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Abstract

Multiplayer bandits have recently garnered
significant attention due to their relevance
in cognitive radio networks. While the ex-
isting body of literature predominantly fo-
cuses on synchronous players, real-world ra-
dio networks, such as those in IoT applica-
tions, often feature asynchronous (i.e., ran-
domly activated) devices. This highlights
the need for addressing the more challeng-
ing asynchronous multiplayer bandits prob-
lem. Our first result shows that a natural
extension of UCB achieves a minimax regret
of O(

√
T log(T )) in the centralized setting.

More significantly, we introduce Cautious
Greedy, which uses O(log(T )) communica-
tions and whose instance-dependent regret is
constant if the optimal policy assigns at least
one player to each arm (a situation proven to
occur when arm means are sufficiently close).
Otherwise, the regret is, as usual, log(T ) times
the sum of some inverse sub-optimality gaps.
We substantiate the optimality of Cautious
Greedy through lower-bound analysis based
on data-dependent terms. Therefore, we es-
tablish a strong baseline for asynchronous
multiplayer bandits, at least with O(log(T ))
communications.

1 INTRODUCTION

In the classical multi-armed bandits (MAB) problem, a
single player sequentially pulls arms kt ∈ {1, . . . ,K}

∆
=

[K], and receives a reward Xkt
sampled from some
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unknown sub-Gaussian distribution of mean µkt
. This

process undergoes repetition for a total of T rounds
and the performance of the sampling policy is mea-
sured by its regret, the difference between the total
expected reward obtained by choosing the best arm
k∗ at each round and the total expected reward of the
player’s actual choices. This setting has been exten-
sively studied (see Lattimore and Szepesvári, 2020, for
a recent survey). A fundamental component of MAB is
the exploration and exploitation trade-off. Exploration
involves trying out different arms to gather informa-
tion, while exploitation uses the acquired knowledge
to favor arms more likely to be the best. It is well
known that optimal policies incur a regret scaling as
O(

∑
k ̸=k∗

log(T )
µk∗−µk

) (Auer et al., 2002).

Classical applications of MAB include clinical trials,
recommendation systems, or ad placements. For many
other types of applications, the MAB framework how-
ever does not fit the problem at hand. Consider for
instance cognitive radios Lai et al. (2008); Anandku-
mar et al. (2011); Mitola and Maguire (1999); Jouini
et al. (2010) where arms correspond to communica-
tion channels available to radio devices. What differs
from standard MAB is that if two radios choose the
same communication channel, they interfere. This ex-
ample motivates the multiplayer multi-armed bandits
(MMAB) setting introduced by Liu and Zhao (2010).
In MMAB, M players simultaneously pull arms. When
a player pulls arm k, it receives the reward ηkXk where
ηk = 0 if two or more players collide, meaning they
pull the same arm k, and ηk = 1 if a single player pulls
k. In the centralized setting and M < K, MMAB is
equivalent to bandits with multiple plays (Komiyama
et al., 2015; Anantharam et al., 1987; Chen et al., 2013a;
Gopalan et al., 2013), as a central entity decides on the
behalf of agents and trivially avoids collisions. Opti-
mal algorithms are then known to yield an asymptotic
regret

∑K−M
k=1

log(T )
µ(K−M+1)−µ(k)

(Komiyama et al., 2015),
where µ(k) is the k-th smallest mean reward.

Motivated by Internet of Things networks, we focus
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on the asynchronous multiplayer multi-armed setting
(AMMAB) where each round is decomposed into three
successive steps (see Dakdouk, 2022; Bonnefoi et al.,
2017). First, all players decide which arm they would
like to play. Second, the environment activates inde-
pendently each player i with probability pi (and these
activations cannot be foreseen before the first step).
In the third and last step, activated players pull the
arm they chose in the first step. In this model, players
correspond to communicating devices, arms to avail-
able channels and pi is the activation probability of the
communicating device i.

Notations. Vectors are denoted in bold. If u ∈ Rn, ui

is the i-th coordinate of u while u(i) the i-th smallest
coordinate of u and support(u) = {i ∈ [n], ui ̸= 0}.
We denote for u,v ∈ Rn, ⟨u,v⟩ =

∑n
i=1 uivi, ∥u∥∞ =

maxi∈[n] |ui|, ∥u∥1 =
∑

i∈[n] |ui|. For a function f :

R→ R and u ∈ Rn, f(u) ∈ Rn is defined by f(u)i =
f(ui). Lastly, E denotes the complementary event
of E.

Setting and assumptions. For simplicity, we follow
Bonnefoi et al. (2017) and assume that the probability
of being active is the same for all players: pi = p, for all
i ∈ [M ]. This makes players exchangeable and allows
for a simplified description of the AMMAB setting.
At each round t, the player choices are summarized
by the assignment vector M(t) = (M1(t), . . . ,MK(t))
where Mk(t) is the number of players choosing the
arm k at round t; the environment then activates
each player with probability1 p and active players
pull the arm they chose in the first phase, each re-
ceiving reward ηk(Mk(t))Xk with k the pulled arm,
ηk = 1{exactly one player is active on arm k} and Xk

is sampled from an unknown sub-Gaussian distribution
with mean µk. The arm pulled by player m at time
t is denoted km(t) ∈ [K]. A player playing arm k ob-
serves Xkηk and the collision event ηk. Additionally,
the parameters M , K and p are assumed to be known
beforehand.

At any time t, the assignment M(t) satisfies the budget
constraint

∑K
k=1 Mk(t) = M and we also assume:

Assumption 1.1. M ≥ K and for all k ∈ [K] and at
all stages Mk(t) ≤ −1

log(1−p) ≃
1
p .

The second condition is not restrictive (and made for
the sake of notations and clarity), as assigning more
than −1

log(1−p) players on the same arm only decreases
the obtained reward and amount of information on that
arm. A better policy would then have some players not
play at all instead, or equivalently assign players to a
dummy arm whose reward is known to be 0. The set

1Players cannot know beforehand who will be active,
making collisions unavoidable.

of valid assignments is thus denoted by

M =
{
M ∈ [M ]K |

K∑
k=1

Mk = M,Mk ≤
−1

log(1− p)

}
.

The goal is to minimize the expected regret defined by:

E[R] =

T∑
t=1

K∑
k=1

E[ηk(M∗
k )Xk]− E[ηk(Mk(t))Xk] (1)

where M∗ = (M∗
1 , . . . ,M

∗
K) is an optimal assignment:

M∗ ∈ argmax
M∈M

E

[
K∑

k=1

ηk(Mk)Xk

]
. (2)

Bonnefoi et al. (2017) designed an algorithm solving
Equation (2) with known µk, and Dakdouk (2022)
later proposed a simpler sequential algorithm. In com-
bination with some non-adaptive explore-then-commit
policy, it yields a regret scaling in O(T 2

3 ). Additionally,
Dakdouk (2022) shows there is no random assignment
yielding a strictly larger expected reward than the de-
terministic optimal assignment M∗.

Limited communication setting. We consider the
same communication protocol as in Dakdouk (2022).
At each round, a player a can decide to send a vector
in R2K to the (central) gateway. It is then success-
fully received by the gateway with probability pg, if
only player a sent a message to the gateway (collision
otherwise). Reciprocally at each time step (if it is not
receiving any message), the central gateway can send
a vector to a single player, who successfully receives it
with probability pg. More precisely, agents communi-
cate via a function SEND. SENDa→b(x) attempts to
send vector x from agent a (for instance a player) to b
(for instance the gateway)2. The attempt is said to be
successful when b has received the message from a and
a is aware of it (i.e., a has received the acknowledg-
ment sent by b). An attempt is successful with a known
probability pg, and after a successful attempt, b can ac-
cess x (and calling again SENDa→b(x) afterwards does
nothing). It follows that if SENDa→b(x) is executed
⌈ log(δ)
log(1−pg)

⌉ time, then b can access x with probability
δ. If b tries to use x without a successful transmis-
sion, we assume it uses a value chosen uniformly at
random in the range of x instead. We assume agents
can call SEND even when they are inactive and at no
cost. However, if two agents call SEND simultaneously,
nothing gets transmitted.

We keep track of the number CA of calls of SEND when
using algorithm A (ignoring the calls doing nothing).

2The situation where a is the gateway and b a player
will also be considered.
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Contributions. In the centralized setting, we prove
that an adapted version of UCB exhibits a regret in
O(

√
TK log(T )min(Mp,K)) where O(·) hides univer-

sal constant factors. More surprisingly, our main contri-
bution shows that, even in the limited communication
setting, achieving a constant regret (in T ) is sometimes
possible with an algorithm called Cautious Greedy us-
ing only O(log(T )) communications. The analysis of
UCB is thus postponed to Appendix C and the main
text solely focuses on Cautious Greedy that somehow
achieves the best of both worlds (very small regret with
low communication). In essence, it is a standard greedy
algorithm that estimates µk via empirical means, but it
is cautious as it avoids assigning zero players to an arm
unless, with high confidence, assigning no players to it
is optimal. More precisely, Cautious Greedy maintains
a lower bound ν of the number of arms that should be
assigned zero players and stops assigning players to the
ν worst arms when confident enough.

The regret of Cautious Greedy depends on several data-
dependent quantities defined in Section 3.2:

- ν∗ the number of arms that are assigned zero players
in the optimal assignment;
- ∆(j) = µ(ν∗+1) − µ(j);
- M∗

ν the optimal assignment when ν arms are assigned
zero players;
- r the infinity norm of the minimal perturbation of the
arm means µ that would modify the sequence (M∗

ν)
ν∗

ν=1.

Proposition 3.1 together with Lemma 3.2 show that
the regret of Cautious Greedy is upper bounded by
O
(

1
r +

∑
j≤ν∗

log(T )
∆(j)

)
, where O hides terms depending

on K, p,M and pg.

In particular, Cautious Greedy achieves constant regret
if ν∗ = 0, i.e., when each arm is assigned at least one
player by the optimal policy. As shown by the lower
bound in Lemma 4.1, under mild conditions, the depen-
dency in 1

r cannot be improved. In Lemma B.1, we give
a sufficient condition on the dispersion of arm means to
get ν∗ = 0. In general, Cautious Greedy suffers an ad-
ditional dependency in

∑
j≤ν∗

log(T )
∆(j)

. This dependency
also appears in bandits with multiple plays (Komiyama
et al., 2015) and as shown by Lemma 4.2 cannot be
removed. This makes Cautious Greedy optimal with
respect to T and with respect to the data-dependent
quantities r and (∆(j))j≤ν∗ .

