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Abstract

Multi-objective optimization (MOO) aims to
optimize multiple, possibly conflicting objec-
tives with widespread applications. We intro-
duce a novel interacting particle method for
MOO inspired by molecular dynamics simu-
lations. Our approach combines overdamped
Langevin and birth-death dynamics, incorpo-
rating a “dominance potential” to steer parti-
cles toward global Pareto optimality. In con-
trast to previous methods, our method is able
to relocate dominated particles, making it
particularly adept at managing Pareto fronts
of complicated geometries. Our method is
also theoretically grounded as a Wasserstein-
Fisher-Rao gradient flow with convergence
guarantees. Extensive experiments confirm
that our approach outperforms state-of-the-
art methods on challenging synthetic and
real-world datasets.

1 INTRODUCTION

Multi-objective optimization (MOO) addresses opti-
mization scenarios where multiple objectives are simul-
taneously and systematically optimized. Given that
these objectives may inherently conflict, MOO seeks
to identify a diversified set of solutions on the Pareto
front, where no solution can enhance one objective
without deteriorating at least one other. Determining
the Pareto front is intricate due to its typically non-
closed-form expression and potentially complicated ge-
ometries. Real-world applications of MOO span vari-
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ous domains, including control systems (Gambier and
Badreddin, 2007), energy saving (Cui et al., 2017), and
economics and finance (Tapia and Coello, 2007).

Over the past few decades, MOO has been extensively
explored in literature. Notable traditional methods in-
clude the evolutionary algorithms (Tamaki et al., 1996;
Deb et al., 2002a; Konak et al., 2006; Reyes-Sierra
et al., 2006; Zhang and Li, 2007; Zhou et al., 2011),
and Bayesian optimization (Laumanns and Ocenasek,
2002; Belakaria et al., 2020; Konakovic Lukovic et al.,
2020; Tu et al., 2022). These methods, while effective,
can be computationally expensive and less adaptable
to high-dimensional problems. Recently, gradient-
based MOO methods have been developed for vari-
ous machine learning tasks (Sener and Koltun, 2018).
Many such methods rely on preference vectors (Lin
et al., 2019; Mahapatra and Rajan, 2020; Liu and Vi-
cente, 2021). However, their efficacy often hinges on
the vector selection, making them potentially heuristic
for unknown Pareto fronts. Another line of research
has explored hypernetwork methods (Navon et al.,
2020; Lin et al., 2020; Ruchte and Grabocka, 2021b;
Chen and Kwok, 2022; Hoang et al., 2023), which may
fail to capture the discontinuity of the Pareto front and
thus only work for simple Pareto front geometries. We
refer the readers to Appendix A for a more compre-
hensive literature review.

Contributions. In this paper, we propose a novel
interacting particle method for MOO inspired by
molecular dynamics simulations in computational
physics1. Particle diversity is maintained by integrat-
ing a repulsive two-body interatomic potential. A
standout feature of our method is the introduction
of the dominance potential, which assigns higher po-
tential to particles being dominated. Together with
the incorporation of the stochastic birth-death process,

1Code is accessible at https://github.com/yinuoren/
particlewfr

https://github.com/yinuoren/particlewfr
https://github.com/yinuoren/particlewfr
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we facilitate the direct relocation or, more intuitively,
the teleportation of dominated particles to the Pareto
front. This not only ensures the global Pareto opti-
mality of the solutions but also significantly bolsters
performance.

• We propose the Particle-WFR method, evolving
a population of randomly-initialized particles by a
combination of overdamped Langevin and stochas-
tic birth-death dynamics towards the Pareto front.

• Theoretical grounding of our method is achieved by
formulating it as a Wasserstein-Fisher-Rao gradient
flow in the space of probability measures, providing
provable convergence guarantees.

• Extensive experiments are conducted on both syn-
thetic and real-world datasets, and the results
demonstrate the superiority of our method over the
state-of-the-art methods in addressing challenging
tasks with complicated Pareto fronts.

2 PRELIMINARIES

This section defines the multi-objective optimization
problem and introduces fundamental concepts and no-
tations. A brief overview of gradient flows in the space
of probability measures is also provided.

2.1 Pareto Optimality

In MOO, we consider the following problem of mini-
mizing m objective functions simultaneously:

min
x∈D

f(x) = (f1(x), · · · , fm(x)) , (1)

where D ⊆ Rd is the feasible region, and fi : Rd → R,
i ∈ [m] = {1, . . . ,m} are objective functions. Unlike
single-objective optimization problems, we need the
following notion of Pareto optimality to determine the
superiority of a solution:

Definition 1 (Pareto optimality). A solution x∗ is
said to be Pareto optimal if there does not exist an-
other solution x′ such that fi(x

′) ≤ fi(x
∗) for all

i ∈ [m] and fj(x
′) < fj(x

∗) for at least one j ∈ [m].
A solution x∗ is said to be locally Pareto optimal if
there exists a neighborhood N (x∗) of x∗ such that x∗

is Pareto optimal in N (x∗).

In real applications, we are often interested in the set
of Pareto optimal solutions, called the Pareto front,
denoted by P. Our goal is to find a set of solutions
on the Pareto front, which should favorably be di-
versified, explicitly showcasing the characteristics of
the problem for the decision maker to make the fi-
nal choice (Tamaki et al., 1996). However, the Pareto

front may exhibit complicated geometries that are dis-
connected or highly non-convex (Kulkarni et al., 2022),
making it very challenging to compute. Singularities
may arise even with only two quadratic objective func-
tions (Sheftel et al., 2013).

2.2 Wasserstein-Fisher-Rao Gradient Flow

In many sampling problems, one would like to design
an evolution of probability measures ρt that converges
to a target distribution ρ∗ as t → ∞. One of the
most intuitive and powerful tools for this purpose is
the gradient flow. Specifically, a gradient flow repre-
sents a continuous-time dynamical system guiding ρt
towards the target distribution ρ∗, recognized as the
minimizer of a certain energy functional E [ρ]. Gen-
erally, the introduction of different Riemannian met-
rics yields various gradient flows, each defining unique
geodesics within the space of probability measures.

Consider two probability measures ρ0 and ρ1, the
Wasserstein distance is defined as

dW(ρ0, ρ1) = inf
π∈Π(ρ0,ρ1)

∫
Rd×Rd

∥x−y∥2π(dx,dy), (2)

where Π(ρ0, ρ1) denotes the set of all joint probabil-
ity measures on Rd × Rd with marginals ρ0 and ρ1.
The Benamou-Brenier theorem (Benamou and Bre-
nier, 2000) provides an insightful geodesic interpreta-
tion for the Wasserstein metric:

dW(ρ0, ρ1)

= inf

{∫ 1

0

∫
∥vt∥2dρtdt

∣∣∣∣∂tρt = −∇ · (ρtvt)

}
,

and the corresponding Wasserstein gradient flow of
the energy E [ρ] is

∂tρt = ∇ · (ρt∇δρE [ρt]), (3)

where δρE [ρ] denotes the Fréchet derivative of E [ρ]
w.r.t. ρ. One notable relevant result is that when E [ρ]
is selected as the Kullback-Leibler divergence between
ρ and ρ∗, the resulting Wasserstein gradient flow is the
overdamped Langevin dynamics (Jordan et al., 1998).

In parallel, the Fisher-Rao metric is another important
metric in the space of probability measures, resonating
with concepts including the Fisher information and the
Hellinger distance familiar to statisticians. It also has
a geodesic interpretation:

dFR(ρ0, ρ1) = inf

{∫ 1

0

∫
β̃2
t dρtdt

∣∣∣∣∂tρt = ρtβ̃t

}
,

where ·̃ is a shorthand notation for · − Eρt [·]. The
corresponding Fisher-Rao gradient flow is given by

∂tρt = −ρtδ̃ρE [ρt]. (4)
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Intuitively, as the Wasserstein gradient flow derives
from the optimal transport problem (2), it redis-
tributes probability densities by transporting them
along paths directed by the Kantorovich potential
δρE [ρ]. On the other hand, the Fisher-Rao gradient
flow teleports mass, i.e. locally reshape probability
densities, according to the deviation of δρE [ρ] from its
expectation.

