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Abstract

Matrix sensing has many real-world appli-
cations in science and engineering, such as
system control, distance embedding, and com-
puter vision. The goal of matrix sensing is to
recover a matrix A⋆ ∈ Rn×n, based on a se-
quence of measurements (ui, bi) ∈ Rn×R such
that u⊤

i A⋆ui = bi. Previous work (Zhong
et al., 2015) focused on the scenario where
matrixA⋆ has a small rank, e.g. rank-k. Their
analysis heavily relies on the RIP assumption,
making it unclear how to generalize to high-
rank matrices. In this paper, we relax that
rank-k assumption and solve a much more
general matrix sensing problem. Given an
accuracy parameter δ ∈ (0, 1), we can com-

pute A ∈ Rn×n in Õ(m3/2n2δ−1), such that
|u⊤

i Aui− bi| ≤ δ for all i ∈ [m]. We design an
efficient algorithm with provable convergence
guarantees using stochastic gradient descent
for this problem.

1 INTRODUCTION

Matrix sensing is a generalization of the famous com-
pressed sensing problem. Informally, the goal of matrix
sensing is to reconstruct a matrix A ∈ Rn×n using a
small number of quadratic measurements (i.e., u⊤Au).
It has many real-world applications, including image
processing (Candès et al., 2011; Waters et al., 2011),
quantum computing (Aaronson, 2007; Flammia et al.,
2012; Kalev et al., 2015), systems (Liu and Vanden-
berghe, 2010) and sensor localization (Javanmard and
Montanari, 2013) problems. For this problem, there
are two important theoretical questions:

• Q1. Compression: How to design the sensing
vectors u ∈ Rn so that the matrix can be recovered
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with a small number of measurements?

• Q2. Reconstruction: How fast can we recover
the matrix given the measurements?

the study of the rank-one matrix sensing problem was
initialized by (Zhong et al., 2015) , where the ground-
truth matrix A⋆ has only rank-k, and the measurements
are of the form u⊤

i A⋆ui. They want to know the small-
est number of measurements m to recover the matrix
A⋆. In our setting, we assume m is a fixed input pa-
rameter and we’re not allowed to choose. We show
that for any m and n, how to design a faster algorithm
for solving an optimization problem which is finding
A ≈ A⋆. Thus, in some sense, previous work (Zhong
et al., 2015; Deng et al., 2023) mainly focuses on prob-
lem Q1 with a low-rank assumption on A⋆. Our work
is focusing on Q2 without the low-rank assumption.

We observe that in many applications, the ground-truth
matrix A⋆ does not need to be recovered exactly (i.e.,
∥A−A⋆∥ ≤ n−c). For example, for distance embedding,
we would like to learn an embedding matrix between
all the data points in a high-dimensional space. The
embedding matrix is then used for calculating data
points’ pairwise distances for a higher-level machine
learning algorithm, such as k-nearest neighbor cluster-
ing. As long as we can recover a good approximation
of the embedding matrix, the clustering algorithm can
deliver the desired results. As we relax the accuracy
constraints of the matrix sensing, we have the oppor-
tunity to speed up the matrix sensing time.

We formulate our problem in the following way:

Problem 1.1 (Approximate matrix sensing). Given
a ground-truth positive definite matrix A⋆ ∈ Rn×n and
m samples (ui, bi) ∈ Rn × R such that u⊤

i A⋆ui = bi.
Let R = maxi∈[m] |bi|. For any accuracy parameter
δ ∈ (0, 1), find a matrix A ∈ Rn×n such that

(u⊤
i Aui − uiA⋆ui)

2 ≤ δ, ∀i ∈ [m] (1)

or

(1− δ)A⋆ ⪯ A ⪯ (1 + δ)A⋆. (2)
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We make a few remarks about Problem 1.1. First,
our formulation doesn’t require the matrix A⋆ to be
low-rank as literature (Zhong et al., 2015; Deng et al.,
2023). Second, we need the measurement vectors ui to
be “approximately orthogonal” (i.e., |u⊤

i uj | are small),
while (Zhong et al., 2015; Deng et al., 2023) make
much stronger assumptions for exact reconstruction.
Third, the measure approximation guarantee (Eq. (1))
does not imply the spectral approximation guarantee
(Eq. (2)). We mainly focus on achieving the first guar-
antee and discuss the second one in the appendix.

This problem is interesting for two reasons. First,
speeding up matrix sensing is salient for a wide range
of applications, where exact matrix recovery is not
required. Second, we would like to understand the
fundamental tradeoff between the accuracy constraint
ϵ and the running time. This tradeoff can give us
insights into the fundamental computation complexity
for matrix sensing.

This paper makes the following contributions:

• We design a potential function to measure the
distance between the approximate solution and
the ground-truth matrix.

• Based on the potential function, we show that gra-
dient descent can efficiently find an approximate
solution to the matrix sensing problem. We also
prove the convergence rate of our algorithm.

• Furthermore, we show that cost-per-iteration can
be improved by using stochastic gradient descent
with a provable convergence guarantee, which is
proved by generalizing the potential function to a
randomized potential function.

Technically, our potential function applies a cosh func-
tion to each “training loss” (i.e., u⊤

i Aui − bi), which is
inspired by the potential function for linear program-
ming (Cohen et al., 2019). We prove that the potential
is decreasing for each iteration of gradient descent, and
a small potential implies a good approximation. In
this way, we can upper bound the number of iterations
needed for the gradient descent algorithm.

To reduce the cost-per-iteration, we follow the idea of
stochastic gradient descent and evaluate the gradient
of potential function on a subset of measurements.
However, we still need to know the full gradient’s norm
for normalization, which is a function of the training
losses. It is too slow to naively compute each training
loss. Instead, we use the idea of maintenance (Cohen
et al., 2019; Lee et al., 2019; Brand, 2020; Brand et al.,
2020; Jiang et al., 2021; Huang et al., 2022; Song et al.,
2021a,b; Hu et al., 2022; Qin et al., 2023) and show
that the training loss at the (t + 1)-th iteration (i.e.,

u⊤
i At+1ui − bi) can be very efficiently obtained from

those at the t-th iteration (i.e., u⊤
i Atui−bi). Therefore,

we first preprocess the initial full gradient’s norm, and
in the following iterations, we can update this quantity
based on the previous iteration’s result.

We state our main result as follows:

Theorem 1.2 (Informal of Theorem 6.1). Given
m measurements of matrix sensing problems, there
is an algorithm that outputs a n × n matrix A in
Õ(m3/2n2Rδ−1) time such that |u⊤

i Aui − bi| ≤ δ,
∀i ∈ [m].

2 RELATED WORK

Linear Progamming Linear programming is one
of foundations of the algorithm design and convex op-
timization. many problems can be modeled as linear
programs to take advantage of fast algorithms. There
are many works in accelerating linear programming
runtime complexity (Lee and Sidford, 2014, 2015; Co-
hen et al., 2019; Lee et al., 2019; Brand, 2020; Brand
et al., 2020; Song and Yu, 2021; Dong et al., 2021; Jiang
et al., 2021; Gu and Song, 2022).

Semi-definite Programming Semidefinite pro-
gramming optimizes a linear objective function over
the intersection of the positive semidefinite cone with
an affine space. Semidefinite programming is a funda-
mental class of optimization problems and many prob-
lems in machine learning, and theoretical computer
science can be modeled or approximated as semidefi-
nite programming problems. There are many studies
to speedup the running time of Semidefinite program-
ming (Nesterov and Nemirovskii, 1994; Helmberg et al.,
1996; Lee et al., 2015; Jiang et al., 2020b,a; Huang
et al., 2022; Gu and Song, 2022).

Matrix Sensing Matrix sensing (Lee and Bresler,
2009; Recht et al., 2010; Jain et al., 2010; Zhong et al.,
2015; Deng et al., 2023) is a generalization of the popu-
lar compressive sensing problem for the sparse vectors
and has applications in several domains such as control,
vision etc. a set of universal Pauli measurements, used
in quantum state tomography, have been shown to sat-
isfy the RIP condition (Liu, 2011). These measurement
operators are Kronecker products of 2 × 2 matrices,
thus, they have appealing computation and memory
efficiency. Rank-one measurement using nuclear norm
minimization is also used in other work (Cai and Zhang,
2015; Kueng et al., 2017). There is also previous work
working on low-rank matrix sensing to reconstruct a
matrix exactly using a small number of linear measure-
ments. ProcrustesFlow (Tu et al., 2016) designs an
algorithm to recover a low-rank matrix from linear mea-
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surements. There are other low-rank matrix recovering
algorithms based on non-convex optimizations (Wang
et al., 2017; Li et al., 2019).

3 PRELIMINARY

Notations. For a positive integer, we use [n] to de-
note set {1, 2, · · · , n}. We use cosh(x) = 1

2 (e
x + e−x)

and sinh(x) = 1
2 (e

x − e−x). For a square matrix, we
use tr[A] to denote the trace of A. An n×n symmetric
real matrix A is said to be positive-definite if x⊤Ax > 0
for all non-zero x ∈ Rn. An n× n symmetric real ma-
trix A is said to be positive-semidefinite if x⊤Ax ≥ 0
for all non-zero x ∈ Rn. For any function f , we use
Õ(f) = f · poly(log f).

3.1 Matrix Hyperbolic Functions

Definition 3.1 (Matrix function). Let f : R → R
be a real function and A ∈ Rn×n be a real symmetric
function with eigendecomposition

A = QΛQ−1

where Λ ∈ Rn×n is a diagonal matrix. Then, we have

f(A) := Qf(Λ)Q−1,

where f(Λ) ∈ Rn×n is the matrix obtained by applying
f to each diagonal entry of Λ.

We have the following lemma to bound cosh(A) and
delay the proof to Appendix A.3.