The main difficulty of the problem comes from the
fact that ν∗ is unknown. A classical Greedy algorithm
yields a linear regret when ν∗ > 0, while a traditional
bandits algorithm may not reach constant regret when
ν∗ = 0. On the other hand, Cautious Greedy performs
optimally in both cases.

Section 5 benchmarks Cautious Greedy against our

UCB algorithm and the ETC algorithm of Dakdouk
(2022) on synthetic data and shows that Cautious
Greedy and UCB perform both significantly better
than ETC. Cautious Greedy outperforms UCB when
no arms should be assigned zero players while UCB
tends to be better when at least one arm should be
assigned zero players.

2 RELATED WORK

Centralized setting: multiplay, combinatorial
and structured bandits. When M ≤ K, p = 1
and unlimited communication is allowed, AMMAB is
equivalent to bandits with multiple plays. A lower
bound in

∑ν∗

j=1
log(T )
∆(j)

where ν∗ = K −M is shown in
Anantharam et al. (1987), who also provide an optimal
algorithm reaching this bound. Bandits with multiple
plays are an instance of combinatorial bandits (Gai
et al., 2012; Chen et al., 2013b; Kveton et al., 2015;
Combes et al., 2015; Wang and Chen, 2018; Perrault
et al., 2020) where an agent chooses an action a ∈ S
and receives reward r(µ,a). With unlimited commu-
nication, when M ≤ K, AMMAB is an instance of
combinatorial bandits with semi-bandit feedback and
probabilistically triggered arms (chosen arms are trig-
gered with some probability) (Wang and Chen, 2017;
Chen et al., 2016). More generally, it can be viewed as
combinatorial bandits or structured bandits (Combes
et al., 2017) with semi-bandit feedback and KM pos-
sible actions. None of these works yet allow to reach
constant regret when ν∗ = 0 in the centralized setting,
let alone the limited communication setting.

Decentralized multiplayer bandits. In decentral-
ized multiplayer bandits, players aim to speed up the
collective learning of the arm rewards, while avoiding
collisions. Motivated by cognitive radio networks, the
decentralized problem of multiplayer bandits recently
received a lot of attention (we refer to Boursier and
Perchet, 2022, for a review), sometimes assuming a
pre-agreement on the ranks of the players (Anandku-
mar et al., 2010; Liu and Zhao, 2010) or using few
collisions to communicate information between players
(Avner and Mannor, 2014; Rosenski et al., 2016; Besson
and Kaufmann, 2018a). However, Bistritz and Leshem
(2018); Boursier and Perchet (2019); Wang et al. (2020)
enforce collisions to send a significant number of bits
between the players, allowing to reach optimal cen-
tralized performance. This idea is also used in many
extensions of MMAB (Mehrabian et al., 2020; Shi et al.,
2020; Huang et al., 2021; Boursier and Perchet, 2020;
Shi et al., 2021). This communication through collision
tricks yet highly depends on the synchronicity of the
players and becomes costly with a lot of players. In
AMMAB, the players are asynchronous (p < 1) and nu-
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merous (M ≥ K), making both drawbacks significant.
This work thus proposes an asynchronous algorithm
with O(log(T )) communication, leaving open for fu-
ture work a possible fully decentralized adaptation (see
Section 6 for a discussion).

Multi-agent multi-armed bandits In the multi-
agent bandit problem considered by Szorenyi et al.
(2013); Landgren et al. (2016); Martínez-Rubio et al.
(2019); Yang et al. (2021); Chen et al. (2023), no colli-
sion happens when several players pull the same arm.
The problem is thus different in nature: the main objec-
tive of multi-agent bandits is to speed up learning using
decentralized communication protocols (e.g. gossip),
without consideration of collision.

Full information. When each arm is assigned at
least one player, it provides information with a strictly
positive probability at each time step. Therefore in
this regime, the central entity is almost in full infor-
mation feedback, where information about all arms is
received at every round. Bandits with expert advice are
examples of problems with full information feedback.
The go-to algorithm in the adversarial setting is (vari-
ants of) exponential weights or Hedge (Mourtada and
Gaïffas, 2019). However, in the stochastic setting, a
constant regret is achieved by Greedy (aka Follow The
Leader) which plays according to the empirical mean
estimate of the rewards (Degenne and Perchet, 2016).
Huang et al. (2017) shows Greedy achieves constant
regret in a more structured setting.

Resource allocation. Our problem can also be recast
as a particular instance of sequential resource allocation
with concave utilities (Lattimore et al., 2015; Fontaine
et al., 2020; Zuo and Joe-Wong, 2021). Although gen-
eral resource allocation algorithms could be used in
our setting, much better solutions can be obtained by
leveraging the very specific structure of the utilities.
The utility functions are indeed exactly known here,
up to the multiplicative factor µk.

Asynchronous multiplayer bandits. AMMAB was
introduced by Bonnefoi et al. (2017) in the context
of cognitive radios. In Dakdouk (2022), players have
heterogeneous activation probabilities. They propose
an explore and commit algorithm that reaches O(T 2

3 )
regret with constant communications. In our work,
we show that under favorable conditions, a constant
regret can be reached with O(log(T )) communications.
Quite interestingly in AMMAB, the expected individ-
ual reward decreases as more players are assigned to
the same arm. This relates the AMMAB model to
more advanced collision models for MMAB, where a
collision only decreases the reward instead of yielding
a 0 reward (Tekin and Liu, 2012; Bande and Veer-
avalli, 2019; Magesh and Veeravalli, 2019; Boyarski

et al., 2021). AMMAB is also related to the problem
of online queuing systems (Gaitonde and Tardos, 2020;
Sentenac et al., 2021), where packets arrive in a queue
(player) with random rates. This setting yet differs
from AMMAB, as players are active as long as they
hold packets.

3 CAUTIOUS GREEDY, AN
EFFICIENT ALGORITHM FOR
AMMAB

Let us first introduce the function g(x) = xp(1− p)x−1,
so that the regret in Equation (1) rewrites as

E[R] =

T∑
t=1

E
[〈
µ, g(M∗)− g(M(t))

〉]
(3)

where M∗ = argmaxM∈M⟨µ, g(M)⟩ is a rewritting of
Equation (2).

3.1 Description

Cautious Greedy is based on a standard greedy strategy
that plays the best policy according to the estimated
mean rewards. A player m can compute its own esti-
mate of the mean reward µ̂(m)(t) with

µ̂
(m)
k (t) =

∑t
ρ=1 ηk(M(ρ))Xρ

k1{km = k}

T
(m)
k (t)

(4)

where T
(m)
k (t) =

t∑
ρ=1

ηρk(M(ρ)) (5)

and where by convention, we set µ̂
(m)
k (t) = 1 if

T
(m)
k (t) = 0. Assuming all players can share the empir-

ical mean reward estimates, µ̂(t) is given by

µ̂k(t) =

∑M
m=1 T

(m)
k (t)µ̂

(m)
k (t)

Tk(t)
. (6)

where Tk(t) =
∑M

m=1 T
(m)
k (t) and using the convention

µ̂k(t) = 1 if Tk(t) = 0.

For communication purposes, Cautious Greedy is di-
vided into epochs of doubling size and statistics such
as µ̂ are only updated at the end of each epoch. Com-
munication happens at each round during the second
half of an epoch, increasing the probability of having
a successful transmission with the epoch size. This
second half is again split in two parts: during the first
one, players send their statistics to the gateway; dur-
ing the second part, the gateway communicate to each
individual player the averaged players’ statistics.
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Given µ̂, a Greedy algorithm would then choose the
assignment M(t) = M

µ̂(t)
M where

Mµ̂
M = argmax

M∈M
⟨µ̂, g(M)⟩ (7)

and Mµ̂
M(m) is the arm chosen by player m.

Such a simple strategy would quickly stop exploring, at
the risk of committing to a suboptimal policy. In order
to maintain some level of exploration, a natural idea is
to impose at least one player per arm. However, in some
settings, the optimal solution might assign no players
to some arms. The challenging task of Cautious Greedy
is then to identify which arms should be assigned zero
players. We call such identified arms removed while
active arms K are those not removed yet. Cautious
Greedy can put a set of arms U under pressure, meaning
that these arms are temporally allowed to be assigned
to no player. Arms that are assigned to at least one
player are said to be played and note that it is possible
that an arm under pressure is played. Formally, the
constraints that apply to M in the assignment problem
will be described by sets of the form:

MS =
{
M ∈M,∀k ∈ S,Mk ≥ 1

}
where S ⊂ [K]. In order to identify the arms to remove,
Cautious Greedy maintains confidence bounds on the
mean of each arm. The upper and lower bounds are
given respectively by

µ̂H(t) = min(µ̂(t) + ζ(t), 1) (8)

µ̂L(t) = max(µ̂(t)− ζ(t), 0)

where for all k ∈ [K], ζk(t) =
√

log(2T 3K2)
2Tk(t)

. These
bounds are used to eliminate sub-optimal arms. This
could suggest a strategy that plays all active arms
at each round until enough information is gathered
to remove an arm. However, such a strategy yields
high regret in the case where two arms that should be
eliminated are very close to each other. Therefore, the
elimination of several arms at once is allowed. This is
done in Cautious Greedy by computing an estimate ν of
the number of arms to remove, which is a lower bound
of ν∗ = |{k,M∗

k = 0}| and can be used to eliminate
several arms at once without ordering them first. We
therefore introduceMν the set of assignments where
ν arms are under pressure:

Mν =
{
M ∈M, | support(M)| ≥ K − ν

}
.

The number of arms to remove ν is then increased
when ⟨µ̂L, g(Mµ̂L

M )⟩ > ⟨µ̂H , g(Mµ̂H

Mν
)⟩, i.e., when a

larger reward is guaranteed by removing more than ν
arms. Cautious Greedy then uses ν to build a set A

of accepted arms which are arms that are not likely
to be among the ν worst arms. Cautious Greedy then
puts under pressure a subset of arms U among the
arms that are not accepted yet. The set of arms put
under pressure rotates in a round-robin fashion. This
mechanism ensures that all active arms are regularly
played. After the round-robin rotation is completed,
Cautious Greedy reevaluates ν and updates the sets of
accepted arms and active arms. As ν increases, an arm
can be removed from the set of accepted arms. However
as ν never decreases, a removed arm is removed forever.
The exact procedure is described in Algorithm 1 below.

