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Abstract

Modern data-driven and distributed learning
frameworks deal with diverse massive data
generated by clients spread across heteroge-
neous environments. Indeed, data hetero-
geneity is a major bottleneck in scaling up
many distributed learning paradigms. In
many settings however, heterogeneous data
may be generated in clusters with shared
structures, as is the case in several applica-
tions such as federated learning where a com-
mon latent variable governs the distribution
of all the samples generated by a client. It
is therefore natural to ask how the under-
lying clustered structures in distributed data
can be exploited to improve learning schemes.
In this paper, we tackle this question in
the special case of estimating d-dimensional
parameters of a two-component mixture of
linear regressions problem where each of m

nodes generates n samples with a shared la-
tent variable. We employ the well-known
Expectation-Maximization (EM) method to
estimate the maximum likelihood parame-
ters from m batches of dependent samples
each containing n measurements. Discarding
the clustered structure in the mixture model,
EM is known to require O(log(mn/d)) it-
erations to reach the statistical accuracy of
O(

p
d/(mn)). In contrast, we show that if

initialized properly, EM on the structured
data requires only O(1) iterations to reach
the same statistical accuracy, as long as m

grows up as e
o(n). Our analysis establishes

and combines novel asymptotic optimization
and generalization guarantees for population
and empirical EM with dependent samples,
which may be of independent interest.
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1 INTRODUCTION

With the ever-growing applications of data-intensive
and distributed learning paradigms, it becomes more
critical to address new challenges associated with such
frameworks. For instance, federated learning is a novel
distributed learning architecture consisting a central
parameter server and a network of clients (or nodes)
each equipped with locally generated data. In general,
the main premise of such distributed learning methods
is to estimate the underlying ground truth model us-
ing the collective data samples across the clients. Data
heterogeneity (or non-i.i.d. data) is among the most
significant challenges in scaling up distributed learn-
ing methods. Indeed, naive distributed and federated
benchmarks such as FedAvg are known to diverge if de-
ployed on highly heterogeneous settings, unless partic-
ularly tailored for non-i.i.d. data (Karimireddy et al.,
2020).

In this paper, we consider a structured or clustered
data heterogeneity model which roots in an observa-
tion specific to modern data-driven distributed and
federated learning applications. Under this structured
heterogeneity model, an identical and unobserved la-
tent variable governs the distribution of all the sam-
ples generated at any node (Pei et al., 2017; Hendrycks
and Dietterich, 2019; Robey et al., 2020; Diamandis
et al., 2021). Particularly in this paper, we zoom in
on mixture of linear regression model which is a clas-
sical approach to capture data heterogeneity (Jordan
and Jacobs, 1994; Xu et al., 2016; Viele and Tong,
2002). To be more clear, in our setting each node ob-
serves not one but a potentially large number of linear
measurements for all of which a common latent vari-
able governs the true parameter. These latent vari-
ables are unknown, random, independent and identi-
cally distributed across the nodes. Throughout the
paper, we refer to this model as clustered mixture of
linear regressions, or C-MLR in short.

Our goal in this work is to estimate the maximum
likelihood parameters of the regression model in the
above-described C-MLR heterogeneity model using
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the collection of all the observations across all the
devices. However, maximizing likelihood objectives
are notoriously intractable in general, due to non-
convexity of the likelihood function (Yi et al., 2014).
The most popular approach for computationally effi-
cient inference in such models with latent variables is
the Expected-Maximization (EM) method (Dempster
et al., 1977; Redner and Walker, 1984; Wu, 1983). We
therefore aim to study optimization and generalization
characteristics of the EM method in estimating the C-
MLR models.

To this end, we first characterize and analyse the so-
called population EM variant for which we establish an
asymptotic, local and deterministic convergence guar-
antee. Next, we move to the empirical counterpart
with finite number of observations known as the em-
pirical EM method and provide probabilistic general-
ization bounds on its estimation error. Both results
are local and asymptotic. That is, our analysis relies
on the assumption that the initial iterate of the EM
method is suitable (as opposed to random). Moreover,
we let the number of nodes and the number of samples
per node grow while all the other parameters assumed
to be constants. To be more specific, let us precisely
describe the C-MLR model in the following.

1.1 Clustered MLR Model

As discussed above and motivated by distributed
learning applications, we consider a collection of m

nodes where each node j = 1, · · · ,m observes n pairs
of measurements denoted by {(xj

i , y
j
i )|i = 1, · · · , n}.

Here, xj
i 2 X ✓ Rd and y

j
i 2 Y ✓ R denote the covari-

ate and response variables, respectively. These obser-
vations are linear measurements of a clustered mixture
of linear regressions (C-MLR) model described below

y
j
i = ⇠

j
hx

j
i , ✓

⇤
i+ ✏

j
i , (C-MLR) (1)

for all i = 1, · · · , n and j = 1, · · · ,m. In this model,
⇠
j
2 ⌅ denotes the hidden latent variable correspond-

ing to node j. In this paper, we focus on a symmet-
ric and two-component mixture of linear regressions
with ⌅ = {±1}, where ⇠

j takes on values uniformly at
random, denoted by ⇠

j
⇠ U{±1}. Note that this la-

tent variable is identical for all the measurements of a
given node, however, we assume that they are indepen-
dent across different nodes. Moreover, we let ✓

⇤
2 Rd

denote the fixed and unknown ground truth regres-
sion vector and assume that covariates and noises are
independent and Gaussian with x

j
i ⇠ N (0, Id) and

✏
j
i ⇠ N (0,�2), respectively. This model clearly im-

plies that the observations of any given node are not
independent due to the shared latent variable. In the

remainder of the paper, we denote the signal-to-noise
ratio (SNR) by snr = k✓⇤k/�.

Remark 1. C-MLR model in (1) captures the under-
lying node-dependent data heterogeneity through the
latent variable ⇠

j which is shared and identical for all
the n samples measured by node j. Therefore, C-MLR
is a well-motivated abstract model to encapsulate the
structured data heterogeneity observed in modern dis-
tributed learning application as discussed before (Dia-
mandis et al., 2021).

Remark 2. We further clarify that in the C-MLR
model described above, the term “clustered” referrers
to the fact that data samples are available in batches of
size n where all the n samples in each batch share the
same latent variable ⇠. Though, it is worth noting that
the folklore two-component MLR model with indepen-
dent latent variables partitions the samples into two
clusters, as well. However, we adopt the term “clus-
tered” to particularly underscore the batched structure
modeled in (1).

Remark 3. In our asymptotic analysis in this paper,
we are interested in the regime that m and n grow
while other problem parameters, that are k✓⇤k, �, and
d remain constant.

Our main goal in this paper is to answer the following:

What is iteration complexity of the
sample-based EM algorithm to estimate the
ground truth ✓

⇤ from m batches of samples,
each of size n generated by the C-MLR

described in (1)?

We answer this question in this paper as follows. We
assume that m batches of in total mn samples gener-
ated by the C-MLR model in (1) are available where
m grows at most up to e

o(n). We prove that if ini-
tialized within a constant-size neighbourhood of the
ground truth ✓

⇤ and after T = O(1) iterations of
the sample-based (or empirical) EM algorithm, either
(i) there exists an iterate 0  t  T of the algo-
rithm for which k✓t � ✓

⇤
k O(

p
d/(mn)); or (ii) the

k✓T � ✓
⇤
k O(

p
d/(mn)) with high probability. Our

result is asymptotic, that is, it holds for sufficiently
large n. To highlight this result, it is worth noting
that the underlying clustered structure in C-MLR is
essential for a constant iteration complexity. Indeed,
if such a structure is discarded, the EM algorithm re-
quires O(log(mn/d)) iterates to reach the same statis-
tical accuracy.

Contribution. To summarize the above discussion,
we consider a data heterogeneity structure observed in
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various distributed learning applications such as feder-
ated learning where a latent variable governs the dis-
tribution of all the samples generated on any node. In
particular, we zoom in on a clustered two-component
mixture of linear regression model described in (1)
where all the linear measurements of any node share
their binary latent variable. We utilize the EM al-
gorithm to estimate the maximum likelihood regres-
sor and establish asymptotic and local optimization
and generalization guarantees for both population and
empirical EM updates. Lastly, we employ these two
results and asymptotically characterize the iteration
complexity of the sample-based EM algorithm to es-
timate the ground truth parameters of the C-MLR
model. All in all, our result demonstrates that em-
ploying the clustered nature of the distributed data
improves the iteration complexity of EM method.

As it will become more clear in the paper, the EM
update for the C-MLR model in (1) contains nonlin-
ear terms which make the existing approaches such as
Balakrishnan et al. (2017) inapplicable. To circum-
vent this challenge, we resort to the concentration of
sub-exponential random variables to analyze both op-
timization and generalization errors.

Related Work. Studying convergence characteristics
of Expectation-Maximization (EM) dates back to the
seminal work of Wu (1983) in which asymptotic and lo-
cal convergence of EM is established for general latent
variable models. Balakrishnan et al. (2017) provides a
general framework to analyze local onvergence of the
EM algorithm in several settings such as mixture of
linear regressions (MLR) and Gaussian mixture model
(GMM). Several follow up works study GMM, MLR
and Missing Covariate Regression (MCR) models in-
cluding Yi and Caramanis (2015); Daskalakis et al.
(2017); Li and Liang (2018); Klusowski et al. (2019);
Ghosh and Kannan (2020); Yan et al. (2017).

Although it is not the main focus of this paper, global
convergence of the EM method (with random initial-
ization) has been extensively studied for Gaussian mix-
ture model (Chen et al., 2019) and mixture of linear
regressions (Kwon et al., 2019; Wu and Zhou, 2019).
Another interesting direction is establishing statisti-
cal lower bounds on the accuracy of the EM method
for the MLR model Kwon et al. (2021). Going be-
yond two-component MLR model, Kwon and Carama-
nis (2020) proves that well-initialized EM converges to
the true regression parameters of k-component MLR in
certain SNR regimes. In the same setting, Chen et al.
(2020) proposes an algorithm that is sub-exponential
in k. For noiseless MLR model, Yi et al. (2014, 2016)
were among the first works to establish convergence
guarantees for EM. To tackle the computational com-

plexity of EM in learning MLR models, Li and Liang
(2018); Zhong et al. (2016) propose gradient descent-
type methods with nearly optimal sample complexity.
From practical point of view, EM has demonstrated
empirical success in MLR models (Jordan and Jacobs,
1994; De Veaux, 1989) and its simple implementation
has made it a suitable choice in several applications
(Chen and Li, 2009; Li et al., 2009).