Recent advances (Liero et al., 2016, 2018; Chizat
et al., 2018) suggest the following Wasserstein-Fisher-
Rao (WFR) distance, also known as the spherical
Hellinger-Kantorovich distance:

dWFR(ρ0, ρ1) = inf

{∫ 1

0

∫
∥vt∥2 + β̃2

t dρtdt

∣∣∣∣
∂tρt = −∇ · (ρtvt) + ρtβ̃t

}
,

as a natural combination of the Wasserstein and
Fisher-Rao distances for the study of unbalanced op-
timal transport, e.g. accelerating Langevin sam-
pling (Lu et al., 2019) and learning Gaussian mix-
ture (Yan et al., 2023). It leads to the following WFR
gradient flow of E [ρ]:

∂tρt = ∇ · (ρt∇δρE [ρt])− ρtδ̃ρE [ρt], (5)

which offers promising implications, which we delve
deeper into in the next section.

3 ALGORITHM

In this section, we present our proposed method for
MOO. We first design the functional E [ρ] on which
we employ the Wasserstein-Fisher-Rao (WFR) gra-
dient flow and thereby encourage the diversity and
global Pareto optimality. We then offer the theoret-
ical formulation of our method as the WFR gradient
flow. Finally, we discuss the interacting particle imple-
mentation of the WFR gradient flow, which is realized
through the alternate application of the overdamped
Langevin and birth-death dynamics.

3.1 Designing the Functional E [ρ]

Consider the initial setup where the probability mea-
sure ρ0 is arbitrarily initialized within the feasible re-
gion D. As we implement the WFR gradient flow of
E [ρ] to evolve ρt towards the target distribution ρ∗, we
would like to design the functional E [ρ] such that its
minimizer ρ∗ has the following properties:

1. Global Pareto optimality: ρ∗ should in close
proximity to the Pareto front. Particularly, ρ∗

should only cover global Pareto optimal solutions
and exclude those only local Pareto optimal.

2. Diversity: To ensure a comprehensive representa-
tion, ρ∗ should be diversified, spanning the entirety
of the Pareto front. It should not be concentrated
only on a subset of the Pareto front.

For each property above, we propose a corresponding
term in the functional E [ρ], as explained below:

Objective Function Term. A straightforward
strategy to force the minimizer ρ∗ closer to the Pareto
front is the weighted sum method, i.e. minimiz-
ing a linear combination of the objective functions
F (x) =

∑m
i=1 αifi(x) where αi, i ∈ [m] are predeter-

mined parameters. However, this method is suscep-
tible to the varied scales and ranges of the objective
functions, and the concavity of the Pareto front.

Addressing this challenge, the Multi-Gradient Descent
Algorithm (MGDA) (Désidéri, 2012) relaxes the pa-
rameters αi to be space-dependent determined by solv-
ing the following minimal norm optimization problem
for each x:

min
α∈∆m

∥∥∥∥∥
m∑
i=1

αi(x)∇fi(x)

∥∥∥∥∥ , (6)

where ∆m denotes the m-dimensional probability sim-
plex. We will denote the optimal linear combination
in (6) at each x as g†(x).

An argument by Lagrangian duality allows us to derive
that g†(x) conforms to:

−∥g†(x)∥2 = min
∥g∥≤1

min
i∈[m]

−g⊤∇fi(x).

Intuitively, −g† is the direction where objective func-
tions see the most common decrease, quantified by
∥g†∥2. As shown in Désidéri (2012, Theorem 2.2),
a small magnitude of ∥g†∥ indicates misalignment
among the objective function, i.e. x is close to local
Pareto optimality.

Thus, we design the objective function term F1[ρ] as

F1[ρ] =

∫
D
∥g†(x)∥2ρ(dx), with δρF1(·) = ∥g†(·)∥2,

pushing ρt towards the Pareto front.

Dominance Potential Term. To ensure the global
Pareto optimality of the minimizer ρ∗, we also design a
dominance potential term F2[ρ] of the following form:

F2[ρ] =

∫
D

(∫
P
D(f(x), f(y))µP(dy)

)
ρ(dx), (7)

where µP is a predetermined measure on the Pareto
front, and the kernel D(·, ·) satisfies

D(f(x), f(y)) =

m∏
i=1

max {0, fi(x)− fi(y)} . (8)
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One should notice this potential term is still linear in
ρ with the Fréchet derivative given by

δρF2(·) =
∫
P
D(f(·), f(y))µP(dy). (9)

As shown in Figure 1a, D(f(x), f(y)) is asymmetric
and is non-zero if and only if x is dominated by y, and∫
P D(f(x), f(y))µP(dy) indicates how much x is dom-
inated by the Pareto front P. Ideally, the target distri-
bution ρ∗ is expected to have a small value of F2[ρ

∗].
This term is crucial for implementing the birth-death
process, which eliminates dominated particles, ensures
global Pareto optimality, and accelerates the conver-
gence of our method.

Entropy Term. We add a negative entropy term
−H[ρ] to the functional E [ρ] to encourage the diversity
of the minimizer ρ∗:

−H[ρ] =
∫
D
ρ(x) log ρ(x)dx,

and its Fréchet derivative is given by δρ(−H[ρ]) =
log ρ(x)+1. As we will show later, this term effectively
injects stochasticity into the evolution of ρt, thus also
encouraging the exploration of the entire Pareto front.

Repulsive Potential Term. To further encourage
the diversity of the minimizer ρ∗ explicitly, we also
design two-body repulsive potential term G[ρ] of the
following form:

G[ρ] = 1

2

∫
D×D

ρ(dx)R(f(x), f(y))ρ(dy),

with the Fréchet derivative being

δρG[ρ] =
∫
D
R(f(·), f(y))ρ(dy).

Specifically, the repulsive kernel R(·, ·) can adopt var-
ious forms depending on the requirements, including
the Gaussian potential R(x,y) = exp(−∥x − y∥2/σ2)
or the Coulomb potential R(x,y) = 1/∥x − y∥. As
illustrated in Figure 1b, this term pushes particles in
the mass ρ away from each other, contributing to en-
hancing the dispersion of the minimizer ρ∗.

Combining the above terms, we define the functional
E [ρ] as

E [ρ] = F [ρ] + βG[ρ]− γH[ρ], (10)

where F [ρ] = α1F1[ρ] + α2F2[ρ], with α1, α2, β, and
γ being hyperparameters.

3.2 Theoretical Analysis

As we are implementing the WFR gradient flow of E [ρ],
we have the following overall convergence guarantee:

(a) D(f(x), f(y)) (b) R(f(x), f(y))

Figure 1: Illustration of structural potential terms.
This visualization explains the role of the dominance
potential F2 and the repulsive potential G in a setting
with two objective functions (m = 2). (a) Suppose
y is from µP(·) with corresponding objective function
values f(y) = (f1(y), f2(y)). When a point x is intro-
duced, the dominance kernel D(·, f(y)) acts to shift x
out of the region dominated by y. (b) For two sam-
ples x and y the repulsive kernel R(·, f(y)) repels the
objective function values of x away from those of y.

Theorem 1. Let ρt follow the WFR gradient flow
of E [ρ] (5), then the following decay of the functional
value E [ρt] holds:

∂tE [ρt] = −
∫
D
ρt ∥∇δρE [ρt]∥2 + ρtδ̃ρE [ρt]

2

dx ≤ 0.

(11)
Furthermore, if β > 0 or γ > 0, the density ρt con-
verges to the unique minimizer ρ∗ of E [ρ], as t → ∞.

