
P-tensors: a General Framework for Higher Order Message Passing
in Subgraph Neural Networks

Andrew Hands Tianyi Sun Risi Kondor
Department of Computer Science

University of Chicago
hands@uchicago.edu

Computational and Applied Math
Department of Statistics

University of Chicago
tianyisun@uchicago.edu

Department of Computer Science
Department of Statistics

University of Chicago
risi@uchicago.edu

Abstract

Several recent papers have proposed increas-
ing the expressive power of graph neural net-
works by exploiting subgraphs or other topo-
logical structures. In parallel, researchers
have investigated higher order permutation
equivariant networks. In this paper we tie
these two threads together by providing a
general framework for higher order permuta-
tion equivariant message passing in subgraph
neural networks. In this paper we introduce
a new type of mathematical object called P -
tensors, which provide a simple way to define
the most general form of permutation equiv-
ariant message passing in both the above
two categories of networks. We show that
the P -tensors paradigm can achieve state-of-
the-art performance on benchmark molecular
datasets.

1 INTRODUCTION

Graph Neural Networks (GNNs) have proved to be re-
markably successful in a wide range of domains from
filling in edges in social networks to predicting the
chemical properties of molecules. Amongst graph neu-
ral networks, so-called Message Passing Neural Nets
(MPNNs), which loosely imitate convolution on the
graph, are particularly popular and have found use in
almost every branch of science (Gilmer et al., 2017).
However, it has also been shown that there are se-
vere theoretical limitations on the expressive power of
MPNNs, and that in some cases they fail to capture

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

even relatively simple topological features such as cy-
cles (Morris et al., 2019; Xu et al., 2019).

To develop more expressive GNNs, researchers have
developed models that consider higher order represen-
tations of graphs, such as Invariant Graph Neural Net-
works (IGNs) (Maron et al., 2019b,a,c), and models
that explicitly account for specific types of subgraphs
(Frasca et al., 2022; Bodnar et al., 2021b). In the first
category of models, at the cost of increased time and
space complexity, in principle, one can use arbitrar-
ily high order permutation equivariant representations
(Maron et al., 2019a,c). In the second category one can
encode a rich set of substructures allowing the network
to learn different sets of weights for each type of struc-
ture (Bodnar et al., 2021a). However, the question
of how to bring these two lines of research together
and design a general architecture where neurons corre-
sponding to varied substructures can pass messages to
each other in the most general possible way has so far
been elusive.

Main contributions. In this paper we present a
general framework for extending the message passing
paradigm to a settting where (a) the titular “neurons”
can correspond to not just individual vertices, but spe-
cific types of subgraphs or other topological structures
related to the underlying graph, as long as these struc-
tures are selected by a permutation invariant selection
policy; (b) the neurons communicate with each other
via higher order message passing in the sense that with
respect to local permutations the messages behave as
permutation covariant vectors, matrices or tensors.

Our first technical contribution is to give a precise def-
inition of equivariance in this setting, which, to the
best of our knowledge has not been previously done
(Definitions 3–4). Next, we introduce P -tensors, a new
mathematical device that makes it easy to decribe and
implement higher order message passing between sub-
graphs. Here we have two technical results. First we
derive the form of all possible equivariant linear maps

P-tensors: a General Framework for Higher Order Message Passing in Subgraph Neural Networks

between P -tensors, which turns out to be a general-
ization of the results of (Maron et al., 2019b), but af-
fording a larger set of possible interactions (Theorem
3). Second, we show that any subgraph neural net-
work utilizing these maps is equivariant in the sense
of our earlier definition (Theorem 1). In our experi-
ments we find that the flexibility and generality of the
P -tensors framework does indeed pay off, in particular,
on the ZINC 12K benchmark we reach state-of-the-art
results.

2 BACKGROUND: MESSAGE
PASSING NEURAL NETWORKS

Let G be an undirected graph with n vertices and
A ∈Rn×n be its adjacency matrix. Graph neural net-
works (GNNs) learn a function Φ: AG 7→ Φ(AG) em-
bedding such graphs in some Euclidean space RD. The
fundamental constraint on Φ is that it must be invari-
ant to relabeling the vertices. If we change the order
in which the vertices are numbered by a permutation
σ, the adjacency matrix transforms as

A 7→ A′, with [A′]i,j = Aσ−1(i),σ−1(j). (1)

However, A′ still represents the same graph G, so over-
all the network must satisfy Φ(A) =Φ(A′).

Requiring permutation invariance at the level of indi-
vidual neurons would be too restrictive. Instead, mod-
ern GNNs are designed in such a way that their in-
ternal layers are equivariant (rather than invariant) to
permutations, meaning that under (1) the outputs of
the layers do change, but do so in a specific, controlled
way. The last layer of the network is designed to can-
cel out these transformations, typically by pooling over
the vertices, and thus guarantees that the final output
is invariant.

Presently the most popular approach to building equiv-
ariant GNNs is the Message Passing Neural Network
(MPNN) paradigm (Gilmer et al., 2017), where the
titular “neurons” are attached to the vertices of the
graph and communicate with each other by sending
messages to their neighbors. In the simplest case, the
output of the neuron at vertex i in layer ℓ is a vector
f ℓi ∈RDℓ , and the update rule is

f ℓi = η
(
Wℓ

∑
j∈N (i)

f ℓ−1
j + bℓi

)
. (2)

Here N (i) denotes the neighbors of node i, Wℓ is a
learnable weight matrix, bℓi is a learnable bias term
and η is a pointwise non-linearity.

It is easy to see that under the transformation (1),
the output of each neuron in such an MPNN becomes

f ′
ℓ
i = f ℓσ−1(i), and in this sense the network as a whole

is permutation equivariant. The message passing pro-
cess also bears some similiarity to classical convolu-
tion in e.g., image processing, and captures the intu-
itive idea that information in complex networks should
propagate via local connections.

Despite these attractive properties, classical MPNN
do have significant limitations, the most obvious of
which is that each vertex i just sums all the incom-
ing messages from its neighbors. The associative and
commutative nature of summation is critical for ensur-
ing equivariance, but it also makes MPNNs myopic in
the sense that once the activations have been summed,
downstream neurons have no way to distinguish be-
tween which part of the incoming message came from
which neighbor (Hy et al., 2018; Morris et al., 2019;
Xu et al., 2019; Chen et al., 2020; You et al., 2021).
From a theoretical point of view, the consequence is
that classical MPNNs are only as powerful as the first
order Weisfeiler-Leman test (Xu et al., 2019; Weisfeiler
and Leman, 1968). In response to these criticisms, the
community has been exploring various ways to gener-
alize the message passing idiom.

2.1 Higher order equivariance

One way to make MPNNs more expressive is to design
architectures that are equivariant to higher order ac-
tions of the group of permutations, technically called
the symmetric group, Sn. Studying this problem at the
most general level involves considering equivariance to
each irreducible representation of Sn, a rich but mathe-
matically involved subject (Sagan, 2001; Sannai et al.,
2019; Keriven and Peyré, 2019; Thiede et al., 2020).
For practical GNNs however it is usually sufficient to
consider k’th order equivariance in the sense of how
Sn acts on k’th order tensors:

T
σ7−→ T ′ [T ′]i1,...,ik = [T]σ−1(i1),...,σ−1(ik). (3)

Maron et al. (2019b) derived the general form of lin-
ear neural network layers that are invariant to this
action and showed that for higher values of k it cap-
tures much richer interactions than simple first-order
message passing, which is essentially what classical
MPNNs do. The fundamental limitation of this ap-
proach however is that the size of the tensor T grows
exponentially with k. Therefore, even for moderate
sized graphs, considering more than second or third
order permutation equivariance becomes infeasible.