Lemma 3.2. Let A be a real symmetric matrix, then
we have

∥ cosh(A)∥ = cosh(∥A∥) ≤ tr[cosh(A)].

We also have

∥A∥ ≤ 1 + log(tr[cosh(A)]).

3.2 Properties of sinh and cosh

We have the following lemma for properties of sinh and
cosh.

Lemma 3.3 (Scalar version). Given a list of numbers
x1, · · ·xn, we have

• (
∑n

i=1 cosh
2(xi))

1/2 ≤
√
n+ (

∑n
i=1 sinh

2(xi))
1/2,

• (
∑n

i=1 sinh
2(xi))

1/2 ≥ 1√
n
(
∑n

i=1 cosh(xi)− n).

We also have a lemma for the matrix version.

Lemma 3.4 (Matrix version). For any real symmetric
matrix A, we have

• (tr[cosh2(A)])1/2 ≤
√
n+ tr[sinh2(A)]1/2,

• (tr[sinh2(A)])1/2 ≥ 1√
n
(tr[cosh(A)]− n).

We delay all the related proofs to Section A.

4 TECHNIQUE OVERVIEW

We first analyze the convergence guarantee of our ma-
trix sensing algorithm based on gradient descent and
improve its time complexity with stochastic gradient
descent under the assumption where {ui}i∈[m] are or-
thogonal vectors. We then analyze the convergence
guarantee of our matrix sensing algorithm under a more
general assumption where {ui}i∈[m] are non-orthogonal

vectors and |u⊤
i uj | ≤ ρ.

Gradient descent. We begin from the case where
{ui}i∈[m] are orthogonal vectors in Rn. Hyperbolic
functions such as cosh is very popular in the area of
optimization (Cohen et al., 2019; Lee et al., 2019; Brand,
2020; Song and Yu, 2021; Jiang et al., 2021; Dong et al.,
2021; Gu and Song, 2022; Li et al., 2023). Inspire by
that, we consider the following entry-wise potential
function:

Φλ(A) :=

m∑
i=1

cosh(λ(u⊤
i Aui − bi))

and analyze its progress during the gradient descent
according to the update formula defined in Eq. (4) for
each iteration. We split the gradient of the potential
function into diagonal and off-diagonal terms. We can
upper bound the diagonal term and prove that the
off-diagonal term is zero. Combining the two terms
together, we can upper bound the progress of update
per iteration in Lemma 5.3 by:

Φλ(At+1) ≤ (1− 0.9
λϵ√
m
) · Φλ(At) + λϵ

√
m.

By accumulating the progress of update for the entry-
wise potential function over T = Ω̃(

√
mRδ−1) itera-

tions, we have Φ(AT+1) ≤ O(m). This implies that
our Algorithm 1 can output a matrix AT ∈ Rn×n sat-
isfying guarantee in Eq. (23), and the corresponding
time complexity is O(mn2).

We then analyze the gradient descent under the assump-
tion where {ui}i∈[m] are non-orthogonal vectors in Rn,

|u⊤
i uj | ≤ ρ and ρ ≤ 1

10m . We can upper bound the
diagonal entries and off-diagonal entries respectively
and obtain the same progress of update per iteration
in Lemma D.1. Accumulating in T = Ω̃(

√
mRδ−1)

iterations, we can prove the approximation guarantee
of the output matrix of our matrix sensing algorithm.
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Stochastic gradient descent. To further improve
the time cost per iteration of our approximate matrix
sensing, by uniformly sampling a subset B ⊂ [m] of size
B, we compute the gradient of the stochastic potential
function:

∇Φλ(A,B) :=
m

|B|
∑
i∈B

uiu
⊤
i λ sinh(λ(u⊤

i Aui − bi)),

and update the potential function based on the up-
date formula defined in Eq. (8). We upper bound the
diagonal and off-diagonal terms respectively and ob-
tain the expected progress on the potential function in
Lemma 6.3.

Over T = Ω̃(m3/2B−1Rδ−1) iterations, we can upper
bound Φ(AT+1) ≤ O(m) with high probability. With
a similar argument to the gradient descent section, we
can prove that the SGD matrix sensing algorithm can
output a solution matrix satisfying the same approx-
imation guarantees with high success probability in
Lemma 6.4. The optimized time complexity is O(Bn2)
where B is the SGD batch size.

For the more general assumption where {ui}i∈[m] are

non-orthogonal vectors in Rn and |u⊤
i uj | has an upper

bound, We also provide the cost-per-iteration analysis
for stochastic gradient descent by bounding the diag-
onal entries and off-diagonal entries of the gradient
matrix respectively. Then we prove that the progress
on the expected potential satisfies the same guarantee
as the gradient descent in Lemma E.2. Therefore, our
SGD matrix sensing algorithm can output a matrix
satisfying the approximation guarantee after

T = Ω̃(m3/2B−1Rδ−1)

iterations under the general assumption.

5 GRADIENT DESCENT FOR
ENTRY-WISE POTENTIAL
FUNCTION

In this section, we show how to obtain an approximate
solution of matrix sensing via gradient descent. For
simplicity, we start from a case that {ui}i∈[m] are or-
thogonal vectors in Rn1, which already conveys the key
idea of our algorithm and analysis and we generalize the
solution to the non-orthogonal case (see Appendix D).

We show that Ω̃(
√
m/δ) iterations of gradient descent

can output a δ-approximate solution, where each itera-
tion takes O(mn2)-time. Below is the main theorem of
this section:

1We note that A′ :=
∑m

i=1 biuiu
⊤
i is a solution satisfying

u⊤
i A

′ui = bi for all i ∈ [m]. However, we pretend that we
do not know this solution in this section.

Theorem 5.1 (Gradient descent for orthogonal mea-
surements). Suppose u1, . . . , um ∈ Rn are orthogonal
unit vectors, and suppose |bi| ≤ R for all i ∈ [m].
There exists an algorithm such that for any δ ∈ (0, 1),

performs Ω̃(
√
mRδ−1) iterations of gradient descent

with O(mn2)-time per iteration and outputs a matrix
A ∈ Rn×n satisfies:

|u⊤
i Aui − bi| ≤ δ ∀i ∈ [m].

In Section 5.1, we introduce the algorithm and prove
the time complexity. In Section 5.2 - 5.4, we analyze
the convergence of our algorithm.

5.1 Algorithm

The key idea of the gradient descent matrix sensing
algorithm (Algorithm 1) is to follow the gradient of the
entry-wise potential function defined as follows:

Φλ(A) :=

m∑
i=1

cosh(λ(u⊤
i Aui − bi)). (3)

Then, we have the following solution update formula:

At+1 ← At − ϵ · ∇Φλ(At)/∥∇Φλ(At)∥F . (4)

Lemma 5.2 (Cost-per-iteration of gradient descent).
Each iteration of Algorithm 1 takes O(mn2)-time.

Proof. In each iteration, we first evaluate u⊤
i Atui for

all i ∈ [m], which takes O(mn2)-time. Then, ∇Φλ(At)
can be computed by summingm rank-1 matrices, which
takes O(mn2)-time. Finally, at Line 6, the solution
can be updated in O(n2)-time. Thus, the total running
time for each iteration is O(mn2).

Algorithm 1 Matrix Sensing by Gradient Descent.

1: procedure GradientDescent({ui, bi}i∈[m]) ▷
Theorem 5.1

2: τ ← maxi∈[m] bi
3: A1 ← τ · I
4: for t = 1→ T do
5: ∇Φλ(At) ←

∑m
i=1 uiu

⊤
i λ sinh(λ(u⊤

i Atui −
bi)) ▷ Compute the gradient

6: At+1 ← At − ϵ · ∇Φλ(At)/∥∇Φλ(At)∥F
7: end for
8: return AT+1

9: end procedure

5.2 Analysis of One Iteration

Throughout this section, we suppose A ∈ Rn×n is a
symmetric matrix.
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We can compute the gradient of Φλ(A) with respect to
A as follows:

∇Φλ(A) =

m∑
i=1

uiu
⊤
i λ sinh

(
λ(u⊤

i Aui − bi)
)
∈ Rn×n.

(5)

We can compute the Hessian of Φλ(A) with respect to
A as follows

∇2Φλ(A) =

m∑
i=1

(uiu
⊤
i )⊗ (uiu

⊤
i )λ

2 cosh(λ(u⊤
i Aui − bi)).

The Hessian ∇2Φλ(A) ∈ Rn2×n2

and ⊗ is the Kro-
necker product.

Lemma 5.3 (Progress on entry-wise potential). As-
sume that ui ⊥ uj = 0 for any i, j ∈ [m] and ∥ui∥2 = 1.
Let c ∈ (0, 1) denote a sufficiently small positive con-
stant. Then, for any ϵ, λ > 0 such that ϵλ ≤ c,

we have for any t > 0,

Φλ(At+1) ≤ (1− 0.9
λϵ√
m
) · Φλ(At) + λϵ

√
m

Proof. We defer the proof to Appendix B.1.

5.3 Technical Claims

We prove some technical claims in below.

Claim 5.4. For Q1 defined in Eq. (18), we have

Q1 ≤
(√

m+
1

λ
∥∇Φλ(At)∥F

)
· ∥∇Φλ(At)∥2F .

Proof. For simplicity, we define zt,i to be

zt,i := λ(u⊤
i Atui − bi).

Recall that

∇2Φλ(At) = λ2 ·
m∑
i=1

(uiu
⊤
i )⊗ (uiu

⊤
i ) cosh(zt,i).

