
BlockBoost: Scalable and Efficient Blocking through Boosting

Thiago R. Ramos Rodrigo Schuller Alex A. Okuno Lucas Nissenbaum
USP IMPA NYU IMPA

Roberto I. Oliveira Paulo Orenstein
IMPA IMPA

Abstract

As datasets grow larger, matching and merg-
ing entries from different databases has be-
come a costly task in modern data pipelines.
To avoid expensive comparisons between en-
tries, blocking similar items is a popular pre-
processing step. In this paper, we introduce
BlockBoost, a novel boosting-based method
that generates compact binary hash codes
for database entries, through which block-
ing can be performed efficiently. The algo-
rithm is fast and scalable, resulting in com-
putational costs that are orders of magnitude
lower than current benchmarks. Unlike exist-
ing alternatives, BlockBoost comes with asso-
ciated feature importance measures for inter-
pretability, and possesses strong theoretical
guarantees, including lower bounds on criti-
cal performance metrics like recall and reduc-
tion ratio. Finally, we show that BlockBoost
delivers great empirical results, outperform-
ing state-of-the-art blocking benchmarks in
terms of both performance metrics and com-
putational cost.

1 INTRODUCTION

With larger datasets and disparate data sources be-
coming more prevalent, properly identifying, inte-
grating and linking entries across multiple datasets
is now a crucial step in many data pipelines.
This process of identifying and disambiguating en-
tities within one or more datasets is known as
entity matching, entity resolution or record link-

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

age [Christen, 2012b]. Applications include merg-
ing health records [Clark, 2004, Kelman et al., 2002],
aggregating census data [Winkler, 2006], identifying
war casualties [Steorts and Shrivastava, 2018], detect-
ing crimes [Jonas and Harper, 2006], cataloging bibli-
ographic citations or business products, and matching
genome sequences [Christen, 2012a]. By Rademacher
Inequality [2], we have that with probability at least A
fundamental issue in entity matching is the quadratic
number of comparisons necessary between database
items. Blocking [Steorts et al., 2014] is a popular tech-
nique to reduce the number of comparisons. It consists
of blocking together items considered similar (in some
metric) and only comparing entries within the same
block. For example, if the goal is to match a list of
customer purchase records to a list of customer ac-
counts, blocks may be based on the customer’s last
name, or the ZIP code of their billing address, or all
of these combined. If the blocks are well-crafted, this
can significantly improve the speed and efficiency of
the matching process.

A common way to create blocks is via hashing. A
hash function yields a low-dimension binary represen-
tation of each entry, called the hash code. Unlike
standard dimensionality-reduction methods, the fact
that this representation is binary is important to en-
sure fast retrieval time, which is of the utmost im-
portance for large databases [Andoni and Indyk, 2006,
Charikar, 2002, Kulis and Darrell, 2009]. An efficient
hash code maps similar candidates to the same hash
code and dissimilar items to different hash codes, sig-
nificantly reducing the associated number of compar-
isons and ensuring that similar items are indeed be-
tween these candidates.

However, devising good hash functions can
be very hard. An important technique to
create hash functions is locality-sensitive
hashing (LSH). In locality-sensitive hashing
[Andoni and Indyk, 2006, Har-Peled et al., 2012],
hash codes are built in such a way that points

BlockBoost: Scalable and Efficient Blocking through Boosting

that are close in some metric typically have similar
hash codes. It has many interesting theoretical
guarantees that are valid under broad circumstances.
However, the fact that LSH is agnostic to the
nature of the underlying data often leads to sub-
optimal performance. To address this issue, there
is a class of techniques known as learning to hash
[Andoni and Beaglehole, 2021, Weiss et al., 2008a,
Kulis and Darrell, 2009, Wang et al., 2018] that
aims to improve the hashing efficiency by learn-
ing hash functions tailored for specific tasks, such
as entity matching [Steorts et al., 2014]. While
this approach can improve performance, it also
introduces new challenges. For instance, meth-
ods like kernel LSH and TLSH maintain LSH’s
theoretical guarantees, but sacrifice scalability and ef-
ficiency [Kulis and Grauman, 2009, Jiang et al., 2014,
Oliver et al., 2013]. A more recent alternative
for blocking dispenses hashing altogether and is
based on deep learning embeddings applied to en-
tity matching [Thirumuruganathan et al., 2021a,
Mudgal et al., 2018]. These state-of-the-art solutions
use neural networks to learn feature representations
that capture the underlying relationships between
records, thus improving the accuracy and effectiveness
of blocking.

In this paper, we propose a new blocking method called
BlockBoost, that combines a boosting step that learns
a pairwise similarity function and a hashing step on
top of which blocking can be quickly performed (see
Figure 1). Since boosting is a fast machine learn-
ing method with great out-of-the-box performance,
BlockBoost works well for many different types of un-
structured data. Furthemore, unlike many traditional
blocking alternatives, it is possible to devise lower
bounds on BlockBoost’s performance in terms of rele-
vant metrics such as recall and reduction ratio. This
results in a data-driven technique that is efficient and
scalable, with provable guarantees. Finally, Block-
Boost achieves superior results to state-of-the-art deep
learning solutions on multiple datasets.

Main Contributions. We introduce BlockBoost, a
novel blocking algorithm that combines hashing and
boosting with several features:

• Efficient data compression: by learning hash
codes from data, BlockBoost is able to extract and
the combine the most distinguishing features and
automatically pick the right hash size; e.g., in one
of the empirical examples considered, it obtains
state-of-the-art results by compressing 9600 bits
in the original features into a 150-bit hash. Also,
hashing dimensions are ordered by importance,
and can be trimmed for further compression;

• Speed: the training is quasi-linear in the entries,
with linear prediction time; it is an order of mag-
nitude faster than alternatives, it scales to mil-
lions of entries and runs well on CPUs;

• Simple tuning: BlockBoost has a single, easy-to-
interpret hyperparameter;

• Theoretical results: unlike most blocking algo-
rithms, BlockBoost has theoretical guarantees on
its performance and lower bounds on popular met-
rics such as recall and reduction ratio;

• Interpretability: it is possible to interpret the con-
tribution of each data feature to the final hashes
by looking at importance measures derived from
boosting; this is useful to identify the most dis-
tinguishing features available in the data;

• Empirical performance: BlockBoost outperforms
state-of-the-art solutions on many canonical
blocking datasets in terms of recall, reduction ra-
tio and their harmonic average.

2 RELATED WORK

Due to its importance in data pipelines across
many applications, entity matching [Winkler, 2004,
Christophides et al., 2020, Elmagarmid et al., 2007] is
a widely studied field. While blocking is an old idea
[Fellegi and Sunter, 1969], it remains an active area of
research [Papadakis et al., 2020].

Several blocking techniques are based on exact
matches or certain blocking keys, such as attribute
matching [Azzalini et al., 2020] and token blocking
[O’Hare et al., 2019]. However, many real-world data
possesses unnormalized or corrupted data, posing a se-
rious challenge to such methods [Zhang et al., 2020].
Because BlockBoost learns attributes through boost-
ing, it does not suffer from this problem.

There are also methods that do not require exact at-
tribute matching for block creation. For example, the
canopy clustering algorithm [McCallum et al., 2000]
groups together items based on the similarity of cer-
tain fields using a clustering algorithm. However, it is
slow and requires the tuning of several hyperparame-
ters to obtain a competitive performance. BlockBoost,
on the other hand, has a single hyperparameter.

Hashing-based blocking methods, such as LSH,
are closer in spirit to our approach. They
partition records to the same blocks if they
share the same hash value, using a pre-
specified random hash function. For example, in
[Steorts et al., 2014, Steorts and Shrivastava, 2018],
community detection techniques [Oliver et al., 2013]

T. Ramos, R. Schuller, A. Okuno, L. Nissenbaum, R. Oliveira, P. Orenstein

Figure 1: Overview of how BlockBoost performs blocking through (i) boosting and (ii) hashing.

and clustering algorithm [Paulevé et al., 2010]
were used as a post-processing steps to LSH
and lead to good results in entity matching.
There are also learning to hash algorithms
[Andoni and Beaglehole, 2021, Weiss et al., 2008a,
Kulis and Darrell, 2009, Wang et al., 2018] that try to
learn the hash functions via a training stage or refine
already existing hash functions to lessen the correla-
tions and redundancies between bits [Liu et al., 2024].
However, they are typically not employed for block-
ing due to scalability issues with learning overly
complex algorithms [Kulis and Grauman, 2009,
Jiang et al., 2014, Oliver et al., 2013]. BlockBoost, in
contrast, can be orders of magnitude faster.

In recent years, there has been a growing in-
terest in using deep learning embeddings to
enhance the performance of blocking in en-
tity matching [Thirumuruganathan et al., 2021a,
Mudgal et al., 2018]. These approaches are often-
times considered to be state-of-the-art, as they
leverage neural networks to learn intricate feature
representations that capture the inherent relationships
between records.

Finally, other works, such as [Kim et al., 2020] and
[Shakhnarovich, 2005], also employ boosting tech-
niques for hashing. Still their setting significantly dif-
fers from ours as they do not consider blocking for
entity matching. Indeed, [Kim et al., 2020] is con-
cerned with distance functions in metric spaces and
[Shakhnarovich, 2005] employ a gradient ascent algo-
rithm with no generalization results.