2.2 Subgraph neural networks

The other natural way to increase the expressiveness
of graph neural networks is to extend the MPNN
paradigm to passing messages to/from edges and other

Andrew Hands, Tianyi Sun, Risi Kondor

subgraphs (Alsentzer et al., 2020; Thiede et al., 2021;
Bevilacqua et al., 2022; Frasca et al., 2022). This class
of approaches is also attractive because in many appli-
cations subgraphs have explicit semantic meaning. In
organic chemistry, for example, they can correspond
to functional groups.

At the extreme, subgraph neural networks allow com-
bining two (or more) separate GNN algorithms in a
recursive fashion, with one GNN running at the level
of the subgraphs, and the other one combining their
results at the global level. Subgraph neural networks
are also related to hypergraph neural nets and simpli-
cial complex networks (Feng et al., 2019; Dong et al.,
2020; Ebli et al., 2020; Bodnar et al., 2021b; Zhao et al.,
2022; Frasca et al., 2022).

There is a natural connection between subgraph net-
works and higher order permutation equivariance,
which is that to capture the underlying combinatorial
structures, subgraph neurons cannot just communi-
cate via scalar (invariant) messages. Rather, the mes-
sages must be indexed by the vertices of the sending
and receiving subgraph, i.e., they must be permuta-
tion covariant objects. This complicates deriving the
rules of equivariant message passing, and most exist-
ing architectures employ somewhat ad hoc solutions.
The goal of the present paper is to combine the higher
order message passing and subgraph neural network
frameworks and derive the general laws of permuta-
tion equivariant message passing between subgraphs
in higher order subgraph networks (HOSNNs).

3 EQUIVARIANCE IN HIGHER
ORDER SUBGRAPH NEURAL
NETWORKS

The symmetric group acts on subgraph neural net-
works on two distinct levels: the vertices inside in-
dividual subgraphs get permuted, and the subgraphs
themselves are permuted with each other. Our first
challenge is to define what equivariance even means
in this setting. We begin by formalizing how the sub-
graphs are selected.
Definition 1. (Selection policy) Let G be a graph
with vertex set V = {1, . . . , n}, adjacency matrix A ∈
Rn×n and optionally an input feature matrix L∈Rn×d.
A subgraph selection policy is a function ψ : A 7→ D or
ψ : (A,L) 7→ D where D is a set of subsets of V .

The purpose of D is to demark the subgraphs to which
we assign higher order neurons. For example, we might
define ψ to return the set of all edges in G, all paths
of a given length, or all cycles. Each of these selection
policies is invariant in the following sense.
Definition 2. (Invariant selection policy) Let G,

Figure 1: A subgraph neural network must be equiv-
ariant to two different ways that permutations act on
it: changing the set of vertices assigned to a given
subgraph, and reordering the vertices of the subgraph
internally. This is especially important when the sub-
graph neurons produce matrix/tensor valued outputs
indexed by the vertices of the subgraph itself. The P -
tensors formalism allows us to handle this situation in
a simple way, defining the most general form of equiv-
ariant linear messages between such tensors, without
making reference to the global ordering.

A and L be as above. Assume that under permuting
the vertices A 7→ A(σ) and L 7→ L(σ) with

A
(σ)
i,j = Aσ−1(i),σ−1(j) and L

(σ)
i,c = Lσ−1(i),c.

Then a selection policy ψ : (A,L) 7→ D is said to
be invariant if for any permutation σ ∈ Sn
and any selected set {i1, . . . , ip} ∈ψ(A,L), we have
{σ(i1), . . . , σ(ip)} ∈ψ(A(σ), L(σ)).

An invariant selection policy is a policy that depends
only on the graph topology and the input vertex fea-
tures, but not the (arbitrary) ordering of the vertices.
All the subgraph selection policies considered in this
paper are invariant policies.

3.1 Two-level equivariance

The output of each layer of a higher order subgraph
neural network is a collection of vectors, matrices or
tensors F = {T1, . . . , Tm} corresponding to the sub-
graphs S{i11 ...,i1p1

}, . . . ,S{im1 ...,impm} induced by the ver-
tex sets picked out by the selection policy ψ(A,L). The
difficulty with this setup is two-fold:

1. Since ψ picks out subgraphs in an arbitrary order,
the order in which the T1, . . . , Tm tensors are listed
in F is also arbitrary. In particular, we cannot guar-
antee that the order will not change if we permute
the vertices of the underlying graph by σ.

2. Each tensor Ta is sensitive to the order in which
the {ia1 , . . . , iapa

} vertices are listed, and this can
also change with σ. In particular, if T is a
vector type quantity (w.r.t. permutations of
the subgraph), then under a local permutation
(ia1 , . . . , i

a
pa
)

τ7−→ (iaτ(1), . . . , i
a
τ(p)) it will change as

T
(τ)
j = Tτ−1(j). If it is a matrix type quantity

P-tensors: a General Framework for Higher Order Message Passing in Subgraph Neural Networks

then it willl change as T
(τ)
j,j′ = Tτ−1(j),τ−1(j′).

More generally, if T is a k’th order tensor, then
T

(τ)
i1,i2,...,ik

= Tτ−1(i1),...τ−1(ik).

Remarkably, despite all these degrees of freedom, it is
still possible to define covariance and equivariance in
higher order subgraph neural networks in a meaningful
way.

Definition 3. (Permutation covriant layer) Let
F = {T1, . . . , Tm} be the output of a layer in a higher
order subgraph neural network induced by an invariant
subgraph selection policy ψ and F ′ = {T ′

1, . . . , T
′
m} be

the output of the same layer after permuting the ver-
tices of the underlying graph G by a permutation σ.
By the invariance of ψ, for each Ta in F there is a
corresponding T ′

a′ in F ′ such that {σ(ia1), . . . , σ(iapa
)}

and {i′a
′

1 , . . . , i
′a′

pa′ } are equal as sets (intuitively, Ta
and T ′

a′ correspond to the same underlying subgraph
despite the relabeling by σ). In particular, there is a
permutation τ ∈ Spa

that elementwise aligns these two
sets of vertex indices in the sense that i′a′

j = σ(iaτ−1(j)).
F is said to be a permutation covariant layer if

[T ′
a′]j1,j2,...,jk = [Ta]τ−1(j1),...τ−1(jk) (4)

for any permutation σ ∈ Sn.

As usual, a permutation equivariant map is defined
as one which preserves this covariance property.

Definition 4. (Permutation equivariant
higher order subgraph neural network) A
subgraph layer ϕ : F in 7→ Fout, or more generally
ϕ : (F in

1 , . . . ,F in
r) 7→ Fout is said to be permutation

equivariant if whenever F in
1 , . . . ,F in

r are covariant,
Fout is covariant as well. The entire network is
equivariant if all the maps connecting its different
layers are equivariant.

While these definitions appear quite technical, they
are necessary for capturing the interaction between the
effect of permutations at the subgraph selection level
and the level of individual subgraphs. In the special
case of ψ just picking out the individual vertices of G
(as trivial subgraphs consisting of a single vertex) and
the activations being scalars, the definitions reduce to
the classical case where F can be represented as an
n × c matrix, where n is the number of vertices and
c the number of channels. This base case is what one
typically uses in the input layer and readout layer of
an equivariant GNN. The purpose of the next section
is to introduce a mathematical formalism that makes
implementing the intermediate, higher order layers as
straightforward as possible.

4 P -TENSORS

The mathematical device that we introduce to derive
the rules of higher order message passing are a type of
object that we call P-tensors. To define P -tensors first
we need to define a finite or countably infinite set U of
base objects called atoms that permutations act on. In
the case of graph neural networks the atoms are just
the vertices. However, the P -tensor formalism is also
applicable to other permutation equivariant learning
scenarios, such as relational learning, in which case U
might for example be a set of individuals or the words
in a given language.