Algorithm 1 Cautious Greedy with O(log(T )) com-
munications
1: Input : M (number of players), p (activation prob-

ability), T (horizon), m (player id), pg (successful
communication probability)

2: ν = 0, K = [K], A = ∅
U = ∅, n = 0, µ̂ = 1, µ̂L = 0, µ̂H = 1

3: for s = 0, . . . , ⌊log2(T )⌋ do
4: for t = 2s . . .min(2s+1 − 1, T ) do
5: if 2s < ⌈16M log(2MT 2)

− log(1−pg)
⌉ then

6: Play arm Mµ̂
M(m)

7: else
8: Play arm Mµ̂

ME
(m) (7) where E = K \ U

9: Rotate U in a round robin fashion over K\A
(See Appendix A.2 for details)

10: n = n+ 1
11: if n = |K \ A| then // end of round robin
12: n = 0 and compute Mµ̂L

M and Mµ̂L

Mν
(7)

13: while ⟨µ̂L, g(Mµ̂L

M )⟩ > ⟨µ̂H , g(Mµ̂H

Mν
)⟩

do
14: ν = ν + 1
15: end while
16: Update A = {k ∈ [K], µ̂H

(ν) < µ̂L
k } and

K = [K] \ {k ∈ [K], µ̂H
k < µ̂L

(ν+1)}
17: Let U be ν−|[K]\K| elements from K\A
18: end if
19: end if
20: if 2s ≥ 8M then
21: If t = 2s+2s−1, compute µ(m),T(m) (4) (5)
22: If t ∈ [2s + 2s−1, 2s + 2s−1 + 2s−2] and t

mod M = m, SENDm→gateway(µ
(m),T(m))

23: If t ∈ [2s + 2s−1 + 2s−2, 2s+1] and t
mod M = m, SENDgateway→m(µ̃, µ̃L, µ̃H)
with µ̃, µ̃L, µ̃H with (6), (8)

24: end if
25: end for
26: µ̂ = µ̃, µ̂L = µ̃L, µ̂H = µ̃H

27: end for
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3.2 Regret bound

The main result of this section is an upper bound on
the expected regret of Cautious Greedy. This bound
depends on several data-dependent quantities that we
introduce now: ∆(ν∗) is the minimum simple regret
achieved by an allocation removing exactly ν∗−1 arms,
while the number of arms removed by the optimal
assignment is equal to ν∗. Denoting M∗

ν = Mµ
Mν

,
∆(ν∗) is defined as ∆(ν∗) = ⟨µ, g(M∗) − g(M∗

ν∗−1)⟩.
By convention, we set ∆(ν∗) = ∞ if ν∗ = 0. ∆(j) =
µ(ν∗+1) − µ(j) is the difference between the reward of
the worst arm not eliminated in the optimal assign-
ment and the reward of the j-th worst arm. Lastly, r
is the norm of the minimum perturbation of µ caus-
ing M∗

ν to change for some value of ν. More pre-
cisely, define rν = minµ̂,Mµ̂

Mν
̸=M∗

ν
∥µ̂ − µ∥∞, then

r = minν∈[ν∗] rν . Proposition 3.1 shows that the ex-
pected regret of Cautious Greedy is upper bounded by
O( 1r +

log(T )

∆(ν∗) +
∑

j≤ν∗
log(T )
∆(j)

) where O hides quantities
independent of the data and T .
Proposition 3.1 (Upper bound on the regret Cautious
Greedy). The regret RCB of Cautious Greedy satisfies

E[RCB ] ≤
3840M2p log(2K2T 3)(ν∗ + 1)

∆(ν∗)

+

ν∗∑
ν=1

2688(ν∗ + 1) log(2T 3K2)

∆(ν)
+

1078MK(ν∗ + 1)

r

+
16M2p

− log(1− pg)
(1 + log(2MT 2)1{ν∗ ̸= 0})

where E[CCB ] ≤ 2M log(T )
pg

.

The first term is reminiscent of the regret induced by
Greedy with full information. The second one comes
from the sample complexity of finding the ν∗ worst
arms. The third one is due to the sample complexity of
detecting that the optimal policy eliminates ν∗ arms.
The fourth one is finally due to communication. In-
terestingly, every term depending on T are null when
ν∗ = 0, which corresponds to situations where the op-
timal policy assigns at least one player on every arm.
This makes the regret of Cautious Greedy constant in
such situations, which happens as soon as arm rewards
have a similar order of magnitude (see Lemma B.1).

At first sight, it seems like the first term in Proposi-
tion 3.1 could be arbitrarily larger than the second
term. Fortunately, this is untrue as shown below:
Lemma 3.2. ∆(ν∗) ≥ (g(M∗

(ν∗+1) +1)− g(M∗
(ν∗+1)))∆(ν∗)

Together with Proposition 3.1, Lemma 3.2 shows that
the regret of cautious Greedy is upper bounded by
O( 1r +

∑ν∗

ν=1
log(T )
∆(ν)

) where O hides terms in M,p,K, pg.
The remainder of this section sketches the proof of

Proposition 3.1. The precise statement of lemmas and
their proofs are deferred to Appendix A.

Proof sketch of Proposition 3.1. We start by an up-
per bounds RUB

cCG on the regret of a quasi-centralized
version of Cautious Greedy (see Algorithm 3 in Ap-
pendix A) where communication aspects are removed
(pg = 1, Lines 20 to 24 are removed, updates Line 26
uses all seen samples). Using classical concentration
bounds (Lemma A.1), we can assume that µH and µL

(defined in Equation (8)) verify µH ≥ µ ≥ µL without
affecting the regret bound. Consequently, Algorithm 3
yields that ν is only increased if ν < ν∗ (Lemma A.3)
and the update of the set of active arms ensures that
optimal arms are never eliminated (Lemma A.4).

We then focus on bounding the number of times each
arm is played. The round-robin procedure ensures all
active arms are assigned at least one player regularly,
as proven by Lemma A.5. However, because of col-
lisions, assigning at least one player to an arm does
not guarantee an observation. Lemma A.6 makes this
relation explicit.

Denote by M∗
ν = Mµ

Mν
the optimal assignment of

players when at most ν arms can be assigned zero
players and M∗

E(t) = Mµ
ME(t)

the optimal assignment
of players when only arms not in E(t) can be assigned
zero players. The regret is the sum of three terms:

T∑
t=1

⟨µ, g(M∗)− g(M∗
ν(t))⟩︸ ︷︷ ︸

(i)

+

T∑
t=1

⟨µ, g(M∗
ν(t))− g(M∗

E(t))⟩︸ ︷︷ ︸
(ii)

+

T∑
t=1

⟨µ, g(M∗
E(t))− g(M(t))⟩︸ ︷︷ ︸
(iii)

These three terms measure different aspects of the
regret: (i) the error due to ν the number of arms
under pressure being different from ν∗ the optimal
number of players to eliminate; (ii) the error due to
E(t) being different from support(M∗

ν), the optimal
set of arms that must be assigned at least one player
by M∗

ν ; (iii) the error due to M(t) being different
from M∗

E(t), the optimal assignment of players among
possible assignments in ME(t).

Focusing on (i): as the number of samples seen in-
creases, ν increases to get closer to ν∗. Lemma A.7
bounds the number of samples seen before the algo-
rithm increases ν, which leads to an upper bound on
the total regret due to this term shown in Lemma A.8.

Regarding (ii): for a given ν, two things may prevent
a sub-optimal choice of arms E on which at least one
player must be assigned. Either an arm in E is elimi-
nated or an arm in [K]\E is accepted. Lemma A.9 pro-
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vides a lower bound on the number of samples seen be-
fore a sub-optimal arm is eliminated while Lemma A.10
provides a lower bound on the number of samples seen
before an optimal arm is accepted. The two previous
lemmas allow to quantify when arms are accepted or
rejected. We then compute the cost of a sub-optimal
choice of arms E in Lemma A.11 and combine these
three lemmas to bound the total regret due to this
term in Lemma A.12.

Lastly, the third term (iii) measures the mismatch
between the chosen assignment M(t) and the best
possible assignment with the same support. Crucially
there is no support mismatch and therefore we are in a
setting close to the full information setting which allows
us to bound the regret due to these terms by a quantity
independent of the horizon T (see Lemma A.13).

Moving to Cautious Greedy with limited communica-
tion (Algorithm 1), when the condition in Line 5 does
not hold, all communications succeed with high prob-
ability and the regret is less than 2RUB

cCG. Otherwise,
when ν∗ ̸= 0, a union bound gives the additional term in
log(T ). When ν∗ = 0, the regret due to phases with suc-
cessful communication is less than 2RUB

cCG and the other
terms yield the additional constant (see Lemma A.14).

Lastly, since it takes 1
pg

calls of SEND to send a message
successfully in expectation and there is at most 2M
successful calls by phases, the number of phases being
bounded by log(T ) the proposition follows.

4 LOWER BOUND

The upper bound of Cautious Greedy when ν∗ = 0
scales in 1

r . Lemma 4.1 shows that under mild condi-
tions, this dependency in r cannot be improved:

Lemma 4.1 (Lower bound for ν∗ = 0). Consider
K = 2 arms and M = 2N+1 players for some N ∈ N∗

and assume p ≤ 1
M+1 , r0 < p

12 , T ≥
1

16g(M)r20
. For any

algorithm A, there exists a choice of rewards µ such
that r(µ) = r0 and

E[RA] ≥
1

256Mr0

Proof sketch (see proof in Appendix A.4) . We take
parameters µ1 and µ2 such that r = ∆

2 and the
optimal solution is M∗ = (N,N + 1) if µ = µ1 and
M∗ = (N+1, N) if µ = µ2. Moreover, we choose them
so that the top two solutions are always (N,N + 1)
and (N + 1, N).

First, we augment A so that each arm yields a sam-
ple Xk with probability g(M) instead of g(Mk(t));
moreover A is forced to chose at each step between
M(t) = (N,N + 1) or M(t) = (N + 1, N) (these two

modifications only improve A). Following the proof of
Theorem 3 in Wang and Chen (2017), we recast this
setting as a 2-armed bandit problem where arm k has
reward 1 with probability g(M)µk, 0 with probability
g(M)(1− µk) and Xk =⊥ with probability 1− g(M).