3 BLOCKBOOST

Given datasets A := {Aℓ}NA
ℓ=1 and B := {Br}NB

r=1,
both contained in a set X , and a relationship between
items ∼R, we want to find pairs (Aℓ, Br) such that
Aℓ ∼R Br, where we assume ∼R is unknown and must
be learned. In our entity matching application, Aℓ and
Br will correspond to entities in different datasets and
we will say that Aℓ ∼R Br if and only if Aℓ and Br are

the same entity. For ease of presentation, our setup as-
sumes two databases; however, the results hold for an
arbitrary number of data collections (or one collection
with many representations of the same item).

Our goal is to build a hash table for these items so
that, given an item Aℓ, one can find Br ∼R Aℓ with as
few table lookups as possible. To this end, we suppose
we have access to a training sample,

Strain,n := {((Ai, Bi), yi) ∈ (A× B)× {−1, 1}, i ∈ [n]},

such that, yi = 1 if Ai ∼R Bi and −1 otherwise. This
sample will be used in a training stage so our algo-
rithm can learn a similarity classifier via a sample of
similar/dissimilar items using boosting.

Our method consists of two steps:

Boosting step. Using boosting, we learn binary
classifiers {k∗t }Tt=1 over X , as well as convex weights
{α∗

t }Tt=1 for these classifiers. Then, given items
A ∈ A and B ∈ B, we construct a similarity func-
tion f∗(A,B) =

∑T
t=1 α

∗
t k

∗
t (A)k∗t (B). In this step,

weights α∗
t are expected to be large when the prod-

uct k∗t (A)k∗t (B) correlates strongly with the similarity
relation A ∼R B, and consequently f∗(A,B) is close
to +1 when A ∼R B and f∗(A,B) is close to −1 when
A ̸∼R B.

Hashing step. From the {α∗
t , k

∗
t }Tt=1 learned in the

previous step, various techniques can be employed to
create hash codes for blocking. In this paper, we fo-
cus on using the similarity function learned in the
boosting to create blocks via a weighted hamming
distance between pairs. The Supplementary Mate-
rial discusses another plausible option based on LSH
[Andoni and Indyk, 2006, Har-Peled et al., 2012].

We now consider each of the above steps in further
detail.

3.1 Boosting Step

Fix a family K of binary classifiers k : X → {−1,+1}
and a max number of iterations Tmax ∈ {1, 2, . . . }. To

BlockBoost: Scalable and Efficient Blocking through Boosting

Algorithm 1 Boosting step
Input: Strain,n = ((Ai, Bi), yi)

n
i=1, max number of itera-

tions Tmax ∈ N, binary family K
1: for i← 1 to n do
2: Q1(i)← 1

n
3: end for
4: t← 1
5: T ← Tmax

6: while t ≤ Tmax do
7: k∗

t ← classifier in K with smallest error εt =∑n
i=1 Qt(i)1[yik

∗
t (Ai)k

∗
t (Bi)<0]

8: if εt ≥ 1/2 then
9: T ← t− 1

10: break
11: else
12: α′

t ← 1
2
log

(
1−εt
εt

)
13: Zt ← 2 [εt(1− εt)]

1/2

14: for i← 1 to n do
15: Qt+1(i)←

Qt(i) exp(−α′
tyik

∗
t (Ai)k

∗
t (Bi))

Zt

16: end for
17: end if
18: t← t+ 1
19: end while
20: for t← 1 to T do
21: α∗

t ←
α′
t∑T

s=1 α′
s

22: end for
Output: (α∗

t)
T
t=1, (k∗

t)
T
t=1

find the functions {k∗t }Tt=1 ∈ K and the convex weights
{α∗

t }Tt=1, with T ≤ Tmax, we use a boosting algorithm
over our training sample Strain,n = ((Ai, Bi), yi)

n
i=1;

see Algorithm 1. Note that T , rather than Tmax, is
the key determinant of the total number of binary
classifiers produced by our method. As we will demon-
strate in forthcoming discussions, it also plays a piv-
otal role in determining the ultimate level of compres-
sion achieved by our method, as it directly influences
the number of bits required for the hash.

While Algorithm 1 is reminiscent of AdaBoost
[Freund and Schapire, 1997], note we are optimizing
a function that is quadratic over the chosen classifier.
This is crucial for the hashing step, described in Sec-
tion 3.2. Also, there are classifier families for which
this optimization problem is feasible. An example is
the set of decision stumps Hstumps: for x ∈ Rd, if x(j)

indicates the j-th coordinate of x ∈ Rd, then

Hstumps =
{
1[x(j)<ξ] ∪ 1[x(j)≥ξ] : ξ ∈ R, j ∈ [p]

}
.

(1)

Intuitively, since the model is trying to predict matches
and non-matches, we expect that, given items A ∈ A
and B ∈ B, the learned function

f∗(A,B) =

T∑
t=1

α∗
t k

∗
t (A)k∗t (B), (2)

will be a good similarity measure between A and B.
That is, f∗(A,B) should be close to +1 when A ∼R B,
and close to −1 otherwise. Notice that, as usual in
boosting, larger weights α∗

t are given to the classifiers
k∗t that achieve the smallest values of boosted errors
εt. That is, our algorithm naturally gives more weight
to functions k∗t (A)k∗t (B) that correlate more strongly
to the similarity relation.

3.2 Hashing Step

We now use the convex weights (α∗
t)

T
t=1 and the func-

tions (k∗t)
T
t=1 to construct hash functions that will be

used for blocking. Our solution involves a straightfor-
ward calculation of a weighted Hamming distance over
hash codes to create the blocks.

For each element A ∈ X , we create a T -bit hash func-
tion g that is given by

g(A) = (k∗1(A), . . . , k∗T (A)),

where T is the number of iterations used in the boost-
ing step. Items (A,B) will be part of the same block
if for a given small δ ∈ [0, 1],

f∗(A,B) =

T∑
i=1

α∗
i k

∗
t (A)k∗t (B) ≥ 1− δ (3)

After creating the blocks, we can reduce direct com-
parisons only to pairs (A,B) in each block, sparing a
number of unnecessary comparisons when declaring a
match.

An additional benefit of the proposed hashing ap-
proach is that it allows for the expression in Equa-
tion 3 to be written as a weighted Hamming distance
between the hashes g∗(A) and g∗(B),

T∑
i=1

α∗
i k

∗
t (A)k∗t (B) =

T∑
i=1

α∗
i (1− |k∗t (A)− k∗t (B)|)

= 1−
T∑

i=1

α∗
i |k∗t (A)− k∗t (B)|,

since
∑T

t=1 α
∗
t = 1. Therefore, items (A,B) will be

part of the same block only if
T∑

i=1

α∗
i |k∗t (A)− k∗t (B)| ≤ δ, (4)

and this can be computed efficiently, as we discuss in
Section 5.6.

4 THEORETICAL GUARANTEES

For our theoretical analysis, we assume we have two
datasets A := {Aℓ}NA

ℓ=1 and B := {Br}NB
r=1, both con-

tained in a set X and a notion of similarity ∼R between

T. Ramos, R. Schuller, A. Okuno, L. Nissenbaum, R. Oliveira, P. Orenstein

items (Aℓ, Br). For entity matching problems, we as-
sume that Aℓ ∼R Br if and only if Aℓ and Br are the
same entity. All proofs for the results in this section
can be found in the Supplementary Material.

4.1 Performance Metrics

We first define traditional performance metrics for en-
tity matching. The goal of our method is to ensure
that, for each A ∈ A, one can find all similar B ∈ B
while doing as few pairwise comparisons as possible.
This is made precise by the Recall and the Reduction
Ratio (RR) metrics [Christen, 2012b]:

Recall :=
1

|M|
∑

(ℓ,r)∈M

1[Aℓ and Br share a block]; (5)

RR := 1− 1

|N |
∑

(ℓ,r)∈N

1[Aℓ and Br share a block], (6)

where N := [NA]× [NB] denotes all possible pairs and
M denotes the set of matching pairs:

M := {(ℓ, r) ∈ N , Aℓ ∼R Br, (Aℓ, Br) ∈ A× B}. (7)

Recall, also known as pair completeness, measures the
proportion of similar pairs that end up in the same
block, whereas RR, also known as efficiency, measures
the proportion of the NA ·NB potential pairwise com-
parisons that are avoided. Ideally, we would like to
find as many as possible matching pairs (Recall ≈ 1),
while avoiding as many comparisons as possible (RR
≈ 1).

To be able to compare performance through a single
real value, a commonly used metric in the blocking
literature [Azzalini et al., 2020] is the the harmonic
mean between Recall and RR, H(Recall,RR), given
by:

H(Recall,RR) := 2 · Recall · RR
Recall + RR

. (8)

4.2 Performance Guarantees

The notion of margin plays a central role in our anal-
ysis. It corresponds to our intuition that f∗ is a good
estimator of the similarity relation ∼R if it confidently
identifies matches and non-matches.
Definition 4.1 (θ-margin condition). For a fixed θ >
0, given classifiers {k∗t }Tt=1 and convex weights {α∗

t }Tt=1

we say that the similarity function f∗ defined in (2)
has θ-margin if, with probability at least 1−η over the
choice of (A,B, y), it holds that

f∗(A,B) > +θ, if y = +1, and
f∗(A,B) < −θ, if y = −1.