A given P -tensor T is defined relative to an ordered
subset D = (x1, . . . , xd) of atoms called its reference
domain, which, in the case of subgraph neurons, is
just the vertex set of the given subgraph. Reordering
the reference domain by a permutation τ ∈ Sd changes
it to

D′ = τ ◦ D = (xτ−1(1), . . . , xτ−1(1)). (5)

The defining property of P -tensors is how they trans-
form under this action.
Definition 5 (P -tensors). Let U be a finite or count-
ably infinite set of atoms and D = (x1, . . . , xd) an or-
dered subset of U . We say that a k’th order tensor
T ∈ Rd×d×...×d is a k’th order permutation covariant
tensor (or P -tensor for short) with reference domain
D if under reordering D as in (5) it transforms to

[τ ◦ T]i1,i2,...,ik = Tτ−1(i1),...τ−1(ik). (6)

The neurons in modern neural networks typically have
many channels, so we also allow P -tensors to have a
channel dimension. Thus, a k’th order P -tensor can
actually be a k+1’th order tensor T ∈Rd×d×...×d×C .
The channel dimension is not affected by permutations.
We will sometimes also write (T,D) to denote a P -
tensor with reference domain D.

To derive the rules of equivariant message passing from
one P -tensor T1 to another P -tensor T2, we need to
consider the three cases when their respective refer-
ence domains D1 and D2 in the unordered sense are
(a) the same (b) partially overlap (c) are disjoint. The
advantage of the P -tensors formalism compared to the
previous section is that in each of these cases we need
only consider the action of permutations that are inter-
nal to D1 and D2. In particular, we have the following
definition.
Definition 6 (Permutation equivariant maps be-
tween P -tensors). Let D1 and D2 be two fixed refer-
ence domains, D1 be any reordering of D1 and D2 any
reordering a D2. Consider a family of linear maps

ϕD1,D2
: (T1,D1) 7→ (T2,D2).

Andrew Hands, Tianyi Sun, Risi Kondor

We say that this is a permutation equivariant family of
linear maps between P -tensors if

ϕτ1◦D1, τ2◦D2
(τ1 ◦ T1) = τ2 ◦ (ϕD1,D2

(T1))

for any P -tensor T1 with reference domain D1 and any
pair of permutations τ1 ∈ S|D1| and τ2 ∈ S|D2|.

In the next section we will see that such families of
equivariant maps can be defined in a relatively straight-
forward manner by transforming both the source and
destination P -tensors to a canonical position, where
the shared atoms between their reference domains oc-
cupy the first d∩ = |D1 ∩ D2| positions.

In addition to equivariance to local permutations, we
also need to consider global relabelings σ : U → U
of the entire universe of atoms. The effect of such
a relabeling is to map D = (x1, . . . , xd) to σ • D =
(σ(x1), . . . , σ(xd)).
Definition 7 (Relabeling invariant maps be-
tween P -tensors). A family of linear maps between
P -tensors

ϕD1,D2
: (T1,D1) 7→ (T2,D2)

is said to be invariant to global relabelings if

ϕσ•D1,σ•D2
= ϕD1,D2

for any permutation σ of the universe U of atoms.

A key result of our paper, proved in the Appendix, is
the following theorem, showing that the above two con-
straints are exactly what is needed to build equivariant
higher order MPNNs out of P -tensors.
Theorem 1. Any higher order MPNN in which
(a) the subgraphs in each layer are selected using an

invariant subgraph selection rule;
(b) the output of each subgraph neuron is a P-tensor;
(c) the messages sent from the P -tensors in each

layer F in to the P -tensors in following layer Fout

are linear and satisfy the conditions of Definitions
6 and 7

is a permutation equivariant MPNN in the sense of
Definition 4.

4.1 Message passing between P -tensors with
the same reference domain

If D1 = (x1, . . . , xd) and D2 = (x′1, . . . , x
′
d) are equal

as sets, they can only differ by a permutation µ map-
ping x′1 = xµ(1), x′2 = xµ(2), and so on. In any kind
of permutation equivariant learning scenario such as
graph neural networks, it is always possible to deter-
mine which labels refer to the same object, so, without
loss of generality, we can assume that the elements of

P ϕ
{{1}, {2}, {3}, {4}} T out

a,b =
∑

c,d T
in
c,d

{{1}, {2}, {3, 4}} T out
a,b =

∑
c T

in
c,c

{{1}, {2, 4}, {3}} T out
a,b =

∑
c T

in
c,b

{{1}, {2, 3}, {4}} T out
a,b =

∑
c T

in
b,c

{{2}, {1, 4}, {3}} T out
b,a =

∑
c T

in
c,b

{{2}, {1, 3}, {4}} T out
b,a =

∑
c T

in
b,c

{{1, 2}, {3}, {4}} T out
a,a =

∑
b,c T

in
b,c

{{1}, {2, 3, 4}} T out
a,b = T in

b,b

{{2}, {1, 3, 4}} T out
b,a = T in

b,b

{{1, 2, 3}, {4}} T out
a,a =

∑
b T

in
a,b

{{1, 2, 4}, {3}} T out
a,a =

∑
b T

in
b,a

{{1, 2}, {3, 4}} T out
a,a =

∑
c T

in
c,c

{{1, 3}, {2, 4}} T out
a,b = T in

a,b

{{1, 4}, {2, 3}} T out
a,b = T in

b,a

{{1, 2, 3, 4}} T out
a,a = T in

a,a

Table 1: The B(4) = 15 possible partitions of the set
{1, 2, 3, 4} and the corresponding permutation equiv-
ariant linear maps ϕ : Rk×k → Rk×k as derived by
Maron et al. Maron et al. (2019b).

D2 have been rearranged so that x′1 = x1,. . .x′d = xd.
This reduces the problem of satisfying Definition 6 to
that of “ordinary” permutation equivariant vector, ma-
trix, etc., valued neural network layers, which, by now,
is a well studied subject.

In the first order case, P -tensors are simply vectors, so
deriving the rules of permutation equivariant message
passing reduces to finding the space of linear maps
ϕ : Rd → Rd satisfying

ϕ([v]τ−1(i)) = [ϕ(v)]τ−1(i)

for any v∈Rd and any τ ∈ Sd. The seminal Deep Sets
paper Zaheer et al. (2017) proved that in this case ϕ
can have at most two (learnable) parameters λ1 and
λ2, and must be of the form

ϕ(v) = λ1v + λ211
⊤v.

In the more general case, ϕ maps a k1’th order tensor
T in to a k2’th order tensor T out, both transforming un-
der permutations as in (6), leading to the equivariance
condition

[ϕ(T in)]τ−1(i1),...,τ−1(ik2
) = ϕ(T in

τ−1(i1),...,τ−1(ik1
)). (7)

The characterization of the space of equivariant maps
for this case was given in a similarly influential paper
(Maron et al., 2019b).
Proposition 2 (Maron et al.). The space of linear
maps ϕ : Rdk1 → Rdk2 that is equivariant to permuta-
tions τ ∈ Sd in the sense of (7) is spanned by a basis
indexed by the partitions of the set {1, 2, . . . , k1+k2}.