For Q1, we have

Q1 = tr[∇2Φλ(At)

m∑
i=1

sinh2(zt,i)(uiu
⊤
i ⊗ uiu

⊤
i ))]

= λ2 · tr[
m∑
i=1

cosh(zt,i)(uiu
⊤
i )⊗ (uiu

⊤
i )·

m∑
i=1

sinh2(zt,i)(uiu
⊤
i )⊗ (uiu

⊤
i )]

= λ2 ·
m∑
i=1

tr[cosh(zt,i) · sinh2(zt,i)(uiu
⊤
i uiu

⊤
i )⊗

(uiu
⊤
i uiu

⊤
i )]

= λ2 ·
m∑
i=1

cosh(zt,i) sinh
2(zt,i)

≤ λ2 · (
m∑
i=1

cosh2(zt,i))
1/2 · (

m∑
i=1

sinh4(zt,i))
1/2

≤ λ2 ·B1 ·B2, (6)

where the first step comes from the definition ofQ1, the
second step comes from the definition of ∇2Φλ(At), the
third step follows from (A⊗B)·(C⊗D) = (AC)⊗(BD)
and u⊤

i uj = 0 , the fourth step comes from ∥ui∥ = 1
and tr[(uiu

⊤
i )⊗ (uiu

⊤
i )] = 1.

For the term B1, we have

B1 = (

m∑
i=1

cosh2(λ(u⊤
i Atui − bi)))

1/2

≤
√
m+

1

λ
∥∇Φλ(At)∥F ,

where the second step follows Part 1 of Lemma 3.3.

For the term B2, we have

B2 = (

m∑
i=1

sinh4(λ(u⊤
i Atui − bi)))

1/2

≤ 1

λ2
∥∇Φλ(At)∥2F ,

where the second step follows from ∥x∥24 ≤ ∥x∥22. This
implies that

Q1 ≤ λ2 ·B1 ·B2

≤ λ2 · (
√
m+

1

λ
∥∇Φλ(At)∥F ) ·

1

λ2
∥∇Φλ(At)∥2F

= (
√
m+

1

λ
∥∇Φλ(At)∥F ) · ∥∇Φλ(At)∥2F .

Claim 5.5. For Q2 defined in Eq. (19), we have Q2 =
0.

Proof. Because in Q2 we have :

m∑
ℓ=1

(uℓu
⊤
ℓ ⊗ uℓu

⊤
ℓ )

∑
i ̸=j

(uiu
⊤
i ⊗ uju

⊤
j )

=

m∑
ℓ=1

∑
i ̸=j

(uℓu
⊤
ℓ uiu

⊤
i )⊗ (uℓu

⊤
ℓ uju

⊤
j )

= 0, (7)

where the first step follows from (A⊗B) · (C ⊗D) =
(AC)⊗ (BD) , the second step follows that u⊤

i uj = 0
if i ̸= j and ℓ ̸= i or ℓ ̸= j always holds in Eq. (7).

Therefore, we get that Q2 = 0.
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5.4 Convergence For Multiple Iterations

The goal of this section is to prove the convergence of
Algorithm 1:

Lemma 5.6 (Convergence of gradient descent). Sup-
pose the measurement vectors {ui}i∈[m] are orthog-
onal unit vectors, and suppose |bi| is bounded by R
for i ∈ [m]. Then, for any δ ∈ (0, 1), if we take
λ = Ω(δ−1 logm) and ϵ = O(λ−1) in Algorithm 1, then

for T = Ω̃(
√
mRδ−1) iterations, the solution matrix

AT satisfies:

|u⊤
i ATui − bi| ≤ δ ∀i ∈ [m].

Proof. We defer the proof to Appendix B.2

Theorem 5.1 follows immediately from Lemma 5.2 and
Lemma 5.6.

6 STOCHASTIC GRADIENT
DESCENT

In this section, we show that the cost-per-iteration
of the approximate matrix sensing algorithm can be
improved by using a stochastic gradient descent (SGD).
More specifically, SGD can obtain a δ-approximate
solution with O(Bn2), where 0 < B < m is the size of
the mini batch in SGD. Below is the main theorem of
this section:

Theorem 6.1 (Stochastic gradient descent for orthog-
onal measurements). Suppose u1, . . . , um ∈ Rn are
orthogonal unit vectors, and suppose |bi| ≤ R for all
i ∈ [m]. There exists an algorithm such that for any
δ ∈ (0, 1), performs

Õ(m3/2B−1Rδ−1)

iterations of gradient descent with

O(Bn2)

-time per iteration and outputs a matrix A ∈ Rn×n

satisfies:

|u⊤
i Aui − bi| ≤ δ ∀i ∈ [m].

The algorithm and its time complexity are provided in
Section 6.1. The convergence is proved in Section 6.2
and 6.3. The SGD algorithm for the general measure-
ment without the assumption that the {ui}i∈[m] are
orthogonal vectors is deferred to Appendix E.

6.1 Algorithm

We can use the stochastic gradient descent algorithm
(Algorithm 2) for matrix sensing. More specifically,

in each iteration, we will uniformly sample a subset
B ⊂ [m] of size B, and then compute the gradient of
the stochastic potential function:

∇Φλ(A,B) := m

|B|
∑
i∈B

uiu
⊤
i λ sinh(λ(u⊤

i Aui − bi)),

(8)

which is an n-by-n matrix. Then, we do the following
gradient step:

At+1 ← At − ϵ · ∇Φλ(At,Bt)/∥∇Φλ(At)∥F . (9)

Lemma 6.2 (Running time of stochastic gradient de-
scent). Algorithm 2 takes O(mn2)-time for preprocess-
ing and each iteration takes O(Bn2)-time.

Proof. The time-consuming step is to compute
∥∇Φλ(At)∥F . Since

∇Φλ(At) =

m∑
i=1

uiu
⊤
i λ sinh

(
λ(u⊤

i Atui − bi)
)
,

and ui⊥uj for i ̸= j ∈ [m], we know that
ui is an eigenvector of ∇Φλ(A) with eigenvalue
λ sinh

(
λ(u⊤

i Atui − bi)
)
for each i ∈ [m]. Thus, we

have

∥∇Φλ(At)∥2F

=

m∑
i=1

λ2 sinh2
(
λ(u⊤

i Atui − bi)
)

=

m∑
i=1

λ2 sinh2(λzt,i),

where zt,i := u⊤
i Atui− bi for i ∈ [m]. Then, if we know

zt,ii∈[m], we can compute ∥∇Φλ(At)∥F in O(m)-time.

Consider the change zt+1,i − zt,i:

zt+1,i − zt,i

= u⊤
i (At+1 −At)ui

= − ϵ

∥∇Φλ(At)∥F
· u⊤

i ∇Φλ(At,Bt)ui

= − ϵλm

∥∇Φλ(At)∥FB
∑
j∈Bt

u⊤
i uju

⊤
j ui · sinh(λzt,j)

= − ϵλm sinh(λzt,i)

∥∇Φλ(At)∥FB
· 1i∈Bt

,

where the last step follows from ui⊥uj for i ̸= j.
Hence, if we have already computed {zt,i}i∈[m] and
∥∇Φλ(At)∥F , {zt+1,i}i∈[m] can be obtained in O(B)-
time.

Therefore, we preprocess z1,i = u⊤
i A1ui − bi for all

i ∈ [m] in O(mn2)-time. Then, in the t-th iteration
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Algorithm 2 Matrix Sensing by Stochastic Gradient
Descent.

1: procedure SGD({ui, bi}i∈[m]) ▷ Theorem 6.1
2: τ ← maxi∈[m] bi
3: A1 ← τ · I
4: zi ← u⊤

i A1ui − bi for i ∈ [m]
5: for t = 1→ T do
6: Sample Bt ⊂ [m] of size B uniformly at

random
7: ∇Φλ(At,Bt)← m

B

∑
i∈Bt

uiu
⊤
i λ sinh(λzi)

8: ∥∇Φλ(At)∥F ←
(∑m

i=1 λ
2 sinh2(λzi)

)1/2
9: At+1 ← At − ϵ · ∇Φλ(At,Bt)/∥∇Φλ(At)∥F

10: for i ∈ Bt do
11: zi ← zi−ϵλm sinh(λzi)/(∥∇Φλ(At)∥FB)
12: end for
13: end for
14: return AT+1

15: end procedure

(t > 0), we first compute

∇Φλ(At,Bt) =
m

B

∑
i∈Bt

uiu
⊤
i λ sinh(λzt,i)

in O(Bn2)-time. Next, we compute ∥∇Φλ(At)∥F using
zt,i in O(m)-time. At+1 can be obtained in O(n2)-time.
Finally, we use O(B)-time to update {zt+1,i}i∈[m].

Hence, the total running time per iteration is

O(Bn2 +m+ n2 +B) = O(Bn2).

6.2 Analysis of One Iteration

Suppose A ∈ Rn×n. Let Bt be a uniformly random
B-subset of [m] at the t-th iteration, where B is a
parameter.

We can compute the gradient of Φλ(A,B) with respect
to A as follows:

∇Φλ(A,B) =
m

|B|
∑
i∈B

uiu
⊤
i λ sinh(λ(u⊤

i Aui − bi)),

where ∇Φλ(A,B) ∈ Rn×n.

We can also compute the Hessian of Φλ(A,B) with
respect to A as follows:

∇2Φλ(A,B) =
m

|B|
∑
i∈B

(uiu
⊤
i )⊗ (uiu

⊤
i )λ

2·

cosh(λ(u⊤
i Aui − bi))

where ∇2Φλ(A,B) ∈ Rn2×n2

and ⊗ is the Kronecker
product.

It is easy to see the expectations of the gradient and
Hessian of Φλ(A,B) over a random set B:

E
B∼[m]

[∇Φλ(A,B)] = ∇Φλ(A),

E
B∼[m]

[∇2Φλ(A,B)] = ∇2Φλ(A)

Lemma 6.3 (Expected progress on potential). Given
m vectors u1, u2, · · · , um ∈ Rn. Assume ⟨ui, uj⟩ = 0
for any i ̸= j ∈ [m] and ∥ui∥2 = 1, for all i ∈ [m]. Let

ϵλ ≤ 0.01 |Bt|
m , for all t > 0.