The rest of the proof follows closely the
proof of Proposition 4 in Mourtada and
Gaïffas (2019) and yields the lower bound
E[RA] ≥ ∆(g(M+1)−g(M))

2
T
4 exp(−4Tg(M)∆2). As

the regret increases with T , taking T = ⌊ 1
4g(M)∆2 ⌋

concludes.

Next, we investigate the case ν∗ > 0 and show a lower
bound inspired by the classical results of Lai et al.
(1985).

Let us first introduce the notion of a consistent algo-
rithm. Let Ti be the number of times with at least
one player on the i-th worst arm. An algorithm is
consistent if ∀α > 0, ∀j > ν∗ ∈ E[T − Tj ] = O(Tα)
and ∀j ≤ ν∗,E[Tj ] = O(Tα).

Lemma 4.2 (Lower bound for ν∗ > 0). For any
integers M ≥ 5, ν∗ > 0, p ≤ 1

M+1 , any gaps
∆(1), . . . ,∆(ν∗) ≤ p

8(M−4) , and for any consistent algo-
rithm A, there exists a set of parameters (µ1, . . . , µν∗+2)
such that µ(ν∗+1)−µ(ν) = ∆(ν) for all ν ∈ [ν∗] and the
regret of A satisfies, for some universal constant c > 0,

lim inf
T→∞

ERA

log(T )
≥

ν∗∑
ν=1

c

∆(ν)
.

Proof sketch (see proof in Appendix A.5). Assume for
the sketch of proof that ν∗ = 1 and that there are 3
arms. We are considering two alternative mean param-
eters (µ0, µ1, µ1 + ∆) and (µ0, µ1, µ1 − ∆) chosen so
that the optimal allocation is either (M − 1, 1, 0) or
(M − 1, 0, 1). Moreover, we choose µ0 and µ1 such that
in both worlds, the top two allocations are always the
aforementioned ones. This might give the impression
that there exists a trivial reduction to some standard
2-arm bandits (where those arms are the tentative two
optimal allocations). A consistent algorithm would
indeed need N∗ := Ω( log(T )

∆2 ) samples of sub-optimal
arms to distinguish between the two worlds. In partic-
ular, with the second set of parameters, this requires
putting one player on the third arm N∗/p times (in
expectation), each one incurring a cost of p∆. This
would give the result for ν∗ = 1 and this technique
can be immediately generalized to ν∗ > 1. It is how-
ever not that simple, as putting more players on some
(suboptimal) arm gives faster feedback, yet at a higher
cost. We yet show that the best trade-off (in feedback
received vs. suboptimality cost) for an algorithm to
distinguish between the two worlds is indeed to allocate
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a single player on arm 2 or 3. The aforementioned in-
tuition is thus actually correct but requires a cautious
argument.

Lemma 4.2 shows that the dependency in
∑

j≤ν∗
log(T )
∆(j)

in the upper bound of Proposition 3.1 cannot be im-
proved. Together, Lemma 4.1 and Lemma 4.2 show
that Cautious Greedy is optimal with respect to the
data-dependent quantities r and (∆(j))j≤ν∗ .

5 EXPERIMENTS

The code is in python and available on https:
//github.com/hugorichard/mmab. We use mat-
plotlib (Hunter, 2007) for plotting, and numpy (Harris
et al., 2020) for array manipulations. The above li-
braries use open-source licenses. Computations were
run on a cluster with 10 cpus and 100 GB of RAM. Our
experiments compare the expected regret of Cautious
Greedy (Algorithm 1), UCB (Algorithm 4), and ETC
(Dakdouk, 2022, Algorithm 8). In all these algorithms,
maximization problems of the form maxM∈M⟨g(M),v⟩
are solved using the sequential algorithm of Dakdouk
(2022, Algorithm 5). In Cautious Greedy, the sequential
algorithm is also adapted to solve maxM∈ME ⟨g(M),v⟩
for some set E ⊂ [K] by assigning the first |E| players
to a different arm in E and then running the sequential
algorithm for the rest of the players. The optimality
of this approach is detailed in Appendix D.

For a given horizon T , assignments (M(t))Tt=1 are
played based on the rewards seen during the execu-
tion of algorithms. We vary T uniformly between 30
and 1200 using steps of 30 and record

∑T
t=1⟨µ, g(M∗)−

g(M(t))⟩. Each experiment is run 50 times, we plot
the mean value of the regret as a function of T . Error
bars represent the first and last decile. We also per-
formed experiments with larger values of T available
in Appendix E.

The first experiment in Figure 1 (top), there are M =
30 players, K = 2 arms, µ = (0.8, 0.5), p = 0.01
and pg = 1. The optimal assignment is M∗ = (26, 4)
so that ν∗ = 0. In this example, Cautious Greedy
clearly outperforms the other methods as expected
when ν∗ = 0.

In the second experiment in Figure 1 (bottom), there
are M = 3 players, K = 2 arms, µ = (0.99, 0.01), p =
0.1 and pg = 1. The optimal solution is M∗ = (3, 0) so
that ν∗ = 1. This experiment highlights that Cautious
Greedy takes slightly longer time than UCB to assign
no player to a suboptimal arm. This is expected for
2 reasons. First UCB is a centralized algorithm so
it communicates much more than Cautious Greedy
which only communicates log2(T ) times in expectation.

Horizon T
0

1

R
eg

re
t

×101

0 250 500 750 1000
Horizon T

0

1

R
eg

re
t

×102

Cautious Greedy UCB ETC

Figure 1: Benchmark of ETC, UCB and Cautious
Cautious Greedy (top) ν∗ = 0 (bottom) ν∗ = 1.

Second, the fact that Cautious Greedy is biased towards
having good performance when ν∗ = 0 necessarily
means a loss of performance when it is not the case.

In both experiments, ETC incurs a much larger regret,
which is consistent with itsO(T 2

3 ) regret. Note however
that ETC uses only constant communication costs.

6 CONCLUSION, OPEN PROBLEMS
AND FUTURE WORK

We proposed an asynchronous multiplayer multi-armed
bandits algorithm called Cautious Greedy, achieving a
regret of order O(1/r +

∑ν∗

ν=1 log(T )/∆(ν)) (ignoring
data-independent terms) with O(log(T )) communica-
tions. In particular, its regret does not scale with T
when ν∗ = 0. We also prove lower bounds suggesting
that the dependency in both r and

∑ν∗

ν=1 log(T )/∆(ν)

is optimal.

A future open question is whether the dependency on
parameters K,M, p, pg can be enhanced. The analysis
in Degenne and Perchet (2016) for the full information
setting implies an upper bound on Greedy as O( log(K)

∆ )
when all arms have a sub-optimal gap ∆, indicating
the potential for improvement.

Our algorithm requires several assumptions to perform
properly. Most of them are actually very mild, while
others would require an involved analysis to get dis-
carded. Without prior knowledge of T , a doubling
trick (Besson and Kaufmann, 2018b, Theorem 7) can
be used when the horizon T is unknown but would
introduce a logarithmic dependency in T . Whether
Cautious Greedy can be made anytime is therefore an
interesting extension. The activation probabilities of
players might be heterogeneous in practice. However,
the optimization algorithm of Dakdouk (2022) is only
optimal in the homogeneous case. No efficient maxi-
mization scheme of the problem in Equation (2) in the
heterogeneous case is currently known. If however we
were given access to an oracle maximizing this prob-
lem, we believe that our algorithms and their bounds

https://github.com/hugorichard/mmab
https://github.com/hugorichard/mmab
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can be adapted although this requires meticulous work.
Also, if p is unknown, it can be estimated on the fly.
Indeed at every step, players observe a realisation of
a Bernoulli(p). Assuming successful communications,
agents use the empirical estimate p̂ provided by the
gateway based on agents’ observations. Then, replacing
p by p̂ just adds a constant term to the regret upper
bound. The case of heterogeneous (pi)i∈[M ] is similar.
Likewise, if pg is unknown, notice that agents observe
a realization of Bernouilli(pg) whenever they attempt
to communicate. Then, the gateway shares an upper
bound of pg which replaces pg in the condition Line
5. The time it takes to satisfy the modified condition
increases (but remains of the same order) and (despite
communication failures) is identical across agents with
high probability. The rest of the analysis works without
change. The careful analysis of these extensions is left
to future work.

Another significant direction is to go beyond the limited
communication setting. Being able to handle the de-
centralized setting where agents are no longer allowed
to communicate without cost remains a great challenge
and the original motivation of asynchronous multiplayer
bandits. A solution to handle the decentralized setting
is to use collisions to communicate as done for example
in (Bistritz and Leshem, 2018; Boursier and Perchet,
2019; WANG et al., 2020). These previously cited
works however only tackle the synchronized case. In
the case we study, communicating through collisions re-
mains possible but the length of communication phases
would be significantly increased. In the collision sens-
ing setting, if players i and j need to propagate a bit
through collision, they roughly need log(T )

p2 time-steps
to send a single bit with high probability. Whether
there exist quicker communication schemes (e.g. us-
ing random phase length) for the asynchronous case
is an open problem. Concerning communication with-
out collisions, in the synchronous case, Dyn-MMAB
Boursier and Perchet (2019) and Lugosi and Mehrabian
(2022) achieve O(T 2/3) regret. The work of Bubeck
et al. (2021) even achieves O(

√
T ). Whether these ap-

proaches can be extended to the asynchronous setting
we consider is an interesting open question.
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A Analysis of Cautious Greedy

A.1 A useful upper bound

At many places we will have to bound quantity of the form ⟨µ− µ′, g(M)− g(M′)⟩ where µ,µ′ ∈ [0, 1]K and
M,M′ ∈M. We have

⟨µ− µ′, g(M)− g(M′)⟩ ≤ ⟨|µ− µ′|, |g(M)− g(M′)|⟩
≤ ⟨|µ− µ′|, g(M) + g(M′)⟩

≤
K∑

k=1

(g(Mk) + g(M ′
k))

≤
K∑

k=1

(Mk +M ′
k)p

≤ 2Mp

so that we have
⟨µ− µ′, g(M)− g(M′)⟩ ≤ 2Mp (9)

Note that since Mk ≤ 1
− log(1−p) ≤

1
p , we have Mp ≤ K.

A.2 A precise description of the Round Robin procedure

Rotating U in a round-robin fashion over Y ⊃ U means that U undergoes one iteration of the Round Robin (RR)
procedure. See Y as (y1, . . . , y|Y|), U as (u1, . . . , us). At each iteration, an element from Y \ U is added to U
and an element of U is dropped in such a way that after |Y| iterations, all elements of U have been added and
dropped from U exactly once.

