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Abstract
State-of-the-art techniques for enhancing ro-
bustness of deep networks mostly rely on em-
pirical risk minimization with suitable data
augmentation. In this paper, we propose a
complementary approach motivated by com-
munication theory, aimed at enhancing the
signal-to-noise ratio at the output of a neu-
ral network layer via neural competition dur-
ing learning and inference. In addition to
standard empirical risk minimization, neu-
rons compete to sparsely represent layer in-
puts by maximization of a tilted exponen-
tial (TEXP) objective function for the layer.
TEXP learning can be interpreted as max-
imum likelihood estimation of matched fil-
ters under a Gaussian model for data noise.
Inference in a TEXP layer is accomplished
by replacing batch norm by a tilted softmax,
which can be interpreted as computation of
posterior probabilities for the competing sig-
naling hypotheses represented by each neu-
ron. After providing insights via simplified
models, we show, by experimentation on stan-
dard image datasets, that TEXP learning and
inference enhances robustness against noise
and other common corruptions, without re-
quiring data augmentation. Further cumu-
lative gains in robustness against this array
of distortions can be obtained by appropri-
ately combining TEXP with data augmenta-
tion techniques. The code for all our exper-
iments is available at https://github.com/
bhagyapuranik/texp_for_robustness.

1 Introduction
Standard training of deep neural networks is well known
to lack robustness against a variety of distortions, in-
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cluding noise, distribution shifts (Hendrycks and Diet-
terich, 2018; Dodge and Karam, 2017), and adversarial
attacks (Szegedy et al., 2014; Goodfellow et al., 2015;
Carlini and Wagner, 2017). The most common ap-
proach to improving robustness relies on performing
data augmentation. For example, adversarial training
(Madry et al., 2018), which augments the training data
with generated adversarial examples (corresponding to
the current realization of the network parameters), is
one of the most effective adversarial defenses against
adversarial attacks. In addition, different types of data
augmentation have also been shown to effectively im-
prove robustness against natural corruptions (Cubuk
et al., 2019; Hendrycks et al., 2020; Qin et al., 2023).

In this paper, in a manner that is complementary to
learning with data augmentation, we propose and ex-
plore a strategy for enhancing robustness based on
detection and estimation theoretic concepts, motivated
by their success in fields such as wireless communication
systems. In communication theory, the receiver tries to
match the incoming signal against a number of possi-
ble signal templates, each corresponding to a different
message. For signaling in Gaussian noise, correlating
against these signal templates, often called matched
filtering, maximizes the signal-to-noise ratio, and the
posterior probability of each possible transmitted signal
is obtained by feeding suitably scaled matched filter
outputs to a softmax. We propose to apply these ideas
to enhance the signal-to-noise ratio in a neural network
layer (our exploration here focuses on the first layer)
via neuronal competition during learning and inference.

Unlike in communication systems, we do not have a
known set of messages and corresponding transmitted
symbols. Rather, we seek to learn layer weights which
are well matched to the set of incoming patterns, so
that for each strong input, a fraction of neurons fire
strongly. We accomplish this by adding tilted exponen-
tial objective for the layer, which can be interpreted as
maximum likelihood estimation of matched filter sig-
nal templates under a Gaussian model for “data noise”
(see Sec. 3). For inference, we replace batch norm
by a tilted softmax, interpretable as computation of
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posterior probabilities for competing signal templates
represented by the neurons. Our framework allows
us to vary the amount of data noise during training
(smaller if training with clean data) and during in-
ference (bigger to provide robustness against out of
distribution “noise”). We term a layer designed in this
way (see Sec. 4) as a tilted exponential (TEXP) layer.

We provide geometric insight into TEXP training for
simplified models, and then demonstrate enhancements
in robustness for CNNs operating on standard im-
age datasets. Experiments on CIFAR-10 (Krizhevsky
et al., 2009) show that replacing the first layer of a
VGG-16 (Simonyan and Zisserman, 2014) network by
a TEXP layer yields increased robustness against noise,
other common corruptions and mild adversarial per-
turbations without requiring data augmentation. Addi-
tional performance gains are obtained by supplement-
ing TEXP with adversarial training and other data
augmentation techniques such as AugMix (Hendrycks
et al., 2020), RandAugment (Cubuk et al., 2020) and
AutoAugment (Cubuk et al., 2019). We show that the
TEXP approach generalizes to other network archi-
tectures and datasets through promising preliminary
experiments on CIFAR-100 (using Wide-ResNet-28-10
as backbone) and ImageNet (ResNet-50 backbone).

2 Related work

Disparity between the data observed during training
and testing phases is a common phenomenon, high-
lighting the significance of robustness in generalizing to
out-of-distribution (OOD) samples. The prevailing ap-
proach to address this challenge is to use various forms
of OOD data augmentation (Zhang et al., 2018; Cubuk
et al., 2019, 2020; Schneider et al., 2020; Hendrycks
et al., 2020; Calian et al., 2022; Kireev et al., 2022; Qin
et al., 2022), often combined with techniques such as
proxy tasks or consistency regularization. For exam-
ple, Augmix (Hendrycks et al., 2020) enriches training
images by incorporating a composition of randomly
sampled augmentations to generate a diverse set of
augmented images, supplemented by a consistency loss
function aimed at encouraging DNN outputs to react
smoothly to augmentations. Such consistency regular-
ization for data augmentation has shown promise in
several other works as well (Tack et al., 2022; Huang
et al., 2022).

A complementary set of works (Gilmer et al., 2019; Yi
et al., 2021; Yin et al., 2019; Qin et al., 2023) indicate
that adversarial training (typically with small pertur-
bation budgets) can also lead to improvements in OOD
robustness. However, finding techniques that work well
for various kinds of OOD corruptions, particularly with-
out heavy data augmentation, remains challenging. For
example, Yin et al. (2019) find that adversarial training

and Gaussian noise augmentation improve robustness
against certain corruptions like other types of noise
and blurs while degrading the performance under low
frequency corruptions like fog and contrast. They argue
that a diverse set of augmentations may be required
to combat such trade-offs. Our TEXP method shows
promise in achieving broad spectrum robustness with-
out data augmentations, while also combining well with
strategies such as AugMix and adversarial training.

Our approach of adding a cost based on layer activa-
tions is motivated by the recent work (Cekic et al.,
2022), which argues that targeting sparse, strong acti-
vations at early network layers can improve robustness.
Cekic et al. (2022) employs Hebbian/anti-Hebbian
(HaH) training at the layers, in which the most ac-
tive neurons for an input are promoted towards the
input (“fire together, wire together”), while neurons
which are less active are demoted away from the in-
put, and uses divisive normalization (enabling smaller
outputs to be attenuated by larger outputs) instead of
batch norm for inference. In contrast to neuroscien-
tific motivation in HaH, our TEXP training and infer-
ence approach is derived from communication-theoretic
foundations. Our approach also promotes neuronal
competition in both training and inference, and results
in sparse, strong activations. However, our framework
leads to smoother objective functions, does not require
sorting in either training or inference, and our best
schemes substantially outperform Cekic et al. (2022).