2 PRELIMINARIES

In this section, we first review backgrounds on MLE
and EM and then characterize the population and em-
pirical EM updates for our C-MLR model followed by
an insightful benchmark.

2.1 Maximum Likelihood Estimator and EM

Algorithm

Population EM. Let us focus on one node observ-
ing n samples {(xi, yi)|i = 1, · · · , n} where we adopt
the shorthand notations x

n = (x1, · · · , xn) and y
n =

(y1, · · · , yn). Furthermore, let ⇠ denote the latent vari-
ables in the C-MLR model described in (1), respec-
tively. To reiterate the underlying C-MLR model, we
have that

yi = ⇠hxi, ✓
⇤
i+ ✏i, i = 1, · · · , n. (2)

As discussed before, in our setting, only the variables
(xn

, y
n) are observed and the latent variable ⇠ 2 ⌅

remains hidden. Suppose that the tuple (xn
, y

n
, ⇠) is

generated by the joint distribution f✓⇤ where {f✓|✓ 2

⌦} and ⌦ is a non-empty compact convex set.

As our main goal in this paper, we aim to estimate the
ground-truth model ✓⇤ by maximizing the likelihood
function, that is, finding ✓̂ 2 ⌦ that maximizes the
following likelihood

g✓(x
n
, y

n) =

Z

⌅
f✓(x

n
, y

n
, ⇠)d⇠.

In many settings, it is computationally expensive to
compute the likelihood function g✓(xn

, y
n), while com-

puting log-likelihood log f✓(xn
, y

n
, ⇠) is relatively eas-

ier. The EM method is an iterative algorithm that
aims to maximize a lower bound on the log-likelihood
log g✓(·, ·). This lower bound which is known as the
Q-function can be written as follows

Q(✓0|✓) =

Z

Xn⇥Yn

✓Z

⌅
f✓(⇠|x

n
, y

n)

· log f✓0(xn
, y

n
, ⇠)d⇠

◆
f✓⇤(xn

, y
n)dxndyn.(3)
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At each iteration of the empirical EM (Algorithm 1)
and given the current estimate of the true model ✓,
the next model is obtained by maximizing the above
Q-function, that is, ✓  M(✓) where

M(✓) := argmax
✓02⌦

Q(✓0|✓). (4)

Note that computing M(·) requires having access to
the joint distribution f✓⇤ , or to put it differently, ob-
served data from infinitely many nodes (m ! 1) is
required. We call such variant of the EM algorithm
population EM and discuss the empirical variant with
finite clients (finite m) in the following section. Next
proposition characterizes the M -function and the pop-
ulation EM update.
Proposition 2.1 (Population EM). Consider n lin-
ear measurements from the C-MLR model in (2) with
Gaussian features Xi ⇠ N (0, Id) and noises ✏i ⇠

N (0,�2) with shared latent variable ⇠ ⇠ U{±1}.
Then, the M(·) function of the population EM defined
in (4) is as follows

M(✓) = E

X1Y1 tanh

✓
1

�2

nX

i=1

hXi, ✓iYi

◆�
. (5)

Proof. We defer the proof to Appendix D.1. ⇤

Note that equally likely ⇠ 2 {±1} makes the distribu-
tion of Y n symmetric given X

n. Moreover, tanh(·) is
an odd function and therefore, the expectation in (5)
can also be taken with respect to Xi ⇠ N (0, Id) and
Yi|Xi ⇠ N (hXi, ✓

⇤
i,�

2), i.e. no randomness in the the
latent variable ⇠.

Empirical EM. For a finite number of nodes m, the
empirical EM algorithm updates the estimate of the
true model using the empirical Qm-function defined
below

Qm(✓0|✓) =
1

m

mX

j=1

Z

⌅
f✓(⇠|x

n
j , y

n
j ) log f✓0(xn

j , y
n
j , ⇠)d⇠,

(6)

where samples are independent across different nodes.
Similarly, in each iteration of the empirical EM algo-
rithm (Algorithm 2), the current model estimate ✓ is
updated to ✓  Mm(✓) where

Mm(✓) := argmax
✓02⌦

Qm(✓0|✓). (7)

Next proposition characterises the empirical Mm-
function defined in (7).
Proposition 2.2 (Empirical EM). Consider m nodes
each observing n linear measurements generated by

Algorithm 1 Population EM
Require: initialization ✓0

for t = 0, 1, · · · do

Update ✓t+1 = M(✓t) as defined in (4)
end for

Algorithm 2 Empirical EM
Require: initialization ✓0

for t = 0, 1, · · · do

Update ✓t+1 = Mm(✓t) as defined in (7)
end for

the C-MLR model in (1) denoted by {(xj
i , y

j
i )|i =

1, · · · , n, j = 1, · · · ,m}. Then, the Mm(·) function of
the empirical EM defined in (7) can be computed as
follows

Mm(✓) = b⌃�1 1

mn

mX

j=1

nX

i=1

x
j
iy

j
i tanh

✓
1

�2

nX

i=1

hx
j
i , ✓iy

j
i

◆
,

(8)

where b⌃ := 1/(mn)
Pm

j=1

Pn
i=1 x

j
ix

j
i

>
denotes the

sample covariance matrix of the total mn observations.

Proof. We defer the proof to Appendix D.2. ⇤

Our goal in the remainder of the paper is to rigorously
study the optimization and generalization performance
of the two population and empirical EM algorithms
described above. Before that, let us elaborate on a
simple and intuitive benchmark.

2.2 A Benchmark: EM with Independent

Samples

As we described in our C-MLR model in (1), the
measurements observed on a given node share the
same latent variable, making them dependent. In con-
trast, the well-established literature on EM is centered
around the i.i.d. setting where each sample is gen-
erated through a latent variable independent of the
ones for any other sample. To be more precise, con-
sider the setting where N i.i.d. linear measurements
{(xi, yi)|i = 1, · · · , N} generated by a mixture of two
component linear regression model are available. That
is, yi = ⇠ihxi, ✓

⇤
i + ✏i for all i = 1, · · · , N where

⇠i ⇠ U{±1}, xi ⇠ N (0, Id) and ✏i ⇠ N (0,�2) are
i.i.d. and mutually independent. In this setting, the
population and empirical EM update rules are as fol-
lows

M(✓) = E
h
XY tanh

⇣ 1

�2
hX, ✓iY

⌘i
, and
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Table 1: Iteration complexity vs. accuracy for EM employed on clustered and independent samples. †For m  eo(n).

Method Reference Iteration complexity Accuracy

EM with independent data Balakrishnan et al. (2017) O
�
log(mn/d)

�
O

⇣p
d log(1/�)/(mn)

⌘

EM with clustered data This paper O(1)† O

⇣p
d log(1/�)/(mn)

⌘

MN (✓) = b⌃�1 1

N

NX

i=1

xiyi tanh
⇣ 1

�2
hxi, ✓iyi

⌘
,

where the expectation is over X ⇠ N (0, Id), ⇠ ⇠

U{±1} and Y |X, ⇠ ⇠ N (⇠hX, ✓
⇤
i,�

2). In above, b⌃ =

1/N
PN

i=1 xix
>
i denotes the sample covariance matrix

(Balakrishnan et al., 2017; Kwon et al., 2019). In par-
ticular, it was shown in Balakrishnan et al. (2017) that
for any suitable initialization with k✓0�✓⇤k k✓⇤k/32,
after T = log(N/d·k✓

⇤
k
2
/(k✓⇤k2+�

2))·O(1) iterations
of empirical EM with update rule MN (·) as above, the
following sub-optimality is guaranteed with probabil-
ity at least 1� �,

k✓T � ✓
⇤
k

p
k✓⇤k2+�2

r
d+ log(1/�)

N
log

✓
N

d

k✓
⇤
k
2

k✓⇤k2+�2

◆
·O(1).

Now, consider N = mn linear measurements gener-
ated by the C-MLR model in (1) which we also denote
by the same notation {(xi, yi)|i = 1, · · · , N}. Clearly,
the EM update rules in (2.2) may not be employed
in this setting as samples are not independent due to
the shared latent variables. However, one could make
such N samples independent by the following simple
trick. For each sample i = 1, · · · , N , let us denote
ỹi = ⇠̃i · yi where ⇠̃is are independent Rademacher
variables. In words, ỹi = yi or ỹi = �yi equally likely.
It is straightforward to check that the new N sam-
ples {(xi, ỹi)|i = 1, · · · , N} are indeed independent.
Therefore, one may employ the guarantee above and
conclude that with a suitable initialization and after
T iterations of EM (on the new samples), the final
sub-optimality is with probability 1� � bounded by

k✓T � ✓
⇤
k

p
k✓⇤k2+�2

r
d+ log(1/�)

mn
· Õ(1),

where T = log
⇣
mn

d
·
k✓

⇤
k
2

k✓⇤k2+�2

⌘
· O(1).

As mentioned before, we aim to characterize the com-
plexity of the EM algorithm deployed on clustered
samples per the C-MLR model described in (1). Be-
fore laying out our formal analysis, it is worth to high-
light our main result here and compare it to the simple
benchmark described above.

Theorem (Main, informal). Consider the empirical
EM in Algorithm 2 with a constant snr � 4 and any
tolerance probability � 2 (0, 1). Moreover, assume
that mn � O(d + log(1/�)) and n � O(log(m) + d +
log(1/�)). Then, for a suitable initialization and suffi-
ciently large n, after T = O(1) iterations of Algorithm
2, either

(i) there exists an iterate 0  t  T such that

k✓t � ✓
⇤
k

p
k✓⇤k2+�2

r
d+ log(1/�)

mn
,

(ii) or with probability at least 1� �,

k✓T � ✓
⇤
k

p
k✓⇤k2+�2

r
d+ log(1/�)

mn
· O(1).

Our result above demonstrates that incorporating the
underlying clustered structure in the C-MLR model,
EM requires only O(1) iterations to reach the statis-
tical accuracy O(

p
d/(mn)) under proper scaling as-

sumptions. In contrast and as illustrated above, dis-
carding such structure makes EM algorithm to run for
O(log(mn/d)) iterations to reach the same accuracy.
Table 1 summarizes the above discussion.

In the following sections, we prove this result by laying
out optimization and generalization guarantees for the
EM algorithm on samples generated by the C-MLR
model.