Then, we have

E[Φλ(At+1)] ≤ (1− 0.9
λϵ√
m
) · Φλ(At) + λϵ

√
m.

Proof. We first express the expectation as follows:

E
At+1

[Φλ(At+1)]− Φλ(At)

≤ E
At+1

[⟨∇Φλ(At), (At+1 −At)⟩] +O(1)·

E
At+1

[⟨∇2Φλ(At), (At+1 −At)⊗ (At+1 −At)⟩],

(10)

which follows from Corollary A.2.

We choose

At+1 = At − ϵ · ∇Φλ(At,Bt)/∥∇Φλ(At)∥F .

Then, we can bound

E
At+1

[− tr[∇Φλ(At) · (At+1 −At)]]

= E
Bt

[
tr
[
∇Φλ(At) ·

ϵ∇Φλ(At,Bt)
∥∇Φλ(At)∥F

]]
= ϵ · ∥∇Φλ(At)∥F (11)

We define for t > 0 and i ∈ [m],

zt,i := u⊤
i Atui − bi.

We need to compute this ∆2. For simplificity, we
consider ∆2 · ∥∇Φλ(At)∥2F ,

= tr[∇2Φλ(At) · (At+1 −At)⊗ (At+1 −At)]·
∥∇Φλ(At)∥2F

= (λϵ)2 · ( m

|Bt|
)2 · tr

[
∇2Φλ(At) · (

∑
i∈Bt

uiu
⊤
i sinh(zt,i)⊗

(
∑
i∈Bt

uiu
⊤
i sinh(zt,i)

]
. (12)

Ignoring the scalar factor in the above equation, we
have

= tr
[
∇2Φλ(At) · (

∑
i,j∈Bt

sinh(zt,i) sinh(zt,i)·
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(uiu
⊤
i ⊗ uju

⊤
j ))

]
= tr

[
∇2Φλ(At) · (

∑
i∈Bt

sinh2(zt,i)(uiu
⊤
i ⊗ uiu

⊤
i ))

]
+tr

[
∇2Φλ(At) · (

∑
i̸=j∈Bt

sinh(zt,i) sinh(zt,i)·

(uiu
⊤
i ⊗ uju

⊤
j ))

]
=: Q̃1 + Q̃2, (13)

where the first step follows that we extract the scalar
values from Kronecker product, the second step comes
from splitting into two partitions based on whether
i = j, the third step comes from the definition of Q̃1

and Q̃2 where Q̃1 denotes the diagonal term, and Q̃2

denotes the off-diagonal term. Taking expectation, we
have

E[∆2 · ∥∇Φλ(At)∥2F ]

= (λϵ)2 · ( m

|Bt|
)2 E[Q̃1]

= (λϵ)2 · ( m

|Bt|
)2 · |Bt|

m
·Q1

≤ (λϵ)2 · m

|Bt|
· (
√
m+

1

λ
∥∇Φλ(At)∥F )·

∥∇Φλ(At)∥2F (14)

where the first step comes from extracting the constant
terms from the expectation and Claim 5.5, the second

step follows that E[Q̃1] =
|Bt|
m ·Q1, and the third step

comes from the Claim 5.4. Therefore, we have:

E[Φλ(At+1)]− Φλ(At)

≤− E[∆1] +O(1) · E[∆2]

≤− ϵ(1−O(ϵλ) · m

|Bt|
)∥∇Φλ(At)∥F +O(ϵλ)2

√
m

≤− 0.9ϵ∥∇Φλ(At)∥F +O(ϵλ)2
√
m

≤− 0.9ϵλ
1√
m
(Φλ(At)−m) +O(ϵλ)2

√
m

≤− 0.9ϵλ
1√
m
Φλ(At) + ϵλ

√
m,

where the first step comes from Eq. (10), the second
step comes from Eq. (11) and Eq. (14), the third step

follows from ϵ ≤ 0.01 |Bt|
λm , the forth step follows from

Eq. (21), and the last step follows from ϵλ ∈ (0, 0.01).

6.3 Convergence For Multiple Iterations

The goal of this section is to prove the convergence of
Algorithm 2.

Lemma 6.4 (Convergence of stochastic gradient de-
scent). Suppose the measurement vectors {ui}i∈[m] are

orthogonal unit vectors, and suppose |bi| is bounded
by R for i ∈ [m]. Then, for any δ ∈ (0, 1), if we
take λ = Ω(δ−1 logm) and ϵ = O(λ−1m−1B) in Algo-
rithm 2, then for

T = Ω̃(m3/2B−1Rδ−1)

iterations, with high probability, the solution matrix AT

satisfies:

|u⊤
i AT+1ui − bi| ≤ δ ∀i ∈ [m].

Proof. Similar to the proof of Lemma 5.6, we can bound
the initial potential by:

Φ(A1) ≤ 2O(λR).

In the following iterations, by Lemma 6.3, we have

E[Φλ(At+1)] ≤ (1− 0.9
λϵ√
m
) · Φλ(At) + λϵ

√
m,

as long as ϵ ≤ 0.01 |Bt|
λm , where Bt is a uniformly random

subset of [m] of size B.

It suffices to take ϵ = O(λ−1m−1B).

Now, we can apply Lemma 6.3 for T times and get that

E[Φ(AT+1)] ≤ 2−Ω(Tϵλ/
√
m)+O(λR) + 2m.

By taking

T = Ω̃(m3/2B−1Rδ−1),

we have

Φ(AT+1) ≤ O(m)

holds with high probability. By the same argument as
in the proof of Lemma 5.6, we have

|u⊤
i AT+1ui − bi| ≤ δ ∀i ∈ [m].

The lemma is thus proved.

7 CONCLUSION

In this paper, we study the problem of matrix sensing
which has a wide variety of practical applications in
real-world science and engineering problems like image
processing, quantum computing, and sensor localiza-
tion. In many application domains of matrix sensing, it
is appealing to tradeoff accuracy for fast running time,
e.g., in fast and approximated k-nearest neighbors and
k-means. We design an efficient algorithm with prov-
able convergence guarantees using stochastic gradient
descent to approximate matrix sensing. Based on our
understanding, our work does not result in any negative
societal impact since this is a theoretical paper.
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Appendix

Roadmap. We first provide the proofs for matrix hyperbolic functions and properties of sinh and cosh in
Appendix A. Then we provide the proofs for the gradient descent and stochastic gradient descent convergence
analysis in Appendix B. We consider the spectral potential function with ground-truth oracle scenario in
Appendix C. We analyze the gradient descent with non-orthogonal measurements in Appendix D. We provide the
cost-per-iteration analysis for stochastic gradient descent under non-orthogonal measurements in Appendix E.

A Proofs of Preliminary Lemmas

In Section A.1 we present several calculus tools. In Section A.2 we present a fact for Kronecker product. In
Section A.3, we present the proof for cosh(A) upper bound. In Section A.4, we present several equalities lemmas
between sinh and cosh. In Section A.5, we present several inequalities lemmas between sinh and cosh.

A.1 Calculus tools

We state a useful calculus tool from prior work,

Lemma A.1 (Proposition 3.1 in (Juditsky and Nemirovski, 2008)). Let ∆ be an open interval on the axis, and f
be C2 function on ∆ such that for certain θ±, µ± ∈ R one has

∀(a < b, a, b ∈ ∆) :

θ− ·
f ′′(a) + f ′′(b)

2
+ µ− ≤

f ′(b)− f ′(a)

b− a
f ′(b)− f ′(a)

b− a
≤ θ+ ·

f ′′(a) + f ′′(b)

2
+ µ+,

where f ′ and f ′′ means the first- and second-order derivatives of f , respectively.

Let, further, Xn(∆) be the set of all n× n symmetric matrices with eigenvalues belonging to ∆. Then Xn(∆) is
an open convex set in the space Sn of n× n symmetric matrices, the function

F (X) = tr[f(X)] : Xn(∆)→ R

is C2, and for every X ∈ Xn(∆) and every H ∈ Sn one has

θ− · tr[Hf ′′(X)H] + µ− · tr[H2] ≤ D2F (X)[H,H]

D2F (X)[H,H] ≤ θ+ · tr[Hf ′′(X)H] + µ+ · tr[H2],

where D means directional derivative.

We will use below corollary to compute the trace with a map f : R→ R.
Corollary A.2. Let f : R→ R be a C2 function. Let A and B be two symmetric matrices. We have

tr[f(A)] ≤ tr[f(B)] + tr[f ′(B)(A−B)]

+O(1) · tr[f ′′(B)(A−B)2].

A.2 Kronecker product

Suppose we have two matrice A ∈ Rm×n and B ∈ Rp×q, we use A⊗B denote the Kronecker product:

A⊗B =

 A1,1B · · · A1,nB
...

. . .
...

Am,1B · · · Am,nB

 .

We state a fact and delay the proof into Section A.
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Fact A.3. Suppose we have two matrices A ∈ Rm×n and B ∈ Rn×k, we have

(A⊗B) · (C ⊗D) = (AC)⊗ (BD).

Proof. From the definition of Kronecker product we have:

(A⊗B) · (C ⊗D)

=

 A1,1B . . . A1,nB
...

. . .
...

Am,1B . . . Am,nB


 C1,1D . . . C1,kD

...
. . .

...
Cn,1D . . . Cn,kD


=

 (
∑n

i=1 A1,iCi,1)BD · · · (
∑n

i=1 A1,iCi,k)BD
...

. . .
...

(
∑n

i=1 Am,iCi,1)BD · · · (
∑n

i=1 Am,iCi,k)BD


=

 (AC)1,1BD · · · (AC)1,kBD
...

. . .
...

(AC)m,1BD · · · (AC)m,kBD


= (AC)⊗ (BD)

Thus we complete the proof.