A possible implementation of the RR procedure is the following. Initialize U = (y1, . . . , ys) and t = s+ 1. Then,
performing one iteration of the RR procedure means following Algorithm 2.

Algorithm 2 Rotate U in a round robin fashion over Y (one iteration)
1: Input : t (iteration number), U = (u1, . . . , u|U|), Y = (y1, . . . , y|Y|)
2: Remove u1 from U
3: ∀i ∈ [|U| − 1], set ui ← ui+1

4: Set u|U| = yt mod |Y|

A.3 Proof of Proposition 3.1 and Lemma 3.2

A.3.1 Proof of Lemma 3.2

Proof. Assume ν∗ ≥ 1. ∆(ν∗) is defined as ∆(ν∗) = ⟨µ, g(M∗)− g(M∗
ν∗−1)⟩ and ∆(ν∗) = µ(ν∗+1) − µ(ν∗).

Call (i) the index of the i-th worst arm. M∗
ν∗−1 can be constructed from M∗

ν∗ . To do so, remove a player from
the arm j such that

j = argmin
i∈supp(M∗

ν∗ ),M
∗
i ≥2

µi(g(M
∗
i )− g(M∗

i−1))

where M∗
i denotes the i-th coordinate of M∗

ν∗ and place it on arm (ν∗).

We then have
∆(ν∗) = µj(g(Mj)− g(Mj − 1))− µ(ν∗)p

If j ̸= (ν∗ + 1), taking a player from arm j in M∗
ν∗ to put it on arm ν∗ + 1 would yield to a worse assignment,

we have that µj(g(Mj) − g(Mj − 1)) ≥ µν∗+1(g(M
∗
(ν∗+1) + 1) − g(M∗

(ν∗+1))). This inequality is also true if
j = (ν∗ + 1).
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This implies that

∆(ν∗) ≥ µν∗+1(g(M
∗
(ν∗+1) + 1)− g(M∗

(ν∗+1)))− µ(ν∗)p

≥ ∆(ν∗)(g(M
∗
(ν∗+1) + 1)− g(M∗

(ν∗+1)))

≥ ∆(ν∗)(g(M)− g(M − 1))

= ∆(ν∗)p(1− p)M−2(1−Mp)

A.3.2 Proof of Proposition 3.1

In this section, we first provide an upper bound RUB
cCG on the regret R of a quasi-centralized version of Cautious

Greedy described Algorithm 3. It is assumed to have access at the end of a phase to the samples collected by all
players during all previous phases. Then, we provide an upper bound on the regret RCG of Cautious Greedy in
the limited communication setting, that builds upon the upper bound RUB

cCG on the regret of Algorithm 3.

Algorithm 3 Cautious Greedy with log(T ) communications
1: Input : M (number of players), p (probability that a player is active), T (horizon)
2: ν = 0, K = [K], A = ∅
U = ∅, n = 0, µ̂ = 0, µ̂L = 0, µ̂H = 1

3: for s = 0, . . . , ⌊log2(T )⌋ do
4: for t = 2s . . .min(2s+1 − 1, T ) do
5: Play Mµ̂

ME
as defined in (7) where E = K \ U

6: Rotate U in a round robin fashion over K \ A (See Appendix A.2 for details)
7: n = n+ 1
8: if n = |K \ A| then // end of round robin
9: n = 0 and compute Mµ̂L

M and Mµ̂L

Mν
(7)

10: while ⟨µ̂L, g(Mµ̂L

M )⟩ > ⟨µ̂H , g(Mµ̂H

Mν
)⟩ do

11: ν = ν + 1
12: end while
13: Update A = {k ∈ [K], µ̂H

(ν) < µ̂L
k } and K = [K] \ {k ∈ [K], µ̂H

k < µ̂L
(ν+1)}

14: Let U be ν − |[K] \ K| elements from K \ A
15: end if
16: end for
17: Update µ̂, µ̂L and µ̂H using samples from all players
18: end for

The analysis heavily builds upon confidence bounds. We first establish a concentration lemma on the mean
reward of each arm.

Lemma A.1 (Concentration of mean rewards). Let GOOD be the event

∀k ∈ [K],∀t ∈ [T ], |µ̂k(t)− µk| ≤ ζkt

Then, P (GOOD) ≤ 1
TK
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Proof of Lemma A.1. Fix k ∈ [K], by Hoeffding, we have

P (|µ̂k(t)− µk| ≥

√
log(2T 3K2)

2Tk(t)
) =

T∑
τ=1

P (|µ̂k(t)− µk| ≥

√
log(2T 3K2)

2Tk(t)
, Tk(t) = τ)

≤
T∑

τ=1

P (|µ̂k,τ − µk| ≥
√

log(2T 3K2)

2τ
)

≤
T∑

τ=1

2 exp(−2τ
√

log(2T 3K2)

2τ

2

)

=
1

K2T 2

and with a union bound on τ ∈ [T ] and a second on k ∈ [K], we obtain:

P (∃t ∈ [T ],∃k ∈ [K], |µ̂k(t)− µk| ≥

√
log(2T 3K2)

2Tk(t)
) ≤ 1

KT

Rearranging, we get with probability 1− 1
TK ,

∀t ∈ [T ],∀k ∈ [K], |µ̂k(t)− µk| ≤

√
log(2T 3K2)

2Tk(t)
(10)

which implies the desired result.

A consequence of Lemma A.1 is that up to a small additive constant in the regret, we can assume that the GOOD
event holds.
Lemma A.2 (Confidence bounds). Define RG = R1{GOOD}, then,

E[R] ≤ E[RG] + 2 (11)

Proof of Lemma A.2. E[R] = E[R1GOOD] + E[R1GOOD] and R1GOOD ≤ 2KT1GOOD, we then conclude from
Lemma A.1.

Working under the GOOD event makes the analysis much easier. We begin by showing that ν is a lower bound
on the optimal number of arms to eliminate:
Lemma A.3. Under the GOOD event, ν ≤ ν∗ at any time t.

Proof of Lemma A.3. ν is only increased in the while loop. We want to show that if ν = ν∗, then the con-
dition in the while loop cannot be met. Assume by contradiction that ν = ν∗ and maxM∈M⟨µ̂L, g(M)⟩ >
maxM∈Mν

⟨µ̂H , g(M)⟩. By the good event, we have

max
M∈M

⟨µ̂L, g(M)⟩ < max
M∈M

⟨µ, g(M)⟩

and

max
M∈Mν

⟨µ̂H , g(M)⟩ > max
M∈Mν

⟨µ, g(M)⟩

Therefore

max
M∈M

⟨µ̂L, g(M)⟩ > max
M∈Mν

⟨µ̂H , g(M)⟩

=⇒ max
M∈M

⟨µ, g(M)⟩ > max
M∈Mν

⟨µ, g(M)⟩
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and since ν = ν∗,
max

M∈Mν

⟨µ, g(M)⟩ = max
M∈M

⟨µ, g(M)⟩.

This yields the following contradiction:

max
M∈M

⟨µ, g(M)⟩ > max
M∈M

⟨µ, g(M)⟩.

More generally, under the GOOD event, Cautious Greedy never eliminates an optimal arm:

Lemma A.4 (Optimal arms are never eliminated). Under the GOOD event, the set of optimal arms is always
included in the set of active arms: support(M∗) ⊆ K(t)

Proof of Lemma A.4. Elimination may happen when the set of active arms is updated. An arm k is eliminated
at this stage if µ̂H

k < µL
(ν+1). But since ν ≤ ν∗, this implies µ̂H

k < µL
(ν∗+1). Under the good event µ̂H

k > µk and
µL
(ν∗+1) < µ(ν∗+1) so that µ̂H

k < µL
(ν∗+1) implies µk < µ(ν∗+1) and therefore k /∈ E∗ν∗ .

Since Cautious Greedy never eliminates any optimal arm and since ν increases, ν will eventually reach ν∗ and
bad arms will no longer remain. But as long as ν < ν∗, Cautious Greedy will pay a non-zero cost. This source of
error as well as others strongly depends on the number of times arms are pulled without collisions. Indeed, as
the number of pulls without collision increases, the reward estimates µ̂ become more accurate, making Cautious
Greedy’s decisions better. Therefore, we introduce q(t) = mink∈K(t) Tk(t), the number of times each active arm
has been played without collision.

To be able to understand how q(t) scales with t, a pre-requisite is to count the number of times that arms are
assigned at least one player. Denote τk(t) the number of times arm k has been assigned at least one player at
time t and τ(t) = mink∈K(t) τk(t). The next Lemma exhibits a lower bound on τ(t):

Lemma A.5 ( Scaling of τ with t ). We have ∀t, τ(t) ≥ τlb(t) = ⌈max( t
ν∗+1 − ν∗, 0)⌉. Furthermore, ∀t ≥

(ν∗ + 1)2, τlb(t) ≥ τlin(t) =
t

2(ν∗+1) .

Proof of Lemma A.5. Call tn the value of t the n-th time where t = 0 mod |U|. Between tn and tn+1 − 1
(included) all arms have been played |Un| − un times where Un and un are the set of active but not yet accepted
arms U and the number of arms under pressure u after the updates at time t = tn. τ increases linearly between
time tn and tn+1 except for un time steps where un = νn − |[K] \ K| is the number of arms that need to be put
under pressure during phase n but that are not yet eliminated and νn is the value of ν during phase n.

We have that for tn ≤ t < tn+1 :

τ(t) ≥ τ(tn − 1) + max(t− (tn − 1)− un, 0)

= τ(tn − 1) + max((t− (tn − 1))
tn+1 − (tn − 1)− un

tn+1 − (tn − 1)
− (tn+1 − t)

un

tn+1 − (tn − 1)
, 0)

and

τ(tn+1 − 1)− τ(tn − 1) = tn+1 − (tn − 1)− un

= (tn+1 − (tn − 1))
tn+1 − (tn − 1)− un

tn+1 − (tn − 1)

Since tn+1 − (tn − 1) = |Kn \ An| we have:

tn+1 − (tn − 1)− un

tn+1 − (tn − 1)
=
|Kn| − |An| − un

|Kn| − |An|
≥ 1

un + 1
≥ 1

ν∗ + 1
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It follows that for all n ≥ 1,

τ(tn − 1) ≥ tn − 1

ν∗ + 1

Therefore, we obtain tn ≤ t ≤ tn+1

τ(t) ≥ tn − 1

ν∗ + 1
+max((t− (tn − 1))

1

ν∗ + 1
− (tn+1 − t)

un

tn+1 − (tn − 1)
, 0)

≥ tn − 1

ν∗ + 1
+max((t− (tn − 1))

1

ν∗ + 1
− ν∗, 0)

≥ max(
t

ν∗ + 1
− ν∗,

tn − 1

ν∗ + 1
)

≥ max(
t

ν∗ + 1
− ν∗, 0)

Since this last line holds for all n, we have for any t that τ(t) ≥ max( t
ν∗+1 − ν∗, 0).