For the special case where the diversity of the mass is
only fostered by the entropy H[ρ], we have the follow-
ing exponential convergence guarantee:

Theorem 2. Let ρt follow the WFR gradient flow of
E [ρ] in (5) with β = 0. The unique minimizer ρ∗ has
the following explicit Gibbs-type expression:

ρ∗ ∝ exp

(
−
α1∥g†∥2 + α2

∫
P D(f(·), f(y))µP(dy)

γ

)
.

(12)
Assume the initialization satisfies
infx∈D ρ0(x)/ρ

∗(x) ≥ e−M , then the following
exponential convergence holds:

KL(ρt|ρ∗) ≤Me−γt + e−γt+Me−γt

KL(ρ0|ρ∗). (13)

Proofs are deferred to Appendix B.

Remark 1. One should notice that the exponential
convergence discussed above does not require the strong
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convexity of the functional E [ρ], which is often neces-
sary for Wasserstein gradient flows ( e.g. via the log-
Sobolev inequality (Villani, 2021)). The exclusion of
G[ρ] in Theorem 2 is due to technicalities behind the
nonlinearity of E [ρ] and the absence of a closed-form
expression of the minimizer ρ∗, which we leave for fu-
ture work.

3.3 Interacting Particle Method

Since probability densities ρt as infinite-dimensional
objects are generally difficult to keep track of or op-
timize, we propose to approximate ρt by a set of N
interacting particles {xk}nk=1 as

ρt ≈
1

N

n∑
k=1

δ(x− xk),

in which δ(·) denotes the Dirac delta function and
each particle xk evolves with the time t. This method
has been widely used in computational fluid dynam-
ics (Koshizuka et al., 2018). We also employ a straight-
forward time discretization scheme with a small time
step τ and use the notation x

(ℓ)
k = xk(ℓτ), for k ∈ [m]

and ℓ ≥ 0.

As studied by Gallouët and Monsaingeon (2017), WFR
gradient flow can be approximated by the splitting
scheme, i.e., alternatively updating with (a) the gra-
dient flow of the Wasserstein metric, and (b) that of
the Fisher-Rao metric. Next, we will show that these
two updates can be implemented with the overdamped
Langevin and birth-death dynamics, respectively.

Overdamped Langevin Dynamics. Plug-
ging (10) into the Wasserstein gradient flow (3), we
obtain the following governing equation of ρt:

∂tρt = ∇ · (ρt∇ (δρF + δρG[ρt])) + γ∆ρt,

which is exactly the Fokker-Planck equation of the fol-
lowing stochastic differential equation (SDE):

dxt = −∇ (δρF + δρG[ρt]) dt+
√

2γdwt,

wherewt is the standard Brownian motion. Therefore,
the update in this step can be easily approximated by
the overdamped Langevin dynamics of the particles for
each k ∈ [N ]:

x
(ℓ+1/2)
k = x

(ℓ)
k −

τ

2
∇ (δρF + δρG[ρt])+

√
γτε

(ℓ)
k , (14)

where ε
(ℓ)
k are sampled independently from a standard

Gaussian. As mentioned before, the stochasticity is
introduced by the entropy term H[ρ].

Birth-death Dynamics. To simulate the Fisher-
Rao gradient flow (4), we draw inspiration from the
birth-death process in the queueing theory and the
Gillespie algorithm for biochemical system simula-
tion (Gillespie, 2007). Specifically, we reformulate (4)
as

∂t log ρt = −δ̃ρE [ρt] := −Λt, (15)

where Λt is the instantaneous birth-death rate func-
tion. Using the forward Euler scheme, (15) can be ap-
proximated by ρt+τ/2 ≈ ρt exp(−Λtτ/2), i.e. ρt should
increase by exp(−Λtτ/2)− 1 if Λt < 0, and if Λt > 0,
it should decrease by 1− exp(−Λtτ/2) .

In the context of our interacting particle method, we
compute the instantaneous birth-death rate function

Λ(ℓ+1/2)τ for each particle x
(ℓ+1/2)
k . This is done by

approximating the expectation as

Λ(ℓ+1/2)τ (x
(ℓ+1/2)
k ) = δρE [ρt](x(ℓ+1/2)

k )− Eρt
[δρE [ρt]]

≈ δρE [ρt](x(ℓ+1/2)
k )− 1

N

N∑
k′=1

δρE [ρt](x(ℓ+1/2)
k′ ).

(16)

Then for each particle x
(ℓ+1/2)
k , depending on the sign

of Λ(ℓ+1/2)τ , we either duplicate it with probability

exp(−Λ(ℓ+1/2)τ (x
(ℓ+1/2)
k )τ/2) − 1 or remove it with

probability 1−exp(−Λ(ℓ+1/2)τ (x
(ℓ+1/2)
k )τ/2). To com-

pensate for the change in the total mass, we also ran-
domly remove (or duplicate) a particle from the en-
tire population whenever a duplication (or removal)
occurs. As demonstrated in Proposition 5.1 of Lu
et al. (2019), the above birth-death implementation
converges to the original Fisher-Rao gradient flow (4)
when τ → 0 and the number of particles N →∞.

In conclusion, we summarize our proposed interacting
particle method in Algorithm 1 and refer to Particle-
WFR in below. Due to space limit, we refer to Ap-
pendix C for additional implementation details.

Remark 2. While most existing methods adopt the
MGDA gradient g†(x) for updates, ∥g†(x)∥ = 0 only
indicates local Pareto optimality, not a global guaran-
tee. In our method, local Pareto optimal points are
eliminated from the population by the birth-death dy-
namics acting on the dominance potential F2[ρ] and
replaced by other particles with lower dominance po-
tential, thus ensuring global Pareto optimality.

4 EXPERIMENT RESULTS

In this section, we conduct experiments on both syn-
thetic and real-world datasets to evaluate the perfor-
mance of our method. We compare our method with
several recent state-of-the-art gradient-based meth-
ods, including PHN-LS and PHN-EPO (Navon et al.,
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(a) Weighted Sum (b) MOO-SVGD (c) MOO-LD

(d) COSMOS (e) GMOOAR-HV (f) Particle-WFR

Figure 2: Performance comparison of different methods on the ZDT3 problem. The Pareto front is shown in red,
and the solutions found by different methods are shown in blue. Our method (Particle-WFT) perfectly captures
the complicated geometry of the Pareto front.

(a) Epoch 0 (b) Epoch 1000 (c) Epoch 2000 (d) Epoch 3000 (e) Epoch 4000 (f) Epoch 5000

Figure 3: Evolution of the particle population by Particle-WFR on the ZDT3 problem. The Pareto front is
shown in red, and the current population is shown in blue.

2020), COSMOS (Ruchte and Grabocka, 2021b),
MOO-SVGD and MOO-LD2 (Liu et al., 2021), and
GMOOAR-HV and GMOOAR-U (Chen and Kwok,
2022).

4.1 ZDT3 Problem

We first consider the ZDT3 problem (Zitzler et al.,
2000), which has also been studied by Custódio et al.
(2011); Liu et al. (2021). The ZDT3 problem is
a 30-dimensional two-objective optimization problem
(d = 30, m = 2), with the closed-form formula in Ap-
pendix D.1. Unlike ZDT1 and ZDT2 problems with
continuous smooth Pareto fronts that can be easily
handled Using the naive weighted sum method (Boyd
and Vandenberghe, 2004) or preference vectors-based
penalty methods (Lin et al., 2019), the ZDT3 problem
presents a non-convex consisting of five disconnected
segments. This complicated geometry makes it partic-

2Our implementation of MOO-SVGD and MOO-LD
made several necessary modifications to its open-source
version. Additionally, we utilized a different number of
epochs, leading to results that are slightly distinct from
those presented in Liu et al. (2021).

ularly challenging for gradient-based MOO methods.
Due to the page limit, the experiments and discussions
on the ZDT1 and ZDT2 problems are provided in Ap-
pendix D.1.1 and D.1.2, respectively.