A.3 Proof of cosh(A) upper bound

Lemma A.4 (Restatement of Lemma 3.2). Let A be a real symmetric matrix, then we have

∥ cosh(A)∥ = cosh(∥A∥) ≤ tr[cosh(A)].

We also have ∥A∥ ≤ 1 + log(tr[cosh(A)]).

Proof. Note that for each eigenvalue λ of A, we know that it corresponds to cosh(λ) for cosh(A). The second
inequality follows from the fact that cosh(A) is psd.

For the second part, we know that exp(x)/2 ≤ cosh(x), hence, exp(∥A∥)/2 ≤ cosh(∥A∥), and

∥A∥ = log(exp(∥A∥))
≤ log(2 cosh(∥A∥))
≤ 1 + log(tr[cosh(A)]),

where the second step is by the monotonicity of log(·) and exp(∥A∥) ≤ 2 cosh(∥A∥), the last step is by cosh(∥A∥) ≤
tr[cosh(A)].

A.4 Relations Between cosh and sinh: Equalities

We state a fact as follows:

Fact A.5. For any real number x, cosh2(x)− sinh2(x) = 1

From the definition of cosh(x) and sinh(x) we have:

cosh2(x)− sinh2(x)

=
1

4
(e2x + 2 + e−2x)− 1

4
(e2x − 2 + e−2x)

= 1

We also have the following lemma for matrix.
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Lemma A.6. Let A be a real symmetric matrix, then we have

cosh2(A)− sinh2(A) = I.

Proof. Since A is real symmetric, we write it in the eigendecomposition form: A = UΛU⊤, then

cosh2(A)− sinh2(A)

= U cosh2(Λ)U⊤ − U sinh2(Λ)U⊤

= U(cosh2(Λ)− sinh2(Λ))U⊤

= UU⊤

= I,

where the first step follows from cosh and sinh can be expressed as exp, the third step is by applying entrywise
the identity cosh2(x)− sinh2(x) = 1.

A.5 Relations Between cosh and sinh: Inequalities

Lemma A.7 (Scalar version, Restatement of Lemma 3.3). Given a list of numbers x1, · · ·xn, we have

• (
∑n

i=1 cosh
2(xi))

1/2 ≤
√
n+ (

∑n
i=1 sinh

2(xi))
1/2,

• (
∑n

i=1 sinh
2(xi))

1/2 ≥ 1√
n
(
∑n

i=1 cosh(xi)− n).

Proof. For the first equation, we can bound (
∑n

i=1 cosh
2(xi))

1/2 by:

(

n∑
i=1

cosh2(xi))
1/2 = (n+

n∑
i=1

sinh2(xi))
1/2

≤
√
n+ (

n∑
i=1

sinh2(xi))
1/2

where the first step comes from fact A.5, and the second step follows from
√
a+ b ≤

√
a+
√
b.

For the second equation, we can bound (
∑n

i=1 sinh
2(xi))

1/2 by:

(

n∑
i=1

sinh2(xi))
1/2 ≥ 1√

n
(

n∑
i=1

sinh(xi))

≥ 1√
n
(

n∑
i=1

cosh(xi)− n)

where the first step follows that

√∑n
i=1 x2

i

n ≥
∑n

i=1 xi

n , and the second step follows from fact A.5 and
√
x2 − 1 ≥√

x− 1.

We also have a lemma for the matrix version.

Lemma A.8 (Matrix version, Restatement of Lemma 3.4). For any real symmetric matrix A, we have

• (tr[cosh2(A)])1/2 ≤
√
n+ tr[sinh2(A)]1/2,

• (tr[sinh2(A)])1/2 ≥ 1√
n
(tr[cosh(A)]− n).

Proof. Part 1. We have

(tr[cosh2(A)])1/2 = (n+ tr[sinh2(A)])1/2
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≤
√
n+ tr[sinh2(A)]1/2.

where the first step follows from cosh2(A)− sinh2(A) = I.

Part 2. Let σi denote the singular value of cosh(A)

(tr[sinh2(A)])1/2 = (tr[cosh2(A)]− n)1/2

= (

n∑
i=1

σ2
i − 1)1/2

≥ 1√
n

n∑
i=1

√
σ2
i − 1

≥ 1√
n
(

n∑
i=1

σi − 1)

=
1√
n
(tr[cosh(A)]− n)

where the second step follows from ∥ · ∥2 ≥ 1√
n
∥ · ∥1, the third step follows from σi ≥ 1.

B Proofs of GD and SGD convergence

In this section, we provide proofs of convergence analysis the gradient descent and stochastic gradient descent
matrix sensing algorithms. In Section B.1, we provide proof for estimating the progress of gradient descent on
potential function. In Section B.2, we prove the convergence result for gradient descent.

B.1 Proof of GD Progress on Potential Function

We start with the progress of the gradient on the potential function in below lemma.

Lemma B.1 (Restatement of Lemma 5.3). Assume that ui ⊥ uj = 0 for any i, j ∈ [m] and ∥ui∥2 = 1. Let
c ∈ (0, 1) denote a sufficiently small positive constant. Then, for any ϵ, λ > 0 such that ϵλ ≤ c,

we have for any t > 0,

Φλ(At+1) ≤ (1− 0.9
λϵ√
m
) · Φλ(At) + λϵ

√
m

Proof. We first Taylor expand Φλ(At+1) as follows:

Φλ(At+1)− Φλ(At)

≤ ⟨∇Φλ(At), (At+1 −At)⟩+O(1)⟨∇2Φλ(At), (At+1 −At)⊗ (At+1 −At)⟩
:= ∆1 +O(1) ·∆2, (15)

which follows from Lemma A.1.

We choose

At+1 = At − ϵ · ∇Φλ(At)/∥∇Φλ(At)∥F .

We can bound

∆1 = tr[∇Φλ(At)(At+1 −At)]

= − ϵ · ∥∇Φλ(At)∥F . (16)
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Next, we upper-bound ∆2. Define

zt,i := λ(u⊤
i Atui − bi).

and consider ∆2 · (λϵ)−2 · ∥∇Φλ(At)∥2F , which can be expressed as:

∆2 · (λϵ)−2 · ∥∇Φλ(At)∥2F
= (λϵ)−2 tr[∇2Φλ(At) · (At+1 −At)⊗ (At+1 −At)] · ∥∇Φλ(At)∥2F

= tr
[
∇2Φλ(At) · (

m∑
i=1

uiu
⊤
i sinh(zt,i))⊗ (

m∑
i=1

uiu
⊤
i sinh(zt,i))

]
= tr

[
∇2Φλ(At) · (

∑
i,j

sinh(zt,i) sinh(zt,i)(uiu
⊤
i ⊗ uju

⊤
j ))

]
= tr

[
∇2Φλ(At) · (

m∑
i=1

sinh2(zt,i))(uiu
⊤
i ⊗ uiu

⊤
i ))

]
+ tr

[
∇2Φλ(At) · (

∑
i̸=j

sinh(zt,i) sinh(zt,j)(uiu
⊤
i ⊗ uju

⊤
j ))

]
=: Q1 +Q2, (17)

where

Q1 := tr
[
∇2Φλ(At) · (

m∑
i=1

sinh2(zt,i))(uiu
⊤
i ⊗ uiu

⊤
i ))

]
(18)

denotes the diagonal term, and

Q2 := tr
[
∇2Φλ(At) · (

∑
i ̸=j

sinh(zt,i) sinh(zt,j)(uiu
⊤
i ⊗ uju

⊤
j ))

]
(19)

denotes the off-diagonal term. The first step comes from the definition of ∆2, the second step follows fromr
eplacing At+1 −At using Eq (4), the third step follows that we extract the scalar values from Kronecker product,
the fourth step comes from splitting into two partitions based on whether i = j, the fifth step comes from the
definition of Q1 and Q2.

Thus,

∆2 = (ϵλ)2(Q1 +Q2)/∥∇Φλ(At)∥2F
= (ϵλ)2(Q1 + 0)/∥∇Φλ(At)∥2F

= (ϵλ)2 · (
√
m+

1

λ
∥∇Φλ(At)∥F ). (20)

where the second step follows from Claim 5.5, and the third step follows from Claim 5.4.

Hence, we have

Φλ(At+1)− Φλ(At)

≤ ∆1 +O(1) ·∆2

≤ − ϵ∥∇Φλ(At)∥F +O(1)(ϵλ)2(
√
m+

1

λ
∥∇Φλ(At)∥F )

≤ − 0.9ϵ∥Φλ(At)∥F +O(ϵλ)2
√
m

where the first step follows from Eq. (15), the second step follows from Eq. (22) and Eq. (20), the third step
follows from ϵλ ∈ (0, 0.01).

For ∥Φλ(At)∥F , we have

1

λ2
∥∇Φλ(At)∥2F
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= tr[(

m∑
i=1

uiu
⊤
i sinh(λ(u⊤

i Atui − bi)))
2]

= tr[

m∑
i=1

(uiu
⊤
i )

2 sinh2(λ(u⊤
i Atui − bi))]

=

m∑
i=1

sinh2(λ(u⊤
i Atui − bi))

≥ 1

m
(

m∑
i=1

cosh(λ(u⊤
i Atui − bi))−m)2

=
1

m
(Φλ(At)−m)2, (21)

where the first step comes from Eq. (5), the second steps follow from u⊤
i uj = 0, the third step follows from

∥ui∥2 = 1, the forth step follows from Part 2 in Lemma 3.3, the fifth step follows from the definition of Φλ(A).

Thus, we get that

∥Φλ(At)∥F ≥ λ · 1√
m
|Φλ(At)−m|, (22)

It implies that

Φλ(At+1)− Φλ(At)

≤ − 0.9ϵλ
1√
m
|Φλ(At)−m|+O(ϵλ)2

√
m

≤ − 0.9ϵλ
1√
m
|Φλ(At)−m|+ 0.1ϵλ

√
m,

where the second step follows from extracting the constant term from the summation.