Furthermore, for any t ≥ 2(ν∗ + 1)2, we have that

t

ν∗ + 1
− ν∗ ≥ t

ν∗ + 1
− 1

2

t

ν∗ + 1
≥ 1

2

t

ν∗ + 1

The next step is to link τlb(t) to q(t). By noting that g(Mk) ≥ p, we expect q(t) to scale approximately with
pτlb(t).

First, we show that Tk(t) stochastically dominates a sum of τlb(t) independent Bernouilli random variable with
parameter p.
Lemma A.6. The number of times arm k has been played without collision Tk(t) stochastically dominates
B⌈τlb(t)⌉,p where B⌈τlb(t)⌉,p is a binomial random variable with parameters n = ⌈τlb(t)⌉ and p = p.

Proof of Lemma A.6. We have Tk(t) =
∑t

s=1 ηk(Mk(s)) ≥
∑

s∈[t],Mk(s)≥1 ηk(Mk(s)) where ηk(Mk(s)) =

1{Exactly 1 player (among Mk(s)) is active on arm k}.

Then notice that
∑

s∈[t],Mk(s)≥1 ηk(Mk(s)) stochastically dominates
∑

s∈[t],Mk(s)≥1 η
s
k(1) where (ηsk(1))

t
s=1 are

independent Bernouilli random variables with mean p. Since the number of terms in the sum is greater than
⌈τlb(t)⌉, the lemma follows.

In particular, we have from a multiplicative Chernoff bound and union bound over K that

P(q(t) ≤ 1

3
p⌈τlb(t)⌉) = P(∃k ∈ [K], Tk(t) ≤

1

3
p⌈τlb(t)⌉) ≤ K exp(−2

9
p⌈τlb(t)⌉)

We can now focus on upper-bounding the different sources of errors. First, E[RG] can trivially be written as:

E[RG] = E[Rν1{GOOD}] + E[RE1{GOOD}] + E[RM1{GOOD}]

where

where Rν =

T∑
t=1

⟨µ, g(M∗)− g(M∗
ν)⟩

RE =

T∑
t=1

⟨µ, g(M∗
ν)− g(M∗

E(t))⟩

and RM =

T∑
t=1

⟨µ, g(M∗
E(t))− g(M(t))⟩.
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M∗
ν = Mµ

Mν
is the optimal assignment of players when at most ν arms can be assigned zero players and

M∗
E(t) = Mµ

ME(t)
is the optimal assignment of players when only arms not in E(t) can be assigned zero players.

These three terms measure a different aspect of the regret: Rν measures the error due to ν the number of arms
under pressure being different from ν∗ the optimal number of players to eliminate, RE measures the error due to
E(t) being different from support(M∗

ν) the optimal set of arms that must be assigned at least one player when up
to ν players can be assigned zero players and RM measures the error due to M(t) being different from M∗

E(t) the
optimal assignment of players among possible assignments in ME(t).

Let us start with the first term Rν . As the number of samples seen increases, ν increases to get closer to ν∗. The
following Lemma provides a maximum on the number of samples seen before the algorithm detects that ν should
increase.

Lemma A.7 (Number of iterations before ν increases). Consider assignment M∗
(k) =

argmaxM,support(M)=K−k⟨µ, g(M)⟩ which is the best assignment where k arms assigned zero players.

Under the GOOD event, if t is such that q(2⌊log2(t)⌋) ≥ qk = 8M2p2 log(2K2T 3)
(⟨µ,g(M∗)−g(M∗

(k)
)⟩)2 , then ν(t+ ν∗) > k.

Proof of Lemma A.7. Call M∗,H
(k) (t) = argmaxM∈Mk

⟨µH(t), g(M)⟩ and for simplicity, call t′ = 2⌊log2(t)⌋.

q(t′) >
8M2p2 log(2K2T 3)

(⟨µ, g(M∗)− g(M∗
(k))⟩)2

=⇒ q(t′) >
8M2p2 log(2K2T 3)

(⟨µ, g(M∗)− g(M∗
(k))⟩)2

=⇒ min
a∈K

Ta(t
′) >

18M2p2 log(2K2T 3)

(⟨µ, g(M∗)− g(M∗
(k))⟩)2

=⇒ ⟨µ, g(M∗)− g(M∗
(k))⟩ > 8Mpmax

a∈K

√
log(2T 3K2)

2Ta(t′)

=⇒ ⟨µ, g(M∗)− g(M∗
(k))⟩ > 4Mpmax

a∈K
ζa(t

′)

=⇒ ⟨µ, g(M∗)− g(M∗
(k))⟩ > 2⟨ζ(t′), g(M∗) + g(M∗,H

(k) (t
′))⟩ (By Equation (9))

⇐⇒ ⟨µ− 2ζ(t′), g(M∗)⟩ > ⟨µ, g(M∗
(k))⟩+ 2⟨ζ(t′), g(M∗,H

(k) (t
′))

=⇒ ⟨µL(t′), g(M∗)⟩ > ⟨µ+ 2ζ(t′), g(M∗,H
(k) (t

′))⟩⟩ (By the GOOD event and optimality of M∗
(k))

=⇒ max
M∈M

⟨µL(t′), g(M)⟩ > ⟨µH(t′), g(M∗,H
(k) (t

′))⟩ (By the GOOD event)

The last line is the while condition of Cautious Greedy for ν = k. It is execute after the end of Round Robin
which can take up to ν∗ rounds. Also note that since qk ≥ qk−1 ≥ qk−1, · · · , q1, after t′ + ν∗ iterations, the while
condition has necessarily been executed at least k times which means ν(t+ ν∗) ≥ k + 1.

Note that as long as ν ≤ ν∗, Rν increases by ⟨µ, g(M∗)− g(M∗
ν)⟩. Lemma A.7 then allows to bound Rν :

Lemma A.8 (Bound on Rν).

E[Rν1{GOOD}] ≤ 384M2p log(2K2T 3)(ν∗ + 1)

∆(ν∗)
+ 42M(ν∗ + 1)K
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Proof of Lemma A.8. Call tv the last time that ν(t) = ν and set tν∗ = T + 1 and t−1 = 0.

Rν =

T∑
t=1

⟨µ, g(M∗)− g(M∗
ν(t))⟩

=

ν∗∑
ν=0

tν∑
t=tν−1+1

⟨µ, g(M∗)− g(M∗
ν)⟩︸ ︷︷ ︸

Aν

=

ν∗∑
ν=0

(tν − tν−1)Aν

=

ν∗∑
ν=0

tνAν −
ν∗∑
ν=0

tν−1Aν

=

ν∗∑
ν=1

tν−1(Aν−1 −Aν)− t−1A0 + tν∗Aν∗

=

ν∗∑
ν=1

tν−1(Aν−1 −Aν)

=

ν∗∑
ν=1

2
(tν−1 − (ν∗ + 1))

2︸ ︷︷ ︸
t′ν−1

(Aν−1 −Aν) +

ν∗∑
ν=1

(ν∗ + 1)(Aν−1 −Aν)

≤ 2

ν∗∑
ν=1

t′ν−1(Aν−1 −Aν) + 2Mp(ν∗ + 1)

= 2
∑

ν={1,...,ν∗},t′ν−1<2(ν∗+1)2

t′ν−1(Aν−1 −Aν) + 2
∑

ν={1,...,ν∗},t′ν−1≥2(ν∗+1)2

t′ν−1(Aν−1 −Aν) + 2Mp(ν∗ + 1)

≤ 4
∑

ν={1,...,ν∗},t′ν−1<2(ν∗+1)2

(ν∗ + 1)2(Aν−1 −Aν)

+ 2
∑

ν={1,...,ν∗},t′ν−1≥2(ν∗+1)2

(ν∗ + 1)2⌈τlin(t′ν−1)⌉(Aν−1 −Aν) + 2Mp(ν∗ + 1) (By Lemma A.5)

≤ 6Mp(ν∗ + 1)2 + 4
∑

ν={1,...,ν∗},t′ν−1≥2(ν∗+1)2

(ν∗ + 1)⌈τlin(t′ν−1)⌉(Aν−1 −Aν)

︸ ︷︷ ︸
(i)

(By Equation (9))
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Then we have

(i) =
∑

ν={1,...,ν∗},t′ν−1≥2(ν∗+1)2

(ν∗ + 1)⌈τlin(t′ν−1)⌉(Aν−1 −Aν)

=
∑

ν={1,...,ν∗},t′ν−1≥2(ν∗+1)2

(ν∗ + 1)⌈τlin(t′ν−1)⌉(Aν−1 −Aν)(1

{
⌈τlin(t′ν−1)⌉ ≤

6q(t′ν−1)

p

}

+ 1

{
⌈τlin(t′ν−1)⌉ >

6q(t′ν−1)

p

}
)

≤
∑

ν={1,...,ν∗},t′ν−1≥2(ν∗+1)2

(ν∗ + 1)
6q(t′ν−1)

p
(Aν−1 −Aν)

︸ ︷︷ ︸
(ii)

+
∑

ν={1,...,ν∗},t′ν−1≥2(ν∗+1)2

(ν∗ + 1)⌈τlin(t′ν−1)⌉(Aν−1 −Aν)1

{
⌈τlin(t′ν−1)⌉ >

6q(t′ν−1)

p

}
︸ ︷︷ ︸

(iii)

We have that ν(2t′ν−1 + ν∗) = ν − 1 and therefore by Lemma A.7 we get

q(t′(ν−1)) ≤ q(2⌊log2(2t
′
ν−1)⌋) ≤ qν

This gives

(ii) ≤ 6(ν∗ + 1)

p

ν∗∑
ν=1

4(Mp)2 log(2K2T 3)⟨µ, g(M∗
ν)− g(M∗

ν−1)⟩(
⟨µ, g(M∗)− g(M∗

ν−1)⟩
)2 (By Lemma A.7)

