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Abstract

As we expect to see a rapid integration of
generative models in our day to day lives, the
development of rigorous methods of evalua-
tion and analysis for generative models has
never been more pressing. Multiple works
have highlighted the shortcomings of widely
used metrics and exposed how they fail to
behave as expected in some settings. So far,
the response has been to use a variety of met-
rics that target different desirable and inter-
pretable properties such as fidelity, diversity,
and authenticity, to obtain a clearer picture
of a generative model’s capabilities. These
methods mainly focus on ordinal data and
they all suffer from the same unavoidable is-
sues stemming from estimating quantities of
high-dimensional data from a limited number
of samples. We propose to take an alternative
approach and to return to the synthetic data
setting where the ground truth is known. We
focus on nominal categorical data and intro-
duce an evaluation method that can scale to
the high-dimensional settings often encoun-
tered in practice. Our method involves suc-
cessively binning the large space to obtain
smaller probability spaces and coarser distri-
butions where meaningful statistical estimates
can be obtained. This allows us to provide
probabilistic guarantees and sample complex-
ities and we illustrate how our method can be
applied to distinguish between the capabilities
of several state-of-the-art categorical models.
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Figure 1: Overview of our coarsening evaluation
method. We move from a prohibitively large prob-
ability space Ω to a coarser probability space B, where
we can evaluate quantities of interest with statistical
significance.

1 INTRODUCTION

We are now able to generate realistic text (Ope-
nAI, 2023), images (Rombach et al., 2022), audio
speech (Shibuya et al., 2023) and videos (Yu et al.,
2023). In other words, given a set of samples x ∼ p(x)
associated with a very large probability space Ω, learn-
ing a distribution qθ that can generate “believable
samples” has largely been achieved, where “believable
samples” refer to samples x̂ where p(x̂) is high.

While impressive, this does not imply that the more
advanced task of learning the distribution, i.e., qθ = p,
has been solved. In fact, important issues indicative of
this shortcoming persist in the literature. Seemingly
well-performing generative models can fail to properly
handle Out-Of-Distribution (OOD) samples (Nalisnick
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et al., 2019; Yang et al., 2022; Wang et al., 2023), and
using data generated by those models is considered
problematic (Veselovsky et al., 2023; Shumailov et al.,
2023). Generative models and neural networks in gen-
eral tend to be overconfident in their prediction which
can contribute to model collapse in data generation, as
emphasized by Shumailov et al. (2023). These issues
imply that qθ ̸= p.

This shortcoming has mainly been attributed to the
inadequacy of our evaluation framework for generative
models (Alaa et al., 2022; Naeem et al., 2020). When
accessible, the most widely used metric is the empirical
negative log likelihood (NLL). In practice, even for
models where it is considered “available”, it is often
an approximation based on upper bounds. Although
principled, the reliance on the NLL of held out test
data has been associated with performance assessment
issues (Theis et al., 2016; Jiralerspong et al., 2023). A
simple example from (van den Oord and Schrauwen,
2014) shows how low NLL models can still generate
poor samples – a model based on the ground truth but
nearly completely corrupted with noise can still have a
high likelihood. Beyond this, sample-based estimators
of log likelihood metrics can fail to detect a model that
incorrectly identifies low probability regions (Nalisnick
et al., 2019). It is also challenging to interpret lower
bounds of the log-likelihood and determine how well a
model is actually approximating the distribution. As a
result, there have been persistent concerns about the
quality and utility of evaluation metrics (Theis et al.,
2016; Novikova et al., 2017; Wu et al., 2017; Sajjadi
et al., 2018; Borji, 2019; Garbacea et al., 2019; Zhou
et al., 2019; Caccia et al., 2020; Celikyilmaz et al., 2020;
Nagarajan et al., 2021; Thompson et al., 2022), and
developing expressive and robust evaluation metrics is
an active area of research (Alaa et al., 2022; Naeem
et al., 2020; Khayatkhoei and AbdAlmageed, 2023;
Jiralerspong et al., 2023).

While such efforts are moving in the right direction,
the sampling approximation error is too great to be
overcome if our goal is to meaningfully assess whether
p = qθ. The latest advancements in evaluation methods
that are targeting this goal (Alaa et al., 2022; Naeem
et al., 2020; Khayatkhoei and AbdAlmageed, 2023) all
heavily rely on having a meaningful distance metric for
the probability space, which is not available for general
categorical data. Moreover, high dimensionality is still
the main challenge that impedes reliable application of
these methods (Jiralerspong et al., 2023).

Consequently, we argue that for proper assessment, we
need to consider the synthetic setting where the ground
truth distribution p is known. Being able to ensure
that a model is behaving as expected in a controlled en-
vironment is a crucial part of model development. We

believe that the current lack of robust synthetic evalu-
ation is actively harming the development of research
in generative modeling. We emphasize that even for
this easier task, with known ground truth distribution,
for a probability space Ω, the provably optimal sam-
ple complexity (number of samples m) to distinguish
whether two distributions are either equal or ϵ-far in to-
tal variation distance dtv is of order m = Θ

(√
|Ω|
)
(Di-

akonikolas et al., 2021). The main issue is not that the
ground truth distribution is unknown; it is actually the
high-dimensionality. This motivates our proposal for a
categorical generative model evaluation framework.

At a high level, our solution involves coarsening the im-
practical Ω and performing statistical tests on smaller
induced probability spaces. A preliminary approach
towards the development of this work was described
in Regol et al. (2023). See Figure 1 for a high level
view of our proposal. This approach is sensible; if a
model is unable to assign the correct probability mass
to a set of elements of a coarsened space, then it is
necessarily also unable to assign the correct probabil-
ity mass to any partitioning of this set, including to
individual elements (which corresponds to the initial
probability space). Moreover, this approach provides
an interpretable evaluation procedure with statistical
guarantees. The framework allows us to assess how well
a generative model manages to avoid generating out-
of-distribution samples (i.e., samples where the true
distribution is zero). The framework also allows us to
detect when a generative model is overly concentrated,
i.e., it generates too many samples for elements that
have a high true probability. We can also gain better
insights into which types of distributions a particular
generative model can fit. We propose a procedure for
constructing a ground truth distribution that retains
key real-world dataset characteristics and illustrate how
this synthetic distribution can be used to meaningfully
rank four recent categorical generative models.

Our key contribution is the development of a novel
procedure for evaluating (multivariate) categorical gen-
erative models on synthetic data that 1) is designed for
the realistic large sample space setting (on the order of
billions of elements); 2) provides statistical guarantees;
3) is robust to different patterns of mismatch between
p, q; and 4) offers interpretable results.

2 RELATED WORK

Our work is related to recently proposed metrics for
evaluating generative models and also to distribution
testing. Aside from NLL, there are more task-oriented
methods of evaluation based on generated samples (In-
ception Score (IS) (Salimans et al., 2016) and Fréchet
Inception Distance (FID) (Heusel et al., 2017) metrics,
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for example). While effective, such task-focused as-
sessment procedures are not equipped to distinguish
between different types of failure (Sajjadi et al., 2018)
and are inherently tied to the task at hand. Cov-
erage metrics: Recent work has proposed metrics
to assess the mismatch between distributions (Sajjadi
et al., 2018; Kynkäänniemi et al., 2019; Naeem et al.,
2020; Djolonga et al., 2020; Liu et al., 2021; Alaa et al.,
2022) through the interpretable notions of precision
and recall, but the methods are only applicable to the
continuous or ordered discrete domain, because they
rely on access to a meaningful distance metric in the
distribution space. This interpretation has also been
called into question by recent works (Khayatkhoei and
AbdAlmageed, 2023; Jiralerspong et al., 2023). Please
see Appendix 9 for a more detailed discussion of related
work.