3 ANALYSIS OF POPULATION
AND EMPIRICAL EM UPDATES

3.1 Population EM Update

In this section, we consider the population EM updates
in Algorithm 1 with the M operator characterized in
(5) and establish optimization guarantees for it. Let
us recall the population EM scenario and the underly-
ing C-MLR model. Denoted by {(xi, yi)|i = 1, · · · , n}
are n pairs of linear measurements generated accord-
ing to the mixture model (2), that is, yi = ⇠hxi, ✓

⇤
i+✏i

for all i = 1, · · · , n. In Proposition 2.1, we char-
acterised the population M -function and in the fol-
lowing theorem, we establish its contraction property.
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Here and throughout the paper, we denote a Eu-
clidean ball of radius r around the fixed point ✓

⇤ by
B(r; ✓⇤) := {✓ 2 ⌦ | k✓ � ✓

⇤
k r}.

Theorem 3.1. Consider the population EM update
rule M in (5) and assume that ✓ 2 B(↵k✓⇤k; ✓⇤) for
some constant 0  ↵ < 1. If k✓ � ✓

⇤
k� ", then there

exist constants N0(↵, snr) and C(↵, snr) depending on
↵ and snr = k✓⇤k/� such that for any n � N0(↵, snr)
we have

kM(✓)� ✓
⇤
k k✓ � ✓

⇤
k,

for = (
p

dk✓
⇤
k+�)

⇣
snr +

1

n"

⌘
exp

�
�n · C(↵, snr)

�
.

Proof. We defer the proof to Appendix A. ⇤

The result of this theorem reveals a number of insight-
ful remarks as follows.

Remark 4. First, for any constant accuracy lower
bound ", as the number of samples per node n grows,
the factor  decreases and there exists a constant N0

depending on the problem parameters such that for
any n � N0, the M -operator is a contraction, that is,
 < 1. Secondly and more importantly, it shows that if
initialized within a ball around the ground truth model
✓
⇤, iterates of the population EM in Algorithm 1 con-

verge linearly in n till reaching the accuracy ". The
following corollary provides an informal but insightful
implication of this theorem.

Corollary 3.1.1 (Informal). Suppose that the popu-
lation EM in Algorithm 1 is initialized with ✓0 where
k✓0 � ✓

⇤
k= O(k✓⇤k). Then, for sufficiently large n

and after T = O(1 + log(n/d)/n) = O(1) iterations,
either there exists an iterate 0  t  T for which
k✓t � ✓

⇤
k= O(

p
d/n k✓

⇤
k).

While we provide the proof of Theorem 3.1 in Section
A, it is worth elaborating on the proof technique as
follows.

3.2 Proof Sketch

To establish optimization guarantees for the popu-
lation EM iterates and Algorithm 1, we first adopt
the First-Order Stability (FOS) notion (Balakrishnan
et al., 2017) as defined below.

Definition 3.1 (First-Order Stability (FOS)). The
functions {Q(·|✓)|✓ 2 ⌦} satisfy condition FOS(�)
over B(r; ✓⇤) if for all ✓ 2 B(r; ✓⇤),

krQ(M(✓)|✓⇤)�rQ(M(✓)|✓)k �k✓ � ✓
⇤
k.

This property of the Q-function helps showing the con-
traction of the population EM operator M . The fol-
lowing general theorem from Balakrishnan et al. (2017)
characterizes the conditions under which the popula-
tion EM operator M is contractive.

Theorem 3.2 (Balakrishnan et al. (2017)). For some
radius r > 0 and pair (�,�) such that 0  � < �,
suppose that the function Q(·|✓⇤) is �-strongly con-
cave, and that the FOS(�) condition holds on the ball
B(r; ✓⇤). Then, the population EM operator M is con-
tractive over B(r; ✓⇤), in particular,

kM(✓)� ✓
⇤
k

�

�
k✓ � ✓

⇤
k, for all ✓ 2 B(r; ✓⇤).

For the EM function in (5), we prove the first-order
stability property in Definition 3.1 for a fixed ✓. More
precisely, for any ✓ 2 B(↵k✓⇤k; ✓⇤), we show that for
the population Q-function (3) the FOS(�) property
holds true with

� =
1

�2
(
p

dk✓
⇤
k+�)

⇣
n · snr +

1

"

⌘
exp

�
�n · C(↵, snr)

�
,

as long as k✓ � ✓
⇤
k� ". On the other hand, it is

straightforward to check that population Q-function
is �-strongly concave with � = n/�

2. This, together
with the first-order stability and Theorem 3.2 yields
the contractive property of the population M -function
in Theorem 3.1.

3.3 Empirical EM Update

Having set up the optimization guarantees for the pop-
ulation EM (Algorithm 1) in the previous section, we
move to the sample-based setting and establish gen-
eralization characteristics the empirical EM. Coupling
these two results, we provide convergence guarantees
of the (empirical) EM algorithm later in this section.

Let us recall the empirical setting of our interest
where each node j = 1, · · · ,m nodes observes n lin-
ear measurements denoted by {(xj

i , y
j
i )|i = 1, · · · , n}

and generated by the C-MLR model in (1), that is,
y
j
i = ⇠

j
hx

j
i , ✓

⇤
i + ✏

j
i . In the following, we establish a

uniform generalization error bound for the empirical
EM update with finitely many nodes m and samples
per node n.

Theorem 3.3 (Generalization gap). Consider the C-
MLR model in (1) with snr � 4, any tolerance proba-
bility � 2 (0, 1) and the empirical and population EM
operators in (8) and (5) with mn � 1922(d+ log(8/�))
and n � 64 logm � 104(2d + log(4/�)). Then, with
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probability at least 1� �,

sup
✓2Sh(",r;✓⇤)

kMm(✓)�M(✓)k

p
k✓⇤k2+�2

r
d+ log(1/�)

mn
· O(1 + (")).

Here, the supermom is over the spherical shell

Sh(", r; ✓⇤) := {✓ 2 Rd : "  k✓ � ✓
⇤
k r},

with r = k✓⇤k/14 and (") is the contraction factor of
the expected EM update characterized in Theorem 3.1,
i.e.,

(") = (
p

dk✓
⇤
k+�)

⇣
snr +

1

n"

⌘
exp

�
�n · C(snr)

�
.

Proof. We defer the proof to Appendix B. ⇤

Let us provide a useful implication of Theorem 3.3.
Assume the signal-to-noise ratio is a constant larger
than 1 and the total number of samples are at least
mn = O(d + log(1/�)). Moreover, suppose that the
number of nodes is at most m = exp(o(n)), for in-
stance, it grows at a rate polynomial in n. Now take
the accuracy

"` =
p
k✓⇤k2+�2

r
d+ log(1/�)

mn
,

which is particularly of our interest in this paper. This
pick of the accuracy lower bound yields that for suffi-
ciently large n, the expected EM update is contractive,
i.e. ("`) < 1. Now, we denote by "

unif
` the smallest

scalar for which

sup
✓2Sh("`,

1
14k✓⇤k;✓⇤)

kMm(✓)�M(✓)k "
unif
`

with probability at least 1� �. As a result of Theorem
3.3, we have with high probability that the supermom
generalization gap kMm(✓)�M(✓)k over the spherical
shell ✓ 2 Sh("`, k✓⇤k/14; ✓⇤) is at most "unif

`  C""` for
a constant C" � 1. To put it differently, for any pa-
rameter ✓ in a ball around ✓

⇤ with k✓� ✓
⇤
k k✓

⇤
k/14,

if k✓ � ✓
⇤
k "`, then ✓ is already a fairly accurate es-

timate of ✓⇤. Otherwise, Theorem 3.3 guarantees that
the generalization error of the empirical EM update
is with high probability bounded by a constant multi-
plicative factor of "`.

4 MAIN RESULTS ON
SAMPLE-BASED EM
ALGORITHM

Having laid out the main two components of our anal-
ysis in Theorems 3.1 and 3.3, we are ready to formally
state the main result of the paper.

Theorem 4.1 (Main). Consider the empirical EM
update (8) with snr � 4 and any tolerance probabil-
ity � 2 (0, 1) and suppose that the initialization ✓0 is
in B(r; ✓⇤) for r = k✓⇤k/14. Moreover, assume that
mn � 1922(d+log(8/�)) and n � 64 log(m)+104(2d+
log(4/�)) while n is large enough that ("`)  1/2,
("`)  exp(�Cn) for a constant C and 4C""` 

r/2. Then, after

T = 1

+
1

2Cn
log

✓
mn ·

1

28C"
·
k✓

⇤
k
2

k✓⇤k2+�2
·

1

d+ log(1/�)

◆

iterations of Algorithm 2, either

(i) k✓t � ✓
⇤
k "` for some iteration t = 0, 1, · · · , T ,

or

(ii) k✓T � ✓
⇤
k 4C""` with probability at least 1� �.

Remark 5. The result of Theorem 4.1 implies the fol-
lowing remarks. Let the empirical EM (Algorithm
2) be initialized with ✓0 where k✓0 � ✓

⇤
k k✓

⇤
k/14.

In addition, consider the C-MLR model in (1) with a
constant SNR larger than 4 where m and n are such
that mn � O(d + log(1/�)) and n � O(log(m) + d +
log(1/�)), that is, m grows at a rate no greater than
e
o(n). Then, Theorem 4.1 implies that for sufficiently

large n and after

T = O(1) +
1

n
log

✓
mn

d
·
k✓

⇤
k
2

k✓⇤k2+�2

◆
· O(1) = O(1)

iterations, either k✓t � ✓
⇤
k "` for some iteration t =

0, 1, · · · , T ; or otherwise,

k✓T � ✓
⇤
k O("`) =

p
k✓⇤k2+�2

r
d+ log(1/�)

mn
· O(1),

with probability at least 1 � �. Note that since m 

e
o(n), then the iteration complexity is indeed bounded

by a constant, that is,

T = O(1 + 1/n · log(mn/d)) = O(1).

Remark 6. We would like to particularly highlight the
fact that implications of the above theorem are two-
folded. Theorem 4.1 shows that if the EM method in
Algorithm 2 is applied to the mn samples generated
by the C-MLR while honoring the underlying struc-
ture (i.e. shared latent variables for samples of any
node), after only a constant number of iterations in-
dependent of the number of samples, the statistical



Amirhossein Reisizadeh, Khashayar Gatmiry, Asuman Ozdaglar

accuracy O(
p
d/(mn)) is attained with high proba-

bility. On the one hand and regarding the iteration
complexity, this is a significant improvement over the
benchmark described in Section 2.2 where the iteration
complexity grows logarithmically with the number of
samples. On the other hand, Theorem 4.1 guarantees
that the statistical accuracy O(

p
d/(mn)) is indeed

achievable by the same EM algorithm.

