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Abstract

Many problems in machine learning can be
formulated as solving entropy-regularized op-
timal transport on the space of probability
measures. The canonical approach involves
the Sinkhorn iterates, renowned for their
rich mathematical properties. Recently, the
Sinkhorn algorithm has been recast within
the mirror descent framework, thus bene-
fiting from classical optimization theory in-
sights. Here, we build upon this result by
introducing a continuous-time analogue of
the Sinkhorn algorithm. This perspective al-
lows us to derive novel variants of Sinkhorn
schemes that are robust to noise and bias.
Moreover, our continuous-time dynamics of-
fers a unified perspective on several recently
discovered dynamics in machine learning and
mathematics, such as the “Wasserstein mir-
ror flow” of Deb et al. (2023) or the “mean-
field Schrödinger equation” of Claisse et al.
(2023).

1 INTRODUCTION

Many modern machine learning tasks can be reframed
as solving an entropy-regularized optimal transport
(OT) problem over the space of probability measures.
One particularly noteworthy instance that has at-
tracted significant attention is the Schrödinger bridge
(SB) problem, whose primary objective is to dynami-
cally transform a given measure into another measure.
Consequently, SB has found widespread application
in diverse domains that require an understanding of
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complex continuous-time systems, spanning applica-
tions such as sampling (Bernton et al., 2019; Huang
et al., 2021), generative modeling (Chen et al., 2022;
De Bortoli et al., 2021; Wang et al., 2021), molecu-
lar biology (Holdijk et al., 2022), single-cell dynamics
(Bunne et al., 2023; Pariset et al., 2023; Somnath et al.,
2023), and mean-field games (Liu et al., 2022).

The canonical approach for solving entropy-
regularized OT is the Sinkhorn algorithm (Sinkhorn
and Knopp, 1967) or the closely related Iterative Pro-
portional Fitting (IPF) procedure (Chen et al., 2021;
Fortet, 1940; Kullback, 1968). Traditionally, these al-
gorithms have been framed as an alternating projection
procedure and extensively studied in this regard (Chen
et al., 2016; Cuturi, 2013; Ghosal and Nutz, 2022;
Peyré and Cuturi, 2019). Conversely, recent research
(Ballu and Berthet, 2023; Mensch and Peyré, 2020;
Mishchenko, 2019) sheds new light on Sinkhorn for
discrete probability distributions by associating it to
the mirror descent (MD) scheme (Beck and Teboulle,
2003; Nemirovsky and Yudin, 1983), thereby opening
up new avenues for understanding Sinkhorn through
the lens of classical optimization theory. Furthermore,
Aubin-Frankowski et al. (2022); Léger (2021) general-
ize this insight to the space of continuous probability
measures. To be more precise, these studies reveal
that the Sinkhorn iterates can be perceived as MD
steps, specifically implemented with step-size 1.

Here, we advance this mirror descent perspective by
introducing a novel, continuous-time variant of the
Sinkhorn algorithm on the space of probability mea-
sures. Our objectives are twofold. Firstly, we deepen
our comprehension of Sinkhorn iterates by emphasiz-
ing that the key components for establishing conver-
gence are not limited to the previous focus of the spe-
cific step-size 1, but are inherently linked to the choice
of the mirror map, objective function, and constraints.
Building upon this insight, we harness stochastic MD
analysis to yield novel Sinkhorn variations that, unlike
the traditional approach, maintain convergence even in
the presence of noise and bias. Secondly, we demon-
strate that our continuous-time dynamics opens up a
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unified perspective on various intriguing dynamics re-
cently explored in machine learning and mathematics.

To summarize, we make the following contributions:

• We derive a specific formula for a discrete-time mir-
ror descent scheme that encompasses Sinkhorn iter-
ates as a special case by setting the step-size to 1.
By driving the step-sizes to 0, we obtain a novel
continuous-time version of the Sinkhorn iterates,
comprising a pair of “primal” and “dual” systems
referred to as the Sinkhornε and Schrödingerε flows,
respectively.

• Importantly, both our novel discrete-time and
continuous-time schemes preserve the essential
properties of Sinkhorn needed for ensuring its con-
vergence. This insight deepens our understanding
by highlighting that Sinkhorn’s convergence is pri-
marily a result of the mirror descent algorithm with
a specific mirror map, as opposed to the conven-
tional interpretation centered around alternating
projection. Leveraging this fresh perspective, we
further devise new schemes accompanied by robust
asymptotic and non-asymptotic guarantees.

• With the aid of Otto calculus (Otto, 2001), we
demonstrate that our dynamics formally encompass
the “Wasserstein Mirror Flow” introduced by Deb
et al. (2023) as well as the evolution proposed by
Claisse et al. (2023). The former is motivated by
modeling the behavior of Sinkhorn for unregularized
optimal transport (i.e., when ε→ 0 in (OTε) below),
while the latter seeks to relax the conditions for es-
tablishing the convergence of neural network train-
ing in the mean-field limit. Until now, these dynam-
ics were treated in isolation, primarily due to the
lack of a continuous-time mirror descent perspective.

• We contextualize these findings in the Schrödinger
bridge setting and provide a mirror descent in-
terpretation of the Iterative Proportional Fitting
procedure widely adopted in the machine learning
community (Chen et al., 2022; De Bortoli et al.,
2021; Vargas et al., 2021). Additionally, we estab-
lish that these new mirror descent iterations can be
expressed as stochastic differential equations with
an explicit drift formula.

2 BACKGROUND ON MIRROR
DESCENT

In this section, we revisit the fundamental components
of the classical mirror descent (MD) scheme (Beck and
Teboulle, 2003; Nemirovsky and Yudin, 1983).

§ MD as a “minimizing movement” scheme.
Let F : Rd → R be a differentiable objective function,

φ : Rd → R be strictly convex and differentiable called
the Bregman potential, and C ⊆ Rd be a convex con-
straint. The MD algorithm aims to find minx∈C F (x)
by following the iterations

xn+1 = argmin
x∈C

{
⟨∇F (xn), x− xn⟩+

Dφ(x ∥xn)
γn

}
.

(1)
Here, γn is a sequence of step-sizes, and Dφ(x ∥xn) is
the Bregman divergence associated with φ:

Dφ(x
′ ∥x) := φ(x′)− φ(x)− ⟨∇φ(x), x′ − x⟩. (2)

This is the minimizing movement interpretation of
MD: At each iteration, linearize the objective F and
minimize it while staying “close” to the previous iter-
ate, where the measure of closeness is determined by
the Bregman divergence.

§ The dual perspective of MD. A particularly
insightful approach for studying MD employs the con-
cept of convex duality (Rockafellar, 1997). Recall that
for a convex set C, the convex indicator function IC is
defined as IC(x) = 0 if x ∈ C and +∞ otherwise. Let
φ∗ be the Fenchel conjugate of φ+ IC :

φ∗(y) = sup
x∈X
{⟨x, y⟩ − (φ+ IC)(x)}

= sup
x∈C
{⟨x, y⟩ − φ(x)}.

(3)

As φ+ IC is strictly convex, it holds that φ∗ is essen-
tially differentiable (Rockafellar, 1997), and the Dan-
skin’s theorem implies

∇φ∗(y) = argmax
x∈C

{⟨x, y⟩ − φ(x)}.

Thus, ∇φ∗(∇φ(x′)) = argminx∈C Dφ(x ∥x′). In par-
ticular, for all x ∈ C, ∇φ∗(∇φ(x)) = x.

We shall call any x ∈ C a primal point and any
y ∈ dom(∇φ∗) a dual point. Notice that a dual point
y uniquely identifies a primal point x = ∇φ∗(y), but
several dual points might correspond to the same
primal point x, one of which is ∇φ(x).1

Now, let y0 = ∇φ(x0) and consider the following dual
iterations: {

yn+1 = yn − γn∇F (xn),
xn+1 = ∇φ∗(yn+1),

(4)

which can also be written solely in terms of the dual
variables as

yn+1 = yn − γn∇F (∇φ∗(yn)).

1For a fixed primal point x̄ ∈ C, any x ∈ Rd such that
argminx′∈C Dφ(x

′ ∥x) = x̄ satisfies ∇φ∗(∇φ(x)) = x̄.
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Under certain mild conditions which hold in our
setting, (4) coincides with (1) (Beck and Teboulle,
2003). Driving the step-size γn → 0, we obtain the
continuous-time limit of the dual iterations (Krichene
et al., 2015; Tzen et al., 2023), called the mirror flow :{

d
dty(t) = −∇F (x(t)),
x(t) = ∇φ∗(y(t)).

(5)

Alternatively, we can write the mirror flow as

d

dt
y(t) = −(∇F ◦ ∇φ∗)(y(t)). (6)

§ MD on the space of probability measures.
While the discussion has thus far been limited to the
Euclidean spaces, the extension of MD to the infinite-
dimensional space of probability measures presents no
conceptual difficulty: One can simply replace the inner
product in (2) with the duality pairing ⟨p, f⟩ := Epf
(Halmos, 2013), and the gradient operator with the
first variation as defined in Appendix A (Bauschke
et al., 2003; Hsieh et al., 2019; Léger, 2021).

3 CONTINUOUS-TIME SINKHORN
FLOWS

This section constitutes our core contribution: The
introduction of a pair of “primal” and “dual” dy-
namics, which can be viewed as the analogue of the
Sinkhorn algorithm in continuous time. Our deriva-
tion builds upon a well-established MD interpretation
of Sinkhorn, reviewed in detail in Section 3.1. In Sec-
tion 3.2, we present a simple yet pivotal extension
of the MD interpretation, serving as the foundation
for our main result in Section 3.3. We then show-
case in Sections 3.4–3.5 how our novel dynamics al-
lows unifying existing dynamics as well as motivating
new schemes with advantageous properties compared
to Sinkhorn. All proofs can be found in Appendix B.