Our first theorem shows that the function f∗ ob-
tained in the boosting step via Algorithm 1, satisfies
the θ-margin condition with high probability. The
value of η depends on the Rademacher complexity
[Bartlett and Mendelson, 2002] of the base classifiers
K and the samples SA,n := {Ai}ni=1 and SB,n :=
{Bi}ni=1 given by

RSA,n
(K) =

1

n
Eσ

[
sup
k∈K

n∑
i=1

σiyik(Ai)

]
,

RSB,n
(K) =

1

n
Eσ

[
sup
k∈K

n∑
i=1

σiyik(Bi)

]
,

where σ1, . . . , σn are independent Rademacher random
variables, i.e., uniformly chosen in {−1, 1}.
Theorem 4.2 (Performance of the boosting step).
With probability at least 1 − δ, the function f∗

corresponding to the output of Algorithm 1 satis-
fies the θ-margin condition with the value of η :=
ηtrain(f

∗,Strain,n, θ, δ) given by:

η := 2T
T∏

t=1

ε
1/2−θ
t (1− εt)

θ−1/2

+
8

θ

(
RSA,n

(K) +RSB,n
(K)

)
+

√
log(1/δ)

2n
,

where εt > 0 are the errors defined in Algorithm 1.

Furthermore, if there exists γ > 0 such that for all
t ∈ [T], γ ≤ (1/2− εt) and θ ≤ 2γ, then the first term
in the right-hand side above decreases exponentially
with T .

Intuitively, the product term in the definition of
ηtrain(f,Strain,n, θ, δ) is a margin bound over the train-
ing data. When εt ≤ 1/2 − γ for all t, the
term will decay exponentially fast in T for suitable
choices of margin parameters θ. The other terms
in ηtrain(f,Strain,n, θ, δ) correspond to a generalization
bound used for the test error.

Our next result shows that when Definition 4.1 holds,
then the proposed hashing steps of BlockBoost pro-
duce high values of the Recall and RR metrics in ex-
pectation, with a suitable choice of hyperparameters.
Theorem 4.3 (Performance Weighted Hamming dis-
tance hashing). Consider databases A and B such that
|A| = NA, |B| = NB and let M be the set of matching
pairs as in 7. For given θ > 0 if the output f∗ of Al-
gorithm 1 satisfies the θ-margin condition and we set
1− θ > δ in 3.2, then BlockBoost achieves

E [RR] ≥ (1− η)

(
1− |M|

NA ·NB

)
,

E [Recall] ≥ 1− η

BlockBoost: Scalable and Efficient Blocking through Boosting

where expectations are with respect to the training step,
and Recall and RR are defined in (5) and (6).

Note that, in entity matching problems, it is usually
the case that |M| ≪ NA · NB. Thus, the expected
RR is close to 1, meaning that only a few comparisons
have to be made.

4.3 Algorithmic Complexity and Speed

We now analyze the algoritmic complexity and speed
of BlockBoost in each step.

Boosting. We use stump functions (1) as the family
of base classifiers. As described in [Mohri et al., 2012],
to determine the stump with the minimal weighted
error at each round of boosting we can presort each
component in O(n log n) time with a total computa-
tional cost of O(nd log n). For a given component,
there are only n+ 1 possible distinct thresholds, since
two thresholds between the same consecutive compo-
nent values are equivalent. To find the best threshold
at each round of boosting, all of these possible n+1 val-
ues can be compared, which can be done in O(n) time.
Thus, the total computational complexity of the algo-
rithm for T rounds of boosting is O(nd log n+ ndT).

Hashing and Blocking. Our binary hashing, with
their low number of bits, allow for faster construc-
tion of candidate pairs compared to floating-point vec-
torizations. As a comparison, DeepBlocker’s algo-
rithm [Thirumuruganathan et al., 2021a], one of the
fastest blocking alternatives, uses a NVIDIA V100
GPU and the well-optimized FAISS library, and
still took 34 minutes for a dataset of 1 million en-
tries [Thirumuruganathan et al., 2021b]. In contrast,
BlockBoost achieved the same empirical performance
in 2 minutes using a consumer-grade i7 CPU.

5 EXPERIMENTS

Our code is available at https://github.com/
thiagorr162/blockboost. See the Supplementary
Material for further details regarding the experiments.

5.1 Datasets

We make use of canonical blocking datasets that
are sourced from a broad spectrum of domains
and span a wide range of sizes as shown in Ta-
ble 1. They are all publicly available and have
been used in previous work on entity matching
[Steorts et al., 2014, Steorts and Shrivastava, 2018,
Thirumuruganathan et al., 2021a, Christen, 2012b,
Christen, 2012a, Köpcke et al., 2010]. Further
datasets are considered in the Supplementary Mate-
rial.

The datasets are divided into train, validation, and
test sets, with 15%, 15%, and 70% of the total entries,
respectively. Additionally, we ensure that the distri-
bution of matches in each fold aligns with these pro-
portions. The train set is used for models that require
a training phase and the validation set is employed for
adjusting hyperparameters, as needed. Note Block-
Boost only has the single parameter δ in (4); in prac-
tice, T is chosen large enough that Algorithm 1 hits
the stopping condition in line 8. Lastly, the test set
is utilized to evaluate the performance metrics defined
in Section 4.1.

We opted to use small training and validation propor-
tions to more accurately represent a real-world sce-
nario where a blocking model must be applied, but
there are limited labeled examples available.

5.2 Benchmark Models

BlockBoost is compared against the following well-
known methods for blocking in entity matching.

• Canopy [McCallum et al., 2000]: groups records
into blocks based on the similarity of certain
fields, using a clustering algorithm. For our
experiments, we utilized the implementation in
[CanopyByPython, 2018].

• K-Means locality-sensitive hashing (KLSH)
[Paulevé et al., 2010]: uses k-means algorithm
to construct a low-dimensional projection of the
data. We use the code in [klsh, 2020] for the
algorithm.

• Transitive locality-sensitive hashing (TLSH)
[Oliver et al., 2013] uses a community detection
technique to find similar entities. Our code
follows [tlsh, 2020], which implements the work
[Steorts et al., 2014].

• Spectral hashing (Spect) [Weiss et al., 2008b]: this
learn to hash method uses a graph partition-
ing relaxation that is closely related to seman-
tic hashing. We use the implementation in
[LearnHash, 2018].

• AGHasher (AG) [Liu et al., 2011]: a learn to
hash method automatically finds compact hash
codes using graph-based neighborhood structure
in the data. Our experiments follow the code in
[AGHasher, 2022].

• DeepBlocker [Thirumuruganathan et al., 2021a]:
a state-of-the-art blocking algorithm for entity
matching using deep learning. We included the
three distinct neural network architectures avail-
able as individual models: CTT, Autoencoder

https://github.com/thiagorr162/blockboost
https://github.com/thiagorr162/blockboost

T. Ramos, R. Schuller, A. Okuno, L. Nissenbaum, R. Oliveira, P. Orenstein

0.2 0.4 0.6 0.8 1.0
1e6

0

100

200

300

400 Multithread training
Single thread training

(a) Training cost in second.

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0

5

10

15

20

25 Embedding cost
String to float in C (atof)

(b) Embedding cost in seconds.

0.2 0.4 0.6 0.8 1.0
1e6

0

25

50

75

100

(c) Blocking cost in seconds.

Figure 2: BlockBooster’s cost in seconds on an i7 processor, as the size of the artificially created dataset based on
restaurant gets larger. For n = 106, BlockBoost’s blocking step takes at most 116 seconds, while DeepBlocker’s
CTT takes over 34 minutes on an NVIDIA V100 GPU.

Table 1: Baseline datasets for blocking, and compression (in bits) achieved by BlockBoost’s hashes over the
original set of features

dataset entities matches tables features BlockBoost bit compression
abt_buy 2,173 1,097 2 4 9×
amz_gg 4,589 1,300 2 5 23×

dblp_acm 4,908 2,224 2 4 8×
dblp_sch 66,879 5,347 2 4 5×

restaurant 865 752 1 4 2×
rldata500 500 50 1 8 7×
rldata10k 10,000 1,000 1 8 6×

musicbrainz 19,375 10,000 5 7 3×
wm_amz 24,583 1,145 2 29 101×

(AE), and Hybrid, which integrates both the
CTT and Autoencoder models. We use the of-
ficial code repository provided by the authors
[Thirumuruganathan et al., 2021b].

5.3 Vectorization

To ensure consistency with the original implementa-
tions of the baseline blocking models, we employed two
distinct types of vectorization.

Shingling and MinHash. This vectorization
is used for Canopy, TLSH and KSLH base-
line models, as described in [Steorts et al., 2014,
Steorts and Shrivastava, 2018] and implemented in
[klsh, 2020, tlsh, 2020]. We first apply the shingling
technique to construct a sparse numerical representa-
tion of our textual data. Then, we apply the MinHash
algorithm [Broder et al., 2000, Steorts et al., 2014] to
transform our sparse numerical information into a
dense one.

SIF Embedding. We utilized this vectorization tech-
nique for both DeepBlocker and our own model, Block-
Boost. SIF (Smooth Inverse Frequency) embedding
[Arora et al., 2017] is a vector space model commonly
used in NLP tasks, which assigns weights to each word
vector based on their frequency in a reference corpus.

This weighting scheme allows the resulting document
vectors to capture the semantic meaning of the text
while reducing the impact of frequent but less infor-
mative words.