4.1 Proof of Theorem 4.1

As mentioned in the theorem’s statement, suppose
that Algorithm 2 is initialized with ✓0 such that
k✓0 � ✓

⇤
k r = k✓⇤k/14 and consider any iteration

t = 0, 1, · · ·. We can write that

k✓t+1�✓
⇤
k= kMm(✓t)� ✓

⇤
k

 kM(✓t)� ✓
⇤
k+kMm(✓t)�M(✓t)k. (9)

Assume that for all iterates 0  k  t we have
k✓k � ✓

⇤
k> "`, otherwise the theorem’s first claim is

concluded. Then from Theorem 3.1, for large enough
n, we have kM(✓t)� ✓

⇤
k ("`) · k✓t � ✓

⇤
k for

("`) = (
p

dk✓
⇤
k+�)

⇣
snr +

1

n"`

⌘
exp

�
�n · C(snr)

�
.

In particular, note that

1

n"`
=

1

n

✓p
k✓⇤k2+�2

r
d+ log(1/�)

mn

◆�1

= O

✓r
m

n

◆
,

and since m grows at a rate at most m = exp(o(n)),
there exists a constant C that for large enough n, we
have ("`)  exp(�Cn) and ("`)  1/2.

In the course of the proof, we show by induction
that the iterates remain in the r-neighbourhood of
✓
⇤. Assume that for all iterates 0  k  t we have
k✓k � ✓

⇤
k r and therefore, kMm(✓t)�M(✓t)k "

unif
`

with probability at least 1��. Plugging in (9) we have
that with probability at least 1� �

k✓t+1 � ✓
⇤
k e

�Cnk✓t � ✓
⇤
k+"

unif
` (10)

Note that the above inequality also implies that
k✓t+1�✓

⇤
k r/2+r/2 = r, where we used the fact that

for large enough n, we have ("`)  1/2. This con-
cludes the induction argument described before, that
is for any t, if k✓k�✓⇤k> "` for all 0  k  t, then with
probability at least 1 � �, we have that k✓k � ✓

⇤
k r

for all 0  k  t. Now, consider the last iterate T

and assume that k✓t � ✓
⇤
k> "` for all 0  t  T . We

condition the rest of the analysis on the event

{kMm(✓t)�M(✓t)k "
unif
` for all t = 0, · · · , T � 1}

which happens with probability at least 1��. Repeat-
ing the argument yielding to (10) implies that

k✓T � ✓
⇤
k  e

�CnT k✓0 � ✓
⇤
k+

TX

t=0

⇣1
2

⌘t
"
unif
`

 e
�CnT k✓

⇤
k

14
+ 2C""`.

Balancing the two terms above yields that after T it-
erations for

T =
1

Cn
log

⇣
k✓

⇤
k

28C""`

⌘

=
1

2Cn
log

✓
mn·

1

28C"
·
k✓

⇤
k
2

k✓⇤k2+�2
·

1

d+ log(1/�)

◆
,

we have with probability at least 1� � that

k✓T � ✓
⇤
k  4C""`

= 4C"

p
k✓⇤k2+�2

r
d+ log(1/�)

mn

=
p
k✓⇤k2+�2

r
d+ log(1/�)

mn
· O(1).

Note that Algorithm 2 has to iterate at least for one
iteration and since m = e

o(n), therefore we can write
that T = O(1 + 1/n · log(mn/d)) = O(1).

5 CONCLUSION

Data heterogeneity is a major challenge in scaling
up distributed learning frameworks such as federated
learning. However, there exist underlying structures
in the data generation model of such paradigms that
can be employed. In this paper, we focus on a par-
ticular model of two-component mixture of linear re-
gressions where m batches of samples each contain-
ing n samples with identical latent variable are avail-
able. Expectation-Maximization is a popular method
to estimate parameters of models with latent variables,
while its theoretical analysis is typically complicated.
We provide optimization and generalization guaran-
tees for EM algorithm on clustered samples which en-
ables us to characterize its iteration complexity to es-
timate he true parameters. An interesting follow-up of
our work is to implement the EM algorithm in a dis-
tributed fashion which is aligned with modern applica-
tions such as federated learning. While new challenges
such as consensus of local estimates arise, we believe
that our techniques and analysis in this paper will be
highly applicable.
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Supplementary Materials for

EM for Mixture of Linear Regression with Clustered
Data

A Proof of Theorem 3.1

We first show the first-order stability of the population Q-function (3) and then employ the result of Theorem
3.2 to conclude the contractive property of the operator M . As we will show in the proof of Proposition 2.1, the
gradient of the function Q(✓0|✓) (with respect to ✓

0) is as follows,

rQ(✓0|✓) = �
n

�2
✓
0 + E


1

�2

nX

i=1

XiYi tanh

✓
1

�2

nX

i=1

hXi, ✓iYi

◆�
, (11)

where the expectation is over i.i.d. feature vectors Xi ⇠ N (0, Id) and response variables Yi = hXi, ✓
⇤
i+ ✏i with

i.i.d. Gaussian noises ✏i ⇠ N (0,�2) for i 2 {1, · · · , n}. To ease the presentation, we use the following short-hand
notation throughout the paper,

Z :=
nX

i=1

XiYi.

Therefore, we can rewrite the gradient of the Q-functions as follows

rQ(✓0|✓) = �
n

�2
✓
0 + E


1

�2

nX

i=1

XiYi tanh
⇣ 1

�2
hZ, ✓i

⌘�

= �
n

�2
✓
0 +

n

�2
E

X1Y1 tanh

⇣ 1

�2
hZ, ✓i

⌘�
, (12)

where we used the fact that the expectation in (11) is symmetric with respect to indices i 2 [n]. Now, we plug
in ✓,M(✓) and ✓

⇤ in (12) and write
��rQ(M(✓)|✓⇤)�rQ(M(✓)|✓)

��

=
n

�2

����E

X1Y1

✓
tanh

⇣ 1

�2
hZ, ✓i

⌘
� tanh

⇣ 1

�2
hZ, ✓

⇤
i

⌘◆�����

=
n

�2
max

�:k�k=1
E

hX1,�iY1

✓
tanh

⇣ 1

�2
hZ, ✓i

⌘
� tanh

⇣ 1

�2
hZ, ✓

⇤
i

⌘◆�


n

�2
max

�:k�k=1

����E

hX1,�iY1

✓
tanh

⇣ 1

�2
hZ, ✓i

⌘
� tanh

⇣ 1

�2
hZ, ✓

⇤
i

⌘◆�����


n

�2
max

�:k�k=1

q
E[hX1,�i

2Y 2
1 ]
p
T1, (13)

where in the last step above, we used Cauchy–Schwarz inequality and the following short-hand notation,

T1 := E
✓

tanh
⇣ 1

�2
hZ, ✓i

⌘
� tanh

⇣ 1

�2
hZ, ✓

⇤
i

⌘◆2�
.

In the following, we bound both terms in (13), starting with the first term. According to the regression model
Y1 = hX1, ✓

⇤
i+ ✏1, we can write for any unit-norm � that

E[hX1,�i
2
Y

2
1 ] = E[hX1,�i

2
hX1, ✓

⇤
i
2] + E[hX1,�i

2
✏
2
1]

(a)
 3k�k2k✓⇤k2+�

2
k�k

2

= 3k✓⇤k2+�
2
,
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where in (a) we used Lemma 5 from Balakrishnan et al. (2017) which shows that for Gaussian vector X1 ⇠

N (0, Id) and any two fixed vectors �, ✓, we have E[hX1,�i
2
hX1, ✓i

2]  3k�k2k✓k2. Therefore,

max
�:k�k=1

q
E[hX1,�i

2Y 2
1 ] 

p
3k✓⇤k+�.

Next, we upper bound the second terms in (13), that is T1. We begin by defining the following three good events
for a given ✓ 2 B(↵k✓⇤k; ✓⇤)

E1 =

⇢
hZ, ✓i �

n

4
(1� ↵)k✓⇤k2

�
,

E2 =

⇢
hZ, ✓

⇤
i �

n

4
k✓

⇤
k
2

�
,

E3 =
�
|hZ, ✓i � hZ, ✓

⇤
i| 3nk✓⇤kk✓ � ✓

⇤
k
 
,

and letting E denote their intersection, that is, E := E1 \ E2 \ E3. Now, we can write that

T1 = E
✓

tanh
⇣ 1

�2
hZ, ✓i

⌘
� tanh

⇣ 1

�2
hZ, ✓

⇤
i

⌘◆2�

 E
✓

tanh
⇣ 1

�2
hZ, ✓i

⌘
� tanh

⇣ 1

�2
hZ, ✓

⇤
i

⌘◆2��� E
�

+ E
✓

tanh
⇣ 1

�2
hZ, ✓i

⌘
� tanh

⇣ 1

�2
hZ, ✓

⇤
i

⌘◆2��� Ec

�
· P(Ec). (14)

The first term above can be bounded as follows,

E
✓

tanh
⇣ 1

�2
hZ, ✓i

⌘
� tanh

⇣ 1

�2
hZ, ✓

⇤
i

⌘◆2��� E
�

= E

|hZ, ✓i � hZ, ✓

⇤
i|
2

✓
tanh

�
1
�2 hZ, ✓i

�
� tanh

�
1
�2 hZ, ✓

⇤
i
�

hZ, ✓i � hZ, ✓⇤i

◆2��� E
�

(a)


1

�2
E

|hZ, ✓i � hZ, ✓

⇤
i|
2

✓
1� tanh2

⇣ 1

�2
min {hZ, ✓i, hZ, ✓⇤i}

⌘◆2��� E
�

 9n2 k✓
⇤
k
2

�2
k✓ � ✓

⇤
k
2

✓
1� tanh2

⇣
n

4
(1� ↵)

k✓
⇤
k
2

�2

⌘◆2

 144n2snr2k✓ � ✓
⇤
k
2exp

⇣
�n(1� ↵)snr2

⌘
, (15)

where in (a) we used the following inequality (stated and proved in Lemma D.2),

tanh(x2)� tanh(x1)

x2 � x1
 max{1� tanh2(x1), 1� tanh2(x2)}, for all x1, x2 � 0.