3.1 Background: Entropic Optimal
Transport and the Sinkhorn Algorithm

We first recall the central properties of the entropy-
regularized OT; the materials are classical, and pre-
sented e.g., by Peyré and Cuturi (2019). Let µ and
ν be two given probability measures on X and Y, re-
spectively. Consider a cost function c : X × Y → R
and a regularization parameter ε > 0. The entropy-
regularized OT is the minimization problem

OTε(µ, ν) := min
π∈Γ(µ,ν)

Eπ[c] + εH(π ∥µ⊗ ν) (OTε)

where Γ(µ, ν) is the set of all couplings between µ and
ν, and H(· ∥ ·) is the relative entropy. One can alterna-
tively rewrite (OTε) as the static Schrödinger problem

(see Section 4 for an explanation of the terminology):

min
π∈Γ(µ,ν)

H(π ∥πref
ε ), (7)

where the reference measure πref
ε is defined as

dπref
ε ∝ exp(−c/ε) d(µ ⊗ ν) and encodes all the

information about ε and the cost c. Without
loss of generality, we assume that c is normalized
s.t. dπref

ε /d(µ⊗ ν) = exp(−c/ε).

The optimal solution πopt
ε of (OTε) admits the follow-

ing dual representation: There exists potential func-
tions f : X → R and g : Y → R, unique up to con-
stants, such that

dπopt
ε = ef⊕g−

c
ε d(µ⊗ ν) = exp(f ⊕ g) dπref

ε . (8)

Here, we use the notation (f ⊕ g)(x, y) = f(x) + g(y),
and call f and g the Schrödinger potentials of πopt

ε .2

Moreover, the reverse direction also holds: If a cou-
pling π ∈ Γ(µ, ν) has the form (8), then it is the opti-
mal solution of OTε(µ, ν).

§ The Sinkhorn Algorithm. A popular method
for solving (OTε) is the Sinkhorn algorithm (Cuturi,
2013; Sinkhorn and Knopp, 1967): Starting from π0 :=
πref
ε , the algorithm iterates as

πn+
1/2 := argmin{H(π ∥πn) : πY = ν},

πn+1 := argmin{H(π ∥πn+1/2) : πX = µ}.
(Sink1)

Here, πX denotes the X -marginal of π. We use the no-
tation πn+1 = S1[π

n] to represent a full (Sink1) itera-
tion. A key attribute of the Sinkhorn algorithm is that
all the information concerning the cost c and the regu-
larization parameter ε is embedded in the initialization
of π0; the operator S1 itself is independent of c and ε.

The special structure of algorithm (Sink1) guaran-
tees that the iterations πn admit the form dπn =
exp(fnε ⊕ gnε ) dπref

ε for some potentials fnε , g
n
ε . Fur-

thermore, since the X -marginal of each successive πn

is always µ, we can determine fnε from gnε as:

fnε (x) = − log

∫
exp

(
gnε (y)−

c(x, y)

ε

)
ν(dy). (9)

This also implies that πn can be recovered solely from
gnε . In fact, in Lemma 3 below, we will demonstrate
how to retrieve πn from gn through the application of
the dual mirror map.

§ Mirror Descent interpretation. It is recently
shown in (Aubin-Frankowski et al., 2022) that the

2Some authors (such as Nutz and Wiesel, 2022) prefer
writing dπopt

ε as exp
(
1
ε
(f ⊕ g − c)

)
d(µ⊗ ν), and call these

f and g the Schrödinger potentials.
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Sinkhorn algorithm can be viewed as an MD itera-
tion in the space of probability measures. Specifically,
by defining the objective function F (π) := H(πY ∥ ν),
the Bregman potential φ(π) := H(π ∥πref

ε ), and the
constraint set C := {π : πX = µ}, the Sinkhorn update
(Sink1) corresponds to the MD update

πn+1 = argmin
π∈C

{⟨δF (πn), π − πn⟩+Dφ(π ∥πn)},

(10)
where δF (π) is the first variation of F at π (see Ap-
pendix A for the related background).

3.2 Sinkhorn with Arbitrary Step-sizes

Comparing (10) with the MD update rule (1), we see
that the classical Sinkhorn corresponds to MD with
constant step-size 1. However, once the connection to
MD is established, we can use arbitrary step-sizes γn
to get the γ-Sinkhorn iteration, defined as follows:

Definition 1 (γ-Sinkhorn iteration). Let F (π) =
H(πY ∥ ν), φ(π) = H(π ∥πref

ε ), and C = {π : πX = µ}.
Starting from π0

γ := πref
ε , we define the iterates πnγ as

πn+1
γ = argmin

π∈C

{
⟨δF (πnγ ), π − πnγ ⟩+

Dφ(π ∥πnγ )
γn

}
and write πn+1

γ = Sγn [π
n
γ ].

The following lemma is a simple observation that lies
at the heart of all forthcoming derivations:

Lemma 1. The γ-Sinkhorn iterates πnγ defined as in
Definition 1 correspond to the update rule:

πn+
1/2

γ := argmin{H(π ∥πnγ ) : πY = ν},

πn+1
γ := argmin{γnH(π ∥πn+1/2

γ ) (Sinkγ)

+ (1− γn)H(π ∥πnγ ) : πX = µ}.

Observe that in (Sinkγ) the half-iteration updates are
exactly the same as in the classical Sinkhorn (Sink1).
However, unlike (Sink1), integer iterations πn+1

γ ’s are
now computed based on both π

n+1/2
γ and πnγ , hence

losing the interpretation of being a KL-projection step
from π

n+1/2
γ . Nevertheless, the next lemma establishes

that the existence of Schrödinger potentials is retained
for (Sinkγ):

Lemma 2. The γ-Sinkhorn iterates πnγ in (Sinkγ) ad-
mit the representation

dπnγ = exp
(
fnγ ⊕ gnγ

)
dπref

ε . (11)

Moreover, the potentials gnγ satisfy the recursion

gn+1
γ = gnγ − γn log

d(πnγ )Y
dν

,

and fn+1
γ is computed from gn+1

γ as in (9).

In Section 3.4, we will establish the convergence of
the generalized iterates in (Sinkγ). In essence, this
means that the dual representation provided in (11),
which arises from the choice of the objective function
F , the Bregman potential φ, and the constraint set C
in Definition 1, is sufficient for ensuring convergence
without resorting to the conventional alternating
projection interpretation.

3.3 Sinkhornε and Schrödingerε Flows

Analyzing an algorithm’s continuous-time limits of-
ten provides a more manageable analytical perspec-
tive than for its discrete-time counterpart. Further,
continuous-time dynamics are beneficial for imple-
menting stochastic approximation techniques (see Sec-
tion 3.4), which are essential for determining the algo-
rithm’s convergence. The following proposition char-
acterizes the limiting behavior of operator Sγ as γ → 0.

Proposition 1. Fix a coupling π ∈ {π : πX = µ}. For
any γ > 0, let πγ = Sγ [π]. Then,

d

dγ

∣∣∣
γ=0

log πγ(x, y) = − log
dπY
dν

(y)+Eπ(·|x)
[
log

dπY
dν

]
.

Moreover, if dπ = exp(f ⊕ g) dπref
ε , then for all γ > 0,

dπγ = exp(fγ ⊕ gγ) dπref
ε , and fγ and gγ satisfy

d

dγ

∣∣∣
γ=0

gγ(y) = − log
dπY
dν

(y),

d

dγ

∣∣∣
γ=0

fγ(x) = Eπ(·|x)
[
log

dπY
dν

]
.

In view of Proposition 1, we are now ready to define
the Sinkhornε and the Schrödingerε flows.

Definition 2. Consider the set of all joint distribu-
tions on X × Y that solve (OTε) with cost function c
for their own marginals:

Πc,ε := {π : π solves OTε(πX , πY)}. (12)

For any π0
ε ∈ {π : πX = µ}∩Πc,ε, we construct a curve

(πtε)t≥0 whose velocity is determined by

d

dt
log

dπtε
dπref

ε

(x, y)

= − log
d(πtε)Y
dν

(y) + Eπt
ε(·|x)

[
log

d(πtε)Y
dν

]
. (13)

We call the mapping (π0
ε , t) 7→ πtε the Sinkhornε

flow. Similarly, we call the mapping (g0ε , t) 7→ gtε the
Schrödingerε flow, which describes the evolution of the
Schrödinger potential corresponding to πtε:

d

dt
gtε = − log

d(πtε)Y
dν

= −δF (πtε). (14)
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Remark. Using πtε = δφ∗(gtε), the Schrödingerε flow
(14) can be written solely in terms of gtε. The other
direction also holds: if we integrate (14) to get gtε, we
can recover the Sinkhornε flow (13). In short, the two
flows (13) and (14) are equivalent.

§ Mirror Flow interpretation. As the Sinkhornε
and Schrödingerε flows emerge from driving the step-
size of an MD iterate to zero, it is natural to anticipate
a mirror flow interpretation in the sense of (5). In this
section, we make this link precise.

Consider the primal space P to be the space of prob-
ability measures over X × Y having smooth densities
with respect to the Lebesgue measure, and the dual
space D := L1(X × Y) to be the space of integrable
functions. The first variation of the Bregman potential
φ(π) = H(π ∥πref

ε ) gives a link from P to D:

δφ(π) = log
dπ

dπref
ε

∈ D, ∀π ∈ P, π ≪ πref
ε . (15)

Moreover, the Fenchel conjugate φ∗ of φ+ IC , defined
in (3), gives a link from D to C = {π : πX = µ} ⊂ P
through its first variation.

Crucially, unlike prior studies such as (Aubin-
Frankowski et al., 2022; Ballu and Berthet, 2023;
Mishchenko, 2019), we incorporate the IC in our defi-
nition of φ∗. This plays a vital role in preventing the
emergence of a differential inclusion, as opposed to an
equation, in the dual iteration, which is pivotal in our
interpretation of mirror flow and the Otto calculus.