Since the number of partitions of {1, 2, . . . ,m} is given
by the so-called Bell number B(m), according to this

P-tensors: a General Framework for Higher Order Message Passing in Subgraph Neural Networks

result, the number of learnable parameters in such
a map is B(k1 + k2). To be specific, the equivariant
linear map corresponding to a given partition P can
be written as a composition of three operations: (1)
summing over specific dimensions or diagonals of T in;
(2) transferring this result to the output tensor by
identifying some combinations of input indicies with
output indices; (3) broadcasting the result along cer-
tain dimensions or diagonals of the output tensor T out.
These three operations correspond to the three differ-
ent types of parts that can appear in P: those parts
that only involve the second k2 numbers, those that
involve a mixture of the first k1 and second k2, and
those that only involve the first k1. We shall say that
P is of type (p1, p2, p3) if it has p1 parts of the first cat-
egory, p2 of the second and p3 of the third. In all three
categories, a part {j1, . . . , jℓ} appearing in P implies
that the corresponding indices are tied together. The
way to distinguish between input and output indices
is that if 1 ≤ jq ≤ k1 then it refers to the jq’th index
of T out, whereas if k1+1 ≤ jq ≤ k1 + k2, then it refers
to the jq − k1 index of T in.

As an example, in the k1 = k2 = 3 case, the par-
tition P = {{1, 3}, {2, 5, 6}, {4}} corresponds to (a)
summing T in along its first dimension (corresponding
to {4}) (b) transferring the diagonal along the second
and third dimensions of T in to the second dimension of
T out (corresponding to {2, 5, 6}), (c) broadcasting the
result along the diagonal of the first and third dimen-
sions (corresponding to {1, 3}). Explicitly, this gives
the equivariant map

T out
a,b,a =

∑
c

T in
c,b,b. (8)

Since B(6) = 203, listing all other possible maps for
k1 = k2 =3 would be very laborious. In Table 1 we list
the possible equivariant maps for the k1 = k2 =2 case.

The presence of multiple channels enriches this picture
only to the extent that each input channel can be lin-
early mixed with each output channel. For example,
in the case of Cin channels in T in and Cout channels in
T out, (8) becomes

T out
a,b,a,α =

∑
β

Wα,β

∑
c

T in
c,b,b,β

for some (learnable) weight matrix W ∈ RCout×Cin .
This type of linear mixing across channels can be sepa-
rated from the equivariant message passing operation
itself, which consists of applying (8) to each channel
separately.

Figure 2: Given two P -tensors T in and T out whose
reference domains have d∩ atoms in common, with-
out loss of generality we can rearrange the two ten-
sors so that the indices corresponding to the com-
mon atoms appear first. Mapping the corresponding
d∩× d∩× . . . × d∩ subtensor of T in to the analogous
d∩× d∩× . . . × d∩ subtensor of T out with any of the
B(k1+k2) linear maps described in Section 4.1 is an
equivariant operation. The additional equivariant op-
erations correspond to similar maps except with the
summations and broadcast operations extending over
not just the overlapping part of the tensors but the
entirety of T in or T out.

4.2 Message passing between P-tensors with
different reference domains

Our second main result is the following theorem, which
generalizes Proposition 2 to when the reference do-
mains of the input and output tensors only partially
overlap.
Theorem 3. Let T1 and T2 be two P-tensors with ref-
erence domains D1 and D2 such that |D1 ∩ D2| ≥ 2 and
D1 6⊆ D2 and D2 6⊆ D1. Then for each partition P of
{1, . . . , k1+k2} of type (p1, p2, p3) there are 2p1+p3 lin-
early independent permutation equivariant linear maps
ϕ : T1 7→ T2.

To derive the form of the actual maps, without loss
of generality, we assume that D1 and D2 have been
reordered in such a way that the d∩ = |D1∩D2| atoms
that they have in common occupy the first d∩ positions
in both, and are listed in the same order. An easy
generalization of our previous results is to associate
to each partition the same map as before, except we
now only transfer information from the subtensor of
T in cut out by the common atoms to the subtensor of
T out cut out by the same (Figure 2 left). For example,
the counterpart of (8) would be

T out
a,b,a =

{∑d∩

c=1 T
in
c,b,b a, b ≤ d∩

0 otherwise.

This, however, would only give us B(k1+k2) equivari-
ant maps, like in the previous section.

The additional factor of 2p1+p3 comes from the fact
that for any partition that has parts purely involving

Andrew Hands, Tianyi Sun, Risi Kondor

(k1, k2)
of maps in
D1 =D2 case

of maps in
D1 ̸= D2 case

(0, 0) 1 1
(1, 1) 2 5
(1, 2) 5 17
(2, 2) 15 61
(2, 3) 52 321
(3, 3) 203 769

Figure 3: The number of independent equivariant lin-
ear maps from a k1’th order P -tensor to a k2 ’th or-
der P -tensor when the reference domains are the same
vs. when they overlap only partially.

indices of T in or T out, each of the corresponding opera-
tions can extend across either just the common atoms,
or all atoms of the given tensor. For our running ex-
ample P = {{1, 3}, {2, 5, 6}, {4}}, we have the three
additional equivariant maps

T out
a,b,a =

{∑d∩

c=1 T
in
c,b,b b ≤ d∩

0 otherwise,
a∈ {1, . . . , d2}

T out
a,b,a =

{∑d1

c=1 T
in
c,b,b a, b ≤ d∩

0 otherwise,
a∈ {1, . . . , d∩}

T out
a,b,a =

{∑d1

c=1 T
in
c,b,b b ≤ d∩

0 otherwise.
a∈ {1, . . . , d2}.

Table 3 contrasts the number of possible equivariant
maps in this case to the number of maps described
in the previous section. As before, in the presence of
multiple channels, each of the above maps can also
involve mixing the different channels by a learnable
weight matrix.

5 P -TENSORS IN GRAPH NEURAL
NETWORKS

In this section we describe how the P -tensor formalism
can be used to build expressive graph neural networks,
and how various existing GNNs reduce to special cases.

5.1 Zeroth order message passing networks

In classical message passing networks the reference do-
main of each neuron consists of just a single vertex.
Talking about the transformation properties of an ob-
ject with respect to permutations of a single atom is
vacuous, so in this case all the activations are zeroth
order P -tensors. The only type of equivariant message
that a zeroth order vertex neuron T v1

c can send to an-
other vertex neuron T v2

c is T v2
c ← T v1

c (here and in
the following c stand for the channel index). Applying
this operation to all the neighbors of a given vertex
and adding a bias term plus mixing with a learnable

matrix W leads exactly to the update rule (2). Thus,
classical message passing networks just correspond to
message passing between zeroth order P -tensors.

5.2 Edge networks

One of the first extensions of the MPNN formalism was
the introduction of networks that can pass messages
not just from vertices to vertices but also from vertices
to edges and edges to vertices Gilmer et al. (2017). In
the P -tensor formalism a neuron corresponding to the
edge v1v2 has receptive domain D = (v1, v2). If the
edge P -tensor T v1v2 is zeroth order, then the rule for
sending messages from the vertex P -tensors T v1 and
T v2 will essentially be the same as above.

However, when T v1v2 is a first order P -tensor we have
two different possible equivariant maps: the “concate-
nating map”

T v1v2
i,c ← T vi

c i∈ {1, 2},

and the “averaging map”

T v1v2
i,c ← T v1

c + T v2
c i∈ {1, 2}.

To maximize expressivity, the edge neuron would
conctenate these two messages, effectively doubling
the number of channels as we pass from the “vertex
layer” neurons to the “edge layer”.

Edge-to-vertex message passing similarly affords two
distinct types of linear maps:

T vi
c ← T v1v2

i,c and T vi
c ← T v1v2

1,c + T v1v2
2,c .