The second term in the RHS of (14) can be bounded as follows,

E
✓

tanh
⇣ 1

�2
hZ, ✓i

⌘
� tanh

⇣ 1

�2
hZ, ✓

⇤
i

⌘◆2��� Ec

�
· P(Ec)

 4P(Ec)

(b)
 8 exp

✓
�

n

32

⇣1� ↵

1 + ↵

⌘2
◆
+ 8 exp

✓
� nmin

⇢
1

16

⇣1� ↵

1 + ↵

⌘2
snr2,

1

8

⇣1� ↵

1 + ↵

⌘
snr

�◆

+ 8 exp
⇣
�

n

32

⌘
+ 8 exp

⇣
� nmin

n 1

16
snr2,

1

8
snr

o⌘

+ 8 exp
⇣
�

n

8

⌘
+ 8 exp

⇣
� nmin

n
snr2,

snr

2

o⌘

 exp(�2c1n), (16)
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for a constant c1 depending on ↵ and snr. In inequality (b) above, we used the high probability of the good event
E stated and proved in Lemma A.1. Putting (15) and (16) in (14) yields that

T1

k✓ � ✓⇤k2
=

1

k✓ � ✓⇤k2
E
✓

tanh

✓
1

�2
hZ, ✓i

◆
� tanh

⇣ 1

�2
hZ, ✓

⇤
i

⌘◆2�

 144n2snr2 exp
⇣
� n(1� ↵)snr2

⌘
+

exp(�2c1n)

k✓ � ✓⇤k2

 144n2snr2 exp
⇣
� n(1� ↵)snr2

⌘
+ "

�2 exp(�2c1n),

where we assume that k✓ � ✓
⇤
k� ". Therefore,
p
T1

k✓ � ✓⇤k
 12snr · n exp

⇣
�

n

2
(1� ↵)snr2

⌘
+ "

�1 exp(�c1n)

Putting all together in (13), we have the following FOS satisfied

krQ(M(✓)|✓⇤)�rQ(M(✓)|✓)k �k✓ � ✓
⇤
k,

for every ✓ in B(↵k✓⇤k; ✓⇤) such that k✓ � ✓
⇤
k� ". Here, the � parameter is

� =
1

�2

✓
12n
k✓

⇤
k

�
exp

⇣
�

n

2
(1� ↵)snr2

⌘
+ "

�1 exp(�c1n)

◆
· (
p
3k✓⇤k+�)


1

�2
(k✓⇤k+�)

⇣
n · snr +

1

"

⌘
exp(�n · C(↵, snr)),

and for n � N0(↵, snr) where both N0(↵, snr) and C(↵, snr) are constants depending on c1, ↵ and snr (and
therefore depending on ↵ and snr). Moreover, Q(·|✓⇤) is �–strongly concave with � = n/�

2. Following the proof
of Theorem 1 in Balakrishnan et al. (2017), it can be shown that for every ✓ in B(↵k✓⇤k; ✓⇤) with k✓ � ✓

⇤
k� ",

we have

kM(✓)� ✓
⇤
k

�

�
k✓ � ✓

⇤
k,

where in our case
�

�
  := (k✓⇤k+�)

⇣
snr +

1

n"

⌘
exp(�n · C(↵, snr)),

which concludes Theorem 3.1’s claim. It is worth noting that the constraint k✓ � ✓
⇤
k� " in our case does not

affect the conclusion of Theorem 1 in Balakrishnan et al. (2017).

A.1 Useful lemmas and proofs

Lemma A.1. Assume that k✓ � ✓
⇤
k ↵k✓

⇤
k for some 0  ↵ < 1 and let snr = k✓⇤k/� denote the SNR. Then,

the following three events are high probability,

E1 =

⇢
hZ, ✓i �

n

4
(1� ↵)k✓⇤k2

�
,

E2 =

⇢
hZ, ✓

⇤
i �

n

4
k✓

⇤
k
2

�
,

E3 =
�
|hZ, ✓i � hZ, ✓

⇤
i| 3nk✓⇤kk✓ � ✓

⇤
k
 
.

In particular, we have that

P(E1) � 1� 2 exp

✓
�

n

32

⇣1� ↵

1 + ↵

⌘2
◆
� 2 exp

✓
� nmin

⇢
1

16

⇣1� ↵

1 + ↵

⌘2
snr2,

1

8

⇣1� ↵

1 + ↵

⌘
snr

�◆
,

P(E2) � 1� 2 exp
⇣
�

n

32

⌘
� 2 exp

✓
� nmin

⇢
1

16
snr2,

1

8
snr

�◆
,

P(E3) � 1� 2 exp
⇣
�

n

8

⌘
� 2 exp

✓
� nmin

⇢
snr2,

snr

2

�◆
.
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A.2 Proof of Lemma A.1

To prove the first two parts of the lemma, we employ the following result on the concentration of sub-exponential
random variables.
Lemma A.2. Consider the linear regression model Yi = h✓⇤, Xii+ ✏i where Xi ⇠ N (0, I) and ✏ ⇠ N (0,�2) are
independent and i 2 {1, · · · , n}. Also, assume that k✓ � ✓

⇤
k ↵k✓

⇤
k for some 0  ↵ < 1. Then, for any n,

����
nX

i=1

hXi, ✓ihXi, ✓
⇤
i � nh✓, ✓

⇤
i

���� 
n

2
h✓, ✓

⇤
i, w.p. at least 1� 2 exp

✓
�

n

32

⇣1� ↵

1 + ↵

⌘2
◆
,

and
����

nX

i=1

hXi, ✓i✏i

���� 
n

4
h✓, ✓

⇤
i, w.p. at least 1� 2 exp

✓
� nmin

⇢
1

16

⇣1� ↵

1 + ↵

⌘2
snr2,

1

8

⇣1� ↵

1 + ↵

⌘
snr

�◆
,

where snr := k✓⇤k/�.

A.3 Proof of Lemma A.2

Let us denote signal random variables Si := hXi, ✓ihXi, ✓
⇤
i where E[Si] = h✓, ✓

⇤
i � (1 � ↵)k✓⇤k2> 0

for each i 2 {1, · · · , n}. As shown in Lemma A.3, Sis are i.i.d. sub-exponential, in particular, Si ⇠

SubE(4k✓k2k✓⇤k2, 4k✓kk✓⇤k). This yields that
nX

i=1

hXi, ✓ihXi, ✓
⇤
i =

nX

i=1

Si ⇠ SubE
⇣
4nk✓k2k✓⇤k2, 4k✓kk✓⇤k

⌘
,

and therefore for any t � 0, we have the following concentration of sum of Sis around its mean value, that is,

P
✓����

nX

i=1

Si � nh✓, ✓
⇤
i

���� � nt

◆
 2 exp

✓
�min

⇢
nt

2

8k✓k2k✓⇤k2
,

nt

8k✓kk✓⇤k

�◆
.

We pick t = h✓, ✓⇤i/2 which yields that

min

⇢
nt

2

8k✓k2k✓⇤k2
,

nt

8k✓kk✓⇤k

�
= min

⇢
n

32

✓
h✓, ✓

⇤
i

k✓kk✓⇤k

◆2

,
n

16

✓
h✓, ✓

⇤
i

k✓kk✓⇤k

◆�

=
n

32

✓
h✓, ✓

⇤
i

k✓kk✓⇤k

◆2

�
n

32

⇣1� ↵

1 + ↵

⌘2
.

Therefore, for any n we have that

P
✓����

nX

i=1

Si � nh✓, ✓
⇤
i

���� 
n

2
h✓, ✓

⇤
i

◆
� 1� 2 exp

✓
�

n

32

✓
1� ↵

1 + ↵

◆2◆
. (17)

Next, we define i.i.d. noise signals Ni := hXi, ✓i✏i for i 2 {1, · · · , n} where we have E[Ni] = 0. As we show in
Lemma A.3, Nis are sub-exponential random variables with parameters Ni ⇠ SubE(k✓k2�2

/2, k✓k�). Now, we
can write concentration for sum of Nis as follows. We have that

nX

i=1

hXi, ✓i✏i =
nX

i=1

Ni ⇠ SubE

✓
1

2
nk✓k

2
�
2
, k✓k�

◆

and therefore for any t � 0, we have

P
✓����

nX

i=1

Ni

���� � nt

◆
 2 exp

✓
�min

⇢
nt

2

k✓k2�2
,

nt

2k✓k�

�◆
.
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In particular, it yields for t = h✓, ✓⇤i/4 that

min

⇢
nt

2

k✓k2�2
,

nt

2k✓k�

�
= min

⇢
n

16

✓
h✓, ✓

⇤
i

k✓k�

◆2

,
n

8

✓
h✓, ✓

⇤
i

k✓k�

◆�

� nmin

⇢
1

16

⇣1� ↵

1 + ↵

⌘2
snr2,

1

8

⇣1� ↵

1 + ↵

⌘
snr

�
,

and consequently,

P
✓����

nX

i=1

Ni

���� 
n

4
h✓, ✓

⇤
i

◆
� 1� 2 exp

✓
� nmin

⇢
1

16

⇣1� ↵

1 + ↵

⌘2
snr2,

1

8

⇣1� ↵

1 + ↵

⌘
snr

�◆
. (18)

Putting the two high probability events in (17) and (18) implies that event E1 holds, that is,

hZ, ✓i =
nX

i=1

hXi, ✓iYi

=
nX

i=1

hXi, ✓ihXi, ✓
⇤
i+

nX

i=1

hXi, ✓i✏i

�
n

4
h✓, ✓

⇤
i

�
n

4
(1� ↵)k✓⇤k2,

with probability P(E1) stated in the lemma. As a particular case, we set ✓ = ✓
⇤ (and thus ↵ = 0) in above and

conclude the high probability of event E2. Next, we move to show the high probability of event E3. We have that

hZ, ✓i � hZ, ✓
⇤
i =

nX

i=1

hXi, ✓ � ✓
⇤
iYi =

nX

i=1

hXi, ✓ � ✓
⇤
ihXi, ✓

⇤
i+

nX

i=1

hXi, ✓ � ✓
⇤
i✏i.

From Lemma A.3, we have
nX

i=1

hXi, ✓ � ✓
⇤
ihXi, ✓

⇤
i ⇠ SubE(4k✓⇤k2k✓ � ✓

⇤
k
2
, 4k✓⇤kk✓ � ✓

⇤
k).

Therefore, with probability at least 1� 2 exp(�n/8),
����

nX

i=1

hXi, ✓ � ✓
⇤
ihXi, ✓

⇤
i � nh✓ � ✓

⇤
, ✓

⇤
i

����  nk✓
⇤
kk✓ � ✓

⇤
k,

implying that
����

nX

i=1

hXi, ✓ � ✓
⇤
ihXi, ✓

⇤
i

����  n|h✓ � ✓
⇤
, ✓

⇤
i|+nk✓

⇤
kk✓ � ✓

⇤
k 2nk✓⇤kk✓ � ✓

⇤
k.