= 48M2p log(2K2T 3)(ν∗ + 1)

ν∗∑
ν=1

(
1

⟨µ, g(M∗)− g(M∗
ν−1)⟩

− ⟨µ, g(M∗)− g(M∗
ν)⟩(

⟨µ, g(M∗)− g(M∗
ν−1)⟩

)2)︸ ︷︷ ︸
∆
=lν

where qν is given in A.7 and we used Aν∗ = 0. From there, we have the following inequalities

ν∗−1∑
ν=1

lν ≤
ν∗−1∑
ν=1

(
1

⟨µ, g(M∗)− g(M∗
ν)⟩
− ⟨µ, g(M∗)− g(M∗

ν)⟩(
⟨µ, g(M∗)− g(M∗

ν−1)⟩
)2)

=

ν∗−1∑
ν=1

(
1

⟨µ, g(M∗)− g(M∗
ν)⟩
− 1

⟨µ, g(M∗)− g(M∗
ν−1)⟩

)(
1 +

⟨µ, g(M∗)− g(M∗
ν)⟩

⟨µ, g(M∗)− g(M∗
ν−1)⟩

)
≤ 2

ν∗−1∑
ν=1

(
1

⟨µ, g(M∗)− g(M∗
ν)⟩
− 1

⟨µ, g(M∗)− g(M∗
ν−1)⟩

)
≤ 2

⟨µ, g(M∗)− g(M∗
ν∗−1)⟩

Taking expectations we get

E[Rν1{GOOD}] ≤ 4(
96M2p log(2K2T 3)(ν∗ + 1)

⟨µ, g(M∗)− g(M∗
ν∗−1)⟩

+ E[(iii)]) + 6Mp(ν∗ + 1)2
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Focusing on E[(iii)], we get:

E[(iii)]

= E[
∑

ν={1,...,ν∗},t′ν−1≥2(ν∗+1)2

(ν∗ + 1)⌈τlin(t′ν−1)⌉(Aν−1 −Aν)1

{
⌈τlin(t′ν−1)⌉ >

6q(t′ν−1)

p

}
]

= E[
⌈log2(T )⌉∑

l=1

1
{
t′ν−1 ∈ [2l, 2l+1]

}
(ν∗ + 1)⌈τlin(t′ν−1)⌉(Aν−1 −Aν)1

{
⌈τlin(t′ν−1)⌉ >

6q(t′ν−1)

p

}
] (Peeling)

≤ 2Mp

⌈log2(T )⌉∑
l=1

(ν∗ + 1)⌈τlin(2l+1)⌉P (⌈τlin(2l+1)⌉ > 6q(2l)

p
)

≤ 4Mp

⌈log2(T )⌉∑
l=1

(ν∗ + 1)⌈τlin(2l)⌉P (⌈τlin(2l)⌉ >
3q(2l)

p
) (We use 2⌈a⌉ ≥ ⌈2a⌉)

≤ 2MpK

∫ ∞

t=0

2t exp(− 1

9(ν∗ + 1)
p2t)dt

≤ 36MpK(ν∗ + 1)

p

∫ ∞

u=1

exp(−u)
u

du︸ ︷︷ ︸
≤1

(u = 1
9(ν∗+1)p2

t)

≤ 36MK(ν∗ + 1)

which gives

E[Rν ] ≤
384M2p log(2K2T 3)(ν∗ + 1)

⟨µ, g(M∗)− g(M∗
ν∗−1)⟩

+ 42M(ν∗ + 1)K

We now focus on the second term RE . For a given ν, two things may prevent a sub-optimal choice of arms E on
which at least one player must be assigned. Either an arm in E is eliminated or an arm in [K] \ E is accepted.
Lemma A.9 shows a condition under which a sub-optimal arm i is eliminated:
Lemma A.9 (Number of samples seen before a sub-optimal arm is eliminated). Fix ν, let E∗ν = support(M∗

ν)
and let i /∈ E∗ν be a sub-optimal arm. For any t ≥ 0, if q(2⌊log2(t)⌋) ≥ qE,i with

q ≥ qE,i =
8 log(2T 3K2)

(µ(ν+1) − µi)2

then arm i has necessarily been eliminated before time t+ ν∗.

Proof of Lemma A.9. At time t′ = 2⌊log2(t)⌋ we have that

q(t′) >
8 log(2T 3K2)

(µ(ν+1) − µi)2

=⇒ 4

√
log(2T 3K2)

2q
<

µ(ν+1) − µi

2

=⇒ ζi + ζ(ν+1) <
µ(ν+1) − µi

2
=⇒ µi + 2ζi < µ(ν+1) − 2ζ(ν+1)

=⇒ µH
i < µL

(ν+1)

Since i /∈ E∗ν , µi < µ(ν+1), the last line means that i will be eliminated at the next update which will happen at
the end of the Round Robin phase which can last up to ν∗ rounds.
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Lemma A.10 shows a condition under which an optimal arm j is accepted:

Lemma A.10 (Number of samples seen before an optimal arm is accepted). Fix ν, let E∗ν = support(M∗
E) and

let j ∈ E∗ν an optimal arm. If at time t, arm j and (ν) both been played without collision at least qA,i times with

qA,i =
8 log(2T 3K2)

(µj − µ(ν))2

then arm j has been accepted before time t+ ν∗.

Proof of Lemma A.10. At time t′ = 2⌊log2(t)⌋ we have that

min(Tj(t
′), T(ν)(t

′)) >
8 log(2T 3K2)

(µj − µ(ν))2
=⇒ 2

√
log(2T 3K2)

2min(Tj(t′), T(ν)(t′))
<

µj − µ(ν)

2

=⇒ ζ(ν) + ζj <
µj − µ(ν)

2
=⇒ µ(ν) + 2ζ(ν) < µj − 2ζj

=⇒ µH
(ν) < µL

j

Since j ∈ E∗ν , µj > µ(ν), the last line means that j will be accepted at the next update of A which will happen at
the end of the Round Robin phase which can last up to ν∗ rounds.

The two previous lemmas allow to quantify when arms are accepted or rejected. The next lemma measures the
cost of choosing a sub-optimal set of arms on which at least one player must be assigned.

Lemma A.11 (Cost of choosing a sub-optimal E). Let E a set of arms of size K − ν such that E ̸= E∗ν =
support(M∗

ν). Then, we have:

⟨µ, g(M∗
ν)−g(M∗

E)⟩ ≤

p(
∑

i∈E\E∗
ν

µ(ν+1) − µi +
∑

j∈E∗
ν\E

µj − µ(ν))

Proof of Lemma A.11. Let E ̸= E∗ν and define indexes i1, . . . , in by

E \ E∗ν = {i1, . . . , in}

and indexes j1, . . . , jn by

E∗ν \ E = {j1, . . . , jn}

We now construct ME . Arms that are in E but not in E∗ν are assigned 1 player the corresponding players are
taken from arms in E∗ν but not in E . Formally

∀k ∈ [n],ME [ik] = 1

and

∀k ∈ [n],ME [jk] = M∗[jk]− 1

and other arms are untouched:

∀k ∈ E∗ν ∩ E ,ME [k] = M∗[k]
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The cost is given by:

⟨µ, g(M∗
ν)− g(M∗

E )⟩ ≤ ⟨µ, g(M∗
ν)− g(ME)⟩

=

n∑
k=1

(µjk [g(M
∗[jk])− g(M∗[jk]− 1)]− µikp)

≤
n∑

k=1

(µjk − µik)p

≤
n∑

k=1

(µjk − µ(ν) + µ(ν+1) − µik)p

≤ p(
∑

i∈E\E∗
ν

µ(ν+1) − µi +
∑

j∈E∗
ν\E

µj − µ(ν))

We can now bound RE :

Lemma A.12 (Bound on RE).

E[RE ] ≤
ν∗∑
ν=1

672(ν∗ + 1) log(2T 3K2)

µ(ν∗+1) − µν
+ ν∗Mp

576(ν∗ + 1) log(2K2T 3)

∆(ν∗)
+ 200K(ν∗ + 1)2 + 5K2

Proof of Lemma A.12. Call tv the last time that ν(t) = ν and set tν∗ = T + 1 and t−1 = 0. We can write

RE =

T∑
t=1

⟨µ, g(M∗
ν(t))− g(M∗

E(t))⟩

=

ν∗∑
ν=0

tν∑
t=tν−1+1

⟨µ, g(M∗
ν)− g(M∗

E(t))⟩

≤
ν∗∑
ν=0

tν∑
t=tν−1+1

p(
∑

i∈E(t)\E∗
ν

(µ(ν+1) − µi) +
∑

j∈E∗
ν\E(t)

(µj − µ(ν))) (Using Lemma A.11)

=

ν∗∑
ν=0

tν∑
t=tν−1+1

p
∑

i∈E(t)\E∗
ν

(µ(ν+1) − µi)︸ ︷︷ ︸
(i)

+

ν∗∑
ν=0

tν∑
t=tν−1+1

p
∑

j∈E∗
ν\E(t)

(µj − µ(ν))︸ ︷︷ ︸
(ii)

Let us cut the execution of the algorithms in phases where phase n starts when it is the n-th time that the
condition Line 3 in Algorithm 1 is satisfied. Note again that updates of A, K, and ν occur at the beginning of
each phase. Denote Nν the phases between tν−1 + 1 and tν .
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Bounding (i) Denote τn the number of pulls of active arms at the end of phase n.

(i) ≤
ν∗∑
ν=0

tν∑
t=tν−1+1

p
∑
i/∈E∗

ν

(µ(ν+1) − µi)1{i ∈ E(t)}

=

ν∗∑
ν=1

tν∑
t=tν−1+1

p
∑
i/∈E∗

ν

(µ(ν+1) − µi)1{i ∈ E(t)}

=

ν∗∑
ν=1

∑
n∈Nν

tν∑
t=tν−1+1

p
∑
i/∈E∗

ν

(µ(ν+1) − µi)1{i ∈ E(t)}1{ t belong to phase n }

≤
ν∗∑
ν=1

∑
n∈Nν

p
∑
i/∈E∗

ν

(µ(ν+1) − µi)( Number of times arm i is pulled during phase n )

=

ν∗∑
ν=1

∑
n∈Nν

p

ν∑
i=1

(µ(ν+1) − µ(i))( Number of times arm (i) is pulled during phase n )

= p

ν∗∑
i=1

ν∗∑
ν=i

∑
n∈Nν

(µ(ν+1) − µ(i))( Number of times arm (i) is pulled during phase n )︸ ︷︷ ︸
si

where (i) the index of the arm with reward µ(i).