Finally, for passing a message from a first order edge
T (v1,v2) to another first order edge T (v2,v3) (with v1 6=
v3) we have one linear map corresponding to the
{{1, 2}} partition,

T v2v3
1,c ← T v1v2

2,c

and three different maps corresponding to the
{{1}, {2}} partition:

T v2v3
i,c ← T v1v2

2,c i∈ {1, 2}

T v2v3
1,c ← T v1v2

1,c + T v1v2
2,c

T v2v3
i,c ← T v1v2

1,c + T v1v2
2,c i∈ {1, 2}.

While individually these operations are simple and
could be derived by hand on a case-by-case basis, as
the size of the reference domains (as well as the order of
the tensors) increases, enumerating and separately im-
plementing all possibilities in code becomes unwieldly.

P-tensors: a General Framework for Higher Order Message Passing in Subgraph Neural Networks

5.3 Message passing between subgraphs

The true power of the P -tensors model manifests
in message passing between larger subgraphs. Take
for example the paradigmatic case from chemistry of
two adjacent benzene rings (six-atom rings of car-
bon atoms) made up of vertices {v1, . . . , v6} and
{v1, v2, v7, v8, v9, v10} represented by first order P -
tensors T src and and T dest.

The linear map corresponding to the {{1, 2}} parti-
tion,

T dest
i,c ←

{
T src
i,c i∈ {1, 2}

0 otherwise

transfers the rows of T src corresponding to the two
shared carbon atoms to the corresponding rows of
T dest. We have four maps corresponding to {{1}, {2}}:

1. Transferring the sum of the rows of the shared car-
bons to the corresponding rows:

T dest
i,c ←

{∑2
j=1 T

src
j,c i∈ {1, 2}

0 otherwise,

2. Transferring the sum of the rows of the shared car-
bons to all rows:

T dest
i,c ←

∑2
j=1 T

src
j,c ,

3. Transferring the sum of all rows to the rows of the
shared carbons:

T dest
i,c ←

{∑6
j=1 T

src
j,c i∈ {1, 2}

0 otherwise,

4. Transferring the sum of all rows to all rows:
T dest
i,c ←

∑6
j=1 T

src
j,c .

If we concatenate the results of all of these maps, T dest

will have five times as many channels as T src.

The second-order to second-order case is even more
interesting, since in this case the i, j slice of T src

i,j,c and
T dest
i,j,c can effectively represent interactions between the
i’th and j’th atoms in the two rings. Space limitations
prevent us from listing all 61 possible maps, but some
examples are the following:

1. Transferring the sum of the interactions of shared
carbon i with the other carbons in the ring to the
corresponding slice:

T dest
i,i,c ←

{∑6
k=1 T

src
i,k,c i∈ {1, 2}

0 otherwise,

2. Transferring the sum of all interactions to the
shared carbons:

T dest
i,i,c ←

{∑6
k=1

∑6
ℓ=1 T

src
k,ℓ,c i∈ {1, 2}

0 otherwise,

3. Transferring the sum of all self-interactions to the
shared carbons:

T dest
i,i,c ←

{∑6
k=1 T

src
k,k,c i∈ {1, 2}

0 otherwise,

Note that it is often the linear combinations of these
maps, e.g., the second map above minus the third map,
that have the most inutitive interpretations. Also note
that many of these maps occur naturally in other sub-
graph, hypergraph and simplicial complex networks.
The advantage of our formalism is in being to enumer-
ate (and efficiently implement) all possible equivariant
maps in a systematic way.

6 EXPERIMENTAL RESULTS

We validated our model on several molecular datasets
with one of the simplest possible realizations of the
P -tensors framework. The subgraphs are limited to
vertices, edges and cycles (of any length) and the order
of the corresponding neurons is either zero or one.

The interactions between vertices and edges can be
conceptualized as a classical MPNN: vertices send mes-
sages to edges, then messages are passed back to ver-
tices, and vertices update from the incoming messages
and their previous state. In this interaction, we are
also able to get a partial update for the edges using
the information from the vertices. We similarly per-
form message passing between edges and cycles, with
two notable distinctions: (1) since cycles are first order
representations, we consider both internal linear maps
when updating them, as apposed to the single linear
map for vertex and edge updates; (2) We limit the
edge-cycle interactions to edges that are fully encapsu-
lated by cycles that they are interacting with. In some
of our models we also used cycle-cycle interactions. In
other respects, such as the placement of MLPs, etc.,
our model is similar to Cellular Isomorphism Networks
(CIN) (Bodnar et al., 2021a). For details, please see
the supplementary materials.

We report results on four molecular datasets that
are standard benchmarks in the literature: (1) The
full ZINC dataset of almost 250K organic molecules
(Sterling and Irwin, 2015; Gómez-Bombarelli et al.,
2018); (2) its more commonly used subset of just
12K molecules; (3) the OGBG-MolHIV classification
datatet of 41K molecules Hu et al. (2020a); (4)
the TOX21 property prediction benchmark on 78311
molecules (Hu et al., 2020b). As baselines we use the
best performing alternative algorithms from the litera-
ture of the same class, in particular, we do not compare
to transformers or algorithms that explicitly take into
account the 3D positions of atoms.

Remarkably, our P -tensors based equivariant message

Andrew Hands, Tianyi Sun, Risi Kondor

ZINC-12K ZINC-Full OGBG-MOLHIV TOX21
MAE(↓) MAE(↓) ROC-AUC(% ↑) ROC-AUC(% ↑)

RP-NGF (Murphy et al., 2019) – – – 0.79.4± 1.00
GCN (Kipf and Welling, 2017) 0.321± 0.009 – 76.07± 0.97 –
GIN (Xu et al., 2019) 0.408± 0.008 0.088± 0.002 75.58± 1.40 –
GINE (Hu et al., 2020b) 0.252± 0.014 0.088± 0.002 75.58± 1.40 86.68± 0.77
PNA (Corso et al., 2020) 0.133± 0.011 0.320± 0.032 79.05± 1.32 –
HIMP (Fey et al., 2020) 0.151± 0.002 0.036± 0.002 78.80± 0.82 87.36± 0.50
CIN (Bodnar et al., 2021a) 0.079± 0.006 0.022± 0.002 80.94± 0.57 –
DS-GNN (EGO+) (Bevilacqua et al., 2022) 0.105± 0.003 – 77.40± 2.19 76.39± 1.18
DSS-GNN (EGO+) (Bevilacqua et al., 2022) 0.097± 0.006 – 76.78± 1.66 77.95± 0.40
GNN-AK+ (Zhao et al., 2022) 0.091± 0.011 – 79.61± 1.19 –
SUN (EGO+) (Frasca et al., 2022) 0.084± 0.002 – 80.03± 0.55 –
First order P -tensors (our model) 0.071± 0.004 0.024± 0.001 80.76± 0.82 84.95± 0.58

Table 2: Experimental results on molecular datasets with baselines taken from (Frasca et al., 2022; Bodnar et al.,
2021a; Bevilacqua et al., 2022).

passing algorithm is competitive with the best perform-
ing algorithms one each dataset, and beats all the other
algorithms on ZINC 12K. We hypothesize that this is
a direct result of the algorithm’s greater expressivity.
Additional experimental data can be found in the Sup-
plementary Materials.

7 CONCLUSIONS

The P -tensors framework unifies and generalizes equiv-
ariant message passing across a range of subgraph neu-
ral network models, as well as some other models, such
as certain simplicial complex neural networks, that are
not based on subgraphs per se, but ultimately still de-
pend on the same equivariance constraints. The exper-
imental results suggest that even in the first order case,
the increased expressive power of our model helps im-
prove upon the permformance of other graph neural
networks on standard molecular benchmarks.