Figure 2 compares the performance of our method with
five methods: the naive weighted sum method, COS-
MOS, MOO-SVGD, and GMOOAR-HV3. For a fair
comparison, we use the same number of particles (or
equivalently, uniformly distributed preference vectors
or test rays) N = 50 and run all methods over 5000
iterations (or equivalently, epochs). As observed, the
weighted sum method only identifies the convex hull
of the Pareto front, aligning with the theoretical anal-
ysis of Boyd and Vandenberghe (2004). Due to the
inherent continuity of neural networks, the solutions
obtained by COSMOS delineate only a small portion
of the image manifold of f(x) and consequently inter-
polate different Pareto front segments. The optimiza-
tion of preference vectors in GMOOAR-HV also fails
in this case, resulting in limited coverage of the Pareto

3We are only comparing with GMOOAR-HV in
the ZDT3 and DTLZ7 problem because the result of
GMOOAR-U is similar for these two examples.
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(a) Weighted Sum (b) MOO-SVGD (c) MOO-LD

(d) COSMOS (e) GMOOAR-HV (f) Particle-WFR

Figure 4: Performance comparison of different methods on the DTLZ7 problem. The Pareto front is shown in
red, and the solutions found by different methods are shown in blue. Alongside the 3D visualization, a bird’s-eye
perspective is also provided for each problem. Our method (Particle-WFR) achieves the best coverage of the
Pareto front across all methods.

front. Both MOO-SVGD and MOO-LD achieve good
coverage of the Pareto front but fall short of discern-
ing and eliminating local Pareto optimal solutions. In
contrast, our method outperforms all others, achieving
a comprehensive and accurate coverage of the Pareto
front.

We also showcase the evolution of the particle popu-
lation by our method Particle-WFR in Figure 3. The
particles are initially dispersed within the feasible re-
gion D. Driven by the objective function potential
term F1[ρ], the particles are gradually attracted to
the Pareto front, during which the birth-death dynam-
ics systematically purge any particles that fall into
local Pareto optimal regions. Roughly after epoch
2000, most of the particles are concentrated on the
Pareto front, and the subsequent epochs focus on fine-
tuning until a balance between the repulsive potential
term G[ρ] and the dominance potential term F2[ρ] is
reached, ensuring optimal coverage of the Pareto front.

4.2 DTLZ7 Problem

Moving to three-objective optimization, we consider
the DTLZ7 problem (Deb et al., 2002b), which is an-
other 30-dimensional optimization problem with the
closed-form description in Appendix D.2. As high-
lighted by Li et al. (2013), the DTLZ7 problem fea-
tures a mixed, disconnected, and multimodal Pareto

front, making it one of the most challenging prob-
lems within the DTLZ test suite when compared with
the three-objective MaF1 and DTLZ2 problems used
in Liu et al. (2021); Chen and Kwok (2022).

The solutions obtained by the naive weighted
sum method, MOO-SVGD, MOO-LD, COSMOS,
GMOOAR-HV, and Particle-WFR, are shown in Fig-
ure 4. We fix the number of particles N = 200 and the
number of iterations as 3000. Similar phenomena as
in the ZDT3 problem are observed: the solutions ob-
tained by the weighted sum method cluster around the
corners of the Pareto front. In contrast, the solutions
obtained by COSMOS and GMOOAR-HV only span
a limited portion of the Pareto front. Although MOO-
SVGD can explore the entire Pareto front, a majority
of the solutions end up in the local Pareto optimal re-
gions. Relying on the noise for exploration, MOO-LD
fails to balance the diversity and the convergence of the
particle population, leading to a sub-optimal coverage
of the Pareto front. In contrast, our method, Particle-
WFR, achieves the best coverage of the Pareto front
across all methods.

4.3 MSLR-WEB10K Dataset

In this example, We test MOO methods on the
learning-to-rank (LTR) task (Dai et al., 2011; Hu
and Li, 2018; Carmel et al., 2020; Mahapatra et al.,



Multi-Objective Optimization via Wasserstein-Fisher-Rao Gradient Flow

(a) N = 8 (b) N = 12 (c) N = 16

Figure 5: Performance comparison of different methods on the MSLR-WEB30K dataset. Our method achieves
the best HV value on test NDCG@10 and performance improves as particle count N increases from 8 to 16.

2023a,b). In LTR tasks (Liu et al., 2009), we deal with

a collection of query groups Ψ = {Ψ(p)}|Ψ|
p=1, where each

query group Ψ(p) consists of n(p) items. These items

are characterized by a feature vector x
(p)
j ∈ Rdf , gener-

ated from upstream tasks, and an associated relevance

label y
(p)
j . The goal is to derive an ordering π(p) for the

items in each query group Ψ(p) given the feature vec-

tors x
(p)
j , optimizing the utility u(π(p); {y(p)j }n

(p)

j=1 ) of
the ordered list. The Normalized Discounted Cumu-
lative Gain (NDCG) (Wang et al., 2013) is a widely
adopted ranking metric.

Following the current LTR techniques, we employ a
neural network fθ, with θ denoting the parameters,
that accepts the feature vector as input and produces
a score, based on which we sort the items in each query
group and obtain the ordering π(p). The neural net-
work is trained using the empirical loss of the following
form:

L(θ; Ψ) =
1

|Ψ|

|Ψ|∑
p=1

ℓ
(
{fθ(x(p)

j )}n
(p)

j=1 ; {y
(p)
j }

n(p)

j=1

)
, (17)

where ℓ(·, ·) is the query group-wise loss function. As
the differentiable surrogate for the non-differentiable
NDCG metric, we adopt the Cross-Entropy loss (Cao
et al., 2007) for ℓ, which is one of the most robust
choices as supported by Qin et al. (2021). Further
details on the settings, metrics, and losses can be found
in Appendix D.3.1.

In real-world scenarios, an item might have multiple

labels of interest, denoted as y
(p),i
j . Each of these la-

bels signifies the relevance of the corresponding item
concerning the i-th ranking objective for i ∈ [m]. This
gives rise to an MOO problem w.r.t. the neural net-
work parameters θ and the m loss functions, Li(θ; Ψ)
as the objective functions, obtained by substituting

{y(p)j }n
(p)

j=1 in (17) with the respective label {y(p),ij }n(p)

j=1 .

Remark 3. Unlike various studies from Sener and

Koltun (2018) that integrate multi-task learning into
their experimental designs, we use the multi-objective
LTR task for benchmarking, as suggested by Ruchte
and Grabocka (2021a).

We conduct experiments on the Microsoft Learning-to-
Rank Web Search (MSLR-WEB10K) dataset (Qin and
Liu, 2013). The MSLR-WEB10K dataset consists of
10,000 query groups (|Ψ| = 104) and each item is asso-
ciated with 136 features and a relevance label. Follow-
ing the practice of Mahapatra et al. (2023a), we treat
the first 131 features as the input (df = 131) and com-
bine the last 5 features, viz. Query-URL Click Count,
URL Dwell Time, Quality Score 1, Quality Score 2,
with the relevance label, as six different ranking ob-
jectives (m = 6). Our Particle-WFR method is imple-
mented with Distributed Data Parallel (DDP) in Py-
Torch (Paszke et al., 2019) with extensive scalability,
and further details are provided in Appendix D.3.2.

In Figure 5, we present the learning curves of the
hypervolume (HV)4 values of the testing NDCG@10
across several benchmark methods: PHN-LS, PHN-
EPO, COSMOS, GMOOAR-HV, and GMOOAR-U on
the MSLR-WEB10K dataset over 500 epochs of train-
ing in the neural network setting5. As listed in Ta-
ble 1, hypernetwork-based methods struggle to cover
the Pareto front. This might be partially attributed
to their dependence on the structure of the loss space
and their intrinsic sensitivity, resulting in less desir-
able generalization. Our Particle-WFR method out-
performs the other methods, achieving the highest HV
value in three instances where the number of particles
N = 8, 12, 16. Notably, the HV value of our method

4Hypervolume is a quality indicator for assessing the
solutions in MOO (cf. Appendix D.3.3).