Distribution testing. The problem of assessing how
close a discrete distribution q is to some reference dis-
tribution p is well studied and is known as the identity
testing problem (Batu et al., 2001; Diakonikolas et al.,
2021; Canonne, 2020b, 2022). Most work on this topic
aims to provide algorithm existence results and to de-
velop complexity bounds on the number of samples
required to estimate quantities of interest, such as the
total variation distance. See (Canonne, 2020b) for a
review. The focus of this line of research is not em-
pirical, so proposed algorithms often involve constants
that cannot be evaluated, which makes it challenging
to apply them in practice.

3 PROBLEM SETTING

We consider discrete distributions q1, q2, . . . , qN and p
defined over a nominal categorical probability space
Ω. Our goal is to assess which generative model qi is
the closest to the ground truth distribution p in total
variation: dtv(p, q) =

1
2 ||p− q||1, where p denotes the

vectorized probability mass function (pmf) values of
p (with some arbitrary but consistent ordering). In
our setting, since we define a synthetic dataset, we
have complete access to and control over p. So that we
can apply our procedure to all generative models, we
assume that we only have sample access to q. The size
of the sample space Ω is assumed to be prohibitively
large for standard statistical tests in the original space.

We also require that the evaluation framework provides
interpretable results. Hence, from the results of our
procedure, we should be able to answer the following
questions tied to common failures of modern generative
models:

Does the generative model generate OOD sam-
ples? Given a ground truth distribution p, we can

define the OOD set as Ωo = {x; p(x) = 0}. Hence, we
want a metric that can assess qθ(Ω

o).

Is the generative model over-concentrated?
Given a ground truth distribution p and a speci-
fied threshold η , we can define a “likely” set as
Ωlikely = {x; p(x) ≥ η}. Hence, we want a metric
that can assess how far qθ(Ω

likely) is from p(Ωlikely).

4 METHODOLOGY

Preliminaries We denote all partitions of a set Ω
by ρ(Ω) = {{A1, . . . }| ∪i Ai = Ω, |Ai| > 0,Aj ∩ Ai =
∅ ∀i ̸= j} and all partitions of size k by ρk(Ω) = {B ∈
ρ(Ω), |B| = k}. Given a probability space Ω , we
can construct a new smaller probability space from a
partitioning Bk ∈ ρk(Ω) provided that k < |Ω|. Any
distribution p associated with the initial space Ω will

then induce a binned distribution pB
k

on this new space:

pB
k

Ai
≜
∑

x∈Ai
px. Consequently, we can readily see by

the triangle inequality that the total variation error
between two distributions p, q on space Ω is always
equal to or greater than the error on a partitioned
space, i.e.,

B ∈ ρ(Ω) =⇒ dtv(p
B, qB) ≤ dtv(p, q). (1)

Therefore, if we build a sequence of probability spaces
{B1,B2 . . . ,BK} with the initial space BK ∈ ρ(Ω) as
the end point and construct each preceding space as
a partitioning of the previous (Bi−1 ∈ ρ(Bi)), we will
have that the dtv error and the granularity (|B|) will be
increasing over the sequence, i.e., |B1| ≤ · · · ≤ |Bi−1| ≤
|Bi| ≤ · · · ≤ |Ω|, and:

dtv(p
Bi−1

, qB
i−1

) ≤ dtv(p
Bi

, qB
i

) · · · ≤ dtv(p, q). (2)

4.1 Proposal

Our proposal can be summarized as testing a generative
model at increasingly fine granularities by considering
the binned distributions over a sequence of probability
spaces {B1,B2 . . . }. If a model q1 is close enough to

p over Bi : dtv(p
Bi

, qB
i

1 ) ≤ ϵtest, but model q2 is not:

dtv(p
Bi

, qB
i

2 ) ≥ ϵtest, this allows us to state that, at
granularity |Bi|;

dtv(p
Bi

, qB
i

1 ) ≤ dtv(p
Bi

, qB
i

2 ). (3)

It is important to note that this result does not allow
us make any statement with respect to the initial space.
For example, it does not allow us to state definitively
that dtv(p, q1) ≤ dtv(p, q2).
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Limitation. This is an important limitation of our
work. We cannot guarantee that the ordering of the
generative models in the original probability space will
not be reversed in the induced probability space, i.e.,
dtv(p, q1) ≤ dtv(p, q2) ≠⇒ dtv(p

B, qB1 ) ≤ dtv(p
B, qB2 ).

We analyze the necessary conditions for this to occur
in more details in Appendix 7.

In summary, this issue arises if a partitioning B ends
up grouping together some elements that are highly
overestimated by q1, and others highly underestimated,
which is then being “hidden” by the averaging. It is
possible that this occurs to a larger extent than by q2
and enough to erase the initial performance gap. We
reduce the likelihood of this happening by randomly
generating multiple B that groups different elements
together, but we cannot eliminate this effect.

4.1.1 Choosing the bins

So far, the requirements for the sequence
{B1,B2 . . . ,BK} are BK ∈ ρ(Ω) and Bi−1 ∈ ρ(Bi).
For our purposes, we additionally want dtv(p

B, qB)
to be as close as possible to dtv(p, q). The gap
δ = dtv(p, q)− dtv(p

B, qB) should be minimized. This
cannot be done directly as q is unknown; we can
however take advantage of our control over p to
minimize the component of the error associated with p.
This can be achieved by basing the construction of the
sequence on a “near-∆” partitioning of the probability
space of p, as defined below.

Given a distribution p and a tolerance parameter ∆ ∈
[0, 1), we define a near-∆ set Ω∆

p as a partitioning of Ω

(Ω∆
p ∈ ρ(Ω)) of minimum cardinality that contains sets

of elements in which the maximum difference between
the probability mass of any two elements is at most ∆,
i.e.:

Ω∆
p = argmin

X∈ρ∆
p (Ω)

|X | , (4)

ρ∆p (Ω) = {{S∆
1 , . . . } s.t. |pxj − pxk

| ≤ ∆ ∀xj , xk ∈ S∆
i }

(5)

Given a fixed ∆ and a distribution p, we can use the
following procedure to find a partitioning Ω∆

p . We
commence with an element with maximum probabil-
ity mass pmax. We then construct the first set of the
partition (S∆

1 ) by including all elements x such that
px ≥ pmax − ∆. After removing all such elements,
we repeat the process, denoting by pmax the largest
probability mass for the remaining elements, and con-
structing the second set of the partitioning. We iterate
until all elements have been included in a set. We pro-
vide the algorithm in the Appendix 3, together with a
short proof that this procedure produces a partitioning
with the smallest cardinality. For a general p, this

algorithm requires O(Ω) operations. Since we have
control over the design of p, we avoid this by operat-
ing in the reverse fashion: (i) specify a target near-∆
partitioning; and then (ii) assign probability mass to
the elements in the sets of the partitions, ensuring that
the ∆-constraint is satisfied.

We start to build the sequence by setting the first
binned probability space B1 to the constructed near-∆
partitioning, B1 ≜ Ω∆

p . The benefit of this is that
we have bounded the component of the error δ =
dtv(p, q)−dtv(p

B, qB) that is induced by averaging p —
it can be at most |Ω∆

p |∆/2.

We then iteratively generate the next probability space
Bi+1 by choosing at random any set that contains
more than one element, A ∼ U({A ∈ Bi; |A| > 1})
and splitting it in half randomly. By following this
process we ensure that the requirements BK = Ω and
Bi−1 ∈ ρ(Bi) are respected. Moreover, the cardinalities
of the induced probability spaces that we consider are
equal to s plus some constant: |Bi| = |Ω∆

p |+ i− 1, and
are thus dramatically smaller than |Ω|. We provide
the details of the sequence construction {B1,B2, . . . }
as a component of the overall evaluation procedure in
Algorithm 1.