Lemma 3. The Fenchel conjugate φ∗ of φ+IC evalu-
ated at h ∈ D is given by φ∗(h) = ⟨π̂, h⟩−H(π̂ ∥πref

ε ),
where

π̂(x, y) :=
πref
ε (x, y) eh(x,y)∫

πref
ε (x, y′) eh(x,y′) dy′

µ(x) ∈ C. (16)

Moreover, one has δφ∗(h) = π̂ where π̂ is defined in
(16).

Remark. We have seen that, when π = exp(f ⊕g)πref
ε ,

the recovery of π from g can be accomplished using
the relationship expressed in (9). Lemma 3 further
demonstrates that this operation is none other than
an application of the dual mirror map: π = δφ∗(g).

Using these formulas for δφ and δφ∗, we can then de-
fine an infinite-dimensional mirror flow as follows. Fix
π̂0
ε ∈ Πc,ε ∩ {π : πX = µ} and h0ε := δφ(π̂0

ε) ∈ D, and
consider {

d
dth

t
ε = −δF (π̂tε),

π̂tε = δφ∗(htε),
(17)

which can be equivalently written as

d

dt
htε = −(δF ◦ δφ∗)(htε). (18)

We then have:

Theorem 3.1. The dynamics (17) or (18) coincide
with the Schrödingerε flow (14), and the corresponding
(π̂tε)t≥0 solves the Sinkhornε flow (13) starting at π̂0

ε .

Comparing Eqs. (17)–(18) with Eqs. (5)–(6), we thus
see that Sinkhornε and Schrödingerε flows can be seen
as the analogue of the mirror flow in the space of prob-
ability measures.

3.4 Convergence of Sinkhornε Flow and
γ-Sinkhorn Iterates

The flexibility of the variable step-sizes in γ-Sinkhorn
schemes offers a straightforward framework for im-
proving the traditional Sinkhorn algorithm. Further-
more, the continuous-time Sinkhornε and Schrödingerε
flows pave the way for integrating the powerful
machinery of stochastic approximation techniques
(Karimi et al., 2022a,b; Mertikopoulos et al., 2023).
In this section, we illustrate how to leverage our the-
ory to enhance the convergence of Sinkhorn schemes
in scenarios involving noisy gradients.

§ Rate analysis for the Sinkhornε flow. Before
we proceed to present improved Sinkhorn schemes, we
first establish the convergence rate of the continuous-
time Sinkhornε flow:

Theorem 3.2. Starting from π0
ε ∈ Πc,ε ∩

{π : πX = µ}, consider the Sinkhornε flow πtε and the
corresponding Schrödingerε flow gtε. Then,

F (πtε) ≤
Dφ∗(g0ε ∥ goptε )

t
= O

(
t−1
)
,

where goptε is the Schrödinger potential of the optimal
coupling for (OTε). That is, the Y-marginal of πtε
converges (in relative entropy) to ν with the rate 1/t.

While our proof of Theorem 3.2 is guided by the mirror
flow formalism presented in the previous section, it
does not follow directly from existing results for mirror
flows such as (Krichene et al., 2015; Tzen et al., 2023).
This is primarily due to the presence of the additional
constraint C, which is absent in conventional mirror
descent analyses.

§ Convergent Sinkhorn under noise. In entropy-
regularized OT, neural networks (NNs) are commonly
used to parameterize the transport plans. Typically,
the Sinkhorn iterations (Sink1) are employed, requir-
ing solving an infinite-dimensional optimization prob-
lem, approximated via multiple stochastic gradient
steps over NNs. However, inherent stochasticity in
computations can prevent convergence when δF in
(10) is replaced by a noisy estimate δ̃F , necessitating
a remedy (Hanzely and Richtárik, 2021).
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In this section, we introduce two improvements. First,
Theorem 3.3 shows that using our variable step-size
method (Sinkγ) with γn = O(n−1/2), one maintains
a convergence rate of O(n−1/2), when the “stochastic
gradients” remain unbiased with finite variance. Sec-
ond, Theorem 3.4 establishes asymptotic last-iterate
convergence when one employs stochastic and biased
gradient estimates.

Theorem 3.3. Suppose that we have a stochastic es-
timate δ̃F of δF such that E[δ̃F (π)] = δF (π) and
E[∥δ̃F (π)∥2∞] ≤ σ2 < ∞ for all π. Consider the it-
erations πnγ generated by (Sinkγ) using δ̃F and a fixed

step-size γ. Then we have, with π̄nγ := 1
n

∑n
k=0 π

k
γ ,

E
[
H((π̄nγ )Y ∥ ν)

]
≤ H(πopt ∥πref

ε )

γn
+ γσ2. (19)

The proof of Theorem 3.3 is established by combining
our framework with a classical analysis of stochastic
Bregman schemes (Dragomir et al., 2021; Hanzely and
Richtárik, 2021).

While (19) immediately yields an O(n−1/2) conver-
gence rate, there are two significant drawbacks in The-
orem 3.3. First, since the stochastic estimate δ̃F aims
to capture noise introduced during the intermediate
optimization procedures for NNs, the unbiasedness as-
sumption is rather restrictive. Second, even if δ̃F is un-
biased, we are still required to produce an ergodic iter-
ate π̄nγ , whereas in practice, the last iterate πnγ is often
the most utilized. To address these issues, we leverage
stochastic approximation analysis, which relies on the
continuous-time convergence in Theorem 3.2 to prove
the following (see Theorem B.1 for details):

Theorem 3.4 (Informal). Let πn be the sequence of
measures generated by (Sinkγ) using noisy and biased

gradients δ̃F , along with a step-size rule γn such that∑
γn = ∞ and

∑
γ2n < ∞. Then limn→∞ πn = πopt

ε

almost surely, if the biases vanish asympotically and
the noises have uniformly bounded variance.

Theorem 3.4 offers two advantages over Theorem 3.3.
First, it replaces ergodic convergence with the more
desirable last-iterate convergence. Secondly, if we con-
sider the bias as the error during the optimization of
the NN at each step of (Sinkγ), then Theorem 3.4 al-
lows for a level of flexibility where the precision of the
intermediate steps may progressively improve, instead
of always requiring perfect optimization as stipulated
by the unbiased assumption in Theorem 3.3. How-
ever, we acknowledge that these advantages come at
the cost of losing a non-asymptotic rate.

3.5 Otto Calculus for Sinkhornε and
Schrödingerε Flows

The Otto calculus, a groundbreaking development in
21st-century mathematics, has found far-reaching im-
plications in machine learning applications (Ambrosio
et al., 2005; Otto, 2001; Villani, 2008). Leveraging
this powerful framework, we showcase how our
Sinkhornε and Schrödingerε flows offer a unified
template for various recently discovered dynamics
that hold significant relevance to machine learning
(Claisse et al., 2023; Deb et al., 2023).

§ Wasserstein Mirror Flow. Consider the time-

dilated Schrödinger potential as g̃tε := g
t/ε
ε . Recall that

g̃tε ≡ g̃tε(y) is a function on Y. By taking the gradient
with respect to the y variable in (14), we obtain:

d

dt
∇(εg̃tε) =

d

dt
∇W2OTε(µ, ·) = −∇W2F (π

t
ε), (20)

where ∇W2
F (π) := ∇δF (π) is the Wasserstein gradi-

ent of F (Otto, 2001) and similar for ∇W2
OTε (Ben-

amou et al., 2023), which is evaluated at (δφ∗(g̃tε))Y .

Now, let c(x, y) = 1
2 |x− y|

2
in (OTε). In this case,

it is well-known that, as ε → 0, πopt
ε converges to

the optimal W2 coupling (denoted by ϖ) and εgoptε

converges to the corresponding Kantorovich potential
(denoted by g0) (Chiarini et al., 2023; Pooladian and
Niles-Weed, 2021). Thus, by driving ε→ 0 in (20), we
formally get:

d

dt
∇gt0 =

d

dt
∇W2

OT0(µ,ϖ
t
Y) = −∇W2

F (ϖt) (21)

where ϖt is the optimal W2 coupling of µ and ϖt
Y , and

gt0 is the corresponding Kantorovich potential. This
equation is exactly the “Wasserstein Mirror Flow” of
Deb et al. (2023, equation (2.3)) proposed to study
Sinkhorn for the unregularized OT. Therefore, the
dynamics discovered by Deb et al. (2023) can be seen
as a limiting case of the more general Sinkhornε and
Schrödingerε flows.

§ JKO Flow with Relative Entropy. Recently,
motivated by the mean-field limit of neural network
training, Claisse et al. (2023) study a variation of the
JKO flow of a functional F (Jordan et al., 1998), re-
placing the W2 distance with the relative entropy:

pn+1
γ := argmin

p

{
F (p) + γ−1H(p ∥ pnγ )

}
, (22)

where the minimization is over the set of all distribu-
tions with regular densities. In the limit γ → 0, they
show that such as a scheme converges to the flow

d

dt
log pt = −δF (pt) (23)
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which formally resembles (14). However, there are two
important differences. Firstly, (22) constitutes an un-
constrained minimization problem, whereas our mirror
descent scheme seeks minimizers within the constraint
set C = {π : πX = µ}, giving rise to the central notion
of Schrödinger potentials. Secondly, the update (22)
involves the original objective function F in the min-
imization, whereas our scheme employs the linearized
objective. While the second difference becomes negli-
gible as γ → 0 (intuitively, there would be no distinc-
tion between F and its linearization), the impact of the
constraint set C persists. Consequently, one can view
(23) as an unconstrained mirror flow for the objective
F with the entropy as the Bregman potential.

4 EXTENSION TO SCHRÖDINGER
BRIDGES

In Section 3, we established the continuous-time vari-
ant of the Sinkhorn iterates for (OTε), which pertains
to the “static” entropy-regularized OT. Motivated by
the strong connections to diffusion models, in this sec-
tion, we broaden our scope to encompass the dynami-
cal scenario, often referred to as the Schrödinger bridge
(SB) problem. Beyond adapting the results in Sec-
tion 3 to the SB, we provide additional insights by
demonstrating that each time point in the continuous-
time SB flow can be characterized as a stochastic dif-
ferential equation with a well-defined drift formula. All
proofs can be found in Appendix C.