Exponential tilting is well-known in statistics for re-
jection sampling, rare-event simulation, saddle-point
approximation (Butler, 2007), and importance sam-
pling (Siegmund, 1976). It is also at the heart of Cher-
noff bounds (Dembo and Zeitouni, 2009), as well as an-
alyzing atypical events in information theory (Beirami
et al., 2018), and has appeared as a smoothing method
to maximum in optimization literature (Kort and Bert-
sekas, 1972; Pee and Royset, 2011; Liu and Theodorou,
2019). These concepts have motivated prior work on
tilted exponentials applied to the training objective
function, which has been demonstrated to yield fair-
ness and robustness benefits in a multitude of machine
learning problems (Li et al., 2021, 2023). Unlike this
prior work on exponential tilting, which is motivated by
connections to Chernoff bounds, large deviations and
typicality, our proposal of TEXP objective is motivated
by maximum likelihood estimation of signal templates,
and we apply exponential tilting to layer activations.

3 Learning matched filters with TEXP

We provide here a communication-theoretic motivation
for training and inference in a TEXP layer, and provide
insight into why it produces sparse, strong activations,
which in turn provide robustness. We also provide a
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geometric illustration of the neuronal weights obtained
with TEXP training via simplified models.

A classical model in communication theory is to con-
sider the received signal as one of M possible trans-
mitted messages, corrupted by white Gaussian noise.
Under hypothesis Hi, the received signal is modeled as

Hi : x = wi + n (1)

where {wi}i∈[M ] ([M ] := {1, . . . ,M}) are the M pos-
sible known messages, and n is white Gaussian noise
with variance ν2 per dimension.

In this setting, it is well known (Madhow, 2008) that
sufficient statistics for optimal reception are obtained
by correlating the received signal against each of the
possible transmitted signals. That is, the optimal re-
ceiver computes the inner products xTwi, i ∈ [M ], to
make its decisions. These correlation operations are
often termed matched filtering, since they try to match
the received signal against one of M possible templates.

The proposed tilted exponential (TEXP) approach for
robustness is based on fitting the model (1) to the in-
put x to a layer in a neural network (the experimental
results presented in this paper focus exclusively on the
first layer of a convolutional neural network, but in
principle, the concepts could be applied to any layer
of a neural network). For a given layer of a neural net-
work with M neurons (or M output channels or filters
in case of a CNN), we interpret the neuronal weights
W = {wi}i∈[M ] as signal templates corresponding to
M possible hypotheses regarding the input x, with the
ith neuron producing the matched filter output xTwi,
i ∈ [M ]. However, unlike in a communication system,
we do not know the set of possible “messages” a pri-
ori. We must therefore learn the “matched filters” W
based on input training samples during training, and
then perform inference based on these learnt templates.
Naturally, we do not expect such a model to be accu-
rate, but fitting it to data provides an approach for
learning neural weights such that, for each input, it is
likely that there is a subset of neurons well matched to
it. The parameter ν2 may be viewed as “data noise,”
acknowledging that the input x may not fit any of the
templates we learn.

Likelihood function. For the model (1), the con-
ditional density of x under hypothesis Hi is p(x|Hi) =
N(x|wi, ν

2I), where N(x|µ,Σ) is the Gaussian den-
sity with mean µ and covariance Σ. However, a more
convenient representation for maximum likelihood esti-
mation is to take its Radon-Nikodym derivative with
respect to the conditional density N(x|0, ν2I) for a
“noise-only” dummy hypothesis, to obtain the condi-
tional likelihoods:

LW(x|Hi) =
N(x|wi, ν

2I)

N(x|0, ν2I)

= exp

(
1

ν2
(xTwi − ∥wi∥2/2)

)
, (2)

for i ∈ [M ], where we now view W as parameters to be
learnt during training. We see that these conditional
likelihoods depend on the input x only through the
matched filter outputs xTwi, i ∈ [M ], which means
that these are sufficient statistics.

Assuming that all templates have equal energy, we
can drop the ∥wi∥2/2 terms from (2) to obtain the
simplified expression, for all i ∈ [M ] :

LW(x|Hi) = exp

(
1

ν2
xTwi

)
. (3)

Averaging over the conditional likelihoods (3), the like-
lihood of x is obtained as a sum of tilted exponentials:

LW(x) =
1

M

M∑
i=1

exp

(
1

ν2
xTwi

)
=

1

M

M∑
i=1

exp (tai) ,

(4)
where t = 1

ν2 > 0 is the tilt parameter and ai = xTwi

is the activation (or matched filter output) produced
by the i-th neuron.

TEXP training objective. Maximum likelihood
estimation of signal templates using a collection of
independently drawn data points is accomplished by
maximizing the sum of log-likelihoods. This corre-
sponds to the following tilted exponential objective
function:

LTEXP(x) = logLW(x) = log
1

M

M∑
i=1

exp (tai) . (5)

Implicit normalization of templates. While
different transmitted signals in a communication system
might have different energies, we wish to enforce fair
competition across templates by normalizing each to
unit norm. This can be accomplished without explicit
optimization constraints via implicit normalization of

activations, by redefining as: ai =
xTwi

∥wi∥2
, i ∈ [M ].

Notation (softmax). Before computing the gra-
dient of the TEXP objective, we recall the standard
notation σ(u) = (σ1(u), ..., σM (u))

T
for a softmax op-

erating on a vector u = (u1, ..., uM )T , with

σi(u) =
eui∑M
j=1 e

uj

, i = 1, ...,M (6)

TEXP gradient. The gradient of the objective
function (5) is obtained as

∇WLTEXP = t

M∑
i=1

etai∑M
j=1 e

taj
∇Wai = t

M∑
i=1

σi(ta)∇Wai,

(7)

Since larger activations are weighted more via the
tilted softmax, gradient ascent corresponds to increas-
ing larger activations further.
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Figure 1: TEXP gradient ascent rotates the neuron
towards the input, with larger activations weighted
more via a tilted softmax.

Accounting for implicit normalization, we obtain the
gradient

∇wi
ai = ∇wi

xTwi

∥wi∥2
=

P⊥
wi

x

∥wi∥2
, where,

P⊥
wi

x = x−
(
xTwi

∥wi∥2

)
wi

∥wi∥2
is the projection of the input x orthogonal to the one-
dimensional subspace spanned by wi (Fig. 1). Note
that, for j ̸= i, ∇wj

ai = 0.

We can now write ∇WLTEXP = (∇w1LTEXP, ...,
∇wM

LTEXP), where

∇wiLTEXP = tσi(ta)
P⊥
wi

x

∥wi∥2
. (8)

We now see in explicit form that a TEXP gradient
update rotates each neuron to align more closely with
the input (see Fig. 1), with the softmax weighting
favoring templates that are better aligned, so that
large activations are made even larger.

Balanced TEXP objective function. Additional
competition among the signal templates seeking to
fit an input can be created by imposing a balance
constraint in which the mean of the signal templates is
set to zero. That is, we replace wi by wi − w̄, for i ∈
[M ], where w̄ = (1/M)

∑M
i=1 wi. This yields a variant

of (5) which we term a balanced tilted exponential
objective function:

Lbal
TEXP(x) = log

1

M

M∑
i=1

exp (t(ai − ā)) ,

where ā = (1/M)
∑M

i=1 ai is the mean activation of all
neurons. The corresponding gradient components are
given by

∇wiLbal
TEXP = t (σi(ta)− 1/M)

P⊥
wi

x

∥wi∥2
(9)

Now, in addition to making large activations larger by
rotating towards the input, we make small activations
smaller (i.e., such that tilted softmax is smaller than
1/M) by by rotating the corresponding template away
from the input (for geometric insights, see Sec 3.2).