4.1.2 Error Estimates

Now that we have described how the sequence of parti-
tions is derived, we can specify how to obtain estimates
of the error at each probability space granularity. These
estimates allow us to rank the models using the dtv
estimates. A straightforward estimator of the total vari-
ation is the empirical “learning estimator” Canonne
(2020b). Although not optimal Valiant and Valiant
(2017); Diakonikolas et al. (2021), this method has
the advantage of offering an explicit expression for
the number of samples m required to provide prob-
abilistic bounds. Given a set of m samples from q
({x̃i}mi=1 x̃i ∼ q), the empirical total variation estima-

tor T̂m is:

T̂m ≜ dtv(p, q̃) =
1

2

∑
x∈Ω

|px − q̃x|, (6)

where q̃x =
1

m

m∑
i=1

1[x̃i = x] (7)

The following theorem, which builds directly on a result
from Canonne (2020a), provides the number of samples
required to state that with some probability, the true
total variation is within a range centred at this T̂m

estimator. We provide a simple proof in Appendix 2.

Theorem 4.1. Given a discrete distribution p with as-
sociated sample space B, m samples from a distribution
q with the same sample space B, and an error tolerance
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ϵtest ∈ (0, 1], provided that:

ϵtest ≥ max(

√
|B|
m

,

√
2 ln(2/δ)

m
). (8)

we can be at least 1−δ confident that the true total vari-
ation dtv(p, q) is within the interval [T̂m − ϵtest, T̂

m +
ϵtest].

The next theorem follows from Theorem 4.1, and pro-
vides a basis to compare two generative models:

Theorem 4.2. Given a discrete distribution p with
associated sample space B, and m samples from the
distributions q and q′ with the same sample space B,
denote by T̂m

q and T̂m
q′ the empirical total variation

estimators of q and q′, respectively. For an error toler-
ance ϵtest ∈ (0, 1] s.t. (32) holds for a selected constant
δ ∈ (0, 1), the random quantity T̂m

q −T̂m
q′ will fall within

the following interval:

T̂m
q − T̂m

q′ ∈ [dtv(p, q)− dtv(p, q
′)± 2ϵtest] (9)

with at least (1− δ)2 probability.

Appendix 5 contains the proof. We apply this result as
follows in our procedure: if T̂m

q − T̂m
q′ − 2ϵtest > 0, then

with at least (1 − δ)2 confidence we have dtv(p, q) >
dtv(p, q

′), indicating that model q′ is better than model
q.

4.1.3 Evaluation procedure

A complete description of the evaluation procedure
is provided in Algorithm 1. Recalling Eqn. 2, our
procedure generates a sequence of pairs of induced
distributions (pB

i

, qB
i

) with associated sample spaces

Bi, with the guarantee that ϵp
Bi

,qB
i

approaches the
true total variation. On the one hand, it is desirable
to compare the distributions at the finest granularity.
However, for a fixed number of samples, as the granu-
larity becomes finer, the accuracy of the dtv estimates
decreases. This is captured by Theorem 4.1, and can
be visualized in Figure 2. The figure shows the lowest
error ϵtest that meets the requirements in (32) to apply
Theorem 4.1 for different probability spaces to achieve
an acceptably low significance level for a reasonable
number of samples (100,000).

Metric B∗: As a result, a good trade-off can be
obtained by comparing the generative models based
on the total variation error at the granularity B that
is at the breaking point before the minimum error
threshold starts increasing, i.e., at |B∗| = ⌈2 ln(2/δ)⌉.
This provides a simple and efficient way to compare
generative models with an interpretable metric.

Figure 2: Error threshold that we can obtain over
varying size of sample space, for 3 different cases with
varying number of samples and probability significance
δ.

Slope: Lastly, as we will show through empirical re-
sults, the rate at which the estimated total variation
increases across different granularities can provide in-
sights into the underlying behavior of the distribution
w.r.t. the reference distribution p. As a result, in addi-
tion to reporting the individual B1, . . . , we fit a linear
regression on the estimates and report the slope. In
the region where there are enough samples to provide
a reasonable estimate of dtv, i.e., relatively small |Bi|,
then if the slope is close to zero, it indicates that the
error is evenly distributed across the space. If the slope
is increasing, then the error is concentrated in some
sets of the partitioning.

Out-of-distribution samples: Our total variation-
based metric of coarser distributions leads to a natural
way to assess how much mass a generative model assigns
to the out-of-distribution set Ωo. By construction, for
a sufficiently small ∆, our coarser space B1 = Ω∆

p

will have Ωo as an element (from Eqn. 5, since px =
0 ∀x ∈ Ωo, we will have S∆ = Ωo). Consequently, all
subsequent granular spaces {B1, . . . , }, including B∗,
will have a set of elements that are a partitioning of Ωo.
These can be combined together to obtain the total
variation of the set.

Hence we can compute and report:

OOD ≜ |p(Ωo)− qθ(Ω
o)| = qθ.(Ω

o) (10)

We can therefore directly assess qθ(Ω
o), as per our

stated requirement.

Over-concentration: Next, to assess whether a
model is over-concentrated on high probability ele-
ments using our method, we can focus on the highest
probability element of pB. We choose to focus on our
main granularity of reference, B∗. This will define our
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likely set Ωlikely from a threshold η = max(pB∗
). We

then report the difference:

conc ≜ qθ(Ω
likely)− p(Ωlikely). (11)

If this value is positive, it indicates that the generative
model is over-concentrating probability mass on high
probability elements.

Algorithm 1 Complete procedure with time and mem-
ory complexity denoted by Ω(), o() symbols.

1: Input: Target distribution p, sample access to
distribution q, test error ϵtest, significance prob. δ,
tolerance ∆, number of samples m, num random
partitions t = 50.

2: Construct the near−∆ regions Ω∆
p using algorithm

Appendix 3.1. Time: Ω(1), Space: Ω(1)
3: Obtain m samples from q. Time: o(m), Space:

o(m)
4: Set B1 = Ω∆

p .
5: Compute the maximum valid granularity for ϵtest:

|Bmax| = ⌊ϵ2testm⌋
6: T = |Bmax| − |B1|
7: for i ∈ [1, . . . , T ] do
8: Granularity g = |Bi|
9: for [1, . . . , t] do

10: Compute pB
i

.Time: Ω(g), Space: Ω(g)
11: Compute the estimate T̂m

g from Eqn (7) Time:
Ω(m), Space: Ω(1)

12: Select a random set Ai ∈ Bk

13: Evenly split Ai by random in A′
i,A′′

i Time:
Ω(m), Space: Ω(1)

14: Construct the new probability space Bk+1 =
Bk \ Ai ∪ {A′

i ∪ A′′
i }

15: end for
16: Compute the average over the t estimates T̂m

g

and store it.
17: end for
18: Return all T̂m

g Total time complexity:

Ω(mtT (|Ω∆
p | + T )), Total space complexity:

Ω(|Ω∆
p |+ T )

4.2 Designing synthetic test distributions

We base the construction of the synthetic target distri-
bution p on key characteristics shared across different
real-data distributions. The goal is not to reproduce a
pmf as sophisticated as real data, but to construct a
task that could be viewed as a necessary first test that
a model should be able to address.

First, to be representative of real datasets which are
the target of deep learning generative models, the di-
mensionality of the space considered should be very
high. We consider |Ω| in the order of billions. Second,

we assume that the positive space Ω+ ≜ {x; px > 0} is
also very large, but small relative to the whole space
|Ω+|/|Ω| ≈ 0. This assumption holds for almost all
practical applications of generative models. For ex-
ample, if we sequentially sample letters randomly, the
chance of forming a coherent sentence is next to zero.

Recalling our construction of B1, we see that the car-
dinality |B1| is driven by |Ω∆

p |. As an example, for
m = 100, 000, δ = 5%, a suitable approach to construct
a sufficiently challenging target distribution is to divide
the space into |Ω∆

p | ≤ 6 sets. One of these (S0 ∈ Ω∆
p )

should be very large, and is assigned 0 probability to
meet the requirement that |Ω+|/|Ω| ≈ 0. The remain-
ing sets ({S1, . . . }) can be of approximately equal size.
We assign the same probability mass pi to every ele-
ment of set Si, i.e., x ∈ Si =⇒ px = pi. We denote
the highest and lowest pmf values by plikely ≜ maxi pi
and prare ≜ mini pi and set the ratio plikely/prare as a
parameter of the synthetic distribution. This results in
no single element having an unusually large probability.