On the other hand,
nX

i=1

hXi, ✓ � ✓
⇤
i✏i ⇠ SubE

✓
1

2
nk✓ � ✓

⇤
k
2
�
2
, k✓ � ✓

⇤
k�

◆

Therefore,
����

nX

i=1

hXi, ✓ � ✓
⇤
i✏i

����  nk✓ � ✓
⇤
kk✓

⇤
k,

with probability at least

1� 2 exp

✓
� nmin

⇢
snr2,

snr

2

�◆
.
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Therefore,

P(E3) = P
⇣�

|hZ, ✓i � hZ, ✓
⇤
i| 3nk✓⇤kk✓ � ✓

⇤
k
 ⌘

� 1� 2 exp
⇣
�

n

8

⌘
� 2 exp

✓
� nmin

⇢
snr2,

snr

2

�◆
.

Lemma A.3. Let X ⇠ N (0, Id) be Gaussian. Then, for any u, v 2 Rd, hX,uihX, vi is sub-exponential
SubE(⌧2, b) with

⌧
2 = 4kuk2kvk2, and b = 4kukkvk.

Also, assume that ✏ ⇠ N (0,�2) is independent of X. Then, hX,ui✏ ⇠ SubE(kuk2�2
/2, kuk�).

A.4 Proof of Lemma A.3

Define S = hX,uihX, vi. We can write

S

kukkvk
= hX,u/kukihX, v/kvki = hX,uihX, vi =

1

4
hX,u+ vi

2
�

1

4
hX,u� vi

2
,

where we denote u := u/kuk and v := v/kvk. Moreover, S1 := hX,u + vi and S2 := hX,u � vi are zero-mean
Gaussian RVs and

E[S1S2] = E[(u+ v)>XX
>(u� v)] = hu+ v, u� vi = 0,

implying that S1 and S2 are independent. Therefore, we can write that

E
h
exp

�
� (S � µS)

�i
= E


exp

✓
�kukkvk

✓
S

kukkvk
�

µS

kukkvk

◆◆�

= E

exp

✓
�

4
kukkvk

⇣
S
2
1 � µS2

1

⌘◆�

· E

exp

✓
�

�

4
kukkvk

⇣
S
2
2 � µS2

2

⌘◆�
, (19)

where we used the independence of S1 and S2 in above. Next, we employ sub-exponential property of S2
1 and

S
2
2 . More precisely, S2

1 ⇠ SubE(4�4
1 , 4�

2
1) and S

2
1 ⇠ SubE(4�4

2 , 4�
2
2) where

�
2
1 := E[S2

1 ] = 2
�
1 + hu, vi

�
, and �

2
2 := E[S2

2 ] = 2
�
1� hu, vi

�
.

In other words,

E

exp

✓
�
0
⇣
S
2
1 � µS2

1

⌘◆�
 exp

⇣
2�02

�
4
1

⌘
, 8|�

0
|

1

4�2
1

,

E

exp

✓
�
0
⇣
S
2
2 � µS2

2

⌘◆�
 exp

⇣
2�02

�
4
2

⌘
, 8|�

0
|

1

4�2
2

.

Putting �
0 = ±

�
4 kukkvk and using (19), we have that

E

exp

✓
� (S � µS)

◆�
 exp

✓
�
2

8
kuk

2
kvk

2
⇣
�
4
1 + �

4
2

⌘◆
, 8|�|

1

kukkvkmax{�2
1 ,�

2
2}

.

Finally,

�
4
1 + �

4
2 = 4

�
1 + hu, vi

�2
+ 4

�
1� hu, vi

�2
= 8

⇣
1 + hu, vi2

⌘
 16,

yielding that

kuk
2
kvk

2
⇣
�
4
1 + �

4
2

⌘
 16kuk2kvk2,
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and

kukkvkmax{�2
1 ,�

2
2} = 2kukkvkmax{1 + hu, vi, 1� hu, vi} = 2kukkvk(1 + |hu, vi|)4kukkvk.

Next, consider N = hX,ui✏. We know that N is sub-exponential with parameters SubE(⌧2N , bN ). Denote
Zx := hX,ui

kuk and Z✏ :=
✏
� . Clearly, Zx and Z✏ are independent standard Gaussian. Moreover,

N = kuk�ZxZ✏ =
kuk�

4
(Zx + Z✏)

2
�
kuk�

4
(Zx � Z✏)

2
.

Furthermore, Zx + Z✏ and Zx � Z✏ are zero-mean Gaussian RVs and E[(Zx + Z✏)(Zx � Z✏)] = 0, implying that
Zx + Z✏ and Zx � Z✏ are independent. Therefore,

E
⇥
exp (�N)

⇤
= E

h
exp

�
�kuk�ZxZ✏

�i

= E

exp

✓
�kuk�

4
(Zx + Z✏)

2
�

�kuk�

4
(Zx � Z✏)

2
◆�

= E

exp

✓
�kuk�

4
(Zx + Z✏)

2
◆�

· E

exp

✓
�

�kuk�

4
(Zx � Z✏)

2
◆�

 exp

✓
�
2

2

kuk
2
�
2

2

◆
,

for any |�|
1

kuk� . This concludes that N ⇠ SubE(kuk2�2
/2, kuk�). In above, we use the fact that if Z ⇠ N (0, 1),

then Z
2
⇠ SubE(4, 4).

B Proof of Theorem 3.3

We begin by setting up a few shorthand notations as follows

b⌃ =
1

mn

mX

j=1

nX

i=1

x
j
ix

j
i

>
, Z

j =
nX

i=1

x
j
iy

j
i ,

bv =
1

mn

mX

j=1

nX

i=1

x
j
iy

j
i tanh

✓
1

�2

nX

i=1

hx
j
i , ✓iy

j
i

◆
=

1

mn

mX

j=1

Z
j tanh

✓
1

�2
hZ

j
, ✓i

◆
,

v = E

X1Y1 tanh

✓
1

�2

nX

i=1

hXi, ✓iYi

◆�
. (20)

Therefore, we can write that

kMm(✓)�M(✓)k= kb⌃�1bv � vk kb⌃�1
kopkv � bvk

| {z }
T1

+ kb⌃�1
� Ikopkvk| {z }
T2

. (21)

In the following, we bound each of the two terms above.

B.0.1 Bounding T1:

We use the following concentration bounds in bounding both T1 and T2.
Lemma B.1. Let standard Gaussian random variables Xi ⇠ N (0, Id) be independent for i = 1, · · · , N . For any
� 2 (0, 1), if N � 1922(d+ log(2/�)), then we have that

kb⌃N � Idkop  96

r
d+ log(2/�)

N
, kb⌃�1

N � Idkop  192

r
d+ log(2/�)

N
, kb⌃�1

N kop  2,

each with probability at least 1� �. Here, we denote the sample covariance matrix of the N samples by

b⌃N :=
1

N

NX

i=1

xix
>
i .
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As a result of Lemma B.1, if mn � 1922(d + log(2/�)), then kb⌃�1
kop 2 and therefore T1  2kv � bvk with

probability 1� �. Next, we upper bound kv � bvk by first decomposing it to the following three terms

kbv � vk kbv � bv0k+kv � v0k+kbv0 � v0k, (22)

where we use the following notations

bv0 =
1

mn

mX

j=1

Z
j
, v0 =

1

n
E [Z] , Z =

nX

i=1

XiYi. (23)

Here, since Z
js are i.i.d. across different nodes (i.e. different js), we denote by Z the generic random variable

with the same distribution as Z
j for any j = 1, · · · ,m. It is also worth noting that v0 and bv0 defined above

approach v and bv defined in (20) respectively, as the tanh(·) terms therein approach 1. In the following three
lemmas, we upper bound each of the terms in (22).
Lemma B.2. Assuming that n � d, there exist C4(↵, snr) and N1(↵, snr), constants depending on 0  ↵ < 1
and snr, such that for any ✓ 2 B(↵k✓⇤k; ✓⇤) and n � N1(↵, snr), we have that

kv � v0k  (1 + k✓⇤k+�) exp
�
�n · C4(↵, snr)

�
.

Proof. We defer the proof to Section B.1. ⇤
Lemma B.3. Fix � 2 (0, 1) and assume that mn � 322(2d+ log(1/�)). Then, with probability at least 1� �, we
have

kbv0 � v0k  8
p
k✓⇤k2+�2

r
2d+ log(1/�)

mn
.

Proof. We defer the proof to Section B.2. ⇤
Lemma B.4. For r = 1

14k✓
⇤
k and snr � 4, with probability at least 1� (m+ 2) · 5d · exp(�n/64),

sup
✓2B(r;✓⇤)

kbv � bv0k  2(3k✓⇤k+�) exp(�4n).

Proof. We defer the proof to Section B.3. ⇤

Putting the results of the above three lemmas back in the decomposition of kv � bvk in (22) yields that

sup
✓2B(r;✓⇤)

kbv � vk  sup
✓2B(r;✓⇤)

kbv � bv0k+ sup
✓2B(r;✓⇤)

kv � v0k+kbv0 � v0k

 8
p
k✓⇤k2+�2

r
2d+ log(1/�)

mn
+ 2(3k✓⇤k+�) exp(�4n)

+ (1 + k✓⇤k+�) exp
�
�n · C4(↵, snr)

�

=
p
k✓⇤k2+�2

r
d+ log(1/�)

mn
O(1) (24)

with probability at least 1 � � � (m + 2) · 5d · exp(�n/64) � 1 � 2�. Here, O(1) hides constants depending on
k✓

⇤
k, � and ↵. Also, we used the assumption that n� 64 logm � 104(2d+ log(1/�)).

Moreover, we showed in Lemma B.1 that if the total number of samples in at least mn � 1922(d + log(2/�)),
then with probability 1� �, we have kb⌃�1

kop 2. This together with (24) yields that with probability 1� 3�, it
holds that

sup
✓2B(r;✓⇤)

T1 = sup
✓2B(r;✓⇤)

kb⌃�1
kopkv � bvk

p
k✓⇤k2+�2

r
d+ log(1/�)

mn
O(1).
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B.0.2 Bounding T2:

As we showed in Lemma B.1, for a fixed � 2 (0, 1) and mn � 1922(d+ log(2/�)), we have

kb⌃�1
� Ikop 192

r
d+ log(2/�)

mn

with probability 1��. To bound kvk, we can write that kvk= kM(✓)k kM(✓)�✓⇤k+k✓⇤k. The term kM(✓)�✓⇤k
denotes the distance of the regression parameter ✓ to the optimal one ✓

⇤ after an iteration of updates by the
population operator M(·). In Theorem 3.1, we proved that this operator is contractive. More precisely, for any
✓ such that "  k✓ � ✓

⇤
k ↵k✓

⇤
k, we have

kM(✓)� ✓
⇤
k (") · k✓ � ✓

⇤
k, where (") = (k✓⇤k+�)

⇣
snr +

1

n"

⌘
exp

�
�n · C(↵, snr)

�
.