Then, when Φ(At) > m, we have

Φλ(At+1) ≤ (1− 0.9
λϵ√
m
) · Φλ(At) + λϵ

√
m.

When Φ(At) ≤ m, we have

Φλ(At+1) ≤ (1 + 0.9
λϵ√
m
) · Φλ(At)− 0.8λϵ

√
m.

The lemma is then proved.

B.2 Proof of GD Convergence

In this section, we provide proofs of convergence analysis of gradient descent matrix sensing algorithm.

Lemma B.2 (Restatement of Lemma 5.6). Suppose the measurement vectors {ui}i∈[m] are orthogonal unit
vectors, and suppose |bi| is bounded by R for i ∈ [m]. Then, for any δ ∈ (0, 1), if we take λ = Ω(δ−1 logm) and

ϵ = O(λ−1) in Algorithm 1, then for T = Ω̃(
√
mRδ−1) iterations, the solution matrix AT satisfies:

|u⊤
i ATui − bi| ≤ δ ∀i ∈ [m].

Proof. Let τ = maxi∈[m] bi. At the beginning, we choose the initial solution A1 := τIn where In ∈ Rn×n is the
identity matrix, and we have

Φ(A1) =

m∑
i=1

cosh(λ · (τ − bi))
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≤ eλτ
m∑
i=1

e−λbi ≤ 2O(λR),

where the last step follows from |bi| ≤ R for all i ∈ [m].

After T iterations, we have

Φ(AT+1) ≤ (1− ϵλ√
m
)TΦ(A1) + 2m

≤ (1− ϵλ√
m
)T · 2O(λR) + 2m

≤ 2−Ω(Tϵλ/
√
m)+O(λR) + 2m

where the first step follows from applying Lemma 5.3 for T times, and
∑T

i=1(1− ϵλ/
√
m)i−1ϵλ

√
m ≤ 2m.

As long as T = Ω(R
√
m/ϵ) = Ω(R

√
mλ), then we have

Φ(AT+1) ≤ O(m).

This implies that for any i ∈ [m],

|u⊤
i AT+1ui − bi| ≤ λ−1 · cosh−1(O(m))

= λ−1 ·O(logm)

= δ,

where we take R = Ω(δ−1 logm).

Therefore, with T = Ω̃(
√
mRδ−1) iterations, Algorithm 1 can achieve that

|u⊤
i AT+1ui − bi| ≤ δ ∀i ∈ [m]. (23)

The theorem is then proved.

C Spectral Potential function with ground-truth oracle

In this section, we consider the matrix sensing with spectral approximation; that is, we want to obtain a matrix
A that is a δ-spectral approximation of the ground-truth matrix A⋆, i.e.,

(1− δ)A⋆ ⪯ A ⪯ (1 + δ)A⋆.

To do this, instead of performing a series of quadratic measurements, we assume that we have access to an oracle

OA⋆ such that for any matrix A ∈ Rn×n, the oracle will output a matrix A
−1/2
⋆ AA

−1/2
⋆ . Algorithm 3 implements

a matrix sensing algorithm with spectral approximation guarantee with the assumption of oracle OA⋆
.

We define the spectral loss function as follows:

Ψλ(A) := tr[cosh(λ(I − (A⋆)
−1/2A(A⋆)

−1/2))].

We will show that Ψλ(A) can characterize the spectral approximation of A with respect to A⋆.

It is easy to see that if we can query an arbitrary A to the ground-truth oracle OA⋆ , then we can definitely recover
A⋆ exactly by querying OA⋆

(I). Instead, in Algorithm 3, we focus on the following process: the initial matrix A1

is given, and in the t-th iteration, we first compute

Xt = λ(I −A
−1/2
⋆ AtA

−1/2
⋆ )

and do eigendecompsotion of Xt to obtain Λt such that Xt = QtΛtQ
⊤
t . Then we update the matrix At+1 by:

At+1 = At + ϵ ·A1/2
⋆ sinh(Xt)A

1/2
⋆ /∥ sinh(Xt)∥F .

We are interested in the number of iterations needed to make At be a δ-spectral approximation. We believe this
example will provide some insight into this problem, and we leave the question of spectral-approximated matrix
sensing without the ground-truth oracle to future work.
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Algorithm 3 Matrix Sensing with Spectral Approximation.

1: procedure GradientDescent(OA⋆
, A1)

2: for t = 1→ T do
3: Xt ← λ · (In −OA⋆(At))
4: QtΛtQ

⊤
t ← Eigendecomposition of Xt ▷ It takes O(nω)-time

5: Yt ← Qt · sinh(Λt) ·Q⊤
t ▷ Yt = sinh(Xt). It takes O(n2)-time

6: At+1 ← At + ϵ · OA⋆
(Yt)/∥Yt∥F ▷ It takes O(n2)-time

7: end for
8: return AT+1

9: end procedure

Lemma C.1 (Progress on the spectral potential function). Let c ∈ (0, 1) denote a sufficiently small positive
constant. We define Xt as follows:

Xt := λ(I − (A⋆)
−1/2At(A⋆)

−1/2)

Let

At+1 = At + ϵ · λ(A⋆)
1/2 sinh(Xt)(A⋆)

1/2/∥λ · sinh(Xt)∥F .

For any ϵ ∈ (0, 1) and λ ≥ 1 such λϵ ≤ c, we have for any t > 0,

Ψλ(At+1) ≤ (1− 0.9ϵλ/
√
n)Ψλ(At) + ϵλ

√
n.

Proof. We can compute

Ψλ(At+1)−Ψλ(At)

= tr[cosh(Xt+1)]− tr[cosh(Xt)]

≤ − λ · tr[sinh(Xt) · ((A⋆)
−1/2(At+1 −At)(A⋆)

−1/2)]

+ O(1) · λ2 · tr[cosh(Xt) · ((A⋆)
−1/2(At −At+1)(A⋆)

−1/2)2]

= −∆1 +O(1) ·∆2, (24)

the first step is by expanding by definition, the second step is by Taylor expanding the first term at the point
I − (A⋆)

−1/2At(A⋆)
−1/2 (via Lemma A.1), and the last step is by definition of ∆1 and ∆2.

To further simplify proofs, we define

∇Ψλ(At) := λ · (A⋆)
1/2 sinh(Xt)(A⋆)

1/2

∇̃Ψλ(At) := λ · sinh(Xt)

∆̃Ψλ(At) := λ · cosh(Xt)

To maximize the gradient progress, we should choose

At+1 = At + ϵ · ∇Ψλ(At)/∥∇̃Ψλ(At)∥F

Then

∆1 = (ϵλ2) · tr[sinh2(Xt)]/∥∇̃Ψλ(At)∥F
= ϵ · ∥∇̃Ψλ(At)∥2F /∥∇̃Ψλ(At)∥F
= ϵ · ∥∇̃Ψλ(At)∥F (25)
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and

∆2 = ϵ2λ4 · tr[cosh(Xt) · sinh2(λ(Xt)]/∥∇̃Ψλ(At)∥2F
= ϵ2λ · tr[∆̃Ψλ(At) · ∇̃Ψλ(At)

2]/∥∇̃Ψλ(At)∥2F
≤ ϵ2λ · ∥∆̃Ψλ(At)∥F · ∥∇̃Ψλ(At)

2∥F /∥∇̃Ψλ(At)∥2F
≤ ϵ2λ · ∥∆̃Ψλ(At)∥F
≤ ϵ2λ · (λ

√
n+ ∥∇̃Ψλ(At)∥F ) (26)

where the first step follows from the definition of ∆2, the second step comes from the definition of ∆̃Ψλ(At) and

∇̃Ψλ(At), the third step follows that ∥AB∥F ≤ ∥A∥F ∥B∥F , the forth step follows from ∥x∥24 ≤ ∥x∥22, and the
fifth step follows from Part 1 of Lemma 3.4.

Now, we need to lower bound ∥∇̃Ψλ(At)∥F , we have

∥∇̃Ψλ(At)∥F = (tr[λ2 sinh2(Xt)])
1/2

≥ λ√
n
(tr[cosh(Xt)]− n)

=
λ√
n
(Ψλ(At)− n) (27)

where the second step follows from Part 2 in Lemma 3.4.

We know that

Then, we have

Ψλ(At+1)−Ψλ(At)

≤ − ϵ∥∇̃Ψλ(At)∥F + ϵ2λ(
√
n+ ∥∇̃Ψλ(At)∥F )

≤ − 0.9ϵ∥∇̃Ψλ(At)∥F + ϵ2λ2
√
n

≤ − 0.9ϵλ
1√
n
Ψλ(At) + ϵλ

√
n

where the first step follows from Eq. (25) and Eq. (26) , the second steps comes from ϵ ∈ (0, 0.01), the third step
comes from Eq. (27) and ϵλ ≤ 1.

Finally, we complete the proof.

Lemma C.2 (Small spectral potential implies good spectral approximation). Let A ∈ Rn×n be symmetric, and
λ > 0. Suppose Ψλ(A) ≤ p for some p > 1. Then, we have

(1− δ)A⋆ ⪯ A ⪯ (1 + δ)A⋆

for δ = O(λ−1 log p).

Proof. By the definition of Ψλ(A), Ψλ(A) ≤ p implies that for any i ∈ [n],

cosh(λ(1− λi(A
−1/2
⋆ AA

−1/2
⋆ ))) ≤ p,

or equivalently, ∣∣∣(1− λi(A
−1/2
⋆ AA

−1/2
⋆ ))

∣∣∣ ≤ O(λ−1 log p).