Sequences. In practice, high dimensional categorical
data of interest often appears in the form of sequences of
categories (text, proteins). The generative models are
tasked with learning the complex dependency structure
within the sequences. To mimic such datasets, we
map the categorical elements to sequences of length
S, with each element of the sequence belonging to one
of K categories. The dimensionality of this sequence’s
probability space is thus KS = |Ω|.
Following the procedure above, we assign the possible
sequences to sets, with any sequences in S0 being as-
signed zero probability. Sequences are allocated to the
other sets according to rules that specify the structure
that the generative model should learn. The challenge
can vary depending on the design. In our experiments,
we focus on two examples. In the first, “PAIR”, se-
quences are allocated to sets according to located pair-
wise occurrences of categories in the sequence. We de-
fine an arbitrary set of “invalid” subsequences of length
S = 2 (for example {AA,AC, . . . }), and only assign
positive probability to sequences that do not contain
any of those subsequences. In the second, “PERM”, we
only allocate positive probability to sequences where no
category appears twice, e.g., ABCDEF or FCDABE.
For both experiments, we define two sets with positive
probability so we have S0,S1,S2 with assigned proba-
bility values 0, plikely, prare. Further details concerning
the exact construction of these examples are included
in Appendix 4.

Learning from real data Although it is not the
focus of our work, we propose an extension to apply a
similar procedure to rank generative models when we
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have access to experimental data and wish to construct
a synthetic test distribution using that data. To do this,
we train a surrogate generative model on the available
samples. This surrogate offers direct evaluation of its
learned pmf mass for any candidate element (sequence).

The testing process proceeds as follows. We train the
surrogate model and denote by p̃ the pmf after training.
We then generate a new dataset by sampling from p̃ :
DS = {x̃i}mi=1 x̃i ∼ p̃ and define a new ground truth
distribution as follows:

pnewx =

{
p̃x∑

x∈DS p̃x
if x ∈ DS

0 o.w.
(12)

We can then follow our testing procedure using pnew

as the synthetic ground truth distribution. We start
by sampling a dataset from x̃ ∼ pnew to train the
generative models q1, q2, . . . that we wish to evaluate.
This process offers a trade-off between the synthetic and
real scenario as our constructed ground truth pnew is
based on what a model could learn from a real dataset.
More details on this method and an example of using
this procedure on a protein dataset and a Transformer
generative model as the surrogate model are included
in Appendix 1.

5 EXPERIMENTS

We start by validating our approach by conducting ex-
periments on synthetic generative models for which the
exact generative distribution is known. The generative
models are built based on a ground truth distribution
p parameterized with |B1| = 5,maxi pi/mini pi = 4.
We then introduce a controlled amount of total varia-
tion error (dtv(p, qϵ) = ϵ) by modifying a fixed percent
b = 30% of the support Ω+ in two ways: qflatϵ (FLAT)
is obtained by modifying px elements across the whole
space, and q↑↓ϵ (HIGH/LOW) is constructed by modify-
ing either the low pmf values of p or the high pmf values
of p with some probability. A complete description is
included in Appendix 4.

We then present results on recently proposed categor-
ical generative models by training them on sequence
data. We select four SOTA generative categorical mod-
els: 1) CNF Lippe and Gavves (2021), a normalizing
flow method with a learned mapping to the categorical
space; 2) CDM Hoogeboom et al. (2021a), a discrete
diffusion method based on Categorical distributions;
3) argmaxAR Hoogeboom et al. (2021b), a normal-
izing flow method with an argmax mapping; and 4)
GMCD Regol and Coates (2023), a continuous diffu-
sion method based on Gaussian Mixtures. We describe
the architecture search and the training procedure in
Appendix 5. We ensure that each baseline model has

comparable training time and memory complexity1.

5.1 Evaluation Baselines

In addition to our evaluation metrics, we report the
NLLm and an adaptation of coverage metrics to the
categorical space. Although existing coverage metrics
are not directly applicable in the categorical domain, we
can use our knowledge of the structure of the problem
to build a sensible distance function for the designed
categorical sequences. Complete details regarding the
distance metric are included in Appendix 4. We report
the metrics IPα, IRβ from Alaa et al. (2022) and Pre-
cision (Pr.) and Recall (R.) from Sajjadi et al. (2018)
based on this adaptation from nominal to ordinal space.
We note that the presented results do not reflect on the
performance of the original metrics in their intended
settings.

5.2 Results

For all results, we generate m = 100, 000 samples that
we split in 10 to perform a Wilcoxon ranking test to
report statistical significance. We begin by validating
our method with different synthetic generative models.
All results have statistical significance compared with
the next closest baselines at the 5% level. When the
error introduced is the same across the whole space in
the FLAT experiment, we see that all metrics are able
to identify the correct ranking (Left of Table 1). For our
metric, including both the main metric T̂∗

7% and the
others, the synthetic generative model corresponding
to the ground truth (p) has close to 0 error, correctly
indicating that the model is very close to the true
distribution. Using the bounds from Theorem 4.2, we
can state with an 80% confidence that the baseline p
is better than q0.10 as their intervals do not overlap. A
visualisation of the result can be seen in Appendix 8.
The NLL evaluation also finds the correct ranking, but
this is the only information that can be extracted from
the metric values.

For the HIGH/LOW experiment where the error is not
evenly distributed across the space, the evaluation is
more challenging (Right of Table 1). For the NLL
evaluation, the ranking is different from the total vari-
ation (highlighted in red in Table 1) with statistical
significance. On the other hand, the proposed method
still provides the correct ranking. We provide a visu-
alization of the statistical intervals in Appendix 8. In
this case, the overlap of the intervals does not allow us
to make the same confidence statement.

For both experiments, the scale of the estimated total

1Code to reproduce our experiments is available https:
//github.com/networkslab/eval_cat

https://github.com/networkslab/eval_cat
https://github.com/networkslab/eval_cat
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Table 1: FLAT (left) and HIGH/LOW (right) experiment, |Ω| = 1010, m = 100, 000 samples, |Ω∆
p | = 5. In the

HIGH/LOW experiment, The NLLm provides a different ranking (red highlight).

NLLm T̂5% T̂6% T̂∗
7% T̂8% slope OOD % conc.% NLLm T̂5% T̂6% T̂∗

7% T̂8% slope OOD % conc.%
p 22.789 0.2 0.2 0.3 0.3 0.03 0 0.1 22.789 0.2 0.2 0.3 0.3 0.03 0 0.1
q0.05 22.796 2.4 2.4 2.4 2.4 0.00 0.2 1.2 22.805 0.4 0.6 0.9 1.1 0.217 0.2 0.9
q0.07 22.802 3.9 3.9 3.9 3.9 0.00 0.4 1.6 22.803 0.5 0.9 1.2 1.5 0.325 0.4 1.5
q0.10 22.810 5.0 5.0 5.0 5.0 0.00 0.5 2.2 22.811 0.6 1.1 1.5 1.9 0.433 0.5 2.0

variation error in the Bi spaces is also of the same
order as the true total variation error in the original
space of 10 billion elements. By inspecting the slope of
the increase of the estimated error across granularities,
we observe that it is very close to zero for the FLAT
experiment and higher for the HIGH/LOW experiment.
This suggests that the error is spread relatively evenly
across a large portion of the space for FLAT, but is more
concentrated for HIGH/LOW. Indeed, this corresponds
to the error generation mechanism.

Real generative models Next we show how our
procedure ranks existing generative models for the SE-
QUENCE experiments. Figure 5 displays the empirical
pmfs of various models over a selected subset of the
initial space Ω for a PERM experiment. Since we have
no access to the ground truth ranking, we consider a
smaller space (|Ω| = 66 ≈ 50, 000) in order to be able
to accurately estimate the true total variation. We
report this as d̂tv, and use it as a proxy for the ground
truth.