4.1 Review of Schrödinger Bridges

Given two probability measures µ0, µT on Rd, the SB
refers to the following entropy minimization problem
over the space of all stochastic processes over [0, T ]:

min
P

{
H(P ∥Pref) : P0 = µ0, PT = µT

}
, (SB)

where Pref is a given path measure induced by the
solutions of the stochastic differential equation

dXt = breft (Xt) dt+ σdWt, (24)

and Pt is the marginal of P at time t. It turns out that
solving (SB) is intimately related to solving the static
Schrödinger problem (Léonard, 2014):

min
π∈Γ(µ0,µT )

H(π ∥Pref
0,T ). (25)

§ Connection to Entropy-Regularized OT. In
the case where Pref is the law of a reversible Brownian
motion on [0, 1] with diffusion parameter σ (Léonard,
2014), the joint distribution of the end time points
satisfies Pref

0,1(dx, dy) ∝ exp(−|x − y|2/2σ2). There-
fore, (25) becomes an instance of entropy-regularized

OT (7) with the cost c(x, y) = 1
2 |x − y|

2 and ε = σ2.
Thus, (SB) can be viewed as the dynamic formulation
of (OTε) where, instead of merely seeking an optimal
coupling πopt

ε , one solves for an entire stochastic pro-
cess that transforms µ0 into µ1.

§ Iterative Proportional Fitting. The classical
algorithm for solving (SB) is the Iterative Proportional
Fitting (IPF) procedure, which can be seen as the dy-
namic version of the Sinkhorn scheme: Starting from
P0 = Pref, define for n ≥ 0,

Pn+
1/2 = argmin{H(P ∥Pn) : PT = µT },

Pn+1 = argmin{H(P ∥Pn+1/2) : P0 = µ0}.
(IPF)

Notice that, in complete analogy to Sinkhorn, we have
Pn0 = µ0 and P

n+1/2
T = µT for all n ≥ 0.

With this background, we now present an approach to
IPF for (SB) that parallels the Sinkhorn for (OTε).

4.2 IPF as Mirror Descent

Similar to the Sinkhorn algorithm, we show that IPF
can be interpreted through the lens of MD. This
finding serves as the dynamic counterpart to (Aubin-
Frankowski et al., 2022, Proposition 5).

Proposition 2. The iterations Pn of (IPF) satisfy

Pn+1 = argmin
P∈C

{⟨δF (Pn),P−Pn⟩+Dφ(P ∥Pn)}, (26)

with F (P) := H(PT ∥µT ), φ(P) := H(P ∥Pref), and
C := {P : P0 = µ0}.

In other words, (IPF) is equivalent to an MD iteration
with step-size 1.

§ γ-IPF iterations. Upon recognizing that IPF can
be interpreted as MD iterations with a step-size of 1,
we can proceed to investigate the MD iteration (26)
with an arbitrary step-size γn:

Pn+1 =

argmin
P∈C

{
⟨δF (Pn),P− Pn⟩+ Dφ(P ∥Pn)

γn

}
. (27)

A similar calculation to that of Lemma 1 reveals that
(27) can be equivalently expressed as:

Pn+1 =

argmin
P∈C

{
γnH(P ∥Pn+1/2) + (1− γn)H(P ∥Pn)

}
.

(γ-IPF)

In analogy to the γ-Sinkhorn iterations, we call the
update rule in (γ-IPF) the γ-IPF scheme.
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4.3 The SDE Representation of γ-IPF

So far, we have shown that the results in Section 3
can be straightforwardly extended to SB setting.
However, the true significance of the SB formulation
becomes apparent in its representation as stochastic
differential equations (SDEs), enabling the utilization
of powerful diffusion models (Ho et al., 2020; Song and
Ermon, 2019). Thus, the primary objective of this
section is to establish that the minimizer of (γ-IPF)
can indeed be expressed as an SDE with a readily
available drift formula.

Before delving into the derivation, we first recall the
important fact that the IPF iterates can be expressed
in terms of the time-reversal of SDEs, which can be
solved in practice via score matching techniques (Chen
et al., 2022; De Bortoli et al., 2021). We provide a
proof for this result for completeness.

Theorem 4.1. Suppose that Pn is an SDE given by

dXn
t = vnt (X

n
t ) dt+ σdWt, X0 ∼ µ0, (28)

and that the time-reversal of Pn+1/2 is given by

dY
n+1/2
t = w

n+1/2
T−t (Y

n+1/2
t ) dt+ σdWt, Y

n+1/2
0 ∼ µT .

(29)

Then the drift vector field w
n+1/2
t satisfies:

−vnt (x) + σ2∇ log pnt (x) = w
n+1/2
t (x) (30)

where pnt is the density of Pnt .

It is well-known that the condition (30) expresses pre-
cisely the fact that Pn+1/2 is given by the time-reversal
of (28) (Föllmer, 1985; Haussmann and Pardoux, 1986;
Song et al., 2020).

In what follows, define the likelihood ratio to be ℓnt :=
p
n+1/2
t /pnt . We are now ready to present the main result
of this section.

Theorem 4.2. Let Pn be given by the scheme
(γ-IPF), and let vnt (·) be the (forward) vector field cor-
responding to the SDE representation of Pn in (28).
Then vnt (·) satisfies the following recursive formula:

vn+1
t = vnt + γσ2∇ log ℓnt − σ2∇Vt, (SDEγ)

where

Vt(x) = − logE
[
e−

σ2γ(1−γ)
2

∫ T
t

|∇ log ℓns (Ys)|2 ds

]
, (31)

and the expectation is with respect to the law of the
SDE (Ys)s≥t starting at Yt = x and following

dYs =
{
vns (Ys) + γσ2∇ log ℓns (Ys)

}
ds+ σdWs. (32)

When γ = 1, the ∇Vt term in (SDEγ) disappears so
that Theorem 4.2 is Theorem 4.1 applied twice, and
we recover the iterative formula for the SDE represen-
tation of IPF (Pariset et al., 2023, Proposition 4.2).

Remark. Comparing (SDEγ) with the classical IPF
iterates, we see that γ-IPF can be efficiently imple-
mented provided we can calculate the additional ∇Vt
component. In Proposition C.2, we make this compu-
tational step possible by a establishing novel link to
stochastic optimal control. As our paper primarily fo-
cuses on the theoretical understanding of the Sinkhorn
and IPF iterations, we defer the details to Appendix C.

4.4 The Flow of Schrödinger SDEs

In this section, we show how the results in Section 3
naturally lead to a flow of SDEs, i.e., an evolution of
path measures (Ps)s≥0 where each Ps is the law of an
SDE with certain drift vst (·):

dXs
t = vst (X

s
t )dt+ σdWt. (33)

To streamline the exposition, we make the simplifying
assumption that T = σ = 1 and the reference mea-
sure Pref is given by the law of the reversible Brownian
motion (WR

t )t∈[0,1] (Léonard, 2014). Our conclusions
remain applicable in the general case, but the notation
becomes more cumbersome in that scenario.

Consider the static SB problem in (25), which is noth-
ing but (OTε) with cost function c(x, y) = 1

2 |x − y|
2

and ε = 1. Recall its associated Schrödingerε flow (14)
defined via the Schrödinger potentials fs, gs. Consider
the path measures Ps defined by

dPs

dPref
= exp{(fs ⊕ gs)(WR

0 ,W
R
1 )}. (34)

Similar to the static case, these path measures are
known to solve the SB problem for their corresponding
marginals µs0, µ

s
1 (Léonard, 2014) and, by construction,

µs0 = µ0 for all s.

We can now formally define an evolution of the path
measures Ps, where at each time s, Ps admits an
SDE representation which can be described using the
Schrödinger potentials fs, gs: For each s, define the
function on [0, 1]× Rd by

gst (z) := logE
[
eg

s(WR
1 ) |WR

t = z
]

(35)

so that gs1 ≡ gs. Then Léonard (2014, Prop. 6) im-
plies that Ps is the law of the SDE:

dXs
t = ∇gst (Xs

t )dt+ dWt, Xs
0 ∼ µ0. (36)

As a result, the mapping s 7→ (gst )t∈[0,1] can be re-
garded as the dynamic Schrödingerε flow associated



Mohammad Reza Karimi∗, Ya-Ping Hsieh∗, Andreas Krause

with (gs)s≥0, while (36) can be considered as the
continuous-time limit of the SDE representation of
(γ-IPF), as γ → 0.

5 CONCLUSIONS AND FUTURE
WORK

In summary, our work introduces the continuous-time
Sinkhorn algorithm as a novel approach to design
schemes that maintain convergence in the presence of
noise and bias. It also unifies previously isolated dy-
namics through the mirror descent perspective. We
extend these insights to Schrödinger bridges and the
IPF procedure. These findings open doors to excit-
ing future research directions, including exploring con-
nections with existing dynamics and the potential for
achieving acceleration through momentum terms.

Acknowledgements

This work was supported by the European Research
Council (ERC) under the European Union’s Horizon
2020 research and innovation program grant agree-
ment No 815943. YPH acknowledges funding through
an ETH Foundations of Data Science (ETH-FDS)
postdoctoral fellowship.

References

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré.
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A Background

A.1 Notions of Derivative

Throughout this paper, we use the notation δ to denote the First Variation operator. In this section, we bring
the necessary background for defining and using this operator. Our discussion mostly follows (Aubin-Frankowski
et al., 2022) with a slight change of notation.

LetM be a vector space of (signed) finite measures on the space X .
Definition 3 (Gâteaux and Fréchet Differentiability). A functional F is called Gâteaux differentiable at µ ∈M,
if there exists a linear operator ∇GâtF (µ) such that for any direction ν ∈M, one has

∇GâtF (µ)[ν] = lim
h→0

F (µ+ hν)− F (µ)
h

.

If the limit above holds uniformly in the unit ball inM, the function F is called Fréchet differentiable, and we
denote the resulting Fréchet derivative as ∇FréF (µ).