One of the advantages of our framework is that instead
of implementing each type of subgraph interaction sep-
arately, in a piecemeal fashion, it makes it possible to
formulate higher order message passing as a generic
computational paradigm that is reusable across many
models. In ongoing work we are developing a software
library for higher order message passing that follows
this philosophy.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E.,
Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Goodfellow, I., Harp,
A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R.,
Kaiser, L., Kudlur, M., Levenberg, J., Mané, D.,
Monga, R., Moore, S., Murray, D., Olah, C., Schus-
ter, M., Shlens, J., Steiner, B., Sutskever, I., Talwar,
K., Tucker, P., Vanhoucke, V., Vasudevan, V., Vié-
gas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. (2015). Ten-

sorFlow: Large-scale machine learning on hetero-
geneous systems. Software available from tensor-
flow.org.

Alsentzer, E., Finlayson, S., Li, M., and Zitnik, M.
(2020). Subgraph neural networks. Advances in Neu-
ral Information Processing Systems, 33:8017–8029.

Atwood, J. and Towsley, D. (2016). Diffusion-
convolutional neural networks. Advances in Neural
Information Processing Systems, 29.

Bevilacqua, B., Frasca, F., Lim, D., Srinivasan, B.,
Cai, C., Balamurugan, G., Bronstein, M. M., and
Maron, H. (2022). Equivariant subgraph aggre-
gation networks. In International Conference on
Learning Representations.

Bodnar, C., Frasca, F., Otter, N., Wang, Y., Lio, P.,
Montufar, G. F., and Bronstein, M. (2021a). Weis-
feiler and Lehman go cellular: CW networks. Ad-
vances in Neural Information Processing Systems,
34:2625–2640.

Bodnar, C., Frasca, F., Wang, Y., Otter, N., Montu-
far, G. F., Lio, P., and Bronstein, M. (2021b). Weis-
feiler and Lehman go topological: Message passing
simplicial networks. In International Conference on
Machine Learning.

Chen, Z., Chen, L., Villar, S., and Bruna, J. (2020).
Can graph neural networks count substructures?
Advances in Neural Information Processing Systems,
33.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and
Velivcković, P. (2020). Principal neighbourhood ag-
gregation for graph nets. Advances in Neural Infor-
mation Processing Systems, 33.

de Haan, P., Cohen, T. S., and Welling, M. (2020).
Natural graph networks. Advances in Neural Infor-
mation Processing Systems, 33:3636–3646.

Dong, Y., Sawin, W., and Bengio, Y. (2020).

P-tensors: a General Framework for Higher Order Message Passing in Subgraph Neural Networks

HNHN: hypergraph networks with hyperedge neu-
rons. CoRR, abs/2006.12278.

Ebli, S., Defferrard, M., and Spreemann, G. (2020).
Simplicial neural networks. In Topological Data
Analysis and Beyond workshop at NeurIPS.

Falcon, W. and The PyTorch Lightning team (2019).
PyTorch Lightning.

Feng, Y., You, H., Zhang, Z., Ji, R., and Gao, Y.
(2019). Hypergraph neural networks. 33rd AAAI
Conference on Artificial Intelligence.

Ferreira, R., Grossi, R., Rizzi, R., Sacomoto, G., and
Sagot, M.-F. (2014). Amortized-delay algorithm for
listing chordless cycles in undirected graphs. In Eu-
ropean Symposium on Algorithms, pages 418–429.
Springer.

Fey, M. and Lenssen, J. E. (2019). Fast graph represen-
tation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs
and Manifolds.

Fey, M., Yuen, J. G., and Weichert, F. (2020). Hierar-
chical inter-message passing for learning on molecu-
lar graphs. In ICML Graph Representation Learning
and Beyond (GRL+) Workhop.

Frasca, F., Bevilacqua, B., Bronstein, M., and Maron,
H. (2022). Understanding and extending subgraph
GNNs by rethinking their symmetries. Advances in
Neural Information Processing Systems, 35.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O.,
and Dahl, G. E. (2017). Neural message passing for
quantum chemistry. In International conference on
machine learning.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Hernández-Lobato, J. M., Sánchez-Lengeling, B.,
Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T. D.,
Adams, R. P., and Aspuru-Guzik, A. (2018). Auto-
matic chemical design using a data-driven continu-
ous representation of molecules. ACS central science,
4(2):268–276.

Hu, W., Chan, Z., Liu, B., Zhao, D., Ma, J., and Yan,
R. (2019). GSN: A graph-structured network for
multi-party dialogues. CoRR, abs/1905.13637.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu,
B., Catasta, M., and Leskovec, J. (2020a). Open
graph benchmark: Datasets for machine learning on
graphs. Advances in Neural Information Processing
Systems, 33.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P.,
Pande, V., and Leskovec, J. (2020b). Strategies for
pre-training graph neural networks. In International
Conference on Learning Representations.

Hy, T. S., Trivedi, S., Pan, H., Anderson, B. M., and
Kondor, R. (2018). Predicting molecular properties

with covariant compositional networks. The Journal
of Chemical Physics, 148(24):241745.

Ioffe, S. and Szegedy, C. (2015). Batch normalization:
Accelerating deep network training by reducing in-
ternal covariate shift. In International conference on
machine learning.

Keriven, N. and Peyré, G. (2019). Universal invariant
and equivariant graph neural networks. In Advances
in Neural Information Processing Systems 32.

Kipf, T. N. and Welling, M. (2017). Semi-supervised
classification with graph convolutional networks. In
International Conference on Learning Representa-
tions.

Kwon, J., Kim, J., Park, H., and Choi, I. K. (2021).
Asam: Adaptive sharpness-aware minimization for
scale-invariant learning of deep neural networks. In
International Conference on Machine Learning.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lip-
man, Y. (2019a). Provably powerful graph networks.
Advances in Neural Information Processing Systems,
32.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y.
(2019b). Invariant and equivariant graph networks.
In International Conference on Learning Represen-
tations.

Maron, H., Fetaya, E., Segol, N., and Lipman, Y.
(2019c). On the universality of invariant networks.
In International conference on machine learning.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L.,
Lenssen, J. E., Rattan, G., and Grohe, M. (2019).
Weisfeiler and Leman go neural: Higher-order graph
neural networks. In Proceedings of the AAAI con-
ference on artificial intelligence.

Murphy, R., Srinivasan, B., Rao, V., and Ribeiro, B.
(2019). Relational pooling for graph representations.
In International Conference on Machine Learning.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., and Chintala,
S. (2019). PyTorch: An imperative style, high-
performance deep learning library. In Advances in
Neural Information Processing Systems 32.

Rong, Y., Huang, W., Xu, T., and Huang, J. (2020).
Dropedge: Towards deep graph convolutional net-
works on node classification. In International Con-
ference on Learning Representations.

Sagan, B. E. (2001). The Symmetric Group. Springer
New York.

Andrew Hands, Tianyi Sun, Risi Kondor

Sannai, A., Takai, Y., and Cordonnier, M. (2019).
Universal approximations of permutation invari-
ant/equivariant functions by deep neural networks.
CoRR, abs/1903.01939.

Sardellitti, S., Barbarossa, S., and Testa, L. (2021).
Topological signal processing over cell complexes. In
2021 55th Asilomar Conference on Signals, Systems,
and Computers.

Sterling, T. and Irwin, J. J. (2015). ZINC 15 Lig-
and discovery for everyone. Journal of Chemical In-
formation and Modeling, 55(11):2324–2337. PMID:
26479676.

Thiede, E., Zhou, W., and Kondor, R. (2021). Auto-
bahn: Automorphism-based graph neural nets. Ad-
vances in Neural Information Processing Systems,
34.

Thiede, E. H., Hy, T., and Kondor, R. (2020). The
general theory of permutation equivarant neural net-
works and higher order graph variational encoders.
CoRR, abs/2004.03990.