In this setting, we have to rely on the approximated
NLL of the generative models. In Table 2, the NLL ap-
proximations do not provide a ranking with significance
between argmaxAR and CDM, and GMCD does not
provide log likelihood. In contrast, our metric provides
a ranking that is consistent with the ranking provided
by the total variation estimate over the whole space.
Inspecting the intervals on the left of Figure 3, we
can declare with 80% confidence that the GMCD and
argmaxAR baselines have lower total variation error
than the CDM and CNF models for the granularities
considered (3 − 7). Next, turning to the OOD met-
ric, we can see that CDM and GMCD generate fewer
out-of-samples than argmaxAR and CNF. Interestingly,
CDM is the more robust to over-concentration for high
probability elements. Lastly, we can see that the es-
timated slopes of the CDM and CNF are close to 0
indicating that the error is spread evenly across the
space, which is confirmed by inspecting Figure 5. The
GMCD and argmaxAR models have higher slopes, and
Figure 5 confirms that the models have more outliers
for this experiment. From 5, the CNF model struggles
to assign different pmf values to different sets. This
appears to be a characteristic of CNF as it performs

even worse for the PERM experiment with a higher
ratio plikely/prare = 7 (center Figure 5), whereas the
other baselines are largely unaffected. Lastly, although
the GMCD baseline performs well overall, it has more
outliers (see Figure 5), and this is revealed by the slope
estimate, which is consistently high in all SEQUENCE
experiments.

Turning to the coverage metrics, we see that these
metrics do not clearly identify that the CNF is a much
poorer model (Figure 4). This is to be expected as the
metrics focus on coverage, and do not account for the
probability mass assigned to specific elements. The
CNF model does identify the positive support of the
distribution just as well as the other models, but it fails
to learn that some elements have higher probabilities.
Similar trends can be observed for the experiments
PAIR and PERM with a higher ratio plikely/prare in
Figure 5. The GMCD, CDM and ArgmaxAR models
outperform CNF. ArgmaxAR and GMCD have higher
slopes than CDM and CNF, suggesting that CDM and
CNF have lower variance in their pmf value estimates
around the ground truth pmf values. Lastly, we can see
that all baseline performs better for the easier PAIR
experiments.

6 LIMITATIONS

As we highlighted in Section 3.1, the main limitation
of our work is that we cannot prove that the baseline
that performs the best in our procedure has indeed
the lowest total variation in the original space. An-
other limitation that directly stems from our setting
is that it requires complete access to the ground truth
p (synthetic), while many applications of interest for
generative models only have limited sample access to p.
The extension we proposed to apply our method to real
data has some drawbacks — the task will inevitably
be heavily skewed towards the surrogate generative
model used as a basis for the new ground truth dis-
tribution. This means that our evaluation procedure
cannot be used to evaluate the surrogate model itself,
or models with similar architecture. Moreover, this will
also increase the time complexity of our test as we will
have to iterate over the new space |Ωnew| ≈ m to find
Ω∆

pnew . That being said, we still believe that it provides
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GMCD

ground truth

PERM, plikely/prare = 7
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T̂

,

PAIR, plikely/prare = 7

Figure 3: Probabilistic intervals from Theorem 4.1. with δ = 10%, m = 100, 000 samples for 3 SEQUENCE
experiments, at varying granularities. If the intervals of two baselines do not overlap at a given granularity,
we can state with 80% confidence that the baseline with the lowest total variation estimator T̂ has lower total
variation than the other baseline at that granularity.

Table 2: PERM exp., plikely/prare = 3. A star (*) indicates statistical significance compared with the next closest
baseline at the 5% level.

d̂tv NLL T̂3 T̂4 T̂5 T̂6 T̂∗
7 T̂8 slope OOD % conc.%

GMCD 0.149∗ - 3.89* 4.36* 4.70* 4.98* 5.20* 5.32* 0.284 0.8 0.8
argmaxAR 0.171* 1.1104 ±0.1200 6.66* 7.28* 7.90* 8.40* 8.78* 8.90* 0.463 6.3 1.2
CDM 0.183* 1.1111 ±0.1446 10.14* 10.14* 10.14* 10.14* 10.14* 10.16* 0.003 1.0 0.7
CNF 0.281* 1.1658* ±0.1167 27.70* 27.70* 27.70* 27.70* 27.70* 27.70* 0.000 5.1 9.3

Figure 4: Empirical pmf q of generative models on Ω+

with sorted ground truth.

a good trade-off between our purely synthetic proposal
and a sampled-based approach. We stress that while
the synthetic setting is a constraint in our approach,
when it comes to addressing the evaluation problem to
the extent that we have, every metric would encounter
comparable or more significant limitations.

7 CONCLUSION

We have introduced a principled and robust method
for assessing the performance of categorical generative
models in a synthetic setting, where the target ground

Figure 5: Precision/Recall, and IPα/ IRβ . Our adap-
tation of the ordinal coverage metrics to a nominal
categorical space is insufficient to render these metrics
functional in our problem setting.

truth is constructed to resemble a realistic task. Our
metric is accurate, interpretable, scalable to high di-
mensional settings, and robust to different mode of
failure of the generative model. This is supported by
experiments using both controlled generative models
with known behaviour, as well as state-of-the-art cat-
egorical generative models. A promising avenue for
future work is to address the main limitation of our
work and propose an improved version that can be ap-
plied to real datasets without requiring explicit access
to the ground truth p.
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Welling, M. (2021a). Argmax flows and multinomial
diffusion: Learning categorical distributions. In Proc.
Adv. Neural Info. Process. Syst. (NeurIPS).

Hoogeboom, E., Nielsen, D., Jaini, P., Forré, P., and
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CHECKLIST

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:
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(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]

SUPPLEMENTARY MATERIAL

1 EXTENSION TO REAL DATA

We propose a method to extend our approach to real
data by using the probability mass function (pmf)

learned by a surrogate model on a real dataset as a
proxy for the distribution of the real data. Admittedly,
the proxy distribution can only be as good as the
surrogate model itself, but it is not necessary for the
surrogate model to be extremely accurate for this test
to be useful.

The benefit of this approach is that the nature of the
sequence and the complexity can more closely resemble
a practical scenario than an artificial task. As an
example, we present how this method can be used on
protein datasets from the Pfam protein family PF00014
using the Transformer from Hua et al. (2022) as a
surrogate model. Protein datasets contain sequences
of amino acids (there are 21 amino acids, and hence,
K = 21). This specific dataset contains sequences of
length S = 53 and has a training/testing/validation
set of 10, 000 samples each.

We start by training an Autoregressive Transformer
for 1000 epochs. Table 4 presents the hyperparame-
ters. As we stated in Section 4, ”Learning from real
data,” in the main text, we denote by p̃ the pmf of
the transformer after training. We then generate a
new dataset by sampling 100,000 samples from p̃ :
DS = {x̃i}100,000i=1 x̃i ∼ p̃ and define a new ground
truth distribution as follows:

pnewx =

{
p̃x∑

x∈DS p̃x
if x ∈ DS

0 o.w.
(13)

Since we have no control over the ground truth pmf
pnew, the initial set Ω∆

pnew can become severely unbal-
anced if low and high pmf values are concentrated in a
few elements. In practice, we observe that this is the
case in this experiment. Instead of following Eqn. 2
from the main text directly to define B1 = Ω∆

p as:

Ω∆
p = argmin

X∈ρ∆
p (Ω)

|X | , (14)

ρ∆p (Ω) ={{S∆
1 , . . . } s.t. |pxj

− pxk
| ≤ ∆ ∀xj , xk ∈ S∆

i },
(15)

Table 3: Proxy experiment, |Ω| = 2153, m = 100, 000
samples, |Ω∆

p | = 4.