TEXP inference. Once we learn the estimates of
the signal templates W , inference based on a data point
x consists of computing the posterior probability of

each hypothesis (this is termed “soft decisions” in com-
munication systems). For hypothesis Hi, this posterior
probability is given by the softmax:

pi(x) =
LW(x|Hi)P (Hi)∑M

j=1 LW(x|Hj)P (Hj)
= σi

(
a/ν2) = σi(ta)

(10)

setting t = 1
ν2 .

Different tilt parameters for training and infer-
ence. The value of ν2 used during inference using
(10) may be different from that for training as in (5).
In particular, we may use a smaller value of ν2 (higher
t) during training, where we might be learning from
clean data, or from data that we have perturbed in
a controlled manner. On the other hand, during in-
ference, we may use a higher value of ν2 (lower t) in
order to accommodate data noise due to a variety of
distortions that were not present during training. Note
that TEXP inference (10) is unaffected by whether or
not the signal templates are balanced, since balanc-
ing corresponds to subtracting the same constant from
each activation.

3.1 Why TEXP is expected to reduce
sensitivity to perturbations.

TEXP training pushes activations from different neu-
rons apart, nudging different neurons to align with
different signal templates. This combines well with
TEXP inference: the softmax nonlinearity enables large
activations, corresponding to neurons well-aligned with
the input, to suppress smaller activations, and reduce
sensitivity to perturbations. To see this, consider a
layer with only two neurons, with activations a1 and a2.
Defining ∆a = a1 − a2 as the difference in activations,
the softmax outputs reduce to sigmoids:

z1 = σ1(ta) = f(−t∆a), z2 = σ2(ta) = f(t∆a)

where f(x) = 1/(1 + e−x) is the standard single-
argument sigmoid function. Since f(x) → 0 as x →
−∞, the derivative of the sigmoid, f ′(x) = f(x)f(−x),
is small for large |x|. Thus, as we increase the sep-
aration between the activations (by increasing |∆a|),
the sensitivity of the softmax output to perturbations
decreases. This is in contrast to the ReLU nonlinearity,
where perturbations can ride on top of activations in
the linear region.
Remark 1. Even in this simplified setting of two neu-
rons, note that the TEXP inference layer is different
from a classical sigmoid nonlinearity. The TEXP infer-
ence output depends on the sigmoid of the difference
in activations, instead of on individual activations as
in a classical setting.

Remark 2. As the tilt parameter increases, the sensi-
tivity to perturbations decreases, but this may come
at the cost of excessive loss of information due to sup-
pression of weaker activations.
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Remark 3. The suppression of small activations by
larger ones via softmax leads to a sparse code with
a small fraction of strong activations. It is beneficial
to further threshold the softmax layer output to zero
out small entries, further increasing sparsity and re-
ducing the effective number of dimensions available for
perturbations to propagate up.

3.2 Geometric insight into TEXP learning.

While our evaluations in Sec. 5 focus on TEXP as a
supplement to empirical risk minimization for super-
vised learning, to obtain geometric insight, we consider
unsupervised TEXP training on a single-layer network
for two simplified data models, each corresponding to a
2-dimensional signal subspace embedded in an ambient
dimension d ≫ 2. We apply TEXP training on M ran-
domly initialized neurons {wi}i∈[M ] (where M ≫ 2),
and ask if we learn neurons aligned with the important
directions in the input distribution. Since the neurons
are randomly initialized, we can assume, without loss
of generality, that the first 2 elements of the standard
basis, e1 = [1, 0, . . . , 0] and e2 = [0, 1, 0, . . . , 0], span
the 2-dimensional signal subspace.

Model 1: The input is drawn from a two-
component Gaussian mixture, corresponding to one
of two equiprobable signals, s1 and s2, corrupted by
white Gaussian noise of variance σ2 per dimension. The
input distribution is therefore given by

p(x) =
1

2
N (x|s1, σ2I) +

1

2
N (x|s2, σ2I) (11)

where x ∈ Rd. This is exactly aligned with our
communication-theoretic formulation with two hypothe-
ses. We hope that we learn one or more neurons that
align with each of the signal directions s1 and s2, and
that outputs corresponding to the remaining non-useful
neurons are small enough that they can be suppressed
via TEXP inference. Additionally, when we employ
the balanced TEXP objective, the inactive neurons are
expected to be rotated away from the signal directions.
We consider an example with signals s1 = [1, 0, . . . , 0],
s2 = [1/

√
2, 1/

√
2, 0, . . . , 0], d = 10, M = 20, and we

plot in Fig. 2(a) the projections, of the learnt neurons,
onto the signal space. As expected, TEXP leads to
some useful neurons (shown in green) that align with
the signal directions, while the inner products between
the remaining non-useful or spurious neurons (shown
in black) and the signals are either negative or are
small positive numbers (and hence would be signifi-
cantly attenuated by the softmax in TEXP inference
relative to the activations of the useful neurons). The
projections of the non-useful neurons into the signal
space are of various lengths; that is, they may have
substantial energy orthogonal to the signal space. With
the balanced TEXP objective, on the other hand, the
non-useful neurons (in black, Fig. 2(b)) are rotated

(a) TEXP (b) Balanced TEXP

Figure 2: Projection of learnt neurons in signal sub-
space for model 1

(a) (b)

Figure 3: Convergence of neurons for model 2 and their
respective energies in the orthogonal space.

away from the signal directions, so that their inner
products with signals are negative. Further, the energy
of the non-useful neurons is also concentrated in the
signal space.

Model 2: The input is a zero mean Gaussian ran-
dom vector with density p(x) = N (x|0,C), with eigen-
vectors taken to be aligned with the standard basis
without loss of generality, and the first two dominant
eigen-directions defining the signal subspace:

C = diag
(
A2

1 + σ2, A2
2 + σ2, σ2, ..., σ2

)
(12)

where A2
1, A

2
2 are signal powers in the dominant eigen-

directions, and σ2 is the ambient noise variance per
dimension. We can rewrite the model as a random
Gaussian signal in a two-dimensional subspace cor-
rupted by white Gaussian noise of variance σ2 per
dimension: x = s +N, where s = A1Z1e1 + A2Z2e2
with Z1, Z2 i.i.d. N (0, 1), and N ∼ N (0, σ2I) indepen-
dent of Z1, Z2. Since (Z1, Z2) takes a continuum of
values in two dimensions, we would need a continuum
of signal hypotheses to fit this into our communication-
theoretic formulation. Thus, given M ≫ 2 neurons, we
expect TEXP training to utilize all available neurons
to obtain a sparse code for the random signal based on
appropriately quantizing the continuum of directions
that s can take in the two-dimensional space. Fig. 3(a),
where we plot the projections of all M = 20 neurons
(in distinct colors) onto the signal space, shows that
the energy of the learnt neurons is indeed concentrated
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in the signal subspace, with more neurons aligned more
closely along the first dimension (since A1 > A2; we
set A1 = 3, A2 = 2). Fig. 3(b) plots the orthogonal
components of the energies of each of these neurons (in
respective colors) on the Y-axis, and shows how the
energy orthogonal to the signal subspace dies down
quickly during training.

The contrasting behavior with these simplified data
models indicates how TEXP learning adapts to the
richness of the signal subspace to create a sparse code.
More insights on the sparsity induced by TEXP are
deferred to Appendix A.