From the assumption of the theorem, we know that (")  1 for large enough n. Therefore

kvk= kM(✓)k kM(✓)� ✓
⇤
k+k✓⇤k k✓ � ✓

⇤
k+k✓⇤k 2k✓⇤k.

All in all, we have with probability at least 1� � that

T2  k✓
⇤
k

r
d+ log(1/�)

mn
O(1).

Now having bounded both terms T1 and T2, we can write from (21) that with probability at least 1� 4�,

sup
✓2B(r;✓⇤)

kMm(✓)�M(✓)k
p
k✓⇤k2+�2

r
d+ log(1/�)

mn
· O(1).

We can further change the probability 1� 4� to 1� � by replacing the log(1/�) to log(4/�) which implies slightly
tighter bounds on the sample sizes m and n. It is also worth noting that all the assumptions made in the auxiliary
lemmas above can be implied by the ones made in Theorem 3.3. Here, we conclude the proof of Theorem 3.3
and move to prove the auxiliary lemmas used above.

B.1 Proof of Lemma B.2

Using the definition of v and v0 in (20) and (23), we have that

kv � v0k=

����
1

n
E [Z]�

1

n
E

Z tanh

✓
1

�2
hZ, ✓i

◆����� 
1

n
E

kZk

✓
1� tanh

✓
1

�2
hZ, ✓i

◆◆�
.

Next, consider a fixed ✓ with k✓ � ✓
⇤
k ↵k✓

⇤
k and define a good event E1 as follows

E1 =
n
hZ, ✓i �

n

4
(1� ↵)k✓⇤k2

o
.

Therefore, we can write that

kv � v0k 
1

n
E

kZk

✓
1� tanh

✓
1

�2
hZ, ✓i

◆◆
· {E1}

�

+
1

n
E

kZk

✓
1� tanh

✓
1

�2
hZ, ✓i

◆◆
· {E

c
1}

�

Let us denote each of the two terms above as T3 and T4, that is,

T3 = E

kZk

✓
1� tanh

✓
1

�2
hZ, ✓i

◆◆
· {E1}

�
,

T4 = E

kZk

✓
1� tanh

✓
1

�2
hZ, ✓i

◆◆
· {E

c
1}

�
. (25)
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We bound T3 by first noting that

kZk

✓
1� tanh

✓
1

�2
hZ, ✓i

◆◆
· {E1}  2kZk · exp

✓
�
n

2
(1� ↵)snr2

◆
,

where we used the fact that under Eg, we have hZ, ✓i � n
4 (1 � ↵)k✓⇤k2 which from the monotonicity of tanh(·)

implies that

tanh

✓
1

�2
hZ, ✓i

◆
� tanh

✓
n

4
(1� ↵)

k✓
⇤
k
2

�2

◆
� 1� 2 exp

✓
�
n

2
(1� ↵)snr2

◆
.

In the last inequality above, we used the fact that tanh(x) � 1 � 2 exp(�2x) for all x. Consequently, we have
that

T3  2E[kZk] · exp
✓
�
n

2
(1� ↵)snr2

◆
.

In the following, we upper bound E[kZk]. We can write that

E[kZk2] = E
✓ nX

i=1

h✓
⇤
, XiiXi + ✏iXi

◆>✓ nX

j=1

h✓
⇤
, XjiXj + ✏jXj

◆�

=
nX

i=1

E[Y 2
i X

>
i Xi] +

X

1i 6=jn

E[YiX
>
i XjYj ]

= (n2
� n+ d+ 2)k✓⇤k2 + d�

2
,

which implies that E[kZk] 
p
n2 � n+ d+ 2k✓⇤k+

p
d� and consequently,

T3  2
⇣
nk✓

⇤
k+
p

d�

⌘
· exp

✓
�
n

2
(1� ↵)snr2

◆
.

Next, we upper bound the term T4 in (25) as follows,

T4 = E

kZk

✓
1� tanh

✓
1

�2
hZ, ✓i

◆◆
· {E

c
1}

�

 2E
⇥
kZk · {E

c
1}
⇤

= 2

Z 1

0
P
�
kZk · {E

c
1} � �

�
d�. (26)

For any � � 0, we use ✏-net argument and write that

P
�
kZk· {E

c
1} � �

�
 P

�
kZk� �

�

= P
✓

max
kuk=1

hZ, ui � �

◆

 P
✓

max
u02N1/2

hZ, u
0
i � �/2

◆

 5d · P
�
hZ, u

0
i � �/2

�
, (27)

where N1/2 denotes a 1/2-covering of the unit sphere Sd = {u 2 Rd
| kuk= 1}, known to have cardinality of at

most |N1/2| 5d. Moreover, in deriving the above inequalities, we used the fact that for any unit vector u, there
exists u

0
2 N1/2 such that ku� u

0
k 1/2 and therefore,

hZ, ui = hZ, u� u
0
i+ hZ, u0

i  max
kwk= 1

2

hZ,wi+ max
u02N1/2

hZ, u
0
i,
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which yields that maxkuk=1hZ, ui  2maxu02N1/2
hZ, u

0
i. Now, consider a fixed unit vector u

0
2 Sd. We know

that hZ, u0
i is SubE(8nk✓⇤k2+n�

2
, 4k✓⇤k+�) and E[hZ, u0

i] = nh✓
⇤
, u

0
i. Therefore,

P
�
hZ, u

0
i � �/2

�
= P

�
hZ, u

0
i � nh✓

⇤
, u

0
i � �/2� nh✓

⇤
, u

0
i
�

 P
�
hZ, u

0
i � nh✓

⇤
, u

0
i � �/2� nk✓

⇤
k
�

 P
�
|hZ, u

0
i � nh✓

⇤
, u

0
i|� �/2� nk✓

⇤
k
�

 exp

✓
�

1

2
min

⇢
(�/2� nk✓

⇤
k)2

8nk✓⇤k2+n�2
,
�/2� nk✓

⇤
k

4k✓⇤k+�

�◆
.

for any � � 2nk✓⇤k. Now pick

�0 = 2nk✓⇤k+ 2
8nk✓⇤k2+n�

2

4k✓⇤k+�
+ 2n2(k✓⇤k+�).

It yields that
Z 1

�0

P
�
kZk· {E

c
1} � �

�
d�  5d

Z 1

�0

exp

✓
�
�/2� nk✓

⇤
k

4k✓⇤k+�

◆
d�

= 5d · 2(4k✓⇤k+�) · exp

✓
�
�0/2� nk✓

⇤
k

4k✓⇤k+�

◆

 8 · 5d(k✓⇤k+�) exp(�n2
/4). (28)

Moreover,
Z �0

0
P
�
kZk· {E

c
1} � �

�
d� 

Z �0

e�c3n

P
�
kZk· {E

c
1} � �

�
d� + e

�c3n

 �0P(Ec
1) + e

�c3n

 (�0 + 1) exp(�c3n)



⇣
1 + (2n2 + 10n)(k✓⇤k+�)

⌘
exp(�c3n), (29)

where we used Lemma A.1 to conclude that P(Ec
1)  exp(�c3n) for a constant c3 depending on ↵ and snr.

Putting (28) and (29) in (26) yields that

T4  2
⇣
1 + (2n2 + 10n)(k✓⇤k+�)

⌘
exp(�c3n) + 16 · 5d(k✓⇤k+�) exp(�n2

/4).

Finally, we put everything together and conclude the lemma as follows,

kv � v0k 
1

n
T3 +

1

n
T4

 2

✓
k✓

⇤
k+

p
d

n
�

◆
· exp

✓
�
n

2
(1� ↵)snr2

◆

+
2

n

✓
k✓

⇤
k+

p
d

n
�

◆
· exp

✓
�
n

2
(1� ↵)snr2

◆
+

16

n
· 5d(k✓⇤k+�) exp(�n2

/4)

 (1 + k✓⇤k+�) exp
�
�C4(↵, snr)n

�
,

for any n � N1(↵, snr). Here, we used the assumption that d  n which is also implied by the assumptions in
Theorem 3.3, particularly from n � 64 logm+ 104(2d+ log(4/�)).

B.2 Proof of Lemma B.3

Recall from the notations that

kbv0 � v0k=

����
1

mn

mX

j=1

Z
j
�

1

n
E [Z]

����,
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For a fixed j 2 {1, · · · ,m} and unit-norm vector u, the inner product hZu
, ui is sub-exponential. More precisely,

1

n
hZ

j
� E[Zj ], ui ⇠ SubE

⇣ 1
n
(8k✓⇤k2+�

2),
1

n
(4k✓⇤k+�)

⌘
.

Therefore,

hbv0 � v0, ui =
1

m

mX

j=1

1

n
hZ

j
� E[Zj ], ui ⇠ SubE

⇣ 1

mn
(8k✓⇤k2+�

2),
1

mn
(4k✓⇤k+�)

⌘
.

From concentration of sub-exponential random variables in Theorem D.1, we can write for every t � 0 that

P
�
kbv0 � v0k� t

�
= P

✓
max
kuk=1

hbv0 � v0, ui � t

◆

 P
✓

max
u02N1/2

hbv0 � v0, u
0
i � t/2

◆

 5d · exp

✓
�

1

2
min

⇢
mn(t/2)2

8k✓⇤k2+�2
,

mnt/2

4k✓⇤k+�

�◆

where we used a 1/2-covering argument similar to (27). Now, assuming mn � 322(2d+ log(1/�)), we pick

t = 8

r
2d+ log(1/�)

mn

p
k✓⇤k2+�2,

which implies that P(kbv0 � v0k� t)  � as desired.

B.3 Proof of Lemma B.4

We begin the proof by using the definitions of bv and bv0 and write

sup
✓2B(r;✓⇤)

kbv � bv0k = sup
✓2B(r;✓⇤)

����
1

mn

mX

j=1

Z
j
�

1

mn

mX

j=1

Z
j tanh

⇣ 1

�2
hZ

j
, ✓i

⌘����

 sup
✓2B(r;✓⇤)

1

mn

mX

j=1

kZ
j
k

✓
1� tanh

⇣ 1

�2
hZ

j
, ✓i

⌘◆


1

mn

mX

j=1

kZ
j
k· sup

✓2B(r;✓⇤)

✓
1� tanh

⇣ 1

�2
hZ

j
, ✓i

⌘◆
.