5.4 Training Setup

For most of our benchmark models, training is per-
formed on the training data fold. The excep-
tion is DeepBlocker, which does not require train-
ing data to work and instead relies on generating ar-
tificial training data. In particular, entities in the
test set are compared against other, distinct enti-
ties in the test set (these will be assumed to be
non-matches) or against a slightly perturbed ver-
sion of the original entity (these will be declared
matches). This allows the method to train on a sig-
nificantly larger number of examples. Further details
regarding this methodology are explained in detail in
[Thirumuruganathan et al., 2021a]. BlockBoost works
with either of these training setups. Below, we mimic
DeepBlocker’s approach so our method also does not
require training data to work. We employ a ratio of 16
negative examples to each positive example in all our
experiments.

BlockBoost: Scalable and Efficient Blocking through Boosting

5.5 Blocking Performance

Table 2 displays the performance of BlockBoost
against all the benchmarks on the datasets from Table
1. Note each of DeepBlocker’s possible configurations
(CTT, AE, Hybrid) are considered separately. Over-
all, BlockBoost (BB) displays the best average har-
monic mean of Recall and RR, and even when it is not
the top-performing algorithm, it is generally close to
it. The Supplementary Material includes the individ-
ual values of Recall and RR out of which the harmonic
mean was derived. Note that only DeepBlocker, in its
best possible network configuration, was able to rival
BlockBoost’s performance.

5.6 Computational Performance

Even when BlockBoost is trained on millions of pairs,
it only takes a couple of minutes on a modern CPU,
and, as Figure 2a shows, it scales well as n gets larger.
This is crucial for a blocking algorithm, since the num-
ber of pairs to be matched in real-world examples can
often become unwieldy (and are, after all, the main
motivation for blocking algorithms). After that, the
process of mapping entries from the initial vectoriza-
tion to the binary embedding is so fast that it’s domi-
nated by the low level C function atof, which converts
text to floats from the csv file (see Figure 2b).

The binary nature of our embedding, coupled with
the low number of bits that the boosting produces,
means that the set of candidate pairs can be con-
structed much faster than it would be possible with
floating-point based vectorizations (see Table 1 for the
bit compression Blockboost’s hashes achieve versus the
original feature set on each dataset). As a conse-
quence, BlockBoost on CPU achieves a 17× speedup
over DeepBlocker using an NVIDIA V100 GPU. To
make sense of this, note that our binary embeddings,
evaluated at Table 2, have an average size of 158 bits,
and a maximum size of 256 bits. This is particularly
useful for any x86 CPU with SSE4, since they can
compute the number of 1s in a word in a single cycle.
Modern GPUs also have instructions dedicated to this
operation.

Finally, since the dimensions of the embedding are or-
dered by importance, the least significant bits can be
trimmed to make the operations even faster.

5.7 Scalability

The primary motivation for employing blocking meth-
ods is to effectively handle large datasets. Here,
we present a comparative analysis of timing be-
tween BlockBoost and baseline models using the
musicbrainz dataset across varying sizes: 20k, 200k,

and 2m entries, with BlockBoost emerging as the most
scalable option by a significant margin.

For the dataset comprising 2 million entries, only
BlockBoost managed to generate predictions within
the allocated time (11 hours) and memory constraints
(32GB). Table 3 displays performance metrics across
increasing dataset sizes (20k, 200k, 2m), underscoring
a key advantage of BlockBoost: not only does it deliver
high accuracy, but it also operates at orders of magni-
tude faster speeds compared to other benchmarks.

5.8 Interpretability

At each iteration t = 1, . . . , T of the boosting pro-
cess, BlockBoost produces a stump function k∗t and a
weight α∗

t . The weight can be interpreted as an in-
dication of how significant the stump is for matching
entities. Additionally, as the stump is defined by a pro-
jected feature j∗t and a threshold ξ∗t , the weight also
indicates how strongly such feature correlates with the
similarity relation between items. Thus, the α∗

t can be
understood as giving an automatic feature importance.

Figure 3: Feature relevance identified by BlockBoost
during the boosting step for the musicbrainz dataset.

This can be very helpful when interpreting which fea-
tures carry most of the signal for finding matches. This
also allows for discarding irrelevant features for added
speed, as well as simple attribute matching based on
the selected ones. As an example, Figure 3 shows
the importance of some features in the musicbrainz
dataset when each one is vectorized separately. Here,
importance is understood by the sum of weights asso-
ciated to each feature.

Intuitively, if someone intends to correlate songs from
various databases, BlockBoost considers the length
and title as the most critical attributes. The track
number on a CD emerges as a surprisingly reliable
third option. This is because it’s a numeric value and
is typically automatically extracted, whereas other en-
tries involve textual data and potential manual input.
Notably, by generating hashes exclusively from the
concatenation of the length and number (both numeric

T. Ramos, R. Schuller, A. Okuno, L. Nissenbaum, R. Oliveira, P. Orenstein

Table 2: Comparison table of the evaluation metric H(Recall,RR), defined in 8, with the best model per dataset
in bold. BlockBoost (BB) has the best performance overall.

Dataset BB Canopy KLSH TLSH Spect AG CTT AE Hybrid
abt_buy 0.911 0.761 0.365 0.625 0.263 0.503 0.907 0.817 0.822
amz_gg 0.877 0.605 0.515 0.281 0.518 0.539 0.810 0.849 0.849
dblp_acm 0.993 0.850 0.895 0.861 0.662 0.696 0.993 0.996 0.998
dblp_sch 0.989 0.891 0.691 0.543 0.602 0.670 0.991 0.980 0.983
restaurant 0.988 0.785 0.937 0.838 0.519 0.728 0.997 0.997 0.997
rldata500 0.992 0.829 0.969 0.982 0.691 0.717 0.966 0.966 0.966
rldata10k 0.999 0.929 0.926 0.987 0.755 0.800 0.957 0.928 0.926
musicbrainz 0.991 0.101 0.944 0.950 0.662 0.737 0.994 0.992 0.992
wm_amz 0.943 0.017 0.495 0.005 0.577 0.558 0.943 0.917 0.942
average 0.965 0.641 0.749 0.675 0.583 0.660 0.951 0.938 0.942

Table 3: Benchmark against baseline models in the musicbrainz dataset, with 20k, 200k and 2m entries.
Instances exceeding 11 hours are categorized as Out of Time (OOT), while those surpassing 32gb are designated
as Out of Memory (OOM). BlockBoost-1bi includes computational optimizations, as detailed in Section D of the
Supplementary Material.

Model Time 20k Time 200k Time 2m H(Recall, RR) 2m
blockboost-1bi 0.55 sec 5.61 sec 1 min 55 sec 0.9887
blockboost 4.3 sec 45.4 sec 14 min 76 sec 0.9895
deepblocker 12 min 35 sec 2 hrs 17 min 57 sec OOM OOM
tlsh 2 min 18 sec 52 min 23 sec OOT OOT
klsh 14 min 41 sec OOT OOT OOT
canopy 14 min 10 sec OOM OOM OOM

fields, although not an immediately obvious choice),
one can achieve a high blocking performance with a
H(Recall,RR) close to 0.91.

6 CONCLUSION

This paper introduces BlockBoost, a novel blocking
method for entity resolution that is data-driven, effi-
cient, and scalable. The results show that combining
boosting techniques with hashing leads to a powerful
blocking method that empirically outperforms state-
of-the-art hashing and deep learning models in terms
of scalability and performance over several canonical
blocking datasets.

Beyond speed and efficiency, the algorithm is also
interpretable and theoretically sound. It outputs
weights that reflect variable importance measures, pro-
viding users with insight into the most relevant data
features for the blocking process. BlockBoost also
comes with guaranteed lower bounds on each perfor-
mance through an extension of margin theory results.

Finally, BlockBoost is able to generate hashes whose
size are automatically determined in a data-dependent
fashion, leading to great compression and fast retrieval
time. Since the dimensions of the hash are ordered by

importance, one can trim the hashes for added time
and better compression.

As a possible future avenue for this line of research,
we believe BlockBoost can be adapted to many other
applications beyond entity matching, such as image
retrieval and similarity search, while carrying the same
advantages as presented above.

References

[AGHasher, 2022] AGHasher (2022). Repository:
Aghasher. https://github.com/dstein64/
aghasher.

[Andoni and Beaglehole, 2021] Andoni, A. and Bea-
glehole, D. (2021). Learning to hash robustly, guar-
anteed.

[Andoni and Indyk, 2006] Andoni, A. and Indyk, P.
(2006). Near-optimal hashing algorithms for ap-
proximate nearest neighbor in high dimensions. In
2006 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’06), pages 459–468.

[Arora et al., 2017] Arora, S., Liang, Y., and Ma, T.
(2017). A simple but tough-to-beat baseline for sen-
tence embeddings. In 5th International Conference

https://github.com/dstein64/aghasher
https://github.com/dstein64/aghasher

BlockBoost: Scalable and Efficient Blocking through Boosting

on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net.

[Azzalini et al., 2020] Azzalini, F., Jin, S., Renzi, M.,
and Tanca, L. (2020). Blocking techniques for en-
tity linkage: A semantics-based approach. Data Sci.
Eng., 6:20–38.

[Bartlett and Mendelson, 2002] Bartlett, P. and
Mendelson, S. (2002). Rademacher and Gaus-
sian complexities: Risk bounds and structural
results. Journal of Machine Learning Research,
3(Nov):463–482.

[Broder et al., 2000] Broder, A. Z., Charikar, M.,
Frieze, A. M., and Mitzenmacher, M. (2000). Min-
wise independent permutations. Journal of Com-
puter and System Sciences, 60(3):630–659.

