34 (5)
ĈE2

2 × 1000 7.25 (6) 4.04 (1) 9.27 (8) 16.96 (10) 8.26 (7) 14.58 (9) 5.34 (3) 5.77 (4) 5.31 (2) 5.99 (5)
CE1 ×1000 6.25 (6) 3.36 (1) 7.65 (8) 15.62 (10) 6.51 (7) 12.76 (9) 4.34 (3) 3.96 (2) 4.52 (4) 4.97 (5)

WideResNet28x10
ĈEKL × 100 0.86 (5) 0.72 (3) 1.43 (8) 2.76 (10) 0.96 (7) 2.43 (9) 0.71 (2) 0.53 (1) 0.75 (4) 0.93 (6)
ĈE2

2 × 1000 4.80 (6) 3.65 (2) 7.52 (8) 13.39 (10) 5.22 (7) 11.76 (9) 3.73 (3) 2.91 (1) 4.01 (4) 4.73 (5)
CE1 ×1000 3.47 (5) 2.80 (3) 5.42 (8) 11.61 (10) 3.57 (7) 10.12 (9) 2.50 (2) 1.83 (1) 2.91 (4) 3.49 (6)
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Figure 7: Pareto front of VGG16 snapshots evaluated at every 10th epoch. The model is trained for a total of
250 epochs on CIFAR-10. The orange points Pareto-dominate the rest. The numbers represent the corresponding
epoch. Note that the y−axis is inverted.
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Figure 8: Reliability diagrams for each class of CIFAR-10 using PreResNet56 (top two rows) and WideResNet28x10
(bottom two rows).
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