The issue with the aforementioned definitions is that the limit must exist in all directions, which means that
the points of differentiability must be within the functional’s domain, as stated. Nevertheless, in the case of
functionals like the relative entropy, the domain of F has an empty interior, as discussed by Aubin-Frankowski
et al. (2022).

For this, Aubin-Frankowski et al. (2022) propose to use the weaker notion of directional derivative, defined as
follows:

Definition 4 (Directional Derivative). For a functional F and µ ∈ M define the directional derivative of F at
µ in the direction of ν ∈M as

F ′(µ; ν) = lim
h↓0

F (µ+ hν)− F (µ)
h

.

See (Aubin-Frankowski et al., 2022, Remark 1) for a discussion on when this notion of derivative exists. Specifi-
cally, for convex and proper functions (such as relative entropy) this notion of derivative exists.

We are now ready to recall the notion of first variation, see (Aubin-Frankowski et al., 2022, Definition 2) and
the discussion afterward for a more in-depth exposition.

Definition 5 (First Variation). Let C be a subset ofM. For a functional F and µ ∈ C ∩dom(F ) define the first
variation of F at µ to be the element δCF (µ) ∈M∗, whereM∗ is the topological dual ofM, such that it holds
for all ν ∈ C ∩ dom(F ) and ξ = ν − µ ∈M:

⟨δCF (µ), ξ⟩ = F ′(µ; ξ).

Here, ⟨·, ·⟩ is the duality pairing ofM andM∗.

A.2 Selection of Results regarding SDEs

The first important result is the time-reversal formula for diffusions. The result, along with the necessary
regularity conditions, can be found in, e.g., (Haussmann and Pardoux, 1986).

Theorem A.1 (Time-Reversal of Diffusions). Let (Xt)t∈[0,1] be the (strong) solution of dXt = vt(Xt) dt+σdWt,
and assume Xt has density pt. Define the vector field

wt(x) = −v1−t(x) + σ2∇ log p1−t(x)

and the operator Lt which, when evaluated on f ∈ C∞
c (Rd), gives

(Ltf)(x) =
σ2

2
∆f(x) + ⟨wt(x),∇f(x)⟩.

Then, under some assumptions (see, e.g., (A) in (Haussmann and Pardoux, 1986)), the process (X̂t :=
X1−t)0≤t<1 is a Markov diffusion process with generator Lt.
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The following two theorems are special cases of a general Girsanov formula; see e.g., (Léonard, 2011, Theorem
2.3).

Theorem A.2 (Girsanov). Let P be the law of the semi-martingale

Xt = X0 +

∫ t

0

bs ds+ σWt,

and suppose we are given a probability measure Q with H(Q ∥P) <∞. Then, there exists an Rd-valued adapted

process βt with EQ

[∫ 1

0
|βt|2 dt

]
<∞, such that X has the semi-martingale decomposition

Xt = X0 +

∫ t

0

(bs + βs) ds+ σWQ
t , Q-a.s.,

where WQ is a Q-Brownian motion. Moreover,

dQ

dP
=
dQ0

dP0
(X0) · exp

{∫ 1

0

1

σ
⟨βt, dWt⟩ −

1

2

∫ 1

0

|βt|2

σ2
dt

}
.

Corollary A.1 (Relative Entropy of Diffusions). Let P and Q be two path measures, with H(Q ∥P) < ∞.
Moreover, assume that under P, the canonical process X has the semi-martingale decomposition

Xt = X0 +

∫ t

0

bs ds+WP
t ,

where WP is a P-Brownian motion, and under Q,

Xt = X0 +

∫ t

0

cs ds+WQ
t ,

where WQ is a Q-Brownian motion. Then,

H(Q ∥P) = EQ

[
log

dQ

dP

]
= H(Q0 ∥P0) + EQ

[
1

2

∫ T

0

|ct − bt|2 dt

]
.

B Proofs of Section 3

B.1 Results about the γ-Sinkhorn Iterates

Recall from Definition 1 that the γ-Sinkhorn iterates are defined via the recursion

πn+1
γ = argmin

π∈C

{
⟨δF (πnγ ), π − πnγ ⟩+

Dφ(π ∥πnγ )
γn

}
, π0

γ = πref
ε .

Using the values of δF and Dφ(· ∥ ·) from (Aubin-Frankowski et al., 2022), this is equivalent to

πn+1
γ = argmin

π∈C

{∫
d(π − πnγ ) log

d(πnγ )Y
dν

+
H(π ∥πnγ )

γn

}
, π0

γ = πref
ε . (B.1)

Lemma 1. The γ-Sinkhorn iterates πnγ defined as in Definition 1 correspond to the update rule:

πn+
1/2

γ := argmin{H(π ∥πnγ ) : πY = ν},

πn+1
γ := argmin{γnH(π ∥πn+1/2

γ ) (Sinkγ)

+ (1− γn)H(π ∥πnγ ) : πX = µ}.
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Proof. For brevity, we drop the γ in πnγ . First, observe that by the chain rule of the relative entropy,

H(π ∥πn) = H(πY ∥πnY) +
∫

dπnY(y)H(πn(· | y) ∥π(· | y))

As πn+1/2 is the minimizer of the KL above among all couplings with Y-marginal ν, this means that for dπnY(y)-
almost sure y, we have πn(· | y) = π(· | y). This implies that

dπn+1/2

dπn
=

dπ
n+1/2
Y
dπnY

=
dν

dπnY
. (B.2)

From the computation above and (B.1), we have

F (πn) + ⟨δF (πn), π − πn⟩+ Dφ(π ∥πn)
γn

=

∫
dπn log

dπnY
dν

+

∫
d(π − πn) log

dπnY
dν

+
H(π ∥πn)

γn

=

∫
dπ log

dπnY
dν

+
H(π ∥πn)

γn

=

∫
dπ log

dπn

dπn+1/2
+
H(π ∥πn)

γn
by (B.2)

=

∫
dπ log

{
dπn

dπn+1/2
·
(

dπ

dπn

)1/γn
}

=
1

γn

∫
dπ log

{(
dπ

dπn+1/2

)γn
·
(

dπ

dπn

)1−γn
}

=
1

γn

(
γnH(π ∥πn+1/2) + (1− γn)H(π ∥πn)

)
.

■

As a corollary to Lemma 1, we have

Corollary B.1 (Closed-form of the γ-Sinkhorn Step). The γ-Sinkhorn iterates have the density

πn+1
γ (dx, dy) ∝ µ(dx)

(
πn+

1/2(dy | x)
)γn

(πn(dy | x))1−γn .

Proof. Let us drop the γ for brevity. From Lemma 1 we know that

πn+1 = argmin
{
γnH(π ∥πn+1/2) + (1− γn)H(π ∥πn) : πX = µ

}
By the chain rule of relative entropy, and considering couplings π with πX = µ, we have

γnH(π ∥πn+1/2) + (1− γn)H(π ∥πn)

= constant +

∫
µ(dx)

∫
π(dy | x) log

((
π(y | x)

πn+1/2(y | x)

)γn( π(y | x)
πn(y | x)

)1−γn
)
.

Thus, for each x, we have to set π(· | x) to the minimizer of

H(π(· | x))−
∫
π(dy | x) log

{
πn+

1/2(y | x)1−γnπn(y | x)1−γn
}
,

which by standard optimality conditions in calculus of variations, we see that

πn+1(· | x) ∝ πn+1/2(y | x)1−γnπn(y | x)1−γn ,

and the claim of the corollary follows. ■
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Lemma 2. The γ-Sinkhorn iterates πnγ in (Sinkγ) admit the representation

dπnγ = exp
(
fnγ ⊕ gnγ

)
dπref

ε . (11)

Moreover, the potentials gnγ satisfy the recursion

gn+1
γ = gnγ − γn log

d(πnγ )Y
dν

,

and fn+1
γ is computed from gn+1

γ as in (9).

Proof. For easier readability, we drop the γ subscript of fnγ and gnγ . We prove this lemma by induction. For

n = 0, (11) holds because of the initialization of the iterations. Now suppose that dπn

dπref
ε

= exp(fn ⊕ gn). Then,

πn+
1/2(x, y) = ν(y)πn(x | y) =

µ(x) exp
(
fn(x)− c(x,y)

ε

)
ν(y)∫

µ(x′) exp
(
fn(x′)− c(x′,y)

ε

)
dx′

= πref
ε (x, y) exp

(
fn+1/2 ⊕ gn+1/2

)
,

where fn+1/2 = fn, and

gn+
1/2(y) = − log

∫
µ(x) exp

(
fn(x)− c(x, y)

ε

)
dx = − log

πnY(y)

ν(y) exp(gn(y))
= − log

πnY(y)

ν(y)
+ gn(y)

Now compute

πn(y | x) =
exp
(
gn(y)− c(x,y)

ε

)
ν(y)∫

ν(y′) exp
(
gn(y′)− c(x,y′)

ε

)
dy′

=:
1

An(x)
exp

(
gn(y)− c(x, y)

ε

)
ν(y)

and

πn+
1/2(y | x) =

exp
(
gn+1/2(y)− c(x,y)

ε

)
ν(y)∫

ν(y′) exp
(
gn+1/2(y′)− c(x,y′)

ε

)
dy′

=:
1

An+1/2(x)
exp

(
gn+

1/2(y)− c(x, y)

ε

)
ν(y).

Thus,

πn+
1/2(y | x)γπn(y | x)1−γ =

1

An(x)1−γAn+1/2(x)γ
exp

(
γgn+1/2(y) + (1− γ)gn(y)−

c(x, y)

ε

)
ν(y).