5We do not include a comparison with MOO-SVGD and
MOO-LD, as their performance in neural network contexts
has been found limited (Chen and Kwok, 2022) and our
method consistently outperforms these other methods on
synthetic datasets.
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Algorithm 1: Particle-WFRMethod for MOO

Data: Objective functions fi, i ∈ [m], feasible
region D, time step τ , number of particles
N , number of iterations T

Result: Evolved population {x(T )
k }Nk=1

1 Randomly initialize {x(0)
k }Nk=1 ⊂ D;

2 for ℓ = 1 to T do
// Overdamped Langevin dynamics

3 for k = 1 to N do

4 Update x
(ℓ+1/2)
k from x

(ℓ)
k by (14);

5 end
// Birth-death dynamics

6 for k = 1 to N do

7 x
(ℓ+1)
k ← x

(ℓ+1/2)
k ;

8 Compute λ = Λ(ℓ+1/2)τ (x
(ℓ+1/2)
k )

by (16);
9 k′ ∼ Unif([N ]), η ∼ Unif([0, 1]);

10 if η < |1− exp(−λτ/2)| then
11 if λ < 0 then

12 x
(ℓ+1)
k′ ← x

(ℓ+1/2)
k ;

13 else

14 x
(ℓ+1)
k ← x

(ℓ+1/2)
k′ ;

15 end

16 end

17 end

18 end

has surpassed all other methods after only 100 epochs.
This demonstrates the effectiveness and efficacy of our
method in solving the MOO problem within the neural
network-driven LTR context.

5 CONCLUSION

This paper proposes a novel interacting particle
method based on the Wasserstein-Fisher-Rao gradient
flow for solving the MOO problem. Our method en-
joys interpretable and intuitive physical meanings with
provable convergence guarantees. We implement the
Wasserstein-Fisher-Rao gradient flow by the splitting
scheme, where the Wasserstein gradient flow is approx-
imated by the overdamped Langevin dynamics and the
Fisher-Rao gradient flow by the birth-death dynamics.
We compare our proposed method with several recent
state-of-the-art methods on challenging datasets. The
results show that our method is favorable when dealing
with complicated Pareto fronts.
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A RELATED WORKS

Gradient-Free MOO Methods. In the previous decades, research in multi-objective optimization has been
focused on the evolutionary algorithms and particle swarm methods (Tamaki et al., 1996; Deb et al., 2002a;
Parsopoulos and Vrahatis, 2002; Konak et al., 2006; Reyes-Sierra et al., 2006; Zhang and Li, 2007). These
methods are based on the idea of maintaining a population of solutions, which are iteratively improved by
applying genetic operators such as mutation and crossover. Distributed computing techniques have also been
explored in this context (Zhou et al., 2011). However, because these methods assume that gradient information
is unavailable, they are often computationally expensive and do not scale well to high-dimensional problems.
Another line of research in MOO is the Bayesian optimization (Laumanns and Ocenasek, 2002; Belakaria et al.,
2020; Konakovic Lukovic et al., 2020; Tu et al., 2022). These methods are effective for small-scale black-box
optimization problems but also suffer from the curse of dimensionality in machine learning tasks.

Gradient-Based Methods. In recent years, gradient-based methods have been proposed to solve the MOO
problem. These methods are primarily designed and believed to effectively sacle up for high0dimensional machine
learning applications. To profile the Pareto front, one of the most straightforward gradient-based approaches
is to parametrize the Pareto front by preference vectors, i.e. the vector formed by the values of the objective
functions on the Pareto front. The prototype of all preference vector-based methods is the weighted sum method,
aka Linear Scalarization (LS) that uses a linear combination of weights and objective functions to find optimal
solutions. However, the weighted sum method cannot handle the concavity of the Pareto front (Boyd and
Vandenberghe, 2004). To address this issue, several methods are proposed to find local Pareto optimal points
catering to predetermined preference vectors, including PF-SMG (Liu and Vicente, 2021), PMTL (Lin et al.,
2019), and EPO (Mahapatra and Rajan, 2020). These methods often rely on selecting preference vectors, which
may be difficult or even impossible for complicated Pareto fronts, resulting in sub-optimal solutions.

Recently, hypernetworks (Lin et al., 2020; Ruchte and Grabocka, 2021b; Chen and Kwok, 2022; Hoang et al., 2023)
have been proposed to learn the Pareto front directly from data originated from PHN-LS and PHN-EPO (Navon
et al., 2020), which generalizes the weighted sum method and EPO directly. Hypernetwork methods aim to
design neural networks that accept preference vectors as inputs and directly generate solutions on the Pareto
front. However, as demonstrated in our experiments, these methods are generally not very robust when dealing
with complicated Pareto fronts and challenging tasks.

Gradient Flows and Interacting Particle Method. Gradient flows have been studied widely as one of
the most important techniques in the literature of optimal transport and sampling (Villani, 2021). Originated
from (Jordan et al., 1998), Wasserstein gradient flow is one of the most renowned gradient flows (cf. Santambrogio
(2017)). Stein Variational Gradient flow (SVGD) (Liu and Wang, 2016; Liu, 2017) can be viewed as the gradient
flow with respect to a kernelized Wasserstein metric. MOO-SVGD (Liu et al., 2021) is a recent method that uses
SVGD to solve the MOO problem. Wasserstein-Fisher-Rao metric and the corresponding gradient flow (Chizat
et al., 2018; Liero et al., 2018, 2016) are recently proposed to study unbalanced optimal transport problems and
have been applied to sampling by interacting particle methods (Lu et al., 2019; Yan et al., 2023).

Multi-Objective Learning-to-Rank. MOO finds extensive applications in Learning-to-Rank (LTR) because
it naturally involves multiple, potentially conflicting ranking metrics, such as precision and recall, or multiple
relevance labels, such as product quality and purchase likelihood in e-commerce product search. Unlike supervised
learning problems, where each sample has a clearly defined target as a single categorical label or numerical value,
LTR tasks aim to identify an optimal permutation within a large and discrete search space for each query-
group. This optimization is usually conducted to maximize a linear additive ranking metric, such as Normalized
Discount Cumulative Gain (NDCG) (Wang et al., 2013). As a parametrized ranking model always operates as
a scoring function, generating numerical scores to rank documents within a query, all ranking metrics are non-
differentiated with respect to the predicted scores. To reframe LTR as a supervised learning problem, various
differentiable loss functions are introduced as alternatives to optimize ranking metrics; see Qin et al. (2021) and
references therein.

In the context of Multi-Objective LTR, existing work can be categorized into two main approaches: label
aggregation (Dai et al., 2011; Carmel et al., 2020) and loss aggregation (Hu and Li, 2018; Mahapatra et al.,
2023a,b). In the former, labels assigned to the same document are combined into a single label, which is then
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used as input for a ranking loss function. In the latter, the aim is to optimize aggregated ranking loss functions,
each corresponding to a different objective. In our experiments, we adopt later approach.

B MISSING PROOFS

In this section, we provide the missing proofs in the theoretical analysis part (Section 3.2) of the main text.

Proof of Theorem 1. The decay of the functional E [ρ] (11) is due to the following calculation by plugging in (5):

∂tE [ρt] =
∫
D
δρE [ρt]∂tρtdx

=

∫
D
δρE [ρt]∇ · (ρt∇δρE [ρt])− ρtδρE [ρt]δ̃ρE [ρt]dx

= −
∫
D
ρt ∥∇δρE [ρt]∥2 + ρtδ̃ρE [ρt]

2

dx,

where the last equality is due to the integration-by-parts and the fact that∫
D
ρtδ̃ρE [ρt]dx =

∫
D
ρt (δρE [ρt]− Eρt [δρE [ρt]]) dx = 0.