4 TEXP as a neural network layer

We now translate these ideas to training a convolu-
tional layer in a CNN (the description specializes in a
straightforward manner to a fully connected layer).

TEXP inference layer. We replace a conventional
ReLU and batchnorm in the first layer of a neural
network by a tilted softmax and thresholding layer,
and supplement the end-to-end training objective with
the TEXP objective for learning matched filters. Our
exposition focuses on replacing the first layer by a
TEXP layer, but in principle this could be applied to
multiple layers.

Convolution with implicit normalization: For a CNN
layer with input x, we denote the parameters by W =
{wi}i∈[M ] (where M denotes the number of output
channels or the number of filters), with each filter wi

being a k × k kernel with cin input channels. Thus the
dimension of wi is D = k × k × cin. Assuming k is
odd, consider x(l) to be a D-dimensional patch of the
input, centered around the spatial location l, where
l ∈ [L] and L is the total number of such patches which
are convolved with the filters, which depends on the
dimensions of the input and the striding and padding.
For example, for CIFAR-10 images fed to a VGG-16
model, the first convolution block consists of M = 64
filters, each a 3× 3 kernel with stride and padding of
1. Thus, we have L = 32× 32 = 1024 spatial locations
and corresponding input patches. Similarly to Cekic
et al. (2022), we implicitly normalize the convolution
filter weights to unit ℓ2 norm, leading to the following
convolution output produced at spatial location l due
to the i-th filter, computed as a tensor inner product
as follows:

yi(l) =
(x(l))Twi

∥wi∥2
. (13)

Tilted softmax: Post the convolution, we pass the con-
volution outputs at each location l through a Tilted
Softmax (TS) to obtain posterior probabilities

pi(l) =
exp(tinfyi(l))∑M
j=1 exp(tinfyj(l))

= σi(tinfy(l)),

Figure 4: The illustration of a TEXP layer.

where y(l) = {yi(l), i = 1, 2, . . . ,M}, tinf is the tilt
parameter. This enforces competition across filters at
each location l.

Thresholding: A filter-specific data-adaptive threshold-
ing is performed to obtain TEXP layer outputs:

oi(l) =

{
pi(l) if pi(l) ≥ τi
0 otherwise

(14)

This idea of adaptive thresholding is borrowed from
Cekic et al. (2022), where τi was set such that a certain
fraction (e.g., 10 or 20%) of the outputs are activated
for each filter for any given input. However, we avoid
the sorting required for the latter (thus significantly
reducing complexity) by setting τi = mi + cσi, where
mi =

1
L

∑
l∈[L] oi(l) is the mean of the softmax outputs

for filter i, σi is corresponding the standard deviation,
and c is a hyperparameter (we set c = 0.5 in our
experiments).

TEXP objective. The TEXP objective for a given
layer contributed by each training data point is:

LTEXP =
1

L

L∑
l=1

1

t
log

(
1

M

M∑
i=1

exp(tyi(l))

)
(15)

where t is the training tilt parameter, chosen to be at
least as large as the inference tilt tinf when learning
with clean data. The overall cost function takes the
form L = LCE − αLTEXP,

where LCE is the standard cross-entropy loss and α >
0 is a hyperparameter that determines the relative
importance of the TEXP objective compared to the
discriminative cross-entropy loss.

5 Experimental setup

We first present details on the baseline and TEXP
models employed in the experimental evaluation, the
training mechanism and the test metrics. We then
report on experiments demonstrating enhancements of
robustness for supervised learning of CNNs, replacing
the first DNN layer of a baseline architecture with a
TEXP layer. Our primary focus is on the CIFAR-10
standard and corruption datasets with the VGG-16
model as the baseline architecture, where we expect
significant gains in robustness to noise and other com-
mon corruptions in the TEXP models. The code for all
our experiments is available at https://github.com/
bhagyapuranik/texp_for_robustness.

https://github.com/bhagyapuranik/texp_for_robustness
https://github.com/bhagyapuranik/texp_for_robustness
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Baselines. We obtain baseline VGG-16 models
(with implicit weight normalization), with standard
training (which is not expected to be robust), with
OOD data augmentation techniques such as AugMix,
RandAugment, AutoAugment, and with PGD-based
adversarial training (Madry et al., 2018) with ℓ∞ per-
turbations of budget ϵ = 2/255 (which is expected to
be robust against a number of other corruptions as
well (Yi et al., 2021)). The HaH model (Cekic et al.,
2022) is also used as a baseline for OOD robustness.
Like our approach, it supplements training with layer-
wise costs. The HaH model modifies 6 layers, but as
we shall see, the TEXP approach with a single layer
outperforms it.

Our models. We modify the first layer of the
VGG-16 to a TEXP layer and refer to the model as
TEXP-VGG-16. We simplify hyperparameter search
for tilt parameters via the following scaling arguments.
In view of the implicit normalization of the filters, acti-
vations scale with the ℓ2 norm of the input ∥x∥2 to the
filter, so that the tilt parameter should be chosen to
compensate for this scaling. Making the simplifying as-
sumption that input components are uncorrelated, the
energies of the input components add up, and we may
assume that ∥x∥2 scales as

√
D, where D is the dimen-

sion of the filter tensor (e.g., for the input of VGG-16,
D = 3× 3× 3 = 27). Instead of an extensive hyperpa-
rameter search, we set tinf = 1/

√
D = 0.192, which re-

sults in relatively “soft” decisions at the softmax output.
For the clean training data, we set t = 10/

√
D = 1.92,

so TEXP training makes “harder” decisions in favor of
winners when learning signal templates. The relative
weight of the TEXP objective (15) in comparison to
the cross-entropy loss is set to α = 0.001, chosen so
that the magnitude of the weighted TEXP objective is
smaller than the cross-entropy loss. We use the same
parameters when supplementing TEXP with data aug-
mentation techniques and adversarial training with ℓ∞
perturbations of budget ϵ = 2/255 (better performance
may be obtained by further fine-tuning TEXP param-
eters for each setting). We provide a detailed study
on the sensitivity of the TEXP models to the different
TEXP parameters in Appendix B. We also report on an
alternate, computationally intensive variant of TEXP,
in Appendix C.

Training. For all VGG-16 based models, we employ
the ADAM optimizer (Kingma and Ba, 2014) with
a multi-step learning rate, beginning with 0.001, and
decreasing by a factor of 10 at epochs 60 and 80. We
train the models for 100 epochs.

Evaluation metrics. We evaluate over 19 different
common corruptions on the CIFAR-10-C (Hendrycks
and Dietterich, 2018) dataset. We report the test accu-
racies for minimum (worst-case) and average over all

the corruptions, for both the entire dataset comprising
of 5 different severity levels, and also on specifically the
corruptions of the highest severity.We also separately
report on the corrupted data formed by the addition of
Gaussian noise with standard deviation ν = 0.1 (since
our TEXP formulation was motivated by hypothesis
testing with Gaussian noise, we expect enhanced robust-
ness to Gaussian noise). Finally, we explore whether
TEXP (even without adversarial training) enhances
resilience against mild adversarial attacks, by evaluat-
ing all trained models on different ℓp attacks such as
ℓ1 with budget ϵ = 3, ℓ2 with ϵ = 0.25 and ℓ∞ with
ϵ = 2/255 respectively. We use AutoAttack (Croce and
Hein, 2020), suggested by RobustBench (Croce et al.,
2020), which is parameter-free and consists of a suite of
different attacks (in particular, we employ the standard
version composed of APGD-CE, APGD-T, FAB-T and
Square attacks).