Recall that πn+1(dx, dy) = µ(dx) 1
Zn(x)π

n+1/2(y | x)γπn(y | x)1−γ . Putting the values computed above, and

gathering all terms that only depend on x into fn+1 shows that

πn+1 = exp

(
fn+1(x) + gn+1(y)− c(x, y)

ε

)
µ(x)ν(y),

where

gn+1 = γgn+
1/2 + (1− γ)gn = −γ log

πnY
ν

+ γgn + (1− γ)gn = gn − γ log
πnY
ν
. ■

B.2 Results about the Sinkhornε and Schrödingerε Flows

Proposition 1. Fix a coupling π ∈ {π : πX = µ}. For any γ > 0, let πγ = Sγ [π]. Then,

d

dγ

∣∣∣
γ=0

log πγ(x, y) = − log
dπY
dν

(y) + Eπ(·|x)
[
log

dπY
dν

]
.

Moreover, if dπ = exp(f ⊕ g) dπref
ε , then for all γ > 0, dπγ = exp(fγ ⊕ gγ) dπref

ε , and fγ and gγ satisfy

d

dγ

∣∣∣
γ=0

gγ(y) = − log
dπY
dν

(y),

d

dγ

∣∣∣
γ=0

fγ(x) = Eπ(·|x)
[
log

dπY
dν

]
.
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Proof. Define π1/2(x, y) = ν(y)π(x | y) and for γ ≥ 0, by Corollary B.1

πγ(x, y) = µ(x)
1

Zγ(x)
π

1/2(y | x)γπ(y | x)1−γ ,

where Zγ(x) =
∫
π1/2(y | x)γπ(y | x)1−γ dy is the normalization factor. Note that πγ(y | x) = πγ(x, y)/µ(x).

Our goal is to characterize the derivative d
dγ

∣∣
γ=0

log πγ(y | x) for all fixed x. For that, we compute

1

γ
(log πγ(y | x)− log π(y | x)) = − 1

γ
logZγ(x) + log

π1/2(y | x)
π(y | x)

.

Thus, we only have to compute the limit

lim
γ↓0

1

γ
logZγ(x) =

d

dγ

∣∣∣
γ=0

logZγ(x) =
1

Z0(x)

∫
π(y | x) log π

1/2(y | x)
π(y | x)

dy = −H(π(· | x) ∥π1/2(· | x)).

Thus,
d

dγ

∣∣∣
γ=0

log πγ(y | x) = − log
π(y | x)
π1/2(y | x)

+H(π(· | x) ∥π1/2(· | x)).

Notice that since the first marginal of π is assumed to be fixed (to µ), we have

d

dγ

∣∣∣
γ=0

log πγ(y | x) = d

dγ

∣∣∣
γ=0

log πγ(x, y) = − log
π(y | x)
π1/2(y | x)

+H(π(· | x) ∥π1/2(· | x)).

We have the identity:

log
π(y | x)
π1/2(y | x)

= log
πY(y)

ν(y)
+ log

π
1/2
X (x)

πX (x)
.

With this, we can rewrite the evolution above as

d

dγ

∣∣∣
γ=0

log πγ(x, y) = − log
πY(y)

ν(y)
− log

π
1/2
X (x)

πX (x)
+

∫
π(z | x)

(
log

πY(z)

ν(z)
+ log

π
1/2
X (x)

πX (x)

)
dz

= − log
πY(y)

ν(y)
+

∫
π(z | x) log πY(z)

ν(z)
dz.

This proves the first part of the proposition.

For the evolution of gγ , recall the recursion in Lemma 2, and see that when γ → 0, the limit of gγ satisfies the
evolution in the proposition. For the evolution of fγ , observe that

log πγ = (fγ ⊕ gγ) + log πref
ε

Thus,
d

dγ
log πγ(x, y) =

d

dγ
fγ(x) +

d

dγ
gγ .

Replacing the formula for d
dγ log π

γ(x, y) and d
dγ g

γ above, gives the formula for d
dγ f

γ . ■

Lemma 3. The Fenchel conjugate φ∗ of φ + IC evaluated at h ∈ D is given by φ∗(h) = ⟨π̂, h⟩ − H(π̂ ∥πref
ε ),

where

π̂(x, y) :=
πref
ε (x, y) eh(x,y)∫

πref
ε (x, y′) eh(x,y′) dy′

µ(x) ∈ C. (16)

Moreover, one has δφ∗(h) = π̂ where π̂ is defined in (16).

Proof. For h ∈ D, we know that
φ∗(h) = sup

π∈C
⟨π, h⟩ − φ(π).
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For brevity, define k(x, y) := −h(x, y)− log πref
ε (x, y). Then,

φ∗(h) = − inf
π∈C
⟨π, k⟩+H(π),

where H(π) is the entropy of π. Now defined the Lagrangian

L(π, λ, ψ) := ⟨π, k⟩+H(π) + λ(⟨π, 1⟩ − 1) + (⟨π, ψ⟩ − ⟨µ, ψ⟩), with λ ∈ R, ψ : Rd → R.

For a fixed λ and ψ, we have that the minimizer of the Lagrangian is

π(x, y) = e−k(x,y)−ψ(x)−λ−1.

Moreover, we have that

ψ = argmax
ψ

∫∫
dx dy e−k(x,y)−ψ(x)−λ−1(k(x, y)− k(x, y)− ψ(x)− λ− 1 + λ+ ψ(x))−

∫
ψ(x)µ(x) dx

= argmax
ψ

−
∫∫

dx dy e−k(x,y)−ψ(x)−λ−1 −
∫
ψ(x)µ(x) dx

= argmin
ψ

∫∫
dx

(∫
dy e−k(x,y)

)
e−ψ(x)−λ−1 + ψ(x)µ(x),

which gives

ψ(x) = − logµ(x) + log

∫
e−k(x,y) dy − λ− 1,

implying that

π(x, y) =
e−k(x,y)∫
e−k(x,y′) dy′

µ(x) =
πref
ε (x, y) eh(x,y)∫

πref
ε (x, y′) eh(x,y′) dy′

µ(x). ■

Remark. An easy consequence of Lemma 3 is the following generalization of the classical dual isometry of
Bregman divergences present in MD for Euclidean spaces to our setting.

Lemma B.1 (Dual Isometry of Bregman Divergences). Let π, π′ ∈ C = {π : πX = µ} having densities with respect
to πref

ε . Then we have

H(π ∥π′) = Dφ(π ∥π′) = Dφ∗(δφ(π′) ∥ δφ(π)). (B.3)

Proof. Write π = ehπref
ε and π′ = eh

′
πref
ε . We first note that, by (16) and the fact that δφ(π) = h, we have

δφ∗(δφ(π))(x, y) =
πref
ε (x, y) eh(x,y)∫

πref
ε (x, y′) eh(x,y′) dy′

µ(x)

=
π(x, y)∫
π(x, y′) dy′

µ(x)

= π(x, y) (B.4)

where the last equality follows from π ∈ C. Similarly, we have δφ∗(δφ(π′)) = π′. Using the formula for φ∗ in
Lemma 3, we have

φ∗(h) = ⟨π, h⟩ −H(π ∥πref
ε )

=

∫
π log

ehπref
ε

πref
ε

−H(π ∥πref
ε )

=

∫
π log

π

πref
ε

−H(π ∥πref
ε )

= 0, (B.5)
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and the exact same computation shows that φ∗(h′) = 0. We therefore have

Dφ∗(δφ(π′) ∥ δφ(π)) = Dφ∗(h′ ∥h)
= φ∗(h′)− φ∗(h)− ⟨δφ∗(h), h′ − h⟩
= ⟨π, h− h′⟩ (B.6)

= H(π ∥π′)

where the third equality follows from (B.4) and (B.5). ■

Theorem 3.1. The dynamics (17) or (18) coincide with the Schrödingerε flow (14), and the corresponding
(π̂tε)t≥0 solves the Sinkhornε flow (13) starting at π̂0

ε .

Proof. It is clear that (18) is equivalent to (17). Before stating the proof of the theorem, we state some useful
facts about the Bregman potential and the first variation of its convex dual.

By the formula for δφ∗ in Lemma 3, we see that for any h ∈ D and any f : X → R, we have δφ∗(h+f) = δφ∗(h):

δφ∗(h+ f)(x, y) = µ(x)
πref
ε (x, y)eh(x,y)+f(x)∫

πref
ε (x, y′)eh(x,y′)+f(x) dy′

= µ(x)
ef(x)πref

ε (x, y)eh(x,y)

ef(x)
∫
πref
ε (x, y′)eh(x,y′) dy′

= δφ∗(h)(x, y),

that is, if two functions in dual space D only differ by a function of x, they correspond to the same primal point.

Consider a coupling π ∈ Πc,ε ∩ C written as dπ
dπref

ε
= exp(f ⊕ g). By the definition of the Bregman potential

φ(π) = H(π ∥πref
ε ), we see that

δφ(π) = log
dπ

dπref
ε

= f ⊕ g.

From the discussion above, π = δφ∗(δφ(π)) = δφ∗(f ⊕ g) = δφ∗(g).

Now, consider the flow (17) of htε, started at h0ε = δφ(π̂0
ε) =: f

0
ε ⊕ g0ε . Note that since δF (·) is only a function of

y, we have
htε = f0ε ⊕ gtε.

Noticing that (by construction) π̂tε = δφ∗(htε) ∈ Πc,ε ∩ C for all t, our previous discussion implies

π̂tε = δφ∗(htε) = δφ∗(f0ε ⊕ gtε) = δφ∗(gtε).

Thus, in the evolution (17), if one only looks at the y variable, one gets

d

dt
gtε = −δF (π̂tε),

which is exactly the Schrödingerε flow. ■

Theorem 3.2. Starting from π0
ε ∈ Πc,ε ∩ {π : πX = µ}, consider the Sinkhornε flow πtε and the corresponding

Schrödingerε flow gtε. Then,

F (πtε) ≤
Dφ∗(g0ε ∥ goptε )

t
= O

(
t−1
)
,

where goptε is the Schrödinger potential of the optimal coupling for (OTε). That is, the Y-marginal of πtε converges
(in relative entropy) to ν with the rate 1/t.