Hence, we have

(1− δ)In ⪯ A
−1/2
⋆ AA

−1/2
⋆ ⪯ (1 + δ)In,

where δ := O(λ−1 log p). Therefore, by multiplying A
−1/2
⋆ on both sides, we get that

(1− δ)A⋆ ⪯ A ⪯ (1 + δ)A⋆,

which completes the proof of the lemma.
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D Gradient descent with General Measurements

In this section, we first analyze the potential decay by gradient descent with non-orthogonal measurements in
Section D.1, where we split it into two terms: Q1 and Q2. We then present how to bound the off-diagonal terms
of the norm of gradient in Section D.2. We present how to bound the term Q1 in Section D.3, which relies on an
upper bound for its off-diagonal terms in Section D.4. We present how to bound the term Q2 in Section D.5.

D.1 Progress Measurements

We first recall the definition of the potential function Φλ(A):

Φλ(A) :=

m∑
i=1

cosh(λ(u⊤
i Aui − bi)),

its gradient ∇Φλ(A) ∈ Rn×n:

∇Φλ(A) =

m∑
i=1

uiu
⊤
i λ sinh

(
λ(u⊤

i Aui − bi)
)
, (28)

and its Hessian ∇2Φλ(A) ∈ Rn2×n2

:

∇2Φλ(A) =

m∑
i=1

(uiu
⊤
i )⊗ (uiu

⊤
i )λ

2 cosh(λ(u⊤
i Aui − bi)).

Lemma D.1 (Progress on entry-wise potential with general measurements). Assume that |u⊤
i uj | ≤ ρ and

ρ ≤ 1
10m , for any i, j ∈ [m] and ∥ui∥2 = 1. Let c ∈ (0, 1) denote a sufficiently small positive constant. Then, for

any ϵ, λ > 0 such that ϵλ ≤ c, we have for any t > 0,

Φλ(At+1) ≤ (1− 0.9
λϵ√
m
) · Φλ(At) + λϵ

√
m

Proof. We first have

Φλ(At+1)− Φλ(At)

≤ ⟨∇Φλ(At), (At+1 −At)⟩+O(1)⟨∇2Φλ(At), (At+1 −At)⊗ (At+1 −At)⟩
:= −∆1 +O(1) ·∆2, (29)

which follows from Corollary A.2.

We choose

At+1 = At − ϵ · ∇Φλ(At)/∥∇Φλ(At)∥F . (30)

We can bound

∆1 = − tr[∇Φλ(At)(At+1 −At)]

= ϵ · ∥∇Φλ(At)∥F . (31)

For ∥Φλ(At)∥2F ,

1

λ2
∥∇Φλ(At)∥2F

= tr[(

m∑
i=1

uiu
⊤
i sinh(λ(u⊤

i Atui − bi)))
2]

= tr[

m∑
i=1

sinh2(λ(u⊤
i Atui − bi))]
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+ tr[

m∑
i=1

m∑
j ̸=i

(uiu
⊤
i )(uju

⊤
j ) sinh(λ(u

⊤
i Atui − bi)) · sinh(λ(u⊤

j Atuj − bj))]

≥ 0.9 tr[

m∑
i=1

sinh2(λ(u⊤
i Atui − bi))]

≥ 0.9
1

m
(

m∑
i=1

cosh(λ(u⊤
i Atui − bi))−m)2

= 0.9
1

m
(Φλ(At)−m)2, (32)

where the first step follows from Eq. (28), the second steps follow from partitioning based on whether i = j and
∥ui∥2 = 1, the third step comes from Claim D.2, the fourth step in Eq. (32) follows from Part 2 in Lemma 3.3,
the fifth step follows from the definition of Φλ(A).

Thus,

∆1 = − tr[∇Φλ(At)(At+1 −At)]

≥ λϵ · 1√
m
(Φλ(At)−m). (33)

For simplicity, we define

zt,i := λ(u⊤
i Atui − bi).

We need to compute this ∆2. For simplificity, we consider ∆2 · ( 1
ϵλ )

2 · ∥∇Φλ(At)∥2F , which can be expressed as:

∆2 · (
1

ϵλ
)2 · ∥∇Φλ(At)∥2F

=
1

(λϵ)2
tr[∇2Φλ(At) · (At+1 −At)⊗ (At+1 −At)] · ∥∇Φλ(At)∥2F

= tr
[
∇2Φλ(At) · (

m∑
i=1

uiu
⊤
i sinh(zt,i))⊗ (

m∑
i=1

uiu
⊤
i sinh(zt,i))

]
= tr[∇2Φλ(At)(

∑
i,j

sinh(zt,i) sinh(zt,i)(uiu
⊤
i ⊗ uju

⊤
j ))]

= tr[∇2Φλ(At)(
m∑
i=1

sinh2(zt,i))(uiu
⊤
i ⊗ uiu

⊤
i ))]

+ tr[∇2Φλ(At)(
∑
i ̸=j

sinh(zt,i) sinh(zt,j)(uiu
⊤
i ⊗ uju

⊤
j ))]

= Q1 +Q2, (34)

where

Q1 := tr
[
∇2Φλ(At) · (

m∑
i=1

sinh2(zt,i))(uiu
⊤
i ⊗ uiu

⊤
i ))

]
(35)

denotes the diagonal term, and

Q2 := tr
[
∇2Φλ(At) · (

∑
i ̸=j

sinh(zt,i) sinh(zt,j)(uiu
⊤
i ⊗ uju

⊤
j ))

]
(36)

denotes the off-diagonal term. The first step comes from the definition of ∆2, the second step follows from
replacing At+1 − At using Eq. (30), the third step follows that we extract the scalar values from Kronecker
product, the fourth step comes from splitting into two partitions based on whether i = j, the fifth step comes
from the definition of Q1 and Q2.
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Thus,

∆2 ≤ (ϵλ)2(Q1 +Q2)/∥∇Φλ(At)∥2F

= 1.3(ϵλ)2 · (
√
m+

1

λ
∥∇Φλ(At)∥F ). (37)

where the second step follows from Claim D.3 and Claim D.5.

Hence, we have

Φλ(At+1)− Φλ(At)

≤ −∆1 +O(1) ·∆2

≤ − ϵ∥∇Φλ(At)∥F +O(1)(ϵλ)2(
√
m+

1

λ
∥∇Φλ(At)∥F )

≤ − 0.9ϵ∥Φλ(At)∥F +O(ϵλ)2
√
m

≤ − 0.9ϵλ
1√
m
(Φλ(At)−m) +O(ϵλ)2

√
m

≤ − 0.9ϵλ
1√
m
Φλ(At) + ϵλ

√
m,

where the first step follows from Eq. (29), the second step follows from Eq. (33) and Eq. (37), the third step
follows from ϵλ ∈ (0, 0.01), the fourth step follows from Lemma A.6, and the final step follows that extracting the
constant term from the summation.

The lemma is then proved.

D.2 Bounding the off-diagonal terms in λ−2∥∇Φλ(At)∥2F

Claim D.2. It holds that: ∑
i ̸=j∈[m]

⟨ui, uj⟩2 sinh(λ(u⊤
i Atui − bi)) sinh(λ(u

⊤
j Atuj − bj))

≤ 0.1

m∑
i=1

sinh2(λ(u⊤
i Atui − bi))

Proof. We define Ri,j and R as follows:

Ri,j = sinh(λ(u⊤
i Atui − bi)) sinh(λ(u

⊤
j Atuj − bj))

R = tr[

m∑
i=1

m∑
j ̸=i

(uiu
⊤
i )(uju

⊤
j ) sinh(λ(u

⊤
i Atui − bi)) · sinh(λ(u⊤

j Atuj − bj))]

Then we can upper bound |R| by:

|R| = tr[

m∑
i=1

m∑
j ̸=i

|(uiu
⊤
i )(uju

⊤
j )||Ri,j |]

≤ ρ2 tr[

m∑
i=1

m∑
j ̸=i

|Ri,j |]

≤ ρ2

2
tr[

m∑
i=1

m∑
j ̸=i

(Ri,i +Rj,j)]

≤ mρ2 tr[

m∑
i=1

Ri,i]
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≤ 0.1 tr[

m∑
i=1

Ri,i]

where the first step follows |ab| = |a||b|, the second step follows |u⊤
i uj | ≤ ρ, the third step follows that |ab| ≤ a2+b2

2 ,
the fourth step follows from the summation over j, and the fifth step comes from mρ2 ≤ 0.1.

D.3 Bounding the term Q1

Claim D.3. For Q1 defined in Eq. (35), we have

Q1 ≤ 1.1(
√
m+

1

λ
∥∇Φλ(At)∥F ) · ∥∇Φλ(At)∥2F .

Proof. For simplicity, we define zt,i to be

zt,i := λ(u⊤
i Atui − bi).

Recall that

∇2Φλ(At) = λ2 ·
m∑
i=1

(uiu
⊤
i )⊗ (uiu

⊤
i ) cosh(zt,i).

For Q1, we have

Q1 = tr[∇2Φλ(At)

m∑
i=1

sinh2(zt,i)(uiu
⊤
i ⊗ uiu

⊤
i ))]

= λ2 · tr[
m∑
i=1

cosh(zt,i)(uiu
⊤
i )⊗ (uiu

⊤
i ) ·

m∑
i=1

sinh2(zt,i)(uiu
⊤
i )⊗ (uiu

⊤
i )]

= λ2 ·
m∑
i=1

tr[cosh(zt,i) sinh
2(zt,i) · (uiu

⊤
i uiu

⊤
i )⊗ (uiu

⊤
i uiu

⊤
i )]

+ λ2 ·
m∑
i=1

m∑
j ̸=i

tr[cosh(zt,i) sinh
2(zt,j) · (uiu

⊤
i uju

⊤
j )⊗ (uju

⊤
j uiu

⊤
i )]

= λ2 ·
m∑
i=1

cosh(zt,i) sinh
2(zt,i)

+ λ2 ·
m∑
i=1

m∑
j ̸=i

tr[cosh(zt,i) sinh
2(zt,j) · (uiu

⊤
i uju

⊤
j )⊗ (uju

⊤
j uiu

⊤
i )]

≤ 1.1λ2 · (
m∑
i=1

cosh2(zt,i))
1/2 · (

m∑
i=1

sinh4(zt,i))
1/2

≤ 1.1λ2 ·B1 ·B2, (38)

where the first step comes from the definition of Q1, the second step comes from the definition of ∇2Φλ(At), the
third step follows from (A⊗B) · (C ⊗D) = (AC)⊗ (BD) and partition the terms based on whether i = j, the
fourth step comes from ∥ui∥ = 1 and tr[(uiu

⊤
i )⊗ (uiu

⊤
i )] = 1, and the fifth step comes from Cauchy–Schwarz

inequality and Claim D.4.