TEXP is intended to produce sparse, strong activations;
we report on sparsity measures for TEXP layer outputs
in Appendix D.

Broader applicability. We illustrate the applica-
bility of TEXP to different architectures and larger
datasets via preliminary experiments on the CIFAR-
100 dataset using Wide-ResNet-28-10 (Zagoruyko and
Komodakis, 2016) baseline and on ImageNet-1K (Rus-
sakovsky et al., 2015) with ResNet50 baseline. For
TEXP-WideResNet-28-10, we set the TEXP param-
eters as tinf = 1/

√
D = 0.192, t = 4tinf = 0.768 and

α = 0.0005. For TEXP-ResNet-50, we set the TEXP
parameters as tinf = 8/

√
D = 0.656, t = 10tinf = 0.656

and α = 0.01. For both these ResNet family backbones,
we employ SGD optimizer with momentum (0.9), initial
learning rate of 0.1, and weight decay. The ResNet-50
models are trained for 90 epochs, with a 10× learning
rate reduction every 30 epochs. The WideResNet mod-
els are trained for 200 epochs, with 5× learning rate
reduction every 60 epochs.

6 Experimental results

Improvement in robustness against OOD cor-
ruptions. In Table 1, we report the enhanced
general-purpose robustness of the TEXP approach on
the CIFAR-10 dataset. The reported numbers are test
accuracies averaged across five runs, along with the
standard error. Please refer to Appendix E for details
on the computation of the standard errors. Focusing on
the robustness to common corruptions, we can observe
that TEXP provides significant gains in robustness
to noise and other out-of-distribution (OOD) corrup-
tions (both at the highest severity level and all levels)
in comparison to standard VGG and HaH baselines.
We benefit substantially against the worst corruption
(i.e., the one with minimum accuracy among all cor-
ruptions). TEXP combined with data augmentations
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Model Clean OOD corruptions Adversarial perturbations

Noise Min/Avg Min/Avg Autoattack ℓ1 Autoattack ℓ2 Autoattack ℓ∞
ν = 0.1 corruptions severity level:5 adv, ϵ = 3 adv, ϵ = 0.25 adv, ϵ = 2/255

VGG-16 92.26± 0.04 24.80± 1.24 46.86± 1.26/72.28± 0.26 19.56± 0.73/54.70± 0.40 10.14± 0.22 13.34± 0.14 10.30± 0.21
HaH (Cekic et al. (2022)) 87.72± 0.15 62.76± 0.40 59.56± 0.42/77.02± 0.21 49.06± 0.88/67.80± 0.27 29.98± 0.45 26.30± 0.52 20.04± 0.38

TEXP-VGG-16 88.28± 0.12 75.14± 0.20 73.68± 0.22/80.40± 0.07 52.38± 0.81/72.56± 0.14 46.48± 0.95 50.90± 0.16 41.50± 0.21

VGG-16 + AugMix 92.98± 0.06 62.92± 0.74 65.12± 0.35/83.58± 0.09 42.12± 0.79/74.00± 0.16 17.88± 0.26 18.16± 0.15 13.60± 0.17
TEXP-VGG-16 + AugMix 88.84± 0.21 78.90± 0.04 77.28± 0.20/83.54± 0.05 62.94± 0.53/78.30± 0.07 48.68± 0.52 52.20± 0.23 42.52± 0.20

VGG-16 + RandAug 93.32± 0.11 43.32± 0.72 63.24± 0.45/80.68± 0.17 39.98± 1.01/66.96± 0.30 19.76± 0.08 18.38± 0.47 14.30± 0.37
TEXP-VGG-16 + RandAug 89.90± 0.08 74.26± 0.07 75.48± 0.09/82.86± 0.02 57.52± 0.19/75.78± 0.07 50.16± 0.24 50.82± 0.24 40.02± 0.34

VGG-16 + AutoAug 93.50± 0.03 46.54± 0.54 59.84± 0.52/81.58± 0.14 37.08± 0.23/70.66± 0.18 15.66± 0.19 13.50± 0.23 9.78± 0.20
TEXP-VGG-16 + AutoAug 90.06± 0.10 72.66± 0.46 71.98± 0.24/82.58± 0.12 54.14± 0.89/75.50± 0.18 47.62± 0.16 46.96± 0.31 35.00± 0.32

VGG-16 + Adv Tr 88.04± 0.12 78.78± 0.45 50.52± 0.66/79.44± 0.12 17.60± 0.39/70.64± 0.13 51.26± 0.71 72.60± 0.23 72.82± 0.23
TEXP-VGG-16 + Adv Tr 86.38± 0.07 81.08± 0.28 67.72± 0.73/80.38± 0.14 37.08± 0.85/74.02± 0.22 64.50± 0.45 71.02± 0.40 66.76± 0.29

Table 1: Enhanced robustness to corruptions and mild adversarial attacks under VGG-16 based TEXP models on
CIFAR-10 clean and corruptions datasets. All numbers reported are average test accuracies ± standard error.

Corruptions → Noise Weather Blur Digital

Models ↓ Gauss. Shot Speck. Imp. Snow Frost Fog Brig. Spat. Defoc. Gauss. Glass Motion Zoom Cont. Elas. Pixel. JPEG Satur.

VGG-16 24.3 31.8 38.4 19.1 73.3 62.0 63.8 87.9 67.3 50.8 39.8 47.6 60.0 61.5 19.9 75.6 54.6 77.4 82.4
HaH (Cekic et al., 2022) 61.7 61.7 59.2 46.3 73.8 72.3 62.8 83.2 76.7 64.3 58.4 53.2 65.1 68.9 76.0 74.0 60.5 79.3 79.6

TEXP-VGG-16 75.3 76.5 75.5 61.3 76.4 76.8 51.8 83.2 76.1 68.9 63.4 68.6 65.0 74.2 66.0 75.2 80.8 82.9 78.8

VGG-16 + AugMix 60.7 68.1 71.3 44.9 80.2 75.3 76.5 89.7 81.7 84.8 80.8 59.6 81.4 84.0 40.0 79.5 69.4 82.0 86.9
TEXP-VGG-16 + AugMix 78.9 79.5 79.0 67.7 78.4 79.0 62.2 83.8 78.8 81.5 79.8 72.4 77.1 82.6 75.5 78.6 83.6 83.7 81.6

VGG-16 + RandAug 44.7 53.5 57.5 40.0 78.6 72.8 71.0 90.9 85.3 63.6 52.9 61.0 67.8 71.7 48.3 79.9 56.9 81.7 88.5
TEXP-VGG-16 + RandAug 74.1 75.1 72.7 57.1 79.1 78.7 60.3 88.6 81.3 73.4 68.7 70.7 70.8 77.4 83.5 78.3 79.4 84.5 85.8

VGG-16 + AutoAug 45.7 53.1 56.7 37.1 77.2 69.8 81.1 91.9 81.1 79.1 75.2 51.8 75.2 81.1 80.0 76.5 50.4 80.2 90.2
TEXP-VGG-16 + AutoAug 72.3 72.5 70.8 53.1 76.9 76.1 62.9 88.3 77.5 76.1 72.9 65.6 72.4 79.8 86.0 76.5 77.4 84.5 86.2