[CanopyByPython, 2018] CanopyByPython (2018).
Repository: Canopy. https://github.com/
AlanConstantine/CanopyByPython.

[Charikar, 2002] Charikar, M. S. (2002). Similarity
estimation techniques from rounding algorithms. In
Proceedings of the Thiry-Fourth Annual ACM Sym-
posium on Theory of Computing, STOC ’02, page
380–388, New York, NY, USA. Association for Com-
puting Machinery.

[Christen, 2012a] Christen, P. (2012a). Data Match-
ing: Concepts and Techniques for Record Link-
age, Entity Resolution, and Duplicate Detection.
Springer Publishing Company, Incorporated.

[Christen, 2012b] Christen, P. (2012b). A survey of
indexing techniques for scalable record linkage and
deduplication. IEEE Transactions on Knowledge
and Data Engineering, 24(9):1537–1555.

[Christophides et al., 2020] Christophides, V.,
Efthymiou, V., Palpanas, T., Papadakis, G.,
and Stefanidis, K. (2020). An overview of end-to-
end entity resolution for big data. ACM Comput.
Surv., 53(6).

[Clark, 2004] Clark, D. E. (2004). Practical introduc-
tion to record linkage for injury research. Injury
Prevention, 10(3):186–191.

[Elmagarmid et al., 2007] Elmagarmid, A. K., Ipeiro-
tis, P. G., and Verykios, V. S. (2007). Duplicate
record detection: A survey. IEEE Transactions on
Knowledge and Data Engineering, 19(1):1–16.

[Fellegi and Sunter, 1969] Fellegi, I. P. and Sunter,
A. B. (1969). A theory for record linkage. Journal of
the American Statistical Association, 64(328):1183–
1210.

[Freund and Schapire, 1997] Freund, Y. and Schapire,
R. E. (1997). A decision-theoretic generalization of
on-line learning and an application to boosting. J.
Comput. Syst. Sci., 55(1):119–139.

[Har-Peled et al., 2012] Har-Peled, S., Indyk, P., and
Motwani, R. (2012). Approximate nearest neigh-
bor: Towards removing the curse of dimensionality.
Theory of Computing, 8(14):321–350.

[Jiang et al., 2014] Jiang, K., Que, Q., and Kulis, B.
(2014). Revisiting kernelized locality-sensitive hash-
ing for improved large-scale image retrieval.

[Jonas and Harper, 2006] Jonas, J. and Harper, J. C.
(2006). Effective counterterrorism and the limited
role of predictive data mining.

[Kelman et al., 2002] Kelman, C., Bass, J., and Hol-
man, C. (2002). Research use of linked health data
- a best practice protocol. Australian and New
Zealand journal of public health, 26:251–5.

[Kim et al., 2020] Kim, S., Yang, H., and Kim, M.
(2020). Boosted locality sensitive hashing: Dis-
criminative binary codes for source separation. In
ICASSP 2020 - 2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 106–110.

[klsh, 2020] klsh (2020). Repository: Klsh. https:
//github.com/cleanzr/klsh.

[Köpcke et al., 2010] Köpcke, H., Thor, A., and
Rahm, E. (2010). Evaluation of entity resolution
approaches on real-world match problems. Proc.
VLDB Endow., 3(1–2):484–493.

[Kulis and Darrell, 2009] Kulis, B. and Darrell, T.
(2009). Learning to hash with binary reconstructive
embeddings. In Bengio, Y., Schuurmans, D., Laf-
ferty, J., Williams, C., and Culotta, A., editors, Ad-
vances in Neural Information Processing Systems,
volume 22. Curran Associates, Inc.

[Kulis and Grauman, 2009] Kulis, B. and Grauman,
K. (2009). Kernelized locality-sensitive hashing for
scalable image search. In 2009 IEEE 12th Interna-
tional Conference on Computer Vision, pages 2130–
2137.

[LearnHash, 2018] LearnHash (2018). Repository:
Learnhash. https://github.com/galad-loth/
LearnHash.

[Liu et al., 2024] Liu, H., Zhou, W., Wu, Z., Zhang,
S., Li, G., and Li, X. (2024). Refining codes for
locality sensitive hashing. IEEE Transactions on
Knowledge and Data Engineering, 36(3):1274–1284.

https://github.com/AlanConstantine/CanopyByPython
https://github.com/AlanConstantine/CanopyByPython
https://github.com/cleanzr/klsh
https://github.com/cleanzr/klsh
https://github.com/galad-loth/LearnHash
https://github.com/galad-loth/LearnHash

T. Ramos, R. Schuller, A. Okuno, L. Nissenbaum, R. Oliveira, P. Orenstein

[Liu et al., 2011] Liu, W., Wang, J., Kumar, S.,
Chang, S.-F., and Scheffer, T. (2011). Hashing with
graphs proceedings of the 28th international confer-
ence on machine learning. ICML 2011, pages 1–8.

[McCallum et al., 2000] McCallum, A., Nigam, K.,
and Ungar, L. H. (2000). Efficient clustering of
high-dimensional data sets with application to ref-
erence matching. In Proceedings of the Sixth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’00, page 169–
178, New York, NY, USA. Association for Comput-
ing Machinery.

[Mohri et al., 2012] Mohri, M., Rostamizadeh, A.,
and Talwalkar, A. (2012). Foundations of Machine
Learning. The MIT Press.

[Mudgal et al., 2018] Mudgal, S., Li, H., Rekatsinas,
T., Doan, A., Park, Y., Krishnan, G., Deep, R., Ar-
caute, E., and Raghavendra, V. (2018). Deep learn-
ing for entity matching: A design space exploration.
In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD ’18, page 19–34,
New York, NY, USA. Association for Computing
Machinery.

[O’Hare et al., 2019] O’Hare, K., Jurek-Loughrey, A.,
and Campos, C. d. (2019). A Review of Unsu-
pervised and Semi-supervised Blocking Methods for
Record Linkage, pages 79–105. Springer Interna-
tional Publishing, Cham.

[Oliver et al., 2013] Oliver, J., Cheng, C., and Chen,
Y. (2013). Tlsh – a locality sensitive hash. In
2013 Fourth Cybercrime and Trustworthy Comput-
ing Workshop, pages 7–13.

[Papadakis et al., 2020] Papadakis, G., Skoutas, D.,
Thanos, E., and Palpanas, T. (2020). Blocking and
filtering techniques for entity resolution: A survey.
ACM Comput. Surv., 53(2).

[Paulevé et al., 2010] Paulevé, L., Jégou, H., and Am-
saleg, L. (2010). Locality sensitive hashing: a com-
parison of hash function types and querying mech-
anisms. Pattern Recognition Letters, 31(11):1348–
1358.

[Shakhnarovich, 2005] Shakhnarovich, G. (2005).
Learning task-specific similarity.

[Steorts and Shrivastava, 2018] Steorts, R. C. and
Shrivastava, A. (2018). Probabilistic blocking with
an application to the syrian conflict.

[Steorts et al., 2014] Steorts, R. C., Ventura, S. L.,
Sadinle, M., and Fienberg, S. E. (2014). A com-
parison of blocking methods for record linkage.

[Thirumuruganathan et al., 2021a]
Thirumuruganathan, S., Li, H., Tang, N., Ouzzani,
M., Govind, Y., Paulsen, D., Fung, G., and Doan,
A. (2021a). Deep learning for blocking in entity
matching: A design space exploration. Proc. VLDB
Endow., 14(11):2459–2472.

[Thirumuruganathan et al., 2021b]
Thirumuruganathan, S., Li, H., Tang, N., Ouz-
zani, M., Govind, Y., Paulsen, D., Fung, G.,
and Doan, A. (2021b). Repository: Deepblocker.
https://github.com/qcri/DeepBlocker.

[tlsh, 2020] tlsh (2020). Repository: Tlsh. https:
//github.com/cleanzr/tlsh.

[Wang et al., 2018] Wang, J., Zhang, T., song, j.,
Sebe, N., and Shen, H. T. (2018). A survey on learn-
ing to hash. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(4):769–790.

[Weiss et al., 2008a] Weiss, Y., Torralba, A., and Fer-
gus, R. (2008a). Spectral hashing. In Koller, D.,
Schuurmans, D., Bengio, Y., and Bottou, L., ed-
itors, Advances in Neural Information Processing
Systems, volume 21. Curran Associates, Inc.

[Weiss et al., 2008b] Weiss, Y., Torralba, A., and Fer-
gus, R. (2008b). Spectral hashing. Advances in neu-
ral information processing systems, 21.

[Winkler, 2004] Winkler, W. E. (2004). Methods for
evaluating and creating data quality. Information
Systems, 29(7):531–550. Data Quality in Coopera-
tive Information Systems.

[Winkler, 2006] Winkler, W. E. (2006). Overview of
record linkage and current research directions. Tech-
nical report, BUREAU OF THE CENSUS.