Since ρ∗ is the minimizer of E [ρ], we have the following optimality condition:

∇δρE [ρ∗] = 0, a.e., and δ̃ρE [ρ∗] = 0, a.e.,

which implies
δρE [ρ∗] = α1δρF1 + α2δρF2 + βδρG[ρ∗]− γδρH[ρ∗] = C∗, a.e., (18)

where C∗ = Eρ∗ [δρE [ρ∗]].

Now suppose ρ′ is another minimizer of E [ρ], a similar argument yield

δρE [ρ′] = α1δρF1 + α2δρF2 + βδρG[ρ′]− γδρH[ρ′] ≡ C ′, (19)

where C ′ = Eρ′ [δρE [ρ′]].

Subtracting the above two equations (18) and (19), we obtain

C ′ − C∗ =βδρG[ρ∗]− βδρG[ρ′]− γδρH[ρ∗] + γδρH[ρ′]

=β

∫
D
R(f(·), f(y))(ρ∗ − ρ′)(dy) + γ log ρ∗ − γ log ρ′.

Multiply both sides with ρ∗ − ρ′ and integrate over D, we have

0 =

∫
D

(C ′ − C∗)(ρ∗ − ρ′)(dx)

=β

∫
D
(ρ∗ − ρ′)(dx)R(f(x), f(y))(ρ∗ − ρ′)(dy) + γ

∫
D

log
ρ∗

ρ′
(y)(ρ∗ − ρ′)(dy),

implying that ρ∗ = ρ′ and therefore the minimizer ρ∗ is unique.

To prove Theorem 2, we need the following lemma:

Lemma 3 (Lu et al. (2023, Theorem 2.4 and Remark 2.6)). Let ρ0 and ρ∗ be two probability measures absolutely
continuous with respect to the Lebesgue measure and have the density functions ρ0(x) and ρ∗(x), respectively.
Suppose that the initial condition ρ0 satisfies

inf
x∈D

ρ0(x)

ρ∗(x)
≥ e−M
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for some constant M , we have for all t > 0, the Wasserstion-Fisher-Rao gradient flow ρt (5) with respect to the
KL divergence KL(ρt|ρ∗) between ρt and ρ∗ satisfies

KL(ρt|ρ∗) ≤Me−t + e−t+Me−t

KL(ρ0|ρ∗).

Then, we are ready to prove Theorem 2.

Proof of Theorem 2. The constant C may change from line to line in this proof.

As we are considering the scenario where the repulsive potential term G[ρ] is turned off, i.e. β = 0, the functional
E [ρ] can be simplified as

E [ρ] = α1F1[ρ] + α2F2[ρ]− γH[ρ],

and the corresponding minimizer of the energy potential E [ρ] satisfies

δρE [ρ∗] = α1δρF1 + α2δρF2 − γδρH[ρ∗] = C, (20)

that is

log ρ∗ = −α1δρF1 + α2δρF2

γ
+ C,

and thus the minimizer ρ∗ satisfies the Gibbs-type distribution as in (12):

ρ∗ ∝ exp

(
−α1δρF1 + α2δρF2

γ

)
= exp

(
−
α1∥g†∥2 + α2

∫
P D(f(·), f(y))µP(dy)

γ

)
,

which is also the unique minimizer of E [ρ], as the result of Theorem 1.

Notice that the Fréchet derivative of the energy functional E [ρ] can be rewritten as:

δρE [ρ] = γ

(
α1δρF1 + α2δρF2

γ
− δρH[ρ]

)
= γ (− log ρ∗ + log ρ) + C

= γ log
ρ

ρ∗
+ C = γδρKL(ρ|ρ∗) + C,

(21)

we reparametrize the time with τ = t/γ, and thus rewrite the Wasserstein-Fisher-Rao gradient flow (5) as

∂tρτ =
1

γ
∂τρτ =

1

γ

[
∇ · (ρτ∇δρE [ρτ ])− ρτ

(
δρE [ρτ ]−

∫
D
ρτδρE [ρτ ]dx

)]
= ∇ ·

(
ρτ∇ log

ρτ
ρ∗

)
− ρτ

(
log

ρτ
ρ∗
−
∫
D
ρτ log

ρτ
ρ∗

dx

)
,

that is the Wasserstein-Fisher-Rao gradient flow of the KL divergence between ρτ and ρ∗.

Together with the following assumption on the initial distribution in the theorem statement:

inf
x∈D

ρ0(x)

ρ∗(x)
≥ e−M ,

we have by Lemma 3 that

KL(ρτ |ρ∗) ≤Me−t + e−t+Me−t

KL(ρ0|ρ∗),

and thus (13) holds.

C ALGORITHM DETAILS

In this section, we provide additional implementation details of our method (Algorithm 1), including several
techniques and heuristics on the hyperparameter selection and optimization strategy.
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Multiple-stage optimization. In general, the hyperparameters αi, i = 1, 2, β and γ in the expression (10)
should be chosen in a way that the corresponding terms are balanced, and thus the minimizer ρ∗ satisfies the
desired properties, i.e. diversity and global Pareto optimality.

Since the main aim of multi-objective optimization is to profile the Pareto front instead of aggregating all
potentials together as in (10), an alternative understanding of the problem is the following constraint optimization
problem:

min
suppρ⊂D

G[ρ] s.t. F [ρ] ≤ C, (22)

where the tolerance C controls how close the population ρ is to the Pareto front. This type of constraint
optimization problem is often solved by the interior point method or the primal-dual method (Wright, 1997).
However, unfortunately, the Euclidean geometry exploited by these methods is generally unavailable in the space
of probability measures.

Another popular method of solving problems of this kind is the penalty method. The idea is to relax the original
problem by adding a penalty term that penalizes the violation of the constraint. The convergence of this method
is only asymptotic, i.e. the penalty parameter should be gradually increased to infinity.

Therefore, by viewing our method as a penalty relaxation to the above constraint optimization problem, one
of the most important heuristics for the hyperparameter selection and tuning in our method is to split the
optimization into multiple stages:

• In the first stage, we only impose a relatively small penalty on the constraint (with small dominance potential
coefficient α2, but large repulsive potential coefficient β and diffusion coefficient γ in (10)), encouraging the
population to diversify and explore;

• As we gradually increase the penalty, the objective functions (constraints) will be balanced with the struc-
tural potentials being optimized, and thus, the population will be pushed towards the Pareto front while
preserving diversity.

• In the final stage, we impose a larger penalty (with a large dominance potential coefficient α2, but small
repulsive potential coefficient β and diffusion coefficient γ in (10)), eliminating dominated particles and thus
obtaining a population that is close to the Pareto front.

Numerical approximation of ∇∥g†∥2. Denote α†(x) = (α†
1(x), · · · , α†

m(x)) as the optimal solution of (6)

at point x. Then we have g†(x) =
∑m

i=1 α
†
i (x)∇fi(x) := (∇f)α†. Moreover, the optimality of α† yields the

following relation:
∇α†(∇f)⊤g† = 0. (23)

Then ∇δρF1[ρ] can be computed as

∇δρF1[ρ] = ∇∥g†∥2 = 2(∇g†)g†

= 2(∇2f : α† +∇α†(∇f)⊤)g†

= 2(∇2f : α†)g†,

(24)

where ∇2f : α† =
∑m

i=1 α
†
i∇2fi.

However, the computation of ∇2f is very expensive, as it involves the second-order derivatives of the objective
functions. Therefore, we treat ∇2f : α† as a preconditioner and approximate it by the identity matrix.

Numerical approximation of δρF2. In (7), we use a predetermined measure µP on the Pareto front, which
is not known in advance. However, as mentioned earlier, we only turn on the dominance potential term F2[ρ] in
the final stage of our method, and thus, we can use the empirical measure of the population ρt as a proxy of µP .