T̂4 T̂5 T̂6 T̂7

CDM 0.279 0.421 0.537 0.631
GMCD 0.244 0.402 0.529 0.628
ground truth 0.000 0.001 0.001 0.002

we instead order the elements with positive mass by
their pmf mass values: x1, x2, . . . ; 0 < p(xi) < p(xi+1),
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and split this ordered sequence in s sets that each have
the same probability mass:

Ωs
p = {S1, . . . ,Ss; p(Si) = 1/s} ∪ {S0; p(S0) = 0}.

(16)

We set the value of s to 3 in our experiment. We show
the results for that experiment in Table 3. As the
granularity increases, we can see that the total error
variation increases drastically, suggesting that the true
error in the original space is probably very large. This
is to be expected as it is a very hard task and the
target pnew not only has small support, but is very
concentrated within that support.

Table 4: Transformer hyperparameters. If not listed in
the table, the hyperparameter value takes the default
value from Hua et al. (2022).

Hyperparameters PF00014
depht 6
size 128
causal True
batch size 32
training iterations 1k
learning rate 1e-4

2 TOTAL VARIATION ERROR OF
PARTITIONED SPACES

In the methodology, we state that the total variation
on a partitioned space dtv(p

B, qB) is always greater
or equal than the total variation in the original space
dtv(p, q). We provide a simple proof for that statement.

Recall that ρ(Ω) denotes the set containing every par-
tition of the initial probability space Ω. The induced
pmf pBA A ∈ B is obtained from a distribution p defined
over Ω and a partitioning of Ω B ∈ ρ(Ω) by summing
the probability mass of each elements contained in the
set A :pBA =

∑
x∈A px.

Lemma 1 : B ∈ ρ(Ω) =⇒ dTV (p
B, qB) ≤ dTV (p, q).

Proof.

dTV (p
B, qB) =

1

2

∑
Ai∈B

|pBAi
− qBAi

| (17)

=
1

2

∑
Ai∈B

|
∑
x∈Ai

px −
∑
x∈Ai

qx| by def. of B

(18)

≤ 1

2

∑
Ai∈B

∑
x∈Ai

|px − qx| by the triangle ineq.

(19)

=
1

2

∑
Ai∈B

∑
x∈Ai

|px − qx| (20)

=
1

2

∑
x∈Ω

|px − qx| (21)

dTV (p
B, qB) ≤ dTV (p, q) (22)

3 NEAR-∆ PARTITIONING

Algorithm 2 near-∆ set Ω∆
p

1: Input: Distribution p with associated sample space
Ω, tolerance parameter ∆.

2: Initialize Ω∆
p = {}

3: Initialize reminder R = Ω
4: while R ≠ ∅ do
5: Set pmax = maxx∈R px
6: S∆ = {x ∈ R; px > pmax −∆}
7: R = R \ S
8: Ω∆

p = Ω∆
p ∪ S∆

9: end while
10: Return Ω∆

p

Given a distribution p and a tolerance parameter ∆ ∈
[0, 1), our procedure to obtain a near-∆ set Ω∆

p is

described in Algorithm 2. Recall the definition of Ω∆
p

given in Eqn. 2 in the main text:

Ω∆
p = argmin

X∈ρ∆
p (Ω)

|X | , (23)

ρ∆p (Ω) = {{S∆
1 , . . . } s.t. |pxj − pxk

| ≤ ∆ ∀xj , xk ∈ S∆
i } .

(24)

We show how to obtain this partitioning in Algorithm 2.

Lemma 2: Given that Ω∆
p is obtained from Algo-

rithm 2, there is no other Ω′∆
p s.t. |Ω′∆

p | < |Ω∆
p |.

Proof. Assuming Ω∆
p is obtained from Algorithm 2 and

has cardinality s = |Ω∆
p |, we can define an element

with maximum probability mass in each set of Ω∆
p :
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{xi
max = argmaxx∈S∆

i
px}si=1. So each set in S∆

i ∈ Ω∆
p

have it’s corresponding maximum pmf element xi
max.

In short, p(x) ≤ p(xi
max)∀x ∈ S∆

i .

By lines 5-6 of Algorithm 2, we have that the pmf dis-
crepancy between two different xi

max and xj
max must be

higher than ∆, because otherwise they would be placed
in the same set. Thus |pxi

max
− pxj

max
| > ∆∀i ̸= j ∈

{1, s}. Hence, any two xi
max, x

j
max cannot be placed

in the same set S∆ to form a Ω′∆
p by the definition in

Eqn. (2) (in the main text). Since we have s different
xi
max, then this implies that we need at least s sets to

form any other solution Ω′∆
p . Hence, |Ω′∆

p | ≥ |Ω∆
p | for

any other Ω′∆
p , which concludes the proof.

4 GROUND TRUTH
CONSTRUCTION

In this section, we give the complete description of both
the construction of the ground truth p for the synthetic
and sequence experiments, and for the construction
of generative models qflat, q↑↓ for the synthetic experi-
ments.

We start by restating the requirements for p that were
laid out in Section 4 (main text):

p(x) =

{
0, if x ∈ S0 ,

pi, if x ∈ Si for i > 0 .
(25)

Ω+ = ∪i=1Si is the support of the pmf and we have
that |Ω+|/|Ω| ≈ 0, hence S0 is very large. For sim-
plicity, we set the support sets to be of equal size
|Si| = |Sj |,∀i, j > 0 and assign probability mass values
that are linearly increasing between pmin and pmax. We
set ∆ to approach zero for Ω∆

p , and hence we have that

the solution Ω∆→0
p coincides exactly with the specified

sets {S0,S1, . . . }.

4.1 Synthetic experiment

Parameters of the ground truth p. In the synthetic
experiment, we set the ratio plikely/prare to 5 and split
the space in 5 :{S0,S1,S2,S3,S4}. We assign 97%
of the elements in Ω to S0 and split the remaining
elements evenly between {S1,S2,S3,S4}.
Parameters of the synthetic generative model
qflat. : The distribution qflatϵ is constructed by adding
ϵ/b|Ω+| probability mass to the b|Ω+|/2 highest proba-
bility elements, and removing the same amount from
the b|Ω+|/2 lowest probability elements. We set b to
30%.

Parameters of the synthetic generative model
q↑↓. The distribution q↑↓ϵ is constructed by adding
2ϵ/b|Ω+| probability mass to b/4|Ω+| elements, and

removing the same amount from another b/4|Ω+| ele-
ments. In total, this perturbs b/2|Ω+| elements. With
probability 1/2, these elements are randomly drawn
from the b|Ω+|/2 highest probability elements, and with
probability 1/2, these elements are randomly drawn
from the b|Ω+|/2 lowest probability elements. We set
b to 30%.

4.2 SEQUENCES

To generate the sequence experiment to train real gen-
erative models, we map elements in Ω to sequences.
We build the space of sequences of categories Ω =
{C1, C2, . . . , CK}K , where {C1, C2, . . . , CK} is a set
of categories. For simplicity, we set the number of
categories to be the same as the length of the se-
quence S = K. A sequence is denoted by x ∈ Ω
and the i-th element of that sequence is denoted by
xi ∈ {C1, C2, . . . , CK}. As we describe in the main
text, we construct the ground truth pmf p by parti-
tioning the space and assigning the same probability
to each element belonging to the same set. For sim-
plicity, we split the space in 3 partitions: S2,S1,S0

and assign p(x) = plikely ∀x ∈ S2, p(x) = prare ∀x ∈ S1

and p(x) = 0 ∀x ∈ S0. We set the ratio plikely/prare
as a parameter and obtain the pmf values by solving
plikely|Slikely|+ prare|Srare| = 1. The pmf is given by:

p(x) =


plikely, if x ∈ S2,

prare, if x ∈ S1,

0, otherwise .