[Zhang et al., 2020] Zhang, W., Wei, H., Sisman, B.,
Dong, X. L., Faloutsos, C., and Page, D. (2020).
AutoBlock. In Proceedings of the 13th International
Conference on Web Search and Data Mining. ACM.

https://github.com/qcri/DeepBlocker
https://github.com/cleanzr/tlsh
https://github.com/cleanzr/tlsh

BlockBoost: Scalable and Efficient Blocking through Boosting

Checklist

1. For all models and algorithms presented, check if
you include:
(a) A clear description of the mathematical set-

ting, assumptions, algorithm, and/or model.
[✓Yes/No/Not Applicable]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[✓Yes/No/Not Applicable]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [✓Yes/No/Not Applica-
ble]

2. For any theoretical claim, check if you include:
(a) Statements of the full set of assumptions of

all theoretical results. [✓Yes/No/Not Appli-
cable]

(b) Complete proofs of all theoretical results.
[✓Yes/No/Not Applicable]

(c) Clear explanations of any assumptions.
[✓Yes/No/Not Applicable]

3. For all figures and tables that present empirical
results, check if you include:
(a) The code, data, and instructions needed to

reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [✓Yes/No/Not Applicable]

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
[✓Yes/No/Not Applicable]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [✓Yes/No/Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [✓Yes/No/Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:
(a) Citations of the creator If your work uses ex-

isting assets. [✓Yes/No/Not Applicable]
(b) The license information of the assets, if ap-

plicable. [✓Yes/No/Not Applicable]
(c) New assets either in the supplemental

material or as a URL, if applicable.
[✓Yes/No/Not Applicable]

(d) Information about consent from data
providers/curators. [Yes/No/✓Not Appli-
cable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Yes/No/✓Not Applica-
ble]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Yes/No/✓Not Ap-
plicable]

(b) Descriptions of potential participant
risks, with links to Institutional Review
Board (IRB) approvals if applicable.
[Yes/No/✓Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Yes/No/✓Not Appli-
cable]

Supplementary Material

A PROOFS FOR SECTION 4

Proof of Theorem 4.2. We need to define the following sets:

K2 := {fk : (A,B) 7→ k(A)k(B), k ∈ K} ,

and the convex hull conv(K2) of K2 given by,

conv(K2) :=

{
f : (A,B) 7→

T∑
t=1

αtfkt(A,B) : T ≥ 1, αt ≥ 0, fkt ∈ K2,

T∑
t=1

αt = 1

}

=

{
f : (A,B) 7→

T∑
t=1

αtkt(A)kt(B) : T ≥ 1, αt ≥ 0, kt ∈ K,
T∑

t=1

αt = 1

}
.

To show that the output of Algorithm 1 indeed satisfies Condition 4.1 we prove the following stronger result.
Theorem A.1. Consider an iid sample Strain,n = ((ai, bi), yi)

n
i=1 with ((ai, bi), yi) drawn from P . Then, given

θ ∈ (0, 1) and δ ∈ (0, 1), with probability at least 1− δ, for any f ∈ conv(K2)

P [yf(A,B) ≤ θ] ≤ ηtrain(f,Strain,n, θ, δ),

where

ηtrain(f,Strain,n, θ, δ) :=
1

n

n∑
i=1

1[yif(ai,bi)≤2θ] +
8

θ
RStrain,n(K) +

√
log(1/δ)

2n
.

Supplementary Material

Proof. First, consider the surrogate margin loss function given by:

φθ(x) = min
(
1,max

(
1− x

θ
, 0
))

.

and the following set:

Φθ := {φθ,f : ((a, b), y) 7→ φθ(yf(a, b)− θ) : f ∈ conv(K2)} .

By Rademacher Inequality [3], we have that with probability at least 1− δ, for all f ∈ conv(K2):

E [φθ(yf(A,B)− θ)] ≤ 1

n

n∑
i=1

φθ(yif(ai, bi)− θ) + 2RStrain,n(Φθ) +

√
log(1/δ)

2n
.

Using the fact that 1[x≤θ] ≤ φθ(x− θ), we have that with probability at least 1− δ, for all f ∈ conv(K2)

P [yf(a, b) ≤ θ] ≤ 1

n

n∑
i=1

φθ(yif(ai, bi)− θ) + 2RStrain,n(Φθ) +

√
log(1/δ)

2n
.

Since φθ is 1/θ-Lipschitz, by Talagrand’s Lemma and the fact that RStrain,n(conv(K2)) = RStrain,n(K2) [1], we
have with probability at least 1− δ, for all f ∈ conv(K2):

P [yf(A,B) ≤ θ] ≤ 1

n

n∑
i=1

φθ(yif(ai, bi)− θ) +
2

θ
RStrain,n

(K2) +

√
log(1/δ)

2n
.

Using the fact that φθ(x− θ) ≤ 1[x≤2θ], with probability at least 1− δ, for all f ∈ conv(K2):

P [yf(A,B) ≤ θ] ≤ 1

n

n∑
i=1

1[yif(ai,bi)≤2θ] +
2

θ
RStrain,n

(K2) +

√
log(1/δ)

2n
.

Now we just need to bound RStrain,n
(K2) in terms of RStrain,n

(K) so our final result depends only on the
Rademacher complexity of the family K which is usually known. But note that

RStrain,n(K2) =
1

n
Eσ

[
sup
k∈K2

n∑
i=1

σiyik(ai)k(bi)

]

=
1

n
Eσ

[
sup
k∈K

n∑
i=1

σiyik(ai)k(bi)

]

≤ 1

n
Eσ

[
sup

k1,k2∈K

n∑
i=1

σiyik1(ai)k2(bi)

]

=
1

n
Eσ

[
sup

k1,k2∈K

n∑
i=1

σik1(ai)k2(bi)

]

=
1

n
Eσ

[
sup

k1,k2∈K

n∑
i=1

σi

(
1− (k1(ai)− k2(bi))

2

2

)]

= 0 +
1

n
Eσ

[
sup

k1,k2∈K

n∑
i=1

σi
(k1(ai)− k2(bi))

2

2

]

=
1

2n
Eσ

[
sup

k1,k2∈K

n∑
i=1

σiL (k1(ai)− k2(bi))

]
where,

L(x) =

{
x2, if x ∈ [−2, 2]
4, otherwise.

Since L is 4-Lipschitz, by Talagrand’s Lemma, we have that, with probability at least 1− δ, for all f ∈ conv(K2)

P [yf(A,B) ≤ θ] ≤ 1

n

n∑
i=1

1[yif∗(ai,bi)≤2θ] +
8

θ

(
RSA,n

(K) +RSB,n
(K)
)
+

√
log(1/δ)

2n
.

B DATASET DETAILS

Below, we provide an overview of each database utilized in our research paper. In all the datasets, every entry
includes both record information and a distinct record ID, which serves as a unique identifier for each entry
across the entire database, encompassing all potential tables. Additionally, each entry is associated with an
entity ID, allowing us to identify and group together entities that are identical, regardless of their location in
different tables.

The code necessary to download and process each dataset can be accessed from our GitHub repository https:
//github.com/thiagorr162/blockboost.

abt_buy

This dataset contains name, description, manufacturer and price of product data from abt.com and buy.com. It
is available at https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_
for_entity_resolution.

amz_gg

This dataset contains name, description, manufacturer and price product data from Amazon and Google.
It can be downloaded via https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_
datasets_for_entity_resolution.

dblp_acm

This dataset contains title, authors, venue and year information of bibliographic data from DBLP and ACM.
We downloaded the dataset from https://dbs.uni-leipzig.de/research/projects/object_matching/
benchmark_datasets_for_entity_resolution.

dblp_sch

This dataset contains title, authors, venue and year information of bibliographic data from DBLP and Google
Scholar. It is available at https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_
datasets_for_entity_resolution.

musicbrainz

This dataset contains number, title, length, artist, album, year and language information of music data
from MusicBrainz. This dataset can be found at https://dbs.uni-leipzig.de/research/projects/object_
matching/benchmark_datasets_for_entity_resolution.

restaurant

This dataset contains name, address, location and cuisine type of restaurants data. It can be downloaded from
https://github.com/cleanzr/restaurant.

rldata

These datasets contain individuals’ first and last names, as well as their birth year, birth month, and birth day.
It is available at https://github.com/cran/RecordLinkage/.

Supplementary Material

wm_amz

This dataset comprises a wide range of product information from both Walmart and Amazon. It includes
details such as brand, title, shelf description, short and long descriptions, model number, weight, and various
other relevant attributes. It can be found at https://github.com/anhaidgroup/deepmatcher/blob/master/
Datasets.md.

C REDUCTION RATIO AND RECALL VALUES

In this section, we show the Recall, RR and H(Recall, RR) values for all models across all datasets. The results
are sorted in descending order based on the H(Recall, RR) value.