Proof. For brevity, we drop the ε. First, we show that the objective function F is decreasing along the flow:

d

dt
F (πt)

=

〈
δF (πt), πt

d

dt
log πt

〉
= −

∫∫
πt(x, y)

(
log

dπtY
dν

(y)

)2

dxdy +

∫∫
πt(x, y) log

dπtY
dν

(y)

∫
πt(z | x) log

dπtY
dν

(z) dz dxdy
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Defining k(x) =
∫
πt(y | x) log dπt

Y
dν (y) dy, we see that the second term above writes∫∫

πt(x, y) log
dπtY
dν

(y)

∫
πt(z | x) log

dπtY
dν

(z) dz dxdy =

∫∫
πt(x, y) log

dπtY
dν

(y)k(x) dx dy

=

∫∫
µ(x)πt(y | x) log

dπtY
dν

(y)k(x) dx dy

=

∫
µ(x)k(x)2 dx

Now, by Jensen inequality, we have∫
µ(x)k(x)2 dx =

∫
µ(x)

(∫
πt(y | x) log

dπtY
dν

(y) dy

)2

dx

≤
∫
µ(x)

∫
πt(y | x)

(
log

dπtY
dν

(y)

)2

dy dx

=

∫∫
πt(x, y)

(
log

dπtY
dν

(y)

)2

dy dx.

We thus have shown that
d

dt
F (πt) ≤ 0.

For a Schrödinger potential g and its corresponding coupling π = δφ∗(g), define

L(g) = Dφ∗(g ∥ gopt) = φ∗(g)− φ∗(gopt)− ⟨δφ∗(gopt), g − gopt⟩ = φ∗(g)− φ∗(gopt)− ⟨πopt, g − gopt⟩

and observe that δL(g) = δφ∗(g)− δφ∗(gopt) = π−πopt. We treat L as a Lyapunov function of the Schrödingerε
flow. For that, we compute

d

dt
L(gt) = ⟨δL(gt), d

dt
gt⟩ = −⟨πt − πopt, δF (πt)⟩ ≤ F (πopt)− F (πt), (B.7)

where the inequality is due to convexity of F . Thus,

L(πt)− L(π0) =

∫ t

0

d

ds
L(πs) ds ≤

∫ t

0

F (πopt)− F (πs) ds ≤ t(F (πopt)− F (πt)),

where the last inequality is due to the fact that F (πt) is non-increasing. Using the fact that L ≥ 0, we obtain
the result. ■

B.3 Guarantees on Noisy γ-Sinkhorn

Theorem 3.3. Suppose that we have a stochastic estimate δ̃F of δF such that E[δ̃F (π)] = δF (π) and
E[∥δ̃F (π)∥2∞] ≤ σ2 < ∞ for all π. Consider the iterations πnγ generated by (Sinkγ) using δ̃F and a fixed

step-size γ. Then we have, with π̄nγ := 1
n

∑n
k=0 π

k
γ ,

E
[
H((π̄nγ )Y ∥ ν)

]
≤ H(πopt ∥πref

ε )

γn
+ γσ2. (19)

Proof. Since F is convex and 1-smooth relative to φ (Aubin-Frankowski et al., 2022), Hanzely and Richtárik
(2021, Lemma 5.2) with µ = 0, Lt ← 1

γ , and x← πopt
ε gives

E
[
F (πn+1

γ )|Fn
]
≤ 1

γ

(
H(πopt

ε ∥πnγ )− E
[
H(πopt

ε ∥πn+1
γ )|Fn

])
+ γσ2 (B.8)

where Fn denotes the filtration generated by the stochastic algorithm up to step n. Taking expectation on both
sides and summing over n, we get

1

n

n−1∑
k=0

E
[
F (πkγ)

]
≤ H(πopt

ε ∥πref
ε )

γn
+ γσ2. (B.9)

The proof follows by using the convexity of F (·) := H(· ∥ ν). ■
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§ A formal statment for Theorem 3.4. We will now present a formal theorem addressing the convergence of
the method described in (Sinkγ), taking into account a noisy and biased oracle denoted as δF . To accomplish this,
we will rely on the framework of stochastic approximation (Benäım, 1999; Karimi et al., 2022a; Mertikopoulos
et al., 2023). Although this approach is well-established, it involves some technical complexities, so we have
chosen to defer the details to this appendix.

Let (πn)n∈N be the sequence of measures generated by (Sinkγ) with a noisy oracle δ̃F and step-sizes (γn)n∈N,
and let (gn)n∈N be its corresponding Schrödinger potentials. We first define the “effective time” τn to be
τn :=

∑n
k=1 γk, which is the time that has elapsed at the n-th iteration of the discrete-time process gn. Using

τn, we consider the continuous-time interpolation g(t) of gn:

g(t) := gn +
t− τn

τn+1 − τn
(gn+1 − gn). (B.10)

Note that each g(t) is a function on Y. The following assumption is standard in the stochastic approximation
literature:

Assumption B.1. Let πn and gn be given as above. We assume that (i) δF is Lipschitz and bounded on a
neighborhood of (πn)n∈N, and (ii) (g(t))t≥0 is a precompact set in the topology of L∞.

It is worth highlighting that Assumption B.1 is a relatively mild technical condition that finds applicability
in a wide range of practical scenarios. For example, it remains satisfied when employing bounded and Hölder
continuous neural networks to parameterize distributions with compact support; see, e.g., (Seguy et al., 2017).

We are now ready to state the formal version of Theorem 3.4.

Theorem B.1. Let πn and gn be given as above such that Assumption B.1 holds. Suppose that the step-size
rule γn is such that

∑
γn = ∞ and

∑
γ2n < ∞. Denote by Fn the filtration of the stochastic algorithm up to

iteration n, and its martingale noise and bias by

λn := E[δ̃F (πn) | Fn]− δF (πn),
ωn := δ̃F (πn)− E[δ̃F (πn) | Fn].

Then P(limn→∞ πn = πopt) = 1 if the following holds almost surely:

lim
n→∞

∥λn∥∞ = 0, and sup
n

E
[
∥ωn∥2∞

]
≤ σ2 <∞. (B.11)

Proof. The proof of the theorem is established through a combination of well-established results in stochastic
approximation theory with our continuous-time framework.

Assumption B.1 and (B.11) ensure that g(·) is a precompact asymptotic pseudo-trajectory of the associated
continuous-time Schrödingerε flow given in (14); see e.g., (Benäım, 1999, Proposition 4.1). It follows from this
association that the iterates (gn)n≥0 converge almost surely to an internally chain-transitive (ICT) set of the
Schrödingerε flow. On the other hand, within the course of our proof for Theorem 3.2, we have established the
existence of a Lyapunov function for the Schrödingerε flow; see (B.7). Consequently, the only possible ICT set is
identified as the singleton set {goptε } (Benäım, 1999, Proposition 6.4). This, in turn, implies that the following
event happens almost surely:

lim
n→∞

πn = lim
n→∞

δF ∗(gn)

= δF ∗(goptε )

= πopt
ε . ■

C On Schrödinger Bridges

C.1 Proof of Proposition 2

First, we need some lemmas.
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Lemma C.1. Suppose P ∈ P(Ω) and Q ∈M(Ω) be a finite measure. For F (P) = H(PT ∥µT ) we have

F ′(P;Q) =

∫
Rd

dQT log
dPT
dµT

.

Proof. As the function F only depends on the marginals at time 1, the claim follows from a similar calculation
as in (Aubin-Frankowski et al., 2022, Prop. 5). ■

Lemma C.2. For φ(P) = H(P ∥Pref), we have Dφ(P ∥Q) = H(P ∥Q).

Proof. Similar to (Aubin-Frankowski et al., 2022, Example 2). ■

Lemma C.3. For the iteration (IPF), it holds that

dPn+1/2

dPn
=

dµT
dPnT

.

Proof. By the chain rule of KL divergence, we know that

H(P ∥Pn) = H(PT ∥PnT ) +
∫
H(P(· | XT = x) ∥Pn(· | XT = x)) dPT (x)

Notice that in the first part of the iteration (IPF), the last marginal is fixed, thus, the first term above is fixed,
and the minimizer shall be

Pn+
1/2(·) =

∫
dµT (x)P

n(· | XT = x).

From this representation, the claim of the lemma is clear. ■

We can now go ahead and prove Proposition 2, stated below for convenience.

Proposition 2. The iterations Pn of (IPF) satisfy

Pn+1 = argmin
P∈C

{⟨δF (Pn),P− Pn⟩+Dφ(P ∥Pn)}, (26)

with F (P) := H(PT ∥µT ), φ(P) := H(P ∥Pref), and C := {P : P0 = µ0}.

Proof. For a path measure P, compute the following:

F (Pn) + F ′(Pn;P− Pn) +Dφ(P ∥Pn)

= H(PnT ∥µT ) +
∫
Rd

d(P− Pn)T log
dPnT
dµT

+H(P ∥Pn) by Lemmas C.1 and C.2

=

∫
Rd

dPT log
dPnT
dµT

+H(P ∥Pn)

=

∫
Ω

dP log
dPnT
dµT

+H(P ∥Pn)

=

∫
Ω

dP log
dPn

dPn+1/2
+H(P ∥Pn) by Lemma C.3

=

∫
Ω

dP log

{
dPn

dPn+1/2
· dP
dPn

}
= H(P ∥Pn+1/2).

Now it is clear that the minimizer of the above in the set C is exactly Pn+1. ■
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C.2 SDE Representation and the Drift Formula

Theorem 4.1. Suppose that Pn is an SDE given by

dXn
t = vnt (X

n
t ) dt+ σdWt, X0 ∼ µ0, (28)

and that the time-reversal of Pn+1/2 is given by

dY
n+1/2
t = w

n+1/2
T−t (Y

n+1/2
t ) dt+ σdWt, Y

n+1/2
0 ∼ µT . (29)

Then the drift vector field w
n+1/2
t satisfies:

−vnt (x) + σ2∇ log pnt (x) = w
n+1/2
t (x) (30)

where pnt is the density of Pnt .