(26)

PERM In the PERM experiment, we only assign
probability mass to permutations of {C1, C2, . . . , CK}.
Hence Ω+ is the set of all permutations. To determine
which permutation goes into which set (S2 or S1), we
induce an artificial ordering in the categories: Ci < Cj

if i < j, and place all permutations that have x1 < xK

in S2.

p(x) =


plikely, if x ∈ Ω+ ∧ x1 < xK ,

prare, if x ∈ Ω+ ∧ x1 > xK ,

0, otherwise .

(27)

Hence we have that |S2| = |S1| = K!/2, |Ω+| = K! and
|Ω| = KK . As K grows, the ratio |Ω+|/|Ω| approaches
zero as required.

PAIR For this simpler task, we base the construction
on pairwise correlation only. We define an arbitrary
set of “invalid” subsequences of length S = 2 and only
assign positive probability to sequences that do not
contain those sequences. To do so, we again induce
an artificial ordering in the categories: Ci < Cj if
i < j, and given xi = Ci, the choices for xi+1 are in
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the set {Ci%K , . . . , Ci+K/2%K} where % denotes the
modulo operator. For example, assuming the ordering
A < B < C < D, the element y in a sequence xAyx can
only take the category y = A or y = B. To determine
which valid sequence goes into which set (S2 or S1),
we further assign an integer value that matches the
arbitrary ordering (A = 1 < B = 2 < C = 3 < D = 4)
and place all valid sequences that have x1 + xK%2 = 0
in S2.

p(x) =


plikely, if x ∈ Alikely

prare, if x ∈ Arare

0, otherwise .

(28)

where Alikely ={x;x ∈ A+ ∧ x1 + xK%2 = 0}, (29)

Arare ={x;x ∈ A+ ∧ x1 + xK%2 = 1}. (30)

4.3 Coverage metrics details

We build a distance that clusters the sequences be-
longing to the same group (Alikely, Arare or Ω \ A+)
together. To avoid collapsing all sequences to the same
point, we add a small contribution based on the Hamil-
tonian distance denoted by H(·, ·).
Hence our distance between two sequences is given as
follows;

d(xi,xj) =



0.01H(xi,xj), if xi,xj ∈ Alik.,

0.01H(xi,xj), if xi,xj ∈ Arare

0.01H(xi,xj), if xi,xj /∈ A+

1 + 0.01H(xi,xj) if xi/j ∈ Alik., Arare

4 + 0.01H(xi,xj), if xi/j ∈ A+, /∈ A+ .

(31)

We provide the numeral values from the right Figure
4 in the main text in Table 5. The various coverage
metrics do not correlate at all with the rank given by
ground truth dtv metric; our adaption of the cover-
age metrics to be applicable to a nominal setting is
insufficient to obtain functional metrics for our setting.

5 PROOFS

Theorem 5.1. Given a discrete distribution p with as-
sociated sample space B, m samples from a distribution
q with the same sample space B, and an error tolerance
ϵtest ∈ (0, 1], provided that:

ϵtest ≥ max(

√
|B|
m

,

√
2 ln(2/δ)

m
). (32)

we can be at least 1−δ confident that the true total vari-
ation dTV (p, q) is within the interval [T̂m − ϵtest, T̂

m +
ϵtest].

Proof. Let q̃ denote the empirical distribution obtained
from the samples of q. By the triangle inequality:

dTV (p, q̃)− dTV (q̃, q) (33)

≤ dTV (p, q) ≤ dTV (p, q̃) + dTV (q̃, q) (34)

Theorem 1 of Canonne (2020a) shows that dTV (q, q̃) ≤
ϵtest with at least probability 1− δ if (32) holds.

Hence, with at least probability 1− δ;

dTV (p, q̃)− ϵtest ≤ dTV (p, q) ≤ dTV (p, q̃) + ϵtest ,
(35)

T̂m − ϵtest ≤ dTV (p, q) ≤ T̂m + ϵtest . (36)

which implies T̂m ≤ dTV (p, q) + ϵtest (37)

and T̂m ≥ dTV (p, q)− ϵtest . (38)

Joining those two inequalities together gives us the
interval T̂m ∈ [dtv(p, q)− ϵtest, dtv(p, q) + ϵtest], which
concludes the proof.

Theorem 5.2. Given a discrete distribution p with
associated sample space B, and m samples from the
distributions q and q′ with the same sample space B,
denote by T̂m

q and T̂m
q′ the empirical total variation

estimators of q and q′, respectively. For an error toler-
ance ϵtest ∈ (0, 1] s.t. (32) holds for a selected constant
δ ∈ (0, 1), the random quantity T̂m

q −T̂m
q′ will fall within

the following interval:

T̂m
q − T̂m

q′ ∈ [dtv(p, q)− dtv(p, q
′)± 2ϵtest] (39)

with at least (1− δ)2 probability.

Proof. Assuming that B̃m
q ∈ [dtv(p, q)−ϵtest, dtv(p, q)+

ϵtest] and that T̂m
q′ ∈ [dtv(p, q

′)− ϵtest, dtv(p, q
′) + ϵtest]

both holds;

T̂m
q −Bm

q′ ≤ dtv(p, q)− dtv(p, q
′) + 2ϵtest , (40)

and T̂m
q −Bm

q′ ≥ dtv(p, q)− dtv(p, q
′)− 2ϵtest. (41)

Since the two events (event B̃m
q ∈ [dtv(p, q)± ϵtest] and

event T̂m
q′ ∈ [dtv(p, q

′) ± ϵtest]) are independent, the

probability that both events occur is given by P (B̃m
q ∈

[dtv(p, q)± ϵtest])P (T̂m
q′ ∈ [dtv(p, q

′)± ϵtest]) ≥ (1− δ)2

(by Theorem 3.1).

6 TRAINING PROCEDURE

All generative models are trained with the RAdam
optimizer Liu et al. (2020) with a learning rate decay
of 0.999975, and parameters β1 = 0.9 and β2 = 0.999.
We use early stopping with a patience of 50 epochs
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Table 5: Ranking performance of dtv compared to Precision/Recall, IPα/ IRβ and Authenticity for the SE-
QUENCE experiment.

dTV rank Pr. R. IPα IRβ Authen.

GMCD 1 0.083 (3) 0.075 (3) 0.066 (3) 0.044 (1) 0.0003 (4)
argmaxAR 2 0.067 (4) 0.093 (4) 0.054 (4) 0.043 (4) 0.0008 (1)
CDM 3 0.089 (2) 0.056 (2) 0.072 (2) 0.044 (1) 0.0004 (2)
CNF 4 0.144 (2) 0.007 (1) 0.116 (2) 0.044 (1) 0.0004 (2)

and select the model with the best evaluation over a
validation set (10%). Tables 6, 7, 8, and 9 report
the selected architecture parameters for GMCD, CMD,
CNF and argmaxAR and the grid search values. As
stated in the main text, we ensured that the model
architecture and training time were not significantly
different, unless achieving reasonable performance was
unattainable.

Table 6: GMCD hyperparameters.

Hyperparameters K = 6
dim of Z (d) {3, . . . , 6}
hidden size { 16, 32, 64}
num. heads 8
depth 2
num. blocks { 1, 2}
local size 64
local heads 4
dropout 0.2
T {10, . . . , 50}
batch size 1024
training iterations 1k
learning rate {7.5e-3, 7.5e-4, 7.5e-5}

7 DETAILED DISCUSSION OF THE
PRINCIPLE LIMITATION

In our proposal, we highlighted that the principle limi-
tation of our approach is that in general, dtv(p

B, qB1 ) ≤
dtv(p

B, qB2 ) does not imply that dtv(p, q1) ≤ dtv(p, q2).
This is actually to be expected, because otherwise we
would be violating the optimal bound found in Di-
akonikolas et al. (2021). In this section, we study
this undesirable case of dtv(p

B, qB1 ) ≤ dtv(p
B, qB2 ) and

dtv(p, q1) ≤ dtv(p, q2). We identify the requirements
on p, q1, q2,B for this to occur, and this leads us to
highlight the implicit bias of our method by exposing
which types of generative models are favorably treated
by our approach.