C.1 Dataset abt_buy

Model Recall RR H(Recall, RR)
blockboost 0.896 7 0.926 5 0.911 3
ctt 0.840 1 0.986 8 0.907 6
hybrid 0.704 6 0.986 8 0.822 2
ae 0.697 8 0.986 8 0.817 5
canopy 0.719 9 0.807 2 0.761 0
tlsh 0.505 8 0.820 9 0.625 9
aghasher 0.477 0 0.532 5 0.503 2
klsh 0.228 3 0.917 5 0.365 6
spectral 0.155 8 0.843 4 0.263 1

C.2 Dataset amz_gg

Model Recall RR H(Recall, RR)
blockboost 0.831 2 0.929 3 0.877 5
hybrid 0.751 5 0.977 9 0.849 9
ae 0.751 5 0.977 9 0.849 9
ctt 0.685 6 0.991 2 0.810 6
canopy 0.628 4 0.583 6 0.605 2
aghasher 0.512 0 0.570 6 0.539 7
spectral 0.516 5 0.519 9 0.518 2
klsh 0.393 3 0.746 5 0.515 2
tlsh 0.166 9 0.894 0 0.281 3

C.3 Dataset dblp_acm

Model Recall RR H(Recall, RR)
hybrid 0.999 4 0.996 9 0.998 1
ae 0.996 8 0.996 9 0.996 8
ctt 0.991 0 0.996 9 0.993 9
blockboost 0.988 3 0.996 9 0.992 6
klsh 0.816 0 0.992 3 0.895 6
tlsh 0.769 1 0.978 4 0.861 2
canopy 1.000 0 0.739 7 0.850 4
aghasher 0.723 0 0.672 3 0.696 7
spectral 0.770 6 0.581 3 0.662 7

C.4 Dataset dblp_sch

Model Recall RR H(Recall, RR)
ctt 0.983 6 0.998 9 0.991 2
blockboost 0.984 0 0.994 4 0.989 1
hybrid 0.967 3 0.999 9 0.983 3
ae 0.962 3 0.999 9 0.980 7
canopy 0.867 0 0.917 9 0.891 7
klsh 0.529 2 0.998 9 0.691 9
aghasher 0.703 1 0.640 4 0.670 3
spectral 0.474 2 0.826 4 0.602 6
tlsh 0.373 0 0.999 0 0.543 1

C.5 Dataset musicbrainz

Model Recall RR H(Recall, RR)
ctt 0.990 8 0.997 9 0.994 3
hybrid 0.986 9 0.997 9 0.992 4
ae 0.986 5 0.997 9 0.992 2
blockboost 0.986 6 0.995 2 0.990 9
tlsh 0.905 3 1.000 0 0.950 3
klsh 0.894 6 1.000 0 0.944 4
aghasher 0.728 0 0.747 7 0.737 7
spectral 0.616 2 0.716 1 0.662 4
canopy 0.053 2 1.000 0 0.101 0

C.6 Dataset restaurant

Model Recall RR H(Recall, RR)
ctt 1.000 0 0.995 2 0.997 6
hybrid 1.000 0 0.994 4 0.997 2
ae 1.000 0 0.994 4 0.997 2
blockboost 1.000 0 0.977 8 0.988 8
klsh 0.903 8 0.974 4 0.937 8
tlsh 0.730 8 0.982 2 0.838 0
canopy 0.766 0 0.805 7 0.785 4
aghasher 0.641 0 0.842 8 0.728 2
spectral 0.359 0 0.941 6 0.519 8

C.7 Dataset rldata500

Model Recall RR H(Recall, RR)
blockboost 0.985 7 0.999 3 0.992 5
tlsh 0.985 7 0.979 0 0.982 3
klsh 0.971 4 0.968 1 0.969 7
ctt 0.942 9 0.992 1 0.966 9
ae 0.942 9 0.990 6 0.966 2
hybrid 0.942 9 0.990 6 0.966 1
canopy 0.842 9 0.816 8 0.829 6
aghasher 0.657 1 0.826 7 0.732 2
spectral 0.657 1 0.729 8 0.691 6

Supplementary Material

C.8 Dataset rldata10000

Model Recall RR H(Recall, RR)
blockboost 0.998 2 0.999 5 0.998 8
tlsh 0.981 1 0.994 0 0.987 5
ctt 0.921 4 0.995 6 0.957 1
canopy 0.896 4 0.964 2 0.929 1
ae 0.870 0 0.996 2 0.928 8
klsh 0.876 8 0.982 0 0.926 4
hybrid 0.864 3 0.998 1 0.926 4
aghasher 0.748 6 0.860 1 0.800 5
spectral 0.682 9 0.846 2 0.755 8

C.9 Dataset wm_amz

Model Recall RR H(Recall, RR)
ctt 0.901 2 0.990 3 0.943 6
blockboost 0.930 1 0.957 1 0.943 4
hybrid 0.899 5 0.990 3 0.942 7
ae 0.849 2 0.996 8 0.917 1
spectral 0.499 2 0.684 5 0.577 3
aghasher 0.512 6 0.613 8 0.558 6
klsh 0.347 6 0.863 4 0.495 6
canopy 0.008 8 0.990 3 0.017 4
tlsh 0.002 8 0.998 7 0.005 6

D BLOCKING AT SCALE

In this section, we explore how BlockBoost performs for very large datasets. In this case, several of the bench-
marking blocking algorithms either become out of time (over 11 hours) or out of memory (over 32GB). For
this reason, these experiments were not included in the main paper, but we include them in the Supplementary
Material as they give further evidence of BlockBoost’s scalability.

In small datasets, increasing the size of the training set by choosing random pairs as non-matches is a good
unsupervised strategy to improve the predictive performance, since the chance of picking matches is very low.
However, using a training dataset larger than a couple of million entries yields diminishing returns and can hinder
scalability. Moreover, very large sets of candidate sets might not be desirable in some practical applications.
To represent the two aforementioned scenarios, i.e. small and large datasets respectively, two experiments were
included:

• BlockBoost: For each matching pair in the training dataset, select 16 non-matches. The best maximum
hamming distance is selected using a validation dataset.

• BlockBoost-1bi: For each matching pair in the training dataset, select 1 non-match. The maximum
hamming distance is also selected using a validation dataset, but the possibilities are restricted to values
that produce a set of candidate pairs with less than 1 billion entries.

As shown in Figure 1, the price in recall of limiting the size of the set of candidate pairs is low in the
musicbrainz_2m dataset, and this restriction prevents IO bottlenecks. All of the benchmarks ran on an In-
tel(R) Core(TM) i7-10700 CPU @ 2.90GHz, with 32 GB of DDR4 – 2666 MT/s.

D.1 Predictive Performance – musicbrainz_2m

In this subsection, we analyze the predictive performance of blocking benchmarks, as well as BlockBoost, over
the data set musicbrainz_2m, with 2 million entries, which can be downloaded in https://dbs.uni-leipzig.
de/research/projects/object_matching/benchmark_datasets_for_entity_resolution. As claimed in the

main text, we find that BlockBoost can scale to this size and still maintain a competitive performance in terms
of recall and reduction ratio.

D.1.1 Recall and Reduction Ratio
Model Recall RR H(Recall, RR)
ctt OOM OOM OOM
hybrid OOM OOM OOM
ae OOM OOM OOM
blockboost 0.9848 0.9941 0.9895
blockboost-1bi 0.9791 0.9984 0.9887
tlsh OOT OOT OOT
klsh OOT OOT OOT
canopy OOM OOM OOM

Figure 1: Recall as a function of the size of the set of candidate pairs in the musicbrainz_2m dataset, with
proportion of non-matches of 1. Note the the maximum value of x is 1/100th of the total number of possible
pairs. Computing the reduction ratio and recall for all of the possible maximum hamming distances takes 113.3
seconds on this dataset.

D.1.2 Bit Compression

Here we show the compression (in bits) achieved by BlockBoost’s hashes over the original set of features.

• BlockBoost: 11x

• BlockBoost-1bi: 12x

D.2 Time

In this section, we compare BlockBoost against other benchmark models on the musicbrainz_20 dataset with
20,000 entries, musicbrainz_200 dataset with 200,000 entries, and musicbrainz_2m dataset with 2 million
entries, showcasing the execution time in each case. Each of these datasets can be downloaded from https://dbs.
uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution.

• musicbrainz_20k

Supplementary Material

klsh: 14 min 41 sec
tlsh: 2 min 18 sec
canopy: 14 min 10 sec
DeepBlocker: 12 min 35 sec
blockboost: 4.3 sec (size of train = 112234)
blockboost-1bi: .55 sec (size of train = 13204)

• musicbrainz_200k
klsh: OOT
tlsh: 52 min 23 sec
canopy: OOM
DeepBlocker: 2 hrs 17 min 57 sec
blockboost: 45.4 sec (size of train = 1112820)
blockboost-1bi: 5.61 sec (size of train = 130920)

• musicbrainz_2m
klsh: OOT
tlsh: OOT
canopy: OOM
DeepBlocker: OOM
blockboost: 14 min 76 sec (size of train = 11032354)
blockboost-1bi: 1 min 55 sec (size of train = 1297924)

E BLOCKING VS LEARNING-TO-HASH

In this section, we discuss important differences between the fields of blocking and learning-to-hash (as well as
some similarities).

Blocking involves grouping together items that are considered similar based on a specific metric so that it is
possible to forgo a quadratic number of comparisons and only focus on comparing entries within the same
block,as we detail in Sections 1 and 2 in the main paper. For instance, if the goals it to match customer purchase
records to customer accounts, blocks can be created using attributes such as last name or ZIP code of the billing
address, or a combination of these. Well-designed blocks can greatly enhance the speed and efficiency of the
matching process. One way to create such blocks is via hashing (although there are important alternatives). An
effective hash code ensures that similar items are grouped together by mapping them to the same hash code,
while dissimilar items are assigned different hash codes.

While the field of learning-to-hash also deals with developing effective hash functions, it is typically concerned
with the nearest neighbors problem, rather than blocking. The nearest neighbor problem focuses on finding
the most similar data points to a given query point within a dataset regardless of their specific identities or
relationships. In contrast, blocking is a technique used to group together similar items based on shared attributes
or criteria.