VGG-16 + Adv Tr 79.8 81.1 80.3 62.7 74.3 73.3 33.2 76.8 77.7 71.1 66.8 76.0 69.1 74.9 18.3 78.4 82.6 84.8 76.6
TEXP-VGG-16 + Adv Tr 81.6 82.3 81.9 74.8 71.9 75.8 39.0 76.9 78.5 75.9 72.8 76.8 73.1 78.3 52.9 78.6 83.2 84.0 76.3

Table 2: Robustness to common corruptions of the highest severity level in the CIFAR-10-C dataset. All numbers
reported are test accuracies.

and adversarial training provides even more powerful
enhancements in OOD robustness, outperforming the
backbones, both in terms of average over all kinds of cor-
ruptions and the minimum or worst-case among the dif-
ferent corruptions. We observe that TEXP augmented
with AugMix provides the best OOD robustness overall.
Table 2 reports the robustness of the models to each
of the 19 common corruptions (in the CIFAR-10-C
dataset) separately for the highest severity level of 5,
and shows that TEXP models are superior in obtain-
ing robustness against most types of corruptions, and
in particular, against various noise corruptions. The
robust accuracies here are reported for a single run.
While vanilla adversarial training helps in robustness to
noise, it deteriorates performance against contrast (Yin
et al., 2019; Kireev et al., 2022; Machiraju et al., 2022).
This issue is alleviated by TEXP.

Robustness against mild adversarial perturba-
tions. Table 1 also shows that TEXP-based models
enhance robustness to mild adversarial perturbations
even without adversarial training. When TEXP is
combined with adversarial training, its adversarial ro-
bustness generalizes significantly better than the base-
line: for example, adversarial training with ℓ∞-bounded
attacks yields improved performance against (a very
different kind of) ℓ1-bounded attack.

Robustness under different architectures and
datasets. The performance of the TEXP models is
contrasted against baselines for the CIFAR-100 (with
WideResNet-28-10) and ImageNet-1k (with ResNet-50)
datasets in Table 3. We chose the TEXP parameters
for these models through a mild search, settling on a
combination that sacrifices clean accuracy by 3− 4%,
as we had for CIFAR-10. The results demonstrate
improved OOD robustness despite minimal effort in
hyperparameter tuning. We expect that more fine-
grained adjustments of tilts combined with replacing
multiple deeper layers with TEXP will further enhance
performance, but these preliminary results do illustrate
the potential gains from applying TEXP to different
architectures and larger datasets.

Ablation study and connections to activation
pruning. To understand the contributions of each of
the components of our approach, we train and evaluate
models by cumulatively adding the thresholding, tilted
softmax and TEXP objective to baseline VGG. Detailed
results are presented in Appendix F which show the cu-
mulative benefits through improved robustness to both
corruptions and mild adversarial attacks. An interest-
ing connection, among works following thresholding
strategies, is the work on stochastic activation pruning
(SAP) (Dhillon et al., 2018), proposed as an adversar-
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Model Clean Noise Min/Avg Min/Avg
ν = 0.1 corruptions severity level:5

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

WRN-28-10 (CIFAR-100) 81.2 95.3 9.6 25.6 17.8/51.3 35.6/72.9 2.9/34.8 10.9/57.6
TEXP-WRN-28-10 78.4 93.6 31.4 57.3 26.0/56.7 52.8/78.7 12.4/40.9 30.1/65.0

ResNet50 (ImageNet) 75.5 92.6 55.6 79.1 24.3/38.3 41.0/58.8 3.3/17.9 8.9/33.5
TEXP-ResNet-50 72.0 90.6 62.6 84.3 26.6/41.8 45.8/62.5 3.3/21.0 9.4/37.5

Table 3: Test accuracy for WRN-28-10 based TEXP model on CIFAR-100 clean and corruptions datasets and
ResNet-50 based TEXP model on ImageNet-1K clean and corruptions datasets.

ial defense and subsequently broken in Dhillon and
Carlini (2020). SAP also results in sparse activations,
retaining activations at each layer with probabilities
proportional to their magnitude, while pruning the rest.
Our deterministic thresholding scheme, used by itself,
serves as a proxy for the strategy in SAP. However, the
ablations in Appendix F show that the following key
aspects of our approach not present in SAP are criti-
cal in enhancing robustness: (a) the TEXP objective
aligns filters to match incoming patterns to promote
strong activations, so that activation pruning results
in less information loss, (b) TEXP inference employs
a softmax nonlinearity which enhances resilience, as
discussed in Section 3.

Computation cost. The average time taken to
execute 1 epoch of training of a VGG-16 baseline is
5.93 sec, in comparison to 8.23 sec for TEXP-VGG-16,
on an NVIDIA A100 GPU, while inference over the
entire CIFAR-10 dataset takes an average of 1.13 sec for
baseline and 1.12 sec for TEXP. The average training
(inference) time over an NVIDIA GeForce 1080 Ti is
18.9 sec (2.79 sec) for baseline VGG and 27.5 sec (2.86
sec) for TEXP. We acknowledge that our TEXP code is
not optimized for compute speed, and we believe that
the training time may be improved. On the other hand,
we observe that introducing TEXP layer results in little
inference-time overhead to the network. In contrast to
the adaptive thresholding of Cekic et al. (2022), we do
not require sorting of activations to set the thresholds,
significantly improving computation efficiency. Please
refer to Appendix G for additional details.

7 Conclusion

Our communication-theoretic approach enhances ro-
bustness via neuronal competition in representing layer
inputs during both training and inference: for a Gaus-
sian model of data noise, the TEXP learning objective
is derived as maximum likelihood estimation of signal
templates, and TEXP inference as posterior probabil-
ity computation. Geometric insight via unsupervised
learning on simplified models illustrates how TEXP
adapts to the richness of the set of possible inputs,
while supplementing supervised learning in CNNs with
TEXP training and inference at the input layer is shown
to yield gains in OOD robustness for image datasets.
Extensive experiments on a VGG model for CIFAR-10

demonstrate that, in addition to robustness gains with
TEXP alone, our approach also combines well with data
augmentation strategies. Preliminary results with a
TEXP input layer for ResNet architectures for CIFAR-
100 and ImageNet also demonstrate gains in robustness,
indicating the promise of this approach for a variety of
datasets and architectures. We hope that our results
stimulate further work in this area, including interest-
ing questions regarding hyperparameter optimization
and training approaches for multiple TEXP layers, and
addressing robustness against strong adversarial at-
tacks in addition to OOD robustness. Furthermore,
the recipes of TEXP appear to have similarities with
elements of transformer architecture, such as matching
queries with keys, and softmax computations. We plan
to investigate these connections.