Furthermore, one can apply the following relaxation to the dominance kernel D(·, ·) presented in (8):

D(f(x, f(y))) =

m∏
i=1

(max{0, fi(x)− fi(y)}+ c1{fi(x)− fi(y) ≥ 0}) ,
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where c > 0 is a small constant and 1{·} is the indicator function. This relaxation deals with the rare scenario
that there exists a point x that is dominated by y in some objectives but has the exactly same values in some
other objectives.

Numerical approximation of δρH[ρt]. The computation of the instantaneous birth-death rate Λt (16) in the
implementation of the birth-death dynamics involves the computation of the Fréchet derivative of the entropy
term H[ρt]. However, as we are approximating ρt by a set of particles {xk}Nk=1, the Fréchet derivative δρH[ρt]
cannot be directly computed. Instead, we approximate it by the following kernel density estimation technique,
as also adopted by Lu et al. (2019):

ρt(x) ≈
1

N

N∑
k=1

K

(
x− xk

h

)
, (25)

where K(·) is a smooth kernel function, such as the Gaussian kernel K(x) = exp(−∥x∥2), where h is the
bandwidth parameter. Then the Fréchet derivative of δρH[ρt] can be approximated by

δρH[ρt](x) ≈ − log
1

N

N∑
k=1

K(x− xk). (26)

Another possible technique is to use the Gaussian mixture model (GMM) to approximate the probability density
ρt (Yan et al., 2023), which would result in a more straightforward computation of the Fréchet derivative δρH[ρt].
However, finding the particle weights deviates from our method’s goal, and we choose to use the kernel density
estimation for simplicity.

In practice, as we are imposing the repulsive potential term explicitly, the contribution of the entropy term is
relatively small in the stochastic birth-death dynamics.

D EXPERIMENT DETAILS

In this section, we provide additional details of the experiments conducted in Section 4. We present the closed-
form formulas of the ZDT3 problem in Appendix D.1, and additional experiments on the ZDT1 and ZDT2
problems are shown in D.1.1 and D.1.2, respectively. The closed-form formula of the DTLZ7 problem is provided
in Appendix D.2. We also provide the experiment details of the learning-to-rank task and the MSLR-WEB10K
dataset in Appendix D.3.

D.1 ZDT3 Problem

The closed-form formula of the ZDT3 problem is as follows:

f1(x) = x1,

f2(x) = g(x)h(f1(x), g(x)),
(27)

where x = (x1, · · · , x30),

g(x) = 1 +
9

29

30∑
i=2

xi. (28)

and

h(f1, g) = 1−

√
f1(x)

g(x)
− f1(x)

g(x)
sin(10πf1(x)). (29)

The feasible region is D = [0, 1]30.

D.1.1 Additional Experiments on the ZDT1 Problem

The ZDT1 problem is another 30-dimensional two-objective optimization problem of the same form as in (27)
but with

h(f1, g) = 1−

√
f1(x)

g(x)
.
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The feasible region is D = [0, 1]30. The Pareto front of this problem is convex, continuous, and smooth, making
it a relatively easy problem for MOO methods. This problem is also considered in Liu et al. (2021).

As shown in Figure 6, most of the methods can cover the whole Pareto front, but the weighted sum method,
MOO-LD, and COSMOS are not able to cover the Pareto front uniformly. Our Particle-WFR method and MOO-
SVGD give the best and most uniform coverage of the Pareto front. The evolution of the particle population by
Particle-WFR is shown in Figure 7.

(a) Weighted Sum (b) MOO-SVGD (c) MOO-LD

(d) COSMOS (e) GMOOAR-HV (f) Particle-WFR

Figure 6: Performance comparison of different methods on the ZDT1 problem. The Pareto front is shown in red,
and the solutions found by different methods are shown in blue.

(a) Epoch 0 (b) Epoch 1000 (c) Epoch 2000 (d) Epoch 3000 (e) Epoch 4000 (f) Epoch 5000

Figure 7: Evolution of the particle population by Particle-WFR on the ZDT1 problem. The Pareto front is
shown in red, and the current population is shown in blue.

D.1.2 Additional Experiments on the ZDT2 Problem

The ZDT2 problem (Zitzler et al., 2000) is also a 30-dimensional two-objective optimization problem of the same
form as in (27) but with

h(f1, g) = 1−
(
f1(x)

g(x)

)2

.

where the feasible region is D = [0, 1]30. Unlike the ZDT1 problem, the Pareto front of the ZDT2 problem
is concave. Similar examples of concave Pareto fronts have been used in the literature, including the Fonseca
problem (Fonseca and Fleming, 1995; Sener and Koltun, 2018; Lin et al., 2019; Mahapatra and Rajan, 2020)
and the DTLZ2 problem (Chen and Kwok, 2022).

As shown in Figure 8, our Particle-WFR method can still cover the whole Pareto front uniformly. The weighted
sum method fails in this case, and all solutions are concentrated on the two ends of the Pareto front. MOO-LD,
COSMOS, and GMOOAR-HV are able to cover the Pareto front but not uniformly. MOO-SVGD performs well
at most regions of the Pareto front, but two gaps of solutions are observed on the Pareto front, and several sub-
optimal points exist near the upper-left end (0, 1) of the Pareto front. The evolution of the particle population
by Particle-WFR is shown in Figure 9.
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(a) Weighted Sum (b) MOO-SVGD (c) MOO-LD

(d) COSMOS (e) GMOOAR-HV (f) Particle-WFR

Figure 8: Performance comparison of different methods on the ZDT2 problem. The Pareto front is shown in red,
and the solutions found by different methods are shown in blue.

(a) Epoch 0 (b) Epoch 1000 (c) Epoch 2000 (d) Epoch 3000 (e) Epoch 4000 (f) Epoch 5000

Figure 9: Evolution of the particle population by Particle-WFR on the ZDT2 problem. The Pareto front is
shown in red, and the current population is shown in blue.

D.2 DTLZ7 Problem

The DTLZ7 problem has the following form of f(x):

f1(x) = x1,

f2(x) = x2,

f3(x) = (1 + g(x))h(f1(x), f2(x), g(x)),

(30)

where x = (x1, · · · , x30),

g(x) = 1 +
9

29

30∑
i=3

xi

and

h(f1(x), f2(x), g(x)) = 3−
2∑

i=1

fi(x)

1 + g(x)
(1 + sin(3πfi(x))).

The feasible region is also D = [0, 1]30.

D.3 MSLR-WEB10K Dataset

In this section, we provide additional details of the learning-to-rank task and the MSLR-WEB10K dataset.

D.3.1 Learning-to-Rank Task

For readers’ convenience, we repeat the settings of the learning-to-rank task as provided in Section 4.3 in the
main text as follows.
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Suppose we have a collection of query groups Ψ = {Ψ(p)}|Ψ|
p=1, where each query group Ψ(p) consists of n(p)

documents. These items are characterized by a feature vector x
(p)
j ∈ Rdf , generated from upstream tasks, and

an associated relevance label y
(p)
j . In our case, the relevance labels are assumed to be positive. The goal is to

derive an ordering π(p), i.e.
π(p) : {1, · · · , n(p)} → {1, · · · , n(p)}

j 7→ π
(p)
j ,

for the items in each query group Ψ(p) given the feature vectors {x(p)
j }n

(p)

j=1 , that optimizes the utility

u(π(p); {y(p)j }n
(p)

j=1 ) of the ordered list. We will denote the set of all possible orderings of the items in Ψ(p) as

Π(p).