Weisfeiler, B. and Leman, A. (1968). The reduction
of a graph to canonical form and the algebra which
appears therein. NTI, Series, pages 12–16.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019).
How powerful are graph neural networks? In Inter-
national Conference on Learning Representations.

You, J., Gomes-Selman, J. M., Ying, R., and Leskovec,
J. (2021). Identity-aware graph neural networks. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 35.

Zaheer, M., Kottur, S., Ravanbhakhsh, S., Póczos, B.,
Salakhutdinov, R., and Smola, A. J. (2017). Deep
sets. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems.

Zhang, M., Cui, Z., Neumann, M., and Chen, Y.
(2018). An end-to-end deep learning architecture
for graph classification. In Proceedings of the AAAI
conference on artificial intelligence.

Zhao, L., Jin, W., Akoglu, L., and Shah, N. (2022).
From stars to subgraphs: Uplifting any GNN with
local structure awareness. In International Confer-
ence on Learning Representations.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Not Applicable]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including ex-
ternal libraries. [No]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[No]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Applica-
ble]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]

P-tensors: a General Framework for Higher Order Message Passing in Subgraph Neural Networks

Appendix

1 Proofs

Theorem 1. Any higher order MPNN in which
(a) the subgraphs in each layer are selected using an invariant subgraph selection rule;
(b) the output of each subgraph neuron is a P-tensor;
(c) the messages sent from the P -tensors in each layer F in to the P -tensors in following layer Fout are linear

and satisfy the conditions of Definitions 6 and 7
is a permutation equivariant MPNN in the sense of Definition 4.

Proof of Theorem 1. Let F in = {T in
1 , . . . , T

in
m} be a layer of P -tensors that sends messages to another layer

Fout = {T out
1 , . . . , T out

m }. Let F in′
= {T in

1
′, . . . , T in

m
′} and Fout′ = {T out

1
′, . . . , T out

m′ } be the corresponding layers
after permuting the vertices of the underlying graph by some permutation σ.

By the invariance of the subset selection rule, for each T in
a with reference domain D = (x1, . . . , xd), there is a

corresponding T in
a′

′ with reference domain D′ = (σ(xτ−1(1)), . . . , σ(xτ−1(d))) = σ • τ ◦ D for some permutation
τ ∈ Sd. Similarly, for any T out

a with reference domain D = (x1, . . . , xd), there is a corresponding T out
a′

′ with
reference domain D′

= (σ(xτ−1(1)), . . . , σ(xτ−1(d))) = σ • τ ◦ D for some τ ∈ Sd.

Assuming that F in is a covariant layer, its P -tensors before and after permutation are related by T in
a′

′ = τ ◦ T in
a .

If the message passing process mapping F in 7→ Fout is relabeling invariant and permutation equivariant in the
sense of Definitions 6 and 7,

T out
a′

′ = ϕD′,D′(T in
a′

′) = ϕσ•τ◦D, σ•τ◦D(T
in
a′

′) = τ ◦ ϕD,D(T
in
a) = τ ◦ T out

a

showing that Fout is also covariant. Since this relationship holds for any (F in,Fout) pair of layers, the network
as a whole is equivariant. ■

2 Additional experiments

Our experimental approach is designed to show how introducing higher order features can improve performence
amongst a wide range of datasets. To this end, we pick a model closely related to various ones found in the
literature, but modified to included these extra features and make use of the given P-Tensor operations. In
addition to the results presented in the main body of the paper we also ran experiments on the classic TU
datasets (Table 3).

Tested Variations

Cycle-Cycle interactions. In addition to having first order and zeroth order interactions, we also considered
cycle-cycle interactions, with their corrosponding five linear maps. We mainly considered this on ZINC, MolTox21,
and OGBG-MolHIV, but noticed a spike in validation volitility towards the end of training, damaging the
reliablility for the model in many cases. A similar issue came up in (Frasca et al., 2022) for training on OGBG-
MolHIV, and the issue was elieviated by using the ASAM optimizer (Kwon et al., 2021), which is designed to
reduce sharpness during training. We found that this had limited success on the same dataset for our model.
Our hypothesis is that for highly irregular interactions, batch normalization struggles to converge because of the
natural volitility that comes with such irregular structures.

Andrew Hands, Tianyi Sun, Risi Kondor

Dataset MUTAG PTC PROTEINS NCI1 IMDB-B IMDB-M
DCNN(Atwood and Towsley, 2016) – – 61.3 ± 1.6 56.6 ± 1.0 49.1 ± 1.4 33.5 ± 1.4
DGCNN(Zhang et al., 2018) 85.8 ± 1.8 58.6 ± 2.5 75.5 ± 0.9 74.4 ± 0.5 70.0 ± 0.9 47.8 ± 0.9
IGN(Keriven and Peyré, 2019) 83.9 ± 13.0 58.5 ± 6.9 76.6 ± 5.5 74.3 ± 2.7 72.0 ± 5.5 48.7 ± 3.4
PPGNs(Maron et al., 2019a) 90.6 ± 8.7 66.2 ± 6.6 77.2 ± 4.7 83.2 ± 1.1 73.0 ± 5.8 50.5 ± 3.6
Natural GN(de Haan et al., 2020) 89.4 ± 1.6 66.8 ± 1.7 71.7 ± 1.0 82.4 ± 1.3 73.5 ± 2.0 51.3 ± 1.5
GSN(Hu et al., 2019) 92.2 ± 7.5 68.2 ± 7.2 76.6 ± 5.0 83.5 ± 2.0 77.8 ± 3.3 54.3 ± 3.3
SIN(Bodnar et al., 2021b) – – 76.4 ± 3.3 82.7 ± 2.1 75.6 ± 3.2 52.7 ± 3.1
CIN(Bodnar et al., 2021a) 92.7 ± 6.1 68.2 ± 5.6 77.0 ± 4.3 83.6 ± 1.4 75.6 ± 3.7 52.7 ± 3.1
GIN(Xu et al., 2019) 89.4 ± 5.6 64.6 ± 7.0 76.2 ± 2.8 82.7 ± 1.7 75.1 ± 5.1 52.3 ± 2.8
GIN + ID-GNN(You et al., 2021) 90.4 ± 5.6 67.2 ± 4.3 75.4 ± 2.7 82.6 ± 1.6 76.0 ± 2.7 52.7 ± 4.2
DropEdge(Rong et al., 2020) 91.0 ± 5.7 64.5 ± 2.6 73.5 ± 4.5 82.0 ± 2.6 76.5 ± 3.3 52.8 ± 2.8
DS-GNN (GIN) (ND)(Bevilacqua et al., 2022) 89.4 ± 4.8 66.3 ± 7.0 77.1 ± 4.6 83.8 ± 2.4 75.4 ± 2.9 52.7 ± 2.0
DS-GNN (GIN) (EGO)(Bevilacqua et al., 2022) 89.9 ± 6.5 68.6 ± 5.8 76.7 ± 5.8 81.4 ± 0.7 76.1 ± 2.8 52.6 ± 2.8
DS-GNN (GIN) (EGO+) (Bevilacqua et al., 2022) 91.1 ± 7.0 69.2 ± 6.5 75.9 ± 4.3 83.7 ± 1.8 77.1 ± 3.0 53.2 ± 2.8
DSS-GNN (GIN) (ND) (Bevilacqua et al., 2022) 91.0 ± 3.5 66.3 ± 5.9 76.1 ± 3.4 83.6 ± 1.5 76.1 ± 2.9 53.3 ± 1.9
DSS-GNN (GIN) (EGO) (Bevilacqua et al., 2022) 91.0 ± 4.7 68.2 ± 5.8 76.7 ± 4.1 83.6 ± 1.8 76.5 ± 2.8 53.3 ± 3.1
DSS-GNN (GIN) (EGO+) (Bevilacqua et al., 2022) 91.1 ± 7.0 69.2 ± 6.5 75.9 ± 4.3 83.7 ± 1.8 77.1 ± 3.0 53.2 ± 2.4
GIN-AK+ (Zhao et al., 2022) 91.3 ± 7.0 67.8 ± 8.8 77.1 ± 5.7 85.0 ± 2.0 75.0 ± 4.2 –
SUN (GIN) (NULL)(Frasca et al., 2022) 91.6 ± 4.8 67.5 ± 6.8 76.8 ± 4.4 84.1 ± 2.0 76.2 ± 1.9 52.6 ± 3.2
SUN (GIN) (NM) (Frasca et al., 2022) 91.0 ± 4.7 67.0 ± 4.8 75.7 ± 3.4 84.2 ± 1.5 76.1 ± 2.9 53.1 ± 2.5
SUN (GIN) (EGO) (Frasca et al., 2022) 92.7 ± 5.8 67.2 ± 5.9 76.8 ± 5.0 83.7 ± 1.3 76.6 ± 3.4 52.7 ± 2.3
SUN (GIN) (EGO+) (Frasca et al., 2022) 92.1 ± 5.8 67.6 ± 5.5 76.1 ± 5.1 84.2 ± 1.5 76.3 ± 1.9 52.9 ± 2.8
Ours 92.9 ± 1.7 71.7 ± 5.2 75.9 ± 2.5 84.2 ± 1.7 77.9 ± 3.2 54.3 ± 2.0