Proof. First, letting P̂n to denote the law of the time-reversal of Pn, observe that since the time reversal of Pn+1/2

solves argmin{H(P ∥ P̂n) : P0 = µT }, its SDE representation is the same as the one for P̂n, and only its initial

datum is set to be µT . By the time reversal formula (Theorem A.1), P̂n corresponds to

dY nt =
{
−vnT−t(Y

n
t ) + σ2∇ log pnT−t(Y

n
t )
}
dt+ σdWt, Y nT ∼ µ0,

where pnt is the density of Pnt . This means that this should coincide with the SDE for time reversal of Pn+1/2,
that is

−vnt (x) + σ2∇ log pnt (x) = w
n+1/2
t (x). ■

Theorem 4.2. Let Pn be given by the scheme (γ-IPF), and let vnt (·) be the (forward) vector field corresponding
to the SDE representation of Pn in (28). Then vnt (·) satisfies the following recursive formula:

vn+1
t = vnt + γσ2∇ log ℓnt − σ2∇Vt, (SDEγ)

where

Vt(x) = − logE
[
e−

σ2γ(1−γ)
2

∫ T
t

|∇ log ℓns (Ys)|2 ds

]
, (31)

and the expectation is with respect to the law of the SDE (Ys)s≥t starting at Yt = x and following

dYs =
{
vns (Ys) + γσ2∇ log ℓns (Ys)

}
ds+ σdWs. (32)

Proof. Note that the path measure Pn+1/2 corresponds to the reversal of (29), which is a process with drift

vn+1/2 := −wn+1/2
t + σ2∇ log p

n+1/2
t , with p

n+1/2
t being the density of P

n+1/2
t . Recall that Pn+1 is the solution to

the minimization

Pn+1 = argmin
P∈C

{
γnH(P ∥Pn+1/2) + (1− γn)H(P ∥Pn)

}
,

and suppose that it corresponds to the SDE

dXu
t = (bγt (X

u
t ) + ut) dt+ σdWt, (C.1)

with X0 ∼ µ0, where we define the drift bγt as

bγt := γv
n+1/2
t + (1− γ)vnt = γ · (−wn+1/2

t + σ2∇ log p
n+1/2
t ) + (1− γ) · vnt = vnt + γσ2∇ log ℓnt

by Theorem 4.1. The reason that we take (C.1) as an SDE representation of Pn+1 is that, firstly, it should be a
diffusion with the same diffusion coefficient, and its drift shall be the “weighted average” of the drifts of Pn+1/2

and Pn, with some correction ut.
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It turns out that characterizing ut corresponds to solving a stochastic optimal control problem. Concretely, by
the Girsanov theorem (see Corollary A.1), we obtain

γH(P ∥Pn+1/2) + (1− γ)H(P ∥Pn)

= constant + EP

[
1

2σ2

∫ T

0

{
γ|ut + bγt (Xt)− vn+

1/2
t (Xt)|2 + (1− γ)|ut + bγt (Xt)− vnt (Xt)|2

}
dt

]

= constant +
1

σ2
EP

[
1

2

∫ T

0

|ut|2 dt+
γ(1− γ)

2

∫ T

0

|vn+1/2
t (Xt)− vnt (Xt)|2 dt

]

= constant +
1

σ2
EP

[∫ T

0

1

2
|ut|2 dt+

σ4γ(1− γ)
2

∫ T

0

|∇ log ℓnt (Xt)|2 dt

]

where the constant is the weighted sum of KL divergences for time marginals at 0, and is some fixed number (as
we fixed the initial distribution of P). Now we recognize that the minimization problem (γ-IPF) is a stochastic
optimal control problem with running cost

r(t, x, α) =
1

2
|α|2 + σ4γ(1− γ)

2
|∇ log ℓnt (x)|2,

the cost functional J [u] = EP

[∫ t
0
r(t,Xu

t , ut) dt
]
, and zero terminal cost. By Proposition C.1 below (setting

ct =
1
2σ

4γ(1− γ)|∇ log ℓnt |2), the value function Vt(x) of this control problem is

Vt(x) = −σ2 logEt,x
[
exp

(
− 1

σ2

∫ T

t

1

2
σ4γ(1− γ)|∇ log ℓns (Ys)|2 ds

)]

= −σ2 logEt,x
[
exp

(
−σ

2γ(1− γ)
2

∫ T

t

|∇ log ℓns (Ys)|2 ds

)]

where Et,x is expectation with respect to the law of the process Y , given that it starts at x at time t; Yt = x,
and the optimal control ut = −∇Vt. Thus, denoting the drift of Pn+1 as vn+1, we see that Pn+1 is the law of
the SDE

dXt = vn+1
t (Xt) dt+ σdWt, X0 ∼ µ0,

with

vn+1
t (x) = bγt (x) + ut(x)

= vnt (x) + γσ2∇ log ℓn(x) + ut(x)

= vnt (x) + γσ2∇ log ℓn(x) + σ2∇ logEt,x
[
exp

(
−σ

2γ(1− γ)
2

∫ T

t

|∇ log ℓns (Ys)|
2
ds

)]
,

where (Ys)s≥t follows the SDE

dYs =
{
vns (Ys) + γσ2∇ log ℓns (Ys)

}
ds+ σdWs, Yt = x. ■

We used the following result regarding computation of the value function of a specific stochastic optimal control
problem in Theorem 4.2.

Proposition C.1. Let bt be a given drift, and consider the controlled SDE

dXu
t = (bt(X

u
t ) + ut) dt+ σdWt

along with the following stochastic optimal control problem:

min
u
J [u] := E

[∫ T

0

1
2 |ut|

2 + ct(X
u
t ) dt

]
.
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Then, the value function is given by

Vs(x) = −σ2 logEs,x
[
exp

(
− 1

σ2

∫ T

s

ct(Yt) dt

)]
,

where Yt is the solution of the uncontrolled SDE dYt = bt(Yt) dt + σdWt. Moreover, the optimal control is of
feedback type ut(x) = −∇Vt(x).

Proof. The value function Vt(x) of this control problem shall satisfy the HJB equation, which writes

∂tVt(x) + min
α∈Rd

{
⟨bt(x) + α,∇Vt(x)⟩+

σ2

2
∆Vt(x) +

1
2 |α|

2 + ct(x)

}
= 0, VT (x) = 0,

and evaluates to the optimal control α∗(t, x) = −∇Vt(x). Replacing α with its optimal value gives

∂tVt(x)−
1

2
|∇Vt(x)|2 +

σ2

2
∆Vt(x) + ⟨bt(x),∇Vt(x)⟩+ ct(x) = 0, VT (x) = 0.

Inspired by the Fleming log transform (Fleming, 1977), make the change of variables Vt(x) = −σ2 logEt(x), and
observe that the equation above becomes

∂tEt(x) +
σ2

2
∆Et(x) + ⟨bt(x),∇Et(x)⟩ =

1

σ2
Et(x) ct(x), ET (x) = 1.

Following a similar argument as in (Pra and Pavon, 1990), consider the uncontrolled diffusion process Yt with

generator σ2

2 ∆+ bt · ∇. By the Feynman-Kac formula,

Es(x) = Es,x
[
exp

(
− 1

σ2

∫ T

s

ct(Yt) dt

)]
,

where Es,x means expectation with respect to the law of the process Y , given that it starts at x at time s. ■

C.3 On the Implementation of the γ-IPF iteration

Although our paper focuses on the theoretical understanding of the Sinkhorn and IPF iterates, we briefly remark
that the formula in Theorem 4.2 admits a practically efficient implementation. To see this, notice that the
∇ log ℓnt term in (SDEγ) is the standard Stein score ratio that can be estimated by various diffusion models and
is present in most practical training procedures of SB. On the other hand, the computation of the additional
term Vt in (SDEγ) is facilitated by the following connection to stochastic optimal control, whose proof is already
present in the proof of Theorem 4.2.

Proposition C.2. The minimization (γ-IPF) is equivalent to solving the following stochastic optimal control
problem: Consider the following controlled SDE with drift bt = vnt + γ∇ log ℓnt and control ut:

dXu
t = (bt(X

u
t ) + ut) dt+ σdWt, (C.2)

and the cost functional

J [u] := E

[∫ T

0

1

2
|ut|2 + ct(X

u
t ) dt

]
(C.3)

with ct =
1
2σ

2γ(1− γ)|∇ log ℓnt |2. Then, the value function of the stochastic optimal control problem minu J [u] is
σ2Vt, where Vt is defined in (31) and the optimal control is u⋆ = −σ2∇Vt.

It turns out that the value function Vt can also be evaluated as an expectation that involves only the law of the
standard Brownian motion:

Lemma C.4. The function Vt in (31) also satisfies

Vt(x) = − logE

[
exp

(
1

σ

∫ T

t

⟨bs(x+ σWs−t),dWs−t⟩ −
1

2σ2

∫ T

t

|bs(x+ σWs−t)|2 + cs(x+ σWs−t) ds

)]
,

where the expectation is with respect to the standard Brownian motion (Wt)t≥0.
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Proof. Proof is a simple application of the Girsanov theorem (Theorem A.2), applied to the SDEs (C.2) and
σWt, where Wt is a standard Brownian motion. ■

Proposition C.2 and Lemma C.4 furnishes at least two different ways of computing Vt in (SDEγ). First, given
∇ log ℓnt which is given by the usual score matching procedure in SB training, one can compute the value function
using standard approximation techniques in control theory for integration with respect to standard Brownian
motion (Zhang and Chen, 2022). Alternatively, another common practice is to connect the value function via
the Feynman-Kac formula to SDEs with killing. Concretely, since the cost ct above is non-negative, one can

simulate the uncontrolled SDE (32), and kill it at a rate 1
σ2 ct =

γ(1−γ)
2 |∇ log ℓnt |

2
, that is,

P[Yt+h is killed | Yt] =
γ(1− γ)

2
|∇ log ℓnt (Yt)|

2
+ o(h).

These procedures are already employed in the SB community in other contexts (Liu et al., 2022; Pariset et al.,
2023).
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