Utility functions (or ranking metrics) are operators that measure the quality of the ordering π(p) with respect to

the relevance labels {y(p)j }n
(p)

j=1 . Intuitively, the utility function should be large if the items with higher relevance

labels are ranked higher in the ordering π(p). One of the most widely adopted measures for the utility function
u(·; ·) above is the Normalized Discount Cumulative Gain (NDCG) (Wang et al., 2013), which is defined as

NDCG(π(p); {y(p)j }
n(p)

j=1 ) =
DCG(π(p); {y(p)j }n

(p)

j=1 )

DCG(π(p),∗; {y(p)j }n
(p)

j=1 )
, (31)

where DCG(π(p); {y(p)j }n
(p)

j=1 ) is the discounted cumulative gain of the ordering π(p), defined as

DCG(π(p); {y(p)j }
n(p)

j=1 ) =

n(p)∑
j=1

2
y
(p)

π
(p)
j − 1

log2(1 + j)
,

and π(p),∗ is the optimal ordering of the items in Ψ(p), i.e.

π(p),∗ = argmax
π(p)∈Π(p)

DCG(π(p); {y(p)j }
n(p)

j=1 ).

In practical settings, one may also be interested in the truncated versions of the NDCG, denoted as NDCG@k,
where only the top k items in the ordering π(p) are considered, i.e.

NDCG@k(π(p); {y(p)j }
n(p)

j=1 ) =
DCG@k(π(p); {y(p)j }n

(p)

j=1 )

DCG@k(π(p),∗; {y(p)j }n
(p)

j=1 )
, (32)

where DCG@k(·; ·) is defined by replacing the summation in DCG(·; ·) with the summation over the top k items
in the ordering π(p). For datasets with more than one query group, the utility function u(·; ·) is defined as the
average of the NDCG@k over all the query groups.

Most of the current LTR methods employ a neural network fθ, with θ denoting the parameters, to produce a
score for each item, based on which the ordering π(p) is obtained. In particular, the neural network fθ accepts

the feature vector x
(p)
j of the j-th item in the query group Ψ(p) as input and produces a score fθ(x

(p)
j ) for the

item. Then, the ordering π(p) is obtained by sorting the items in Ψ(p) according to the scores produced by fθ.

The neural network is trained using the empirical loss of the following form:

L(θ; Ψ) =
1

|Ψ|

|Ψ|∑
p=1

ℓ
(
{fθ(x(p)

j )}n
(p)

j=1 ; {y
(p)
j }

n(p)

j=1

)
,

where ℓ(·, ·) is the query group-wise loss function. One should notice that the loss function ℓ(·; ·) has a different
nature than the utility function u(·; ·), as the latter takes in an ordering π(p), while the former takes in a set of

scores {fθ(x(p)
j )}n(p)

j=1 . Consequently, the loss function ℓ(·; ·) is differentiable, while the utility function u(·; ·) is
not.
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In order to bridge this gap caused by the non-differentiability of the utility functions, such as the NDCG.
Many works use differentiable surrogates for the NDCG metric as the loss function for training, including the
Cross-Entropy (CE) loss (Cao et al., 2007) for ℓ, defined as:

ℓCE

(
{fθ(x(p)

j )}n
(p)

j=1 ; {y
(p)
j }

n(p)

j=1

)
= −

n(p)∑
j=1

y
(p)
j log

exp(fθ(x
(p)
j ))∑n(p)

j=1 exp(fθ(x
(p)
j ))

, (33)

where we employ the softmax function to the scores produced by the neural network fθ to obtain a probability
distribution over the items in Ψ(p).

As analyzed and empirically verified in Qin et al. (2021), this choice of the loss function, referred to as the
softmax loss, is one of the simplest and most robust choices for differentiable surrogates in the LTR task. We
direct the readers to Qin et al. (2021) for more details on other popular surrogates and the discussions therein.

D.3.2 Implementation Details of MSLR-WEB10K Dataset

The Microsoft Learning-to-Rank Web Search (MSLR-WEB10K) dataset (Qin and Liu, 2013) is one of the most
widely used benchmark datasets for the LTR task. The MSLR-WEB10K dataset consists of 10,000 query groups
(|Ψ| = 104), each representing a query issued by a user. Each query group contains a list of items, each of which
is a URL retrieved by the search engine in response to the query. Each item is characterized by a feature vector

x
(p)
j ∈ R136, extracted from the webpage, and a relevance label y

(p)
j ∈ {0, 1, 2, 3, 4}, indicating the relevance of

the item to the query. Following the practice of (Mahapatra et al., 2023a), we treat the first 131 features as the
input (df = 131) and combine the last 5 features, viz. Query-URL Click Count, URL Dwell Time, Quality Score
1, Quality Score 2, with the relevance label, as six different ranking objectives (m = 6).

We adopt a simple Multi-Layer Perception (MLP) of architecture [131, 32, 1] as the neural network fθ for the
LTR task. We train the neural network with the Adam optimizer with a learning rate of 10−3 and a batch size
of 512. The training loss is chosen to be the CE loss ℓCE as defined in (33) and (17). NDCG@10 (32) is used as
the test metric. The training process is terminated after 500 epochs.

As the first practice of applying the interacting particle method to a multi-objective LTR task, our Particle-WFR
method features the acceleration of Distributed Data Parallel (DDP) in PyTorch (Paszke et al., 2019). The DDP
is a distributed training strategy that allows the training process to be distributed across multiple GPUs. In our
case, we use 4 GPUs to train the neural network fθ in parallel, and we expect further scalability by using more
GPUs in real applications. Our code will be made publicly available upon publication.

D.3.3 Hypervolume Indicator

The hypervolume (HV) indicator (Zitzler and Künzli, 2004) is a widely used metric for evaluating the performance
of MOO methods. The hypervolume of a set of points P̂ that approximate the Pareto front P is defined as the
volume of the dominated region of P̂ with respect to a reference point r, i.e.

HV(P̂) =
∫
Rm

1{x ⪯ r | ∃y ∈ P̂ s.t. y ⪯ x}dx, (34)

where ⪯ denotes the Pareto dominance relation as in Definition 1. Hypervolume not only measures the optimality
of the solutions found by the MOOmethods but also measures the diversity of the solutions. A larger hypervolume
indicates that the solutions are more diverse and closer to the Pareto front. Furthermore, the Pareto front P
itself achieves the highest possible hypervolume.

Figure 5 and Table 1 presents the performance comparison of different methods on the MSLR-WEB10K dataset.
The hypervolume values therein are computed with respect to the NDCG@10 metric evaluated on the test set,
apart from the training loss. In the case of NDCG@10, we have to modify the definition of the hypervolume
indicator to account for the fact that the NDCG@10 metric is being maximized, which can be resolved by adding
a minus sign to all the values involved and choosing the reference point r to be the origin. The values are of
the order of 10−4 because of the high-dimensionality (m = 6) of the MOO problem, noticing that the value of
NDCG is between 0 and 1.
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Method
HV of Test NDCG@10

N = 8 N = 12 N = 16

PHN-LS (Navon et al., 2020) 3.51±0.63 (4.58) 4.01±0.41 (4.79) 4.17±0.40 (5.04)
PHN-EPO (Navon et al., 2020) 3.60±0.63 (4.51) 3.65±0.65 (4.91) 4.15±0.67 (5.23)

COSMOS (Ruchte and Grabocka, 2021b) 3.81±0.33 (4.37) 4.00±0.37 (5.02) 4.19±0.32 (5.19)
GMOOAR-HV (Chen and Kwok, 2022) 2.57±0.17 (2.86) 3.25±0.29 (3.69) 3.65±0.32 (4.05)
GMOOAR-U (Chen and Kwok, 2022) 1.90±0.09 (2.11) 4.26±0.25 (4.66) 4.07±0.16 (4.42)

Particle-WFR (Ours) 6.48±0.38 (7.27) 7.07±0.23 (7.48) 6.95±0.26 (7.60)

Table 1: Performance comparison of different methods on the MSLR-WEB10K dataset. The hypervolume (HV)
is presented in the form of mean ± std (max) over the last 30 epochs, with the unit being 10−4.
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