We start by decomposing the total variation error be-
tween p, q in the original space. The space can be
split into two sets; one containing the elements where

the generative model q overestimates p: Ω+ ≜ {x ∈
Ω s.t qx ≥ px} (overestimation error e+x ) and another
containing the underestimated elements: Ω+ ≜ {x ∈
Ω s.t qx < px} (underestimation error e−x ). The total
variation can be decomposed into contributions from
those two sets:

dtv(p, q) = 1/2
∑
x∈Ω

|px − qx| (42)

= 1/2

( ∑
x∈Ω+

(qx − px) +
∑

x∈Ω−

(px − qx)

)
,

(43)

≜ 1/2

( ∑
x∈Ω+

e+x +
∑

x∈Ω−

e−x

)
. (44)

(With
∑

x∈Ω+ e+x =
∑

x∈Ω− e−x since q is a pmf). When
we move from the original space to a coarser distribu-
tion in B, the total variation is reduced when overesti-
mation errors are grouped with underestimation errors
in the same set A because they cancel each other out:

dtv(p
B, qB) = 1/2

∑
Ai∈B

∣∣∣∣∣ ∑
x∈Ω+∩Ai

e+x −
∑

x∈Ω−∩Ai

e−x

∣∣∣∣∣ ,
(45)

= 1/2
∑
Ai∈B

|E+
Ai

− E−
Ai

| , (46)

where E+
Ai

≜
∑

x∈Ω+∩Ai
e+x and similarly E−

Ai
≜∑

x∈Ω−∩Ai
e−x . Hence, the gap δ for a given model

q1 between the two total variations can be expressed
as

δ1 ≜ dtv(p, q1)− dtv(p
B, qB1 ) =1/2

∑
Ai∈B

min(E+
Ai

,−E−
Ai

)

(47)

(with
∑
Ai∈B

E+
Ai

=
∑
Ai∈B

E−
Ai

) (48)

Given that dtv(p, q1) − dtv(p, q2) = A ∈ [0,∞] (q2 is
better), the ranking can be reversed if the gap of q1
for a partitioning B is greater than the combination of
the gap of q2 and the performance gap A:

δ1 > δ2 +A (49)
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Table 7: CDM hyperparameters.

Hyperparameters K = 6
hidden size { 16, 32, 64}
num. heads 8
depth 2
local size 64
local heads 4
dropout 0.2
T { 10, 100, 1000}
batch size 1024
training iterations 1k
learning rate {7.5e-3, 7.5e-4, 7.5e-5}
Table 8: CNF hyperparameters.

hidden size { 16, 32, 64}
num. heads 8
depth 2
local size 64
local heads 4
dropout 0.2
T { 10, 100, 1000}
batch size 1024
training iterations 3k
learning rate {7.5e-3, 7.5e-4, 7.5e-5}

Table 9: ArgmaxAR hyperparameters.

encoder steps {2, 3 , 4}
encoder bins {2, 4,5}
context size {16, 32, 64}
lstm layer 1
lstm size {16, 32, 64}
context lstm layers 1
context lstm size {16, 32, 64}
lstm dropout 0.0
batch size 1024
training iterations 2k
learning rate {7.5e-3, 7.5e-4, 7.5e-5}

This issue can be partially alleviated by generating
many random B and averaging over the results, which
we do in our method. Luckily, generating many parti-
tions is not costly at all.

However, in our procedure, not all partitions are drawn
randomly. The first B1 is fixed to Ω∆

p (Eqn. (2) in
the main text), and then the following B2,B3, . . . are
randomly generated but are still rooted from B1.

From this, it become apparent that our choice of con-
struction of Ω∆

p drives the bias of our procedure. A
generative model whose errors (both ϵ+ and ϵ−) are
evenly distributed across the sets in S ∈ Ω∆

p will have a

lower gap δ1 = 1/2
∑

S∈Ω∆
p
min(E+

Ai
,−E−

Ai
). This im-

plies that our procedure is biased towards models that

make mistakes uniformly across high or low pmf
values, and penalizes models for which the accuracy
of qx correlates with the pmf mass of px.

We believe that it is a reasonable bias to have. More-
over, we validate experimentally that the ordering is
preserved.

8 CONFIDENCE INTERVALS OF
SYNTHETIC EXPERIMENT

We show visualisation figures of the confidence intervals
for the synthetic experiments FLAT and HIGH/LOW
in Figure 6.
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Figure 6: Probabilistic intervals from Theorem 3.1. with
δ = 10% probability, m = 100, 000 samples. |Ω| = 1010.
FLAT exp. (left), HIGH/LOW exp. (right).

We show the effect of increasing the number of samples
on the error intervals on the HIGH/LOW experiments
in Figure ??. As the number of samples increases, the
error interval decreases.

9 RELATED WORK - COVERAGE
METRICS

To better understand what generative models are learn-
ing, Sajjadi et al. (2018) proposed to assess the per-
formance of a generative model through the inter-
pretable notions of precision and recall. Denoting by
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m = 50, 000 samples.
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Figure 7: m = 1M samples.

Probabilistic intervals from Theorem 3.1. with δ =
10%, samples for the HIGH/LOW experiment. With
m = 50, 000 samples (left), the confidence intervals
are overlapping. With m = 1, 000, 000 samples (right),
some of the confidence intervals do not overlap at higher
granularity. For those models and at that granularity,
we can state with 80% confidence that the baseline with
the lowest total variation estimator T̂ has lower total
variation than the other baseline at that granularity.

Ωp and Ωq the positive supports of p and q, respec-
tively, and defining S as the overlapping support of
the two S = Ωp

⋂
Ωq, precision measures how much

of q is part of p (how small Ωq \ S is), and recall mea-
sures how much q misses from p (how small Ωp \ S is).
The mismatch between p and q within the overlap S is
viewed as a parameterized combination of both error
in precision and error in recall. In practice, the algo-
rithm performs a k-means clustering on the generated
samples to estimate the required quantities.

Kynkäänniemi et al. (2019) presented an improved
version of the method that better accounts for the con-
centration of samples and follows more closely the stan-
dard definitions of precision and recall. This method
still examines the overlap of the spaces and relies on
embedding samples into manifolds using a pre-trained
classifier network. This introduces biases and many
hyperparameters. Moreover, it is computationally in-
tensive as the manifold is built on nearest neighbor

principles and is highly sensitive to outliers. These con-
cerns are raised and addressed by Naeem et al. (2020),
who introduce coverage and density metrics, which are
based on recall and precision but can be more readily
evaluated on manifolds. Naeem et al. (2020) develop an
improved method that uses random embeddings to im-
prove the efficiency and employs a more robust method
of estimating the probability density to diminish the
sensitivity to outliers.

In parallel to the work of Naeem et al. (2020), Djo-
longa et al. (2020) developed a new metric based
on Pareto frontiers of Rényi divergences that encom-
passes the metrics proposed by Sajjadi et al. (2018)
and Kynkäänniemi et al. (2019) but does not rely on
data quantization. The theoretical basis of this work
was further extended by Liu et al. (2021), who assessed
the sample complexity of the evaluation method.

More recently,the work by (Alaa et al., 2022) addresses
the issue of detecting samples that are anomalously
close to the training set. This was a shortcoming
of the prior methods. Robustness to repetition or
near-repetition of the training set is critical for any
sample-based metric (Theis et al., 2016). The met-
ric proposed by Alaa et al. (2022) is a 3-dimensional
evaluation metric based on the quality of the samples,
the coverage of the distribution, and the generalization
capability. These three aspects are also addressed by
recent approaches based on density estimation (Jiraler-
spong et al., 2023). Lastly, (Abdar et al., 2021) have
recently raised concerns about the robustness of pre-
cision and recall metrics in high-dimensional settings
and proposed a solution to mitigate this issue.
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