8 Broader impact and limitations

The existing techniques for improving robustness are
mostly through the application of data augmentations,
changing the optimization loss function, or both. Our
approach is complementary, focusing on matching the
signal to the input layer of the network, which aligns
with the broader goal of making deep networks more
interpretable as well. Our experimental results confirm
that our method indeed complements standard data
augmentation techniques, thereby expanding its appli-
cability to various tasks. A limitation of our work in
the current form is that we are yet to develop concrete
design guidelines for setting the tilt parameters, which
is useful for optimizing the performance of our approach
for different architectures. We also note that adding
an additional loss function for training results in an
increase of the computational cost of training. On the
other hand, the computational cost of inference is not
impacted substantially, TEXP inference via softmax
and thresholding is not significantly more complex than
standard ReLU and batch norm. In the future, we will
focus on maximizing the effectiveness of our approach
across different datasets and models, to ascertain the
generalizability. Nonetheless, our findings underscore
the value of the tilted exponential layer in enhancing
robustness to OOD corruptions, which is important
in many practical machine learning tasks where test
samples in the real-world are often different from the
curated training data.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes, the training and inference times of our
model are compared with baselines.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries.
Yes, the source code is available in the repos-
itory referenced in Section 5

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results.
Not Applicable

(b) Complete proofs of all theoretical results.
Not Applicable

(c) Clear explanations of any assumptions.
Not Applicable

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
Yes, the code is provided, along with instruc-
tions to reproduce main results.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen).
Yes, please refer to the paragraph on “Our
models” in Section 5.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
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Improving Robustness via Tilted Exponential Layer

A Geometric insights into TEXP: details on the simplified data models

Recall the data model 1 in Sec. 3, where the input was drawn from

p(x) =
1

2
N (x|s1, σ2I) +

1

2
N (x|s2, σ2I)

with signals s1 = [1, 0, . . . , 0], s2 = [1/
√
2, 1/

√
2, 0, . . . , 0], d = 10 and M = 20. Under the TEXP objective,

depending upon the initializations of the neurons, one or more neurons could align with each of the two signal
directions, leading to several “useful” neurons (although not apparent in Fig. 2(a), there are multiple useful
neurons in the directions of s1 and s2). The activations produced by useful neurons, which are large, survive
through the tilted softmax, while the rest are expected to be attenuated.

Focusing on the TEXP objective, we show in Fig. 5 the histograms of the activations (i) at the output of the
linear layer (ii) after passing through tilted softmax for two differnet values of tinf = 1, 3, while the training tilt
parameter is t = 10. We can observe how a stronger tilted softmax can polarize the activations more strongly. In
addition, since there could be multiple useful neurons aligned with a signal direction, we could further prune
similar neurons, to achieve a more sparse output.

(a) Histogram of activations at the output
of linear layer

(b) Histogram of activations after passing
through a tilted softmax with tinf = 1, 3.

Figure 5: Simplified data model 1, under TEXP objective

Similarly, for data model 2, the histograms of the activations at the output of the linear layer, and post tilted
softmax are shown in Fig. 6. Thus we can observe that TEXP approach encourages sparse activations.

(a) Histogram of activations at the output
of linear layer

(b) Histogram of activations after passing
through a tilted softmax with tinf = 1, 3.

Figure 6: Simplified data model 2, under TEXP objective
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B Sensitivity to TEXP parameters

To study the sensitivity of the robustness-accuracy performance to the TEXP parameters, TEXP objective weight
α, inference tilt tinf and training tilt t, we perform the following experiment. While keeping two of the three
TEXP parameters fixed to those set in the TEXP-VGG-16 model (where we had α = 0.001, tinf = 1/

√
D = 0.192,

t = βtinf, where β = 10), we vary the third and train a new TEXP model. We record the clean accuracy
and the average corruption robustness (both for all levels and the highest severity level). Fig. 7 shows the
robustness-accuracy trade-offs of the various TEXP models, where robustness is measured against corruptions of
all severity level (Fig. 7(a)) and highest severity level (Fig. 7(b)). To plot the variation with α, we fix tinf = 0.192,
β = 10, and vary α from 0.00001 to 0.01 (with the larger size of the markers in the figures representing larger
values of α, similarly for other variations). For the variation in tinf, we fix α = 0.001, β = 10, and vary tinf from

(a) Average corruption accuracy over all severi-
ties

(b) Average (severity level 5) corruption accuracy

Figure 7: Robustness-accuracy trade-offs obtained by varying the TEXP parameters. Increasing marker sizes
represent increasing values of the corresponding TEXP parameter. The red markers with increasing sizes encode
α variation for α ∈ [0.00001, 0.0001, 0.0005, 0.002, 0.005, 0.01]. The blue markers with increasing sizes encode tinf
variation, for tinf ∈ [0.5/

√
D, 2/

√
D, 3/

√
D, 4/

√
D, 8/

√
D, 16/

√
D]. The green markers with increasing sizes

encode t = βtinf variation for β ∈ [1, 5, 15, 25, 50].

(a) Minimum corruption accuracy (all severi-
ties)

(b) Minimum corruption accuracy for highest
severity level

Figure 8: Robustness-accuracy trade-offs obtained by varying the TEXP parameters. Increasing marker sizes
represent increasing values of the corresponding TEXP parameter. The red markers with increasing sizes encode
α variation for α ∈ [0.00001, 0.0001, 0.0005, 0.002, 0.005, 0.01]. The blue markers with increasing sizes encode tinf
variation, for tinf ∈ [0.5/

√
D, 2/

√
D, 3/

√
D, 4/

√
D, 8/

√
D, 16/

√
D]. The green markers with increasing sizes

encode t = βtinf variation for β ∈ [1, 5, 15, 25, 50].
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0.5/
√
D to 16/

√
D. For the variation in t, we fix α = 0.001, tinf = 0.192, and vary β from 1 to 50. We also

report the trade-offs with respect to the minimum (worst-case) corruption accuracy in Fig. 8. Overall, our results
show that TEXP is mildly sensitive to the choice of the hyperparameters and all variants of TEXP dominate
HaH (Cekic et al., 2022) in the Pareto plane.

C TEXP variant with expanded neural competition

In this section, we describe an alternate method of applying the TEXP principles to DNNs. We use the VGG-
16 backbone, and change the first layer to a TEXP layer, with a few distinctions in the way tilted softmax,
thresholding and TEXP objective is applied.

Similar to the original approach, we implicitly normalize the convolution filter weights to unit ℓ2 norm as follows:

yi(l) =
(x(l))Twi

||wi||2
. (16)

Next, instead of promoting competition across the M filters through the tilted softmax, we introduce competition
among all the activations in the layer output. Let us index the convolution layer outputs yi(l), across all filters
and spacial locations, by ym,m ∈ [M ′], where M ′ = L×M . For the running example in the paper with VGG-16
model and CIFAR-10 inputs, we have M ′ = 32× 32× 64, i.e., the dimension of the layer output post convolution.
We then pass these convolution outputs through a tilted softmax, normalizing over the M ′ scalar layer outputs:

pm = σm(tinfy),

where,

σm(x) =
exp(xm)∑M ′

j=1 exp(xj)
.

and y = {ym,m = 1, 2, . . . ,M ′}.

We reindex the post softmax outputs pm by filter i and spatial location l as pi(l), and use these notations
interchangeably.

Further, in the thresholding block, the thresholds τi are set such that for every image, we permit only a certain
fraction of the activations, while nullifying the rest. For instance, we set τi adaptively such that 20% of the
outputs are activated for each image, and each filter. This requires sorting of the activations to decide the
thresholds, which makes this approach expensive.

The TEXP objective here is given by

LTEXP =
1

t
log

 1

M ′

M ′∑
m=1

exp(tam)

 (17)

and the balanced TEXP objective is

Lbal
TEXP =

1

t
log

 1

M ′

M ′∑
m=1

exp(t(am − ā))


where am = ReLU(ym) are the convolution outputs across all filters and spatial locations in the first layer, passed

through a ReLU function, and ā = (1/M ′)
∑M ′

m=1 am denotes the mean of all the post-ReLU activations in the
layer.