Table 3: Summary of results on TUDatasets with baselines taken from (Frasca et al., 2022). Top three scores
are given in red, purple, and bold.

Implementation

We implemented our algorithm in Pytorch (Paszke et al., 2019) using PyTorch Geometric (Fey and Lenssen,
2019). To add some encapsulation and improve runtime, we utilized pytorch lightning (Falcon and The Py-
Torch Lightning team, 2019) along with TensorBoard for visualization (Abadi et al., 2015). For cycle finding,
we implemented (Ferreira et al., 2014), and ran it along with all other structure map finding during prepro-
cessing. Thus, during runtime the only computations involving the structure of the graphs were the scatter
operations themselves. We ran our experiments on an NVIDIA GeForce GTX 1080. As for running time, on
MolHIV a training runs averaged 69.3 ± 1.2 minutes. The source code of our implementation can be found at
https://github.com/arhands/ptensors.

Hyperparameter Selection

Aside from some initial variations for designing our model, we limited our hyperparameter search space to
primarily consider learning rates, the number of layers used, and the reductions used between cycles and edges.
Initial testing revealed high validation volitility, similar to that described in (Frasca et al., 2022), but we found
that this was partially mitigated by reducing the momentum used in batch normalization, so we also considered
that as part of our hyperparameters.

Our experimental setup for ZINC/ZINC-10K, and MolHIV is based on (Bodnar et al., 2021a; Sardellitti et al.,
2021), while our setup for Tox21 is based on (Fey et al., 2020). We base our experimental setup for the TUDatasets
on (Frasca et al., 2022), utilizing the same hyperparameter grid and base node/edge embeddings.

3 Elementary discussion of our models

For completeness in the following we give an elementary description of one of our models, showing how most
P-tensor operations, at least in the first order case, can be implemented with customary GNN operations.

We will use µi to denote a generic multilayer perceptrion (MLP) with the input parameters concatenated together
channel-wise. In our experiments, each linear layer is followed by a batch normalization layer (Ioffe and Szegedy,
2015) and then a ReLU activation, unless specified otherwise. We also set multilayer MLPs to have double the
hidden channels within their respective internal layers. Let G = (V,E) be a simple undirected graph. Let Xv

and Xe be a zeroth order representation of the vertices and edges in G, respectively. To help simplify notation,
we shall consider a given edge ei,j = {i, j} = ej,i.

Our model can be then be described as a sequence of layers, each allowing for interactions between subgraphs of
G. To begin with, we shall define how cycles and vertices interact. Then, in each layer of our model, we capture

https://github.com/arhands/ptensors

P-tensors: a General Framework for Higher Order Message Passing in Subgraph Neural Networks

the expressive power of MPNNs by transferring from vertices to edges, and then back to vertices.

Y v
i = µ1

Xv
i ,

∑
eij∈E

µ2

(
Xe

ei,j , X
v
i +Xv

j

) (9)

Where i ∈ V , µ1 contains two layers, and µ2 has a single layer. As can be seen in the above equation, the inner
sum corresponds to the single linear map from vertices to edges, and the outer sum corresponds to the other
direction. Similarly, we get the incoming messages from vertices to edges using a single transfer operation.

Y v→e
ei,j = µ3

(
Xe

ei,j , X
v
i +Xv

j

)
(10)

So far, this can largely be seen as classical message passing. However, where things get more interesting when
we consider the interactions between edges. Let Xc denote a representation of selected cycles on G (see hyper-
parameter subsection for per-dataset details) and, in similar fashion to (Bodnar et al., 2021a), let β↓(e) denote
the cycles that contain a given edge e and β↑(c) be the edges covered entirely by a given cycle c. Edges interact
with cycles in a way analogous to vertices to edges, with the key difference being cycles use a higher order rep-
resentation. First, consider the following equation depicting how edges send messages to cycles, denoting He→c

c,i

as the value received at index i ∈ V ∩ c for the first order P-tensor corresponding to a given cycle c.

He→c
c,i =

∑
e∈β↑(c)
i:∈e

Xe
e

∑
e∈β↑(c)

Xe
e (11)

This can be equated to the first summation in equation 9, but where we gain an additional linear map by
considering the overlapping vertices separately. It is worth noting for completeness that in practice we considered
both mean and sum reductions for the summations in 11. We can then get the update to a given cycle by
combining the incoming representation with the representation obtained by computing the internal linear maps
from Xc

c to itself.

Y c
c,i = µ4

(1 + ε1)

Xc
c,i

∑
j∈c

Xc
c,j

+He→c
c,i

 (12)

Where µ4 has two layers and ε1 is a learnable scalar. We also use He→c to compute messages sent back to edges
in a similar way to equation 9.

Y c→e
e = µ5

(1 + ε2)Y
e→v
e + (1 + ε3)

∑
c∈β↓(e)

∑
i∈e

µ6

(
Hc

c,i, X
c
c,i

)
+

∑
c∈β↓(e)

∑
i∈c

µ6

(
Hc

c,i, X
c
c,i

) (13)

Where µ5 has two layers, µ6 has one, and ε2 and ε3 are learnable weights. Here we can see a direct analogy
between this and equation 9, where µ5 corresponds to µ1 and µ6 corresponds to µ2. It is again worth noting
that there are many options for the given reductions, but we simply least summations for ease of notation. Since
edges receive messages from both vertices and cycles, we compute their new state via a single layer perceptron,
µ7:

Y e
e = µ7 (Y

v→e
e , Y c→e

e) (14)

	INTRODUCTION
	BACKGROUND: MESSAGE PASSING NEURAL NETWORKS
	Higher order equivariance
	Subgraph neural networks

	EQUIVARIANCE IN HIGHER ORDER SUBGRAPH NEURAL NETWORKS
	Two-level equivariance

	 P -TENSORS
	Message passing between P -tensors with the same reference domain
	Message passing between P-tensors with different reference domains

	 P -TENSORS IN GRAPH NEURAL NETWORKS
	Zeroth order message passing networks
	Edge networks
	Message passing between subgraphs

	EXPERIMENTAL RESULTS
	CONCLUSIONS
	Proofs
	Additional experiments
	Elementary discussion of our models