For the term B1, we have

B1 = (

m∑
i=1

cosh2(λ(u⊤
i Atui − bi)))

1/2

≤
√
m+

1

λ
∥∇Φλ(At)∥F , (39)
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where the second step follows Part 1 of Lemma 3.3.

For the term B2, we have

B2 = (

m∑
i=1

sinh4(λ(u⊤
i Atui − bi)))

1/2

≤ 1

λ2
∥∇Φλ(At)∥2F , (40)

where the second step follows from ∥x∥24 ≤ ∥x∥22. This implies that

Q1 ≤ 1.1λ2 ·B1 ·B2

≤ 1.1λ2 · (
√
m+

1

λ
∥∇Φλ(At)∥F ) ·

1

λ2
∥∇Φλ(At)∥2F

= 1.1(
√
m+

1

λ
∥∇Φλ(At)∥F ) · ∥∇Φλ(At)∥2F .

This completes the proof.

D.4 Bounding off-diagonal terms in Q1

Claim D.4. We can bound the off-diagonal entries by:

|λ2 ·
m∑
i=1

m∑
j ̸=i

tr[cosh(zt,i) sinh
2(zt,j) · (uiu

⊤
i uju

⊤
j )⊗ (uju

⊤
j uiu

⊤
i )]|

≤ 0.1λ2(

m∑
i=1

(cosh(zt,1))
1/2 · (

m∑
i=1

sinh4(zt,i))
1/2

Proof.

|λ2 ·
m∑
i=1

m∑
j ̸=i

tr[cosh(zt,i) sinh
2(zt,j) · (uiu

⊤
i uju

⊤
j )⊗ (uju

⊤
j uiu

⊤
i )]|

≤ ρ2λ2|
m∑
i=1

m∑
j ̸=i

cosh(zt,i) sinh
2(zt,j)|

≤ ρ2λ2(

m∑
i=1

m∑
j ̸=i

(cosh2(zt,i))
1/2 · (

m∑
i=1

m∑
j ̸=i

sinh4(zt,j))
1/2

≤ mρ2λ2(

m∑
i=1

(cosh2(zt,i))
1/2 · (

m∑
i=1

sinh4(zt,i))
1/2

≤ 0.1λ2(

m∑
i=1

(cosh2(zt,i))
1/2 · (

m∑
i=1

sinh4(zt,i))
1/2

where the first step comes from |⟨ui, uj⟩| ≤ ρ, the second step comes from Cauchy–Schwarz inequality, the third
step follows from summation over m terms, and the fourth step comes from ρ2m ≤ 0.1.

D.5 Bounding the term Q2

Claim D.5. For Q2 defined in Eq. (36), we have:

Q2 ≤ 0.2λ2(
√
m+

1

λ
∥∇Φλ(At)∥F ) · ∥∇Φλ(At)∥2F



A General Algorithm for Solving Rank-one Matrix Sensing

Proof. Because in Q2 we have :

Q2 = λ2 tr[

m∑
ℓ=1

(cosh(zt,ℓ) · uℓu
⊤
ℓ ⊗ uℓu

⊤
ℓ ) ·

m∑
i ̸=j

(sinh(zt,i) sinh(zt,j) · uiu
⊤
i ⊗ uju

⊤
j )]

= λ2 tr[

m∑
ℓ=1

m∑
i ̸=j

cosh(zt,ℓ) sinh(zt,i) sinh(zt,j) · (uℓu
⊤
ℓ uiu

⊤
i )⊗ (uℓu

⊤
ℓ uju

⊤
j )]

≤ λ2ρ2
m∑
ℓ=1

m∑
i ̸=j

cosh(zt,ℓ)(sinh
2(zt,i) + sinh2(zt,j))

≤ 2mλ2ρ2
m∑
ℓ=1

m∑
i=1

cosh(zt,ℓ) sinh
2(zt,i)

≤ 2m2λ2ρ2
m∑
i=1

cosh(zt,i) sinh
2(zt,i)

≤ 2m2λ2ρ2(

m∑
i=1

(cosh2(zt,i))
1/2(

m∑
i=1

sinh4(zt,i))
1/2

≤ 0.2λ2(
√
m+

1

λ
∥∇Φλ(At)∥F ) · ∥∇Φλ(At)∥2F (41)

where the second step follows from (A⊗B) · (C ⊗D) = (AC)⊗ (BD), the third step follows Cauchy–Schwarz
inequality and |⟨ui, uj⟩| ≤ ρ, the fourth step follows from combining sinh2(zt,i) and sinh2(zt,j), the fifth step
comes from summation over m terms, and the sixth step comes from Cauchy–Schwarz inequality and the seventh
step follows from Eq. (39) and Eq. (40) and m2ρ2 ≤ 0.1.

E Stochastic Gradient Descent for General Measurements

In this section, we further extend the general measurement where {ui}i∈[m] are non-orthogonal vectors and

|u⊤
i uj | ≤ ρ to the convergence analysis of the stochastic gradient descent matrix sensing algorithm. Algorithm 4

implements the stochastic gradient descent version of the matrix sensing algorithm.

In Algorithm 4, at each iteration t, we first compute the stochastic gradient descent by:

∇Φλ(At,Bt)←
m

B

∑
i∈Bt

uiu
⊤
i λ sinh(λzi)

then we update the matrix with the gradient:

At+1 ← At − ϵ · ∇Φλ(At,Bt)/∥∇Φλ(At)∥F

At the end of each iteration, we update zi by:

zi ← zi − ϵλmw2
i,j sinh(λzj)/(∥∇Φλ(At)∥FB ∀i ∈ [m], j ∈ Bt

We are interested in studying the time complexity and convergence analysis under the general measurement
assumption.

Lemma E.1 (Cost-per-iteration of stochastic gradient descent for general measurements). Algorithm 4 takes
O(mn2)-time for preprocessing and each iteration takes O(Bn2 +m2)-time.

Proof. Since ui’s are no longer orthogonal, we need to compute ∥∇Φλ(At)∥F in the following way:

∥∇Φλ(At)∥2F

= tr
[( m∑

i=1

uiu
⊤
i λ sinh(λ(λzt,i))

)2]
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= λ2
m∑

i,j=1

⟨ui, uj⟩2 sinh(λ(λzt,i)) sinh(λ(λzt,j))

= λ2
m∑

i,j=1

w2
i,j sinh(λ(λzt,i)) sinh(λ(λzt,j)).

Hence, with {zt,i}i∈[m], we can compute ∥∇Φλ(At)∥F in O(m2)-time.

Another difference from the orthogonal measurement case is the update for zt+1,i. Now, we have

zt+1,i − zt,i

= u⊤
i (At+1 −At)ui

= − ϵ

∥∇Φλ(At)∥F
· u⊤

i ∇Φλ(At,Bt)ui

= − ϵλm

∥∇Φλ(At)∥FB
∑
j∈Bt

u⊤
i uju

⊤
j ui · sinh(λzt,j)

= − ϵλm

∥∇Φλ(At)∥FB
∑
j∈Bt

w2
i,j · sinh(λzt,j).

Hence, each zt+1,i can be computed in O(B)-time. And it takes O(mB)-time to update all zt+1,i.

The other steps’ time costs are quite clear from Algorithm 4.

Lemma E.2 (Progress on expected potential with general measurements). Assume that |u⊤
i uj | ≤ ρ and ρ ≤ 1

10m ,
for any i, j ∈ [m] and ∥ui∥2 = 1. Let c ∈ (0, 1) denote a sufficiently small positive constant. Then, for any

ϵ, λ > 0 such that ϵλ ≤ c |Bt|
m , we have for any t > 0,

E[Φλ(At+1)] ≤ (1− 0.9
λϵ√
m
) · Φλ(At) + λϵ

√
m

The proof is a direct generalization of Lemma 6.3 and is very similar to Lemma D.1. Thus, we omit it here.

Algorithm 4 Matrix Sensing with Stochastic Gradient Descent (General Measurements).

1: procedure SGD General({ui, bi}i∈[m]) ▷ Lemma E.1
2: τ ← maxi∈[m] bi
3: A1 ← τ · I
4: zi ← u⊤

i A1ui − bi for i ∈ [m] ▷ z ∈ Rm

5: wi,j ← ⟨ui, uj⟩ for i, j ∈ [m] ▷ w ∈ Rm×m

6: for t = 1→ T do
7: Sample Bt ⊂ [m] of size B uniformly at random
8: ∇Φλ(At,Bt)← m

B

∑
i∈Bt

uiu
⊤
i λ sinh(λzi) ▷ It takes O(Bn2)-time

9: ∥∇Φλ(At)∥F ← λ
(∑m

i,j=1 w
2
i,j sinh(λzi) sinh(λzj)

)1/2

▷ It takes O(m2)-time

10: At+1 ← At − ϵ · ∇Φλ(At,Bt)/∥∇Φλ(At)∥F ▷ It takes O(n2)-time
11: for i ∈ [m] do ▷ Update z. It takes O(mB)-time
12: for j ∈ Bt do
13: zi ← zi − ϵλmw2

i,j sinh(λzj)/(∥∇Φλ(At)∥FB)
14: end for
15: end for
16: end for
17: return AT+1

18: end procedure
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