We term this variant the TEXP-v2. We set the tilt parameters as tinf = 0.1, t = 1 and α = 0.0001, while other
optimization hyperparameters are retained the same. We observe that augmenting this variant with adversarial
training while utilizing the balanced TEXP objective resulted in a model that has a better robustness-accuracy
trade-off. We present in Table 4 the test accuracies of this variant contrasted with the matching TEXP model
from Section 4. We clarify that all the models listed in the main paper are trained with the (non-balanced) TEXP
objective.
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Model Clean Noise Min/Avg Min/Avg Autoattack ℓ2 Autoattack ℓ∞
ν = 0.1 corruptions severity level: 5 adv, ϵ = 0.25 adv, ϵ = 2/255

VGG-16 92.3 24.1 46.9/72.4 19.1/54.6 13.2 10.2
TEXP-VGG-16 88.1 75.5 74.1/80.3 51.8/72.5 51.4 42.0

TEXP-v2-VGG-16 88.3 68.4 69.7/79.6 48.3/71.8 39.4 27.6

VGG-16 + Adv Tr 87.8 79.7 51.4/79.1 18.2/70.1 71.5 72.3
TEXP-VGG-16 (Balanced) + Adv Tr 85.8 81.9 67.3/80.3 37.2/74.4 69.4 64.8

TEXP-v2-VGG-16 (Balanced) + Adv Tr 89.0 81.1 78.6/84.1 56.9/79.2 71.8 63.4

Table 4: Robustness to corruptions under the variant TEXP-v2 models on CIFAR-10 clean and corruptions
datasets. All numbers reported are test accuracies.

Although this allows us to explicitly control the sparsity levels at the end of first layer and promotes competition
among the layer outputs directly, we recommend the TEXP approach described in Section 4 as it aligns more
closely to learning matched filters and avoids sorting of activations during training and inference to set the
thresholds. For completeness, the average training (inference) time for 1 epoch on the TEXP-v2-VGG-16 model
is 31.1 sec (3.19 sec) on an NVIDIA 1080 Ti GPU.

D Sparsity of activations after the first network layer

In this section, we show the statistics of sparsity of the first layer outputs for both VGG-16 and TEXP-VGG-16
models. Recall that in the baseline VGG-16, the ordering is as follows: convolution, followed by ReLU, and
then batch-norm. Since batch-norm renders the output completely non-sparse, to draw a fair comparison with
TEXP, we obtain sparsity statistics post the ReLU, for VGG-16. For TEXP-VGG-16, we measure the sparsity
statistics on the output of the thresholding block in the TEXP layer. We wish to obtain insights on the following
questions through experiments: (i) how sparse is the layer output? (ii) for each spatial location, how does neuronal
competition give rise to sparsity in the channel/filter dimension? (iii) for each filter, how sparse is the output
across the spatial locations? To evaluate these, we take a batch of 1000 CIFAR-10 test images, and compute an
L0 notion of sparsity on the first layer output as the number of non-zero entries (measured by counting activations
larger than some small epsilon) normalized by the number of scalar dimensions. For instance, to answer the
first question, given an image, we count the number of non-zeros over the entire layer output and normalize by
C ×H ×W . For the second question, for every spatial location, we count the non-zeros along channel dimension,
and normalize by the number of channels C. For the third, for every filter, we count the non-zeros in spatial
dimensions and normalize by H ×W . We then plot the histograms of the sparsity levels obtained for the three
cases in Fig. 9. We observe that TEXP leads to sparse layer outputs, as expected, due to the neuronal (and
spatial) competition from TEXP inference and training.

(a) Sparsity in C ×H ×W dimensions (b) Sparsity in channel/filter dimension (c) Sparsity in spatial dimensions

Figure 9: Histograms of the sparsity levels in the first layer output (lower values indicate more sparse).
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E Statistical significance of the results

The results in Table 1 on the performance of all the VGG based models on CIFAR-10 dataset are reported after
averaging across five runs. The numbers reported are the sample mean values of the accuracies across the five
runs ± standard error on the mean. The standard error is given by σ/

√
N , where σ is the sample standard

deviation and N is the number of runs.

F Ablation study

In this section, we contrast the contributions of the TEXP objective and components of the inference paths in
comparison to the baseline model. We show in Table 5 four VGG-16 based models: (i) Baseline VGG; (ii) VGG
with the adpative thresholding block replacing the ReLU in the first layer (named VGG-16 + Thresholding),
which is similar to a TEXP inference layer albeit with retaining the batchnorm; (ii) TEXP-VGG-16-Inference-only,
which introduces the tilted softmax in place of the batchnorm (and with α = 0, i.e. no TEXP objective); (iii)
typical TEXP-VGG-16, which introduces the TEXP objective with α > 0 over the inference-only structure. We
can observe that addition of each of the components of the TEXP approach improves the robustness of the model.

Although there have been works in literature that approach robustness through stochastic pruning techniques, we
observe that activation pruning alone through the thresholding block (which performs deterministic activation
pruning), has a limited impact on robustness. However, when the thresholding and tilted softmax blocks are
combined with the TEXP objective, our approach aligns filters to match the incoming patterns and shapes the
activations, ensuring that there is some fraction of strong activations that survive the thresholding.

Model Clean Noise Min/Avg Min/Avg Autoattack ℓ1 Autoattack ℓ2 Autoattack ℓ∞
ν = 0.1 corruptions severity level: 5 adv, ϵ = 3 adv, ϵ = 0.25 adv, ϵ = 2/255

VGG-16 92.3 24.1 46.9/72.4 19.1/54.6 10.1 13.2 10.2
VGG-16 + Thresholding 91.6 39.1 53.1/73.8 18.4/55.7 15.1 20.5 16.1

TEXP-VGG-16-Inference-only 90.0 60.8 63.1/78.7 44.0/68.3 37.0 36.3 24.5
TEXP-VGG-16 88.1 75.5 74.1/80.3 51.8/72.5 47.2 51.4 42.0

Table 5: Ablation study of TEXP components on CIFAR-10 clean and corruption datasets. All numbers reported
are test accuracies for a single run.

G Computation time

All the experiments on the CIFAR-10 dataset were mainly performed using 4 NVIDIA GeForce 1080 Ti GPUs
with 12GB memory. For experiments on the CIFAR-100 and ImageNet-1K datasets, we relied on an NVIDIA A100
GPU with 80GB memory. The training and inference times for the baseline VGG-16, HaH and TEXP-VGG-16
models are contrasted in Table 6. To train HaH models, we use the repository by Cekic et al. (2022), and utilize
the set of hyperparameters outlined in the paper.

GPU → 1080Ti A100
Models ↓ Training Inference Training Inference

VGG-16 18.9±0.27 2.79±0.02 5.9±0.08 1.13±0.006
HaH (Cekic et al., 2022) 107.3±0.38 4.00±0.04 34.6±0.06 1.41±0.006

TEXP-VGG-16 27.5±0.18 2.84±0.01 8.23±0.15 1.12±0.009

Table 6: Average training (for 1 epoch) and inference times in seconds. The numbers reported are average time
± standard error in mean, where standard error = sample standard deviation/

√
N .
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