Next, for each j = 1, · · · ,m we have that

inf
✓2B(r;✓⇤)

hZ
j
, ✓i = hZj

, ✓
⇤
i+ inf

✓2B(r;✓⇤)
hZ

j
, ✓ � ✓

⇤
i = hZj

, ✓
⇤
i+ r · inf

kuk=1
hZ

j
, ui. (30)

Moreover, from a 1/2-covering argument similar to (27) we know that

sup
kuk=1

hZ
j
, ui  2 sup

u02N1/2

hZ
j
, u

0
i,

which yields that

P
✓

sup
kuk=1

hZ
j
, ui � t

◆
 P

✓
sup

u02N1/2

hZ
j
, u

0
i � t/2

◆
 5d · P

⇣
hZ

j
, u

0
i � t/2

⌘
.

For a fixed unit-norm u
0, hZj

, u
0
i is SubE(8nk✓⇤k2+n�

2
, 4k✓⇤k+�) with E[hZj

, u
0
i] = nh✓

⇤
, u

0
i. Therefore, for

any t � 0, we have that

|hZ
j
, u

0
i � nh✓

⇤
, u

0
i| t/2,
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with probability at least

1� 2 exp

✓
�min

⇢
t
2
/8

8nk✓⇤k2+n�2
,

t/4

4k✓⇤k+�

�◆
.

Taking t = n(k✓⇤k+�) in above yields that with probability at least 1� exp(�n/64) we have

hZ
j
, u

0
i  nh✓

⇤
, u

0
i+

1

2
n(k✓⇤k+�) 

3

2
nk✓

⇤
k+

1

2
n�.

Together with the 1/2-covering argument, it holds that

sup
kuk=1

hZ
j
, ui  3nk✓⇤k+n�, (31)

with probability at least 1�5d·exp(�n/64). Moreover, following the above logic for a specific case of u0 = ✓
⇤
/k✓

⇤
k,

we have with probability 1� exp(�n/64) that
���hZj

, ✓
⇤
/k✓

⇤
ki � nk✓

⇤
k

��� 
1

2
n(k✓⇤k+�),

which implies that

hZ
j
, ✓

⇤
i �

1

2
nk✓

⇤
k
2
�
1

2
nk✓

⇤
k�, (32)

with the same probability. Putting (31) and (32) back in (30) yields that

inf
✓2B(r;✓⇤)

hZ
j
, ✓i = hZj

, ✓
⇤
i+ r · inf

kuk=1
hZ

j
, ui �

1

2
nk✓

⇤
k
2
�
1

2
nk✓

⇤
k� � 3rnk✓⇤k�rn� �

1

7
nk✓

⇤
k
2
,

for r = 1
14k✓

⇤
k and snr � 4. Therefore, with probability at least 1� (5d + 1) exp(�n/64), we have

sup
✓2B(r;✓⇤)

✓
1� tanh

⇣ 1

�2
hZ

j
, ✓i

⌘◆
 2 exp

⇣
�

2

7
n · snr2

⌘
 2 exp(�4n), (33)

where we used tanh(x) � 1� 2 exp(�2x) for all x. Furthermore, we showed above that with probability at least
1� 5d · exp(�n/64) and for each 1  j  m, we have

kZ
j
k= sup

kuk=1
hZ

j
, ui  3nk✓⇤k+n�. (34)

Putting (33) and (34) together, we have

sup
✓2B(r;✓⇤)

kbv � bv0k
1

mn

mX

j=1

kZ
j
k· sup

✓2B(r;✓⇤)

✓
1� tanh

⇣ 1

�2
hZ

j
, ✓i

⌘◆
 2(3k✓⇤k+�) exp(�4n),

with probability at least 1� (m+ 2) · 5d · exp(�n/64).

B.4 Proof of Lemma B.1

The proof follows from basic standard Gaussian concentration. We provide the proof here for completeness.
Using concentration of sub-exponential RVs and ✏-net arguments we have that

P
⇣
kb⌃� Idkop � t

⌘
 2 · 9d exp

✓
�

n

2
min

⇢✓
t

32

◆2

,
t

32

�◆
.

Picking t = 96
p
(d+ log(2/�))/N yields the desired concentration bound. For the second inequality, we note

that

kb⌃�1
� Idkop  k

b⌃�1
kopk

b⌃� Idkop



⇣
1 + kb⌃�1

� Idkop

⌘
kb⌃� Idkop

 96

r
d+ log(2/�)

N
+

1

2
kb⌃�1

� Idkop,

with probability at least 1 � �. In above, we used the concentration proved in the first part, as well as the
assumption N � 1922(d+ log(2/�)) to conclude that kb⌃� Idkop 1/2.
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C Useful Lemmas

C.1 Proof of Proposition 2.1

Let us denote x[n] := (x1 · · · , xn) and y[n] := (y1 · · · , yn). Then, according to the C-MLR model in (2) with true
regression parameters ✓, we have yi|⇠, xi ⇠ N (⇠hxi, ✓i,�

2). Therefore,

f✓(x[n], y[n]) =

Z
f✓(x[n], y[n], ⇠)d⇠

= P(⇠ = �1)f✓(x[n], y[n]|⇠ = �1) + P(⇠ = +1)f✓(x[n], y[n]|⇠ = +1)

=
1

2

✓
1

2⇡�2

◆n/2

f(x[n])

⇢
exp

✓
�

1

2�2

nX

i=1

(yi � hxi, ✓i)
2
◆
+ exp

✓
�

1

2�2

nX

i=1

(yi + hxi, ✓i)
2
◆�

=
1

2

✓
1

2⇡�2

◆n/2

f(x[n])
�
exp(s�1(✓)) + exp(s+1(✓))

�
,

where we denote for any ✓ and ⇠ 2 {�1,+1}

s⇠(✓) = �
1

2�2

nX

i=1

(yi � ⇠hxi, ✓i)
2
.

Moreover,

f✓(⇠|x[n], y[n]) =
f✓(x[n], y[n], ⇠)

f✓(x[n], y[n])
= 2p(⇠)

exp(s⇠(✓)))

exp(s�1(✓)) + exp(s+1(✓))
,

and

log f✓0(x[n], y[n], ⇠) = s⇠(✓
0) + log p(⇠) + log f(x[n])�

n

2
log(2⇡). (35)

Let us define

Q̂(✓0|✓) =

Z

⇠
f✓(⇠|x[n], y[n]) log f✓0(x[n], y[n], ⇠)d⇠.

According to (38), only the first term in the RHS of (38) depends on ✓
0 and therefore, we only keep the term

s⇠(✓0) in computing Q̂(✓0|✓) as follows
Z

⇠
f✓(⇠|x[n], y[n])s⇠(✓

0)d⇠ =

Z

⇠
2p(⇠)

exp(s⇠(✓)))

exp(s�1(✓)) + exp(s+1(✓))
s⇠(✓

0)d⇠

= �
1

2�2

nX

i=1

y
2
i �

1

2�2

nX

i=1

hxi, ✓
0
i
2

+
1

�2

exp(s+1(✓))� exp(s�1(✓))

exp(s+1(✓)) + exp(s�1(✓))

nX

i=1

yihxi, ✓
0
i. (36)

Now, the Q-function defined in (4) can be written as Q(✓0|✓) = E[Q̂(✓0|✓)] where the expectation is w.r.t.
randomness in (X[n], Y[n]) generated by the ground truth distribution governed by ✓

⇤. From (39) we have that

E
 Z

⇠
f✓(⇠|x[n], y[n])s⇠(✓

0)d⇠

�
= �

1

2�2

nX

i=1

E[y2i ]�
n

2�2
k✓

0
k
2

+
1

�2
E

tanh

✓
1

�2

nX

i=1

yihxi, ✓i

◆ nX

i=1

yihxi, ✓
0
i

�
, (37)
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where we used the fact that

exp(s+1(✓))� exp(s�1(✓))

exp(s+1(✓)) + exp(s�1(✓))
= tanh

✓
1

�2

nX

i=1

yihxi, ✓i

◆
.

Note that the first term in RHS of (40) dose not depend on ✓
0, therefore,

rQ(✓0|✓) = �
n

�2
✓
0 +

1

�2
E
 nX

i=1

XiYi tanh

✓
1

�2

nX

i=1

hXi, ✓iYi

◆�
.

Putting rQ(✓0|✓) = 0 yields that

M(✓) := argmax
✓0

Q(✓0|✓)

=
1

n
E
 nX

i=1

XiYi tanh

✓
1

�2

nX

i=1

hXi, ✓iYi

◆�

= E

X1Y1 tanh

✓
1

�2

nX

i=1

hXi, ✓iYi

◆�
.

C.2 Proof of Proposition 2.2

Using (39) and definition of Qm-function in (6) we have that

1

m

mX

j=1

Z

⇠
f✓(⇠|x

j
[n], y

j
[n])s⇠(✓

0)d⇠ = �
1

2m�2

mX

j=1

nX

i=1

y
j
i

2
�

1

2m�2

mX

j=1

nX

i=1

hx
j
i , ✓

0
i
2

+
1

m�2

mX

j=1

tanh

✓
1

�2

nX

i=1

y
j
i hx

j
i , ✓i

◆ nX

i=1

y
j
i hx

j
i , ✓

0
i.

Therefore,

rQm(✓0|✓) = �
1

m�2

mX

j=1

nX

i=1

x
j
ix

j
i

>
✓
0 +

1

m�2

mX

j=1

tanh

✓
1

�2

nX

i=1

y
j
i hx

j
i , ✓i

◆ nX

i=1

y
j
i x

j
i ,

and finally putting rQm(✓0|✓) = 0 yields the desired result.
Definition C.1 (Sub-exponential RV). A random variable X is said to be sub-exponential with parameter (⌧2, b)
if

E
h
exp

�
�(X � µX)

�i
 exp

✓
�
2
⌧
2

2

◆
, 8|�|

1

b
.

We denote such RV by SubE(⌧2, b).
Theorem C.1. Let Xi ⇠ SubE(⌧2, b) be iid sub-exponentials. Then,

P
✓����

1

n

nX

i=1

Xi � µX

���� � t

◆
 2 exp

✓
�min

⇢
nt

2

2⌧2
,
nt

2b

�◆

Lemma C.2. For any x1, x2 � 0, we have

tanh(x2)� tanh(x1)

x2 � x1
 max{1� tanh2(x1), 1� tanh2(x2)}.

Proof. Assume that x2 � x1 � 0. Since the function f(x) := tanh(x) is concave in [0,+1), we can write

f(x2)  f(x1) + (x2 � x1)f
0(x1),
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which yields that

tanh(x2)� tanh(x1)

x2 � x1
 1� tanh2(x1).

Similar argument holds for x1 � x2 � 0, i.e.,

tanh(x1)� tanh(x2)

x1 � x2
 1� tanh2(x2).

⇤
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