This difference gives more structure to blocking problems, which are typically exploited by benchmark algorithms.
For instance, in entity matching, which is a typical application for blocking, there exists a specific notion of
similarity, i.e., duplicated records that represent the same entity. In this context, the occurrence of duplicate
entries often follows specific patterns, such as typos or minor textual variations. Understanding these patterns
is crucial as it allows us to develop tailored techniques that improve the blocking process. Examples of such
techniques include the use of shingling and minhash vectorization [5, 4], as well as the construction of artificial
training sets, which is the case of DeepBlocker [6]. These approaches depend significantly on these specific
textual heuristics to achieve successful outcomes, and it is not immediately obvious how to apply them to other
learning-to-hash problems.

It is also important to highlight that the research tools employed in the literature vary between blocking and
learning-to-hash. These two approaches have different focuses and evaluation criteria, leading to the use of
distinct benchmark models and databases for assessing their performance. For instance, in blocking, in addition to
recall, we also consider the reduction ratio metric. If we apply this measure to a widely used datasets in learning-
to-hash literature like MNIST or CIFAR-10, we observe that since there are only 10 classes of objects, the best
possible reduction ratio for each class would be 90%. This would represent a perfect blocking scenario, but even
then, we would still need to perform numerous comparisons within each block (e.g. (10%×60, 000)2 = 36, 000, 000
in CIFAR-10). This is not the case for most blocking problems, where we usually have just a few duplicated
entries, easily leading to reduction ratio metrics close to 99.9% (as is the case for BlockBoost in some of the
datasets in the paper).

In spite of these differences, one can use still apply learning-to-hash for blocking. As argued above, we expect
that they result in suboptimal performance; that is indeed what happens in the paper with two traditional
learning-to-hash algorithms (Aghasher and Spectral Hashing). In all of the datasets considered, BlockBoost
enjoyed better performance and speed. Conversely, as alluded to in the paper’s conclusion, one could adapt
BlockBoost to solve typical learning-to-hash problems; that is an avenue for future work.

F BLOCKBOOST WITH LSH-INSPIRED BLOCKING

In this section, we present an alternative to the weighted hamming distance hashing step in the original paper
based on the theory of Locality-sensitive hashing (LSH). We believe that this alternative solution can be used
to solve classic problems in the learning-to-hash field.

The algorithm: The algorithm produces k-bit hash functions g1, . . . , gL such that

g1,j = k∗j with probability α∗
j . (1)

Items (A,B) will be part of the same block if there exists at least one hash function gi with gi(A) = gi(B).

Algorithm 1 LSH inspired hashing
Input: k, L ∈ N, convex weights (α∗

t)
T
t=1, classifiers (k∗t)

T
t=1

1: for i← 1 to L do
2: for j ← 1 to k do
3: gi,j ← k∗t with probability α∗

t

4: end for
5: gi ← (gi,1, . . . , gi,k)
6: end for

Output: (g1, . . . , gL)

Why it works: To understand why this hashing technique works, note that, given f∗ as in (2), for any
(A,B) ∈ A × B, and any function gi,j constructed as before, since gi,j is {−1,+1}-valued and gi,j = k∗t with
probability αt for each t ∈ [T], it is easy to show that

Pgi,j [gi,j(A) = gi,j(B)] = Egi,j

[
1 + gi,j(A)gi,j(B)

2

]
=

1

2
+

f∗(A,B)

2
.

This implies that, if f∗(A,B) properly approximates the similarity notion A ∼R B, it is expected that 1 ≈
Pgi,j [gi,j(A) = gi,j(B)] ≥ p1 > 1/2 for most similar pairs, whereas 0 ≈ P [gi,j(A) = gi,j(B)] ≤ p2 < 1/2 for most
dissimilar pairs. This intuition can be made precise (see Supplementary Material, where values p1 and p2 will
be derived from a margin property of the function f∗). Here, k and L are hyperparameters used to amplify the
gap between the values p1 and p2.
Lemma F.1. Let f∗ be as in (2). Then for any (A,B) ∈ A× B, and any function gi,j as in Algorithm 1,

Pgi,j [gi,j(A) = gi,j(B)] =
1 + f∗(A,B)

2
,

where the probability is over the choice of gi,j.

Supplementary Material

Proof. Since gi,j is {−1,+1}-valued,

Pgi,j [gi,j(A) = gi,j(B)] = Egi,j

[
1 + gi,j(A)gi,j(B)

2

]
.

Now recall that gi,j = k∗t with probability αt for each t ∈ [T].

Theorem F.2 (Performance of the LSH inspired hashing). Consider databases A and B such that |A| = NA
and |B| = NB M be the set of matching pairs. For given θ > 0 and γ ∈ (0, 1), if the output f∗ of Algorithm 1
satisfies the θ-margin condition and we set:

ρ :=
log
(

2
1+θ

)
log
(

2
1−θ

) ∈ [0, 1),

k := dlog 2
1+θ

NA ·NBe,

L :=

⌈
2(NA ·NB)

ρ log(1/γ)

1 + θ

⌉
,

then the LSH inspired hashing method achieves

E [Recall] ≥ (1− γ)(1− η)

E [RR] ≥
(
1− |M|+ L

NA ·NB

)
(1− η) ,

where expectations are with respect to the randomness in the hash code, and Recall and RR are defined in (5)
and (6).

Proof. This proof is an adaptation of [2]. Since f∗ satisfies Condition 4.1 for θ > 0, we know by Lemma F.1 that
for all A,B in a set E of P -measure ≥ 1− η

if A ∼R B, then Pgi,j [gi,j(A) = gi,j(B)] ≥ 1 + θ

2
= p1

if A 6∼R B, then Pgi,j [gi,j(A) = gi,j(B)] ≤ 1− θ

2
= p2,

where P is as described in Section 4. For our next calculations assume we are conditioned to this event. Fix
k = dlog1/p2

NA ·NBe and letM be the set of matching pairs as defined in (7). We split the proof in the following
steps:

• Probability of finding correct matches. Suppose that A ∼R B and (A,B) ∈ E . By independence, for
i ∈ [L]

Pgi [gi(A) = gi(B)] = Pgi,j [gi,j(A) = gi,j(B)]
k

≥ pk1

≥ p
log1/p2

(NA·NB)+1

1

= p1p
log1/p2

(NA·NB)

1

= p1(NA ·NB)
−ρ,

where in the last equality we used a simple logarithm change of basis. That is,

Pgi [gi(A) 6= gi(B)] ≤ 1− p1(NA ·NB)
−ρ,

Thus, the probability of finding the correct match is

P [∃i ∈ {1, . . . , L}, gi(A) = gi(B)] = 1− P [∀i ∈ {1, . . . , L}, gi(A) 6= gi(B)]

= 1− Pgi [gi(A) 6= gi(B)]
L

≥ 1−
(
1− p1(NA ·NB)

−ρ
)L

hence, by setting L = log(1/γ)(NA·NB)ρ

p1
for γ ∈ (0, 1), we have that

P [∃i ∈ {1, . . . , L}, gi(A) = gi(B)] ≥ 1−
(
1− p1(NA ·NB)

−ρ
)L

≥ 1− e− log(1/γ)

= 1− γ.

• Expected Recall. By the previous item, we have

E [Recall] ≥ 1

|M|
∑

(ℓ,r)∈M

P [∃i ∈ {1, . . . , L}, gi(Aℓ) = gi(Br)|(A,B) ∈ E]P [E]

≥ (1− γ)(1− η).

• Probability of finding wrong matches. Suppose that A 6∼R B and (A,B) ∈ E . Then, for i ∈ [L]:

Pgi [gi(A) = gi(B)] = Pgi,j [gi,j(A) = gi,j(B)]
k

≤ pk2

≤ 1

NA ·NB
,

by our choice of k.

• Expected number of wrong matches. By the previous item, conditioned to (A,B) ∈ E , the random
variable that counts the number wrong matches found by gi

C(gi) =
∑

(ℓ,r) ̸∈M

1[gi(Aℓ)=gi(Br)]

follows a binomial distribution with parameter
(
NA ·NB − |M|, 1

NA·NB

)
, hence

Egi [C(gi)] ≤ 1,

therefore the number of total wrong collisions for gi is at most 1 and the number of total wrong collisions
for all gi for i ∈ {1, . . . , L} is at most L.

• Expected RR. By the previous item and the fact that Condition 4.1 holds with probability ≥ 1 − η, the
expected number of comparisons is

E [# comparisons] ≤
∑

(ℓ,r)∈[NA]×[NB]

P [∃i ∈ {1, . . . , L}, gi(Aℓ) = gi(Br)|(A,B) ∈ E]P [(A,B) ∈ E]

+ P [(A,B) 6∈ E]

≤
∑

(ℓ,r)∈M

P [∃i ∈ {1, . . . , L}, gi(Aℓ) = gi(Br)|(A,B) ∈ E] (1− η)

+
∑

(ℓ,r) ̸∈M

P [∃i ∈ {1, . . . , L}, gi(Aℓ) = gi(Br)|(A,B) ∈ E] (1− η) + η

≤ (|M|+ L)(1− η) + η.

Therefore, the expected RR satisfies

E [RR] ≥ 1− η −
(
|M|+ L

NA ·NB

)
(1− η).

The number of number of operations and the size of our data structure can be easily estimated using our
previous calculations, but can also be found in [2], Theorem 3.4.

Supplementary Material

Algorithmic complexity. The number of operations can be derived from the proof of Theorem F.2. It is
possible to show that if ξ := (NA · NB)

ρ/ log (2/(1 + θ)), then the algorithm requires at most O(ξ) distance
computations/evaluations of hash functions and the data structure uses at most O(ξ) words of space, in addition
to the space needed to store the dataset.