Let Tν,i be the number of times arm (i) has been pulled in total at the end of the epoch where ν(t) = ν. This
means ∑

ν∈Nν

Number of times arm (i) is pulled during phase n = Tν,i − Tν−1,i

Call nE,(i) the phase at which arm (i) is eliminated. Call νi the epoch where arm (i) is eliminated. This means
nE,(i) ∈ Nνi

.

Call si =
∑νi

ν=i(µ(ν+1) − µ(i))(Tν,i − Tν−1,i).

We have

si = (µ(νi+1) − µ(i))(Tνi,i − Tνi−1,i) +

νi−1∑
ν=i

(µ(ν+1) − µ(i))(Tν,i − Tν−1,i)

= 2 (µ(νi+1) − µ(i))(T
′
νi,i − T ′

νi−1,i)︸ ︷︷ ︸
ai

+2

νi−1∑
ν=i

(µ(ν+1) − µ(i))(T
′
ν,i − T ′

ν−1,i)︸ ︷︷ ︸
bi

where

T ′
νi,i =

Tνi,i − (ν∗ + 1)

2

Furthermore,

ai = (µ(νi+1) − µ(i))(T
′
νi,i − T ′

νi−1,i) ≤ (µ(νi+1) − µ(i))T
′
νi,i + (µ(νi+1) − µ(i))(ν

∗ + 1)

and we can write

bi ≤ (µ(νi) − µ(i))

νi−1∑
ν=i

(T ′
ν,i − T ′

ν−1,i)

≤ (µ(νi) − µ(i))T
′
νi−1,i + ν∗(µ(νi) − µ(i))
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Let us then notice that

E[(µ(νi) − µ(i))T
′
νi−1,i]

≤ 2E[(ν∗ + 1)2 + 2(µ(νi) − µ(i))(ν
∗ + 1)(⌈τlin(T ′

νi−1,i)⌉)1
{
T ′
νi−1,i ≥ 2(ν∗ + 1)2

}
] (By Lemma A.5)

≤ E[2(ν∗ + 1)2 + 2(µ(νi) − µ(i))(ν
∗ + 1)⌈τlin(T ′

νi−1,i)⌉1
{
T ′
νi−1,i ≥ 2(ν∗ + 1)2

}
]

≤ 2(ν∗ + 1)2 + 2E[(µ(νi) − µ(i))(ν
∗ + 1)

6q(T ′
νi−1,i)

p
1
{
T ′
νi−1,i ≥ 2(ν∗ + 1)2

}
]

+ 2E[(µ(νi) − µ(i))(ν
∗ + 1)⌈τlin(T ′

νi−1,i)⌉1
{
⌈τlin(T ′

νi−1,i)⌉ >
6

p
q(T ′

νi−1,i)

}
≤ 2(ν∗ + 1)2 + E[(µ(νi) − µ(i))(ν

∗ + 1)
12q(T ′

νi−1,i)

p
1
{
T ′
νi−1,i ≥ 2(ν∗ + 1)2

}
]

+
36K(ν∗ + 1)

p

where the last inequality follows from the same steps used to bound (iii) in the proof of Lemma A.8.

We therefore get

E[p
ν∗∑
i=1

bi] ≤ 3(ν∗ + 1)3p+ E[
ν∗∑
i=1

(µ(νi) − µ(i))(ν
∗ + 1)12q(T ′

νi−1,i)1
{
T ′
νi−1,i ≥ (ν∗ + 1)2

}
] + 36K(ν∗ + 1)2

Applying the same steps for ai yields

E[p
ν∗∑
i=1

ai] ≤ 3(ν∗ + 1)3p+ E[
ν∗∑
i=1

(µ(νi+1) − µ(i))(ν
∗ + 1)12q(T ′

νi,i)1
{
T ′
νi,i ≥ (ν∗ + 1)2

}
] + 36K(ν∗ + 1)2

By Lemma A.9, we have q(T ′
νi,i

) ≤ 8 log(2T 2K2)
(µ(νi+1)−µ(i))2

so that

E[p
ν∗∑
ν=1

ai] ≤ 3(ν∗ + 1)3p+ E[
ν∗∑
i=1

(ν∗ + 1)12
8 log(2T 2K2)

µ(νi+1) − µ(i)
+ 36K(ν∗ + 1)2

By Lemma A.9, q(T ′
νi−1,i) ≤

8 log(2T 2K2)
(µ(νi)

−µ(i))2
and by Lemma A.7, q(T ′

νi−1,i) ≤
8M2p2 log(2K2T 2)

∆2
νi−1

so that

q(T ′
νi−1,i) ≤ min(

8M2p2 log(2K2T 2)

∆2
νi−1

,
8 log(2T 2K2)

(µ(νi) − µ(i))2
)

≤

√
8M2p2 log(2K2T 2)

∆2
νi−1

8 log(2T 2K2)

(µ(νi) − µ(i))2

=
8Mp log(2K2T 2)

∆νi−1(µ(νi) − µ(i))

and therefore

E[p
ν∗∑
ν=1

bi] ≤ 3(ν∗ + 1)3p+ E[
ν∗∑
i=1

(ν∗ + 1)96
Mp log(2K2T 2)

∆νi−1
] + 36K(ν∗ + 1)2

so that

(i) ≤ 12(ν∗ + 1)3p+ E[
ν∗∑
i=1

(ν∗ + 1)192[
log(2T 2K2)

µ(νi+1) − µ(i)
+

Mp log(2K2T 2)

∆νi−1︸ ︷︷ ︸
(a)

] + 144K(ν∗ + 1)2



Constant or Logarithmic Regret in Asynchronous Multiplayer Bandits with Limited Communication

Then either νi = ν∗ and

(a) ≤ log(2T 2K2)

µ(ν∗+1) − µ(i)
+

Mp log(2K2T 2)

∆ν∗−1

or νi < ν∗ and then,

si =

νi∑
ν=i

(µν+1 − µ(i))(Tν,i − Tν−1,i)

≤ (µνi+1 − µ(i))

νi∑
ν=i

(Tν,i − Tν−1,i)

≤ (µνi+1 − µ(i))Tνi,i

≤ 2(ν∗ + 1)2 + 2(ν∗ + 1)
6q(T ′

νi,i
)

p
(µνi+1 − µ(i)) +

36K(ν∗ + 1)

p
(Similar as the bound of bi)

≤ 2(ν∗ + 1)2 + 2(ν∗ + 1)
48M log(2K2T 2)

∆νi

+
36K(ν∗ + 1)

p

≤ 2(ν∗ + 1)2 + 2(ν∗ + 1)
48M log(2K2T 2)

∆ν∗−1
+

36K(ν∗ + 1)

p

where at the last line we used again Lemma A.9 and Lemma A.7.

So in any case

(i) ≤ 12(ν∗ + 1)3p+ 180K(ν∗ + 1)2 +

ν∗∑
i=1

288(ν∗ + 1) log(2T 2K2)

µ(ν∗+1) − µ(i)
+ pν∗

192M(ν∗ + 1) log(2K2T 2)

∆ν∗−1

Bounding (ii) we have

(ii) ≤
ν∗∑
ν=0

tν∑
t=tν−1+1

p
∑
j∈E∗

ν

(µj − µ(ν))1{j /∈ E(t)}

We call un = νn − |[K] \ Kn| the number of arms put under pressure during phase n. We have:

(ii) ≤
ν∗∑
ν=0

∑
n∈Nν

p
∑
j∈E∗

ν

(µ(j) − µ(ν))

tν∑
t=tν−1+1

1{j /∈ E(t)}1{ t belong to phase n }

≤
ν∗∑
ν=0

∑
n∈Nν

p
∑
j∈E∗

ν

(µ(j) − µ(ν))( Number of times arm j is not pulled during phase n)

=

ν∗∑
ν=1

∑
n∈Nν

p
∑
j∈E∗

ν

(µ(j) − µ(ν))( Number of times arm j is not pulled during phase n)

≤
ν∗∑
ν=1

∑
n∈Nν

p
∑
j∈E∗

ν

(µ(j) − µ(ν))un1

n ≤ nA,j︸︷︷︸
Last phase where arm j is not accepted


≤

ν∗∑
ν=1

∑
n∈Nν

p
∑
j∈E∗

ν

(µ(j) − µ(ν))

ν∑
ν′=1

1

n ≤ nE,ν′︸ ︷︷ ︸
Last phase where arm ν′ is not rejected

1{n ≤ nA,j}

=

ν∗∑
ν′=1

p

ν∗∑
ν=ν′

K∑
j=ν+1

∑
n∈Nν

(µ(j) − µ(ν))1{n ≤ nE,ν′}1{n ≤ nA,j}︸ ︷︷ ︸
(A)
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Call nν the last phase before ν is increased. We have that

(A) =

ν∗∑
ν=ν′

∑
n∈Nν

K∑
j=ν+1

(µ(j) − µ(ν))1{n ≤ nE,ν′}1{n ≤ nA,j}︸ ︷︷ ︸
An

Call τn the value of τ at the end of phase n, tn the value of t at the end of phase n and set

t′n = (tn − (ν∗ + 1))/2

Notice that if τn ≥ 8(ν∗ + 1)2, then

τ(t′n) ≥
t′n

ν∗ + 1
− ν∗

=
tn − (ν∗ + 1)

2(ν∗ + 1)
− ν∗

=
tn

2(ν∗ + 1)
− 1

2
− ν∗

≥ τn
2(ν∗ + 1)

− 1

2
− ν∗

≥ τn
4(ν∗ + 1)

(A) =

ν∗∑
ν=ν′

∑
n∈Nν

An1
{
τn−1 ≥ 8(ν∗ + 1)2

}
1

{
q(t′n−1) ≥

1

3
pτ(t′n−1)

}
︸ ︷︷ ︸

A1

+

ν∗∑
ν=ν′

∑
n∈Nν

An1
{
τn−1 < 8(ν∗ + 1)2

}
︸ ︷︷ ︸

A2

+

ν∗∑
ν=ν′

∑
n∈Nν

An1
{
τn−1 ≥ 8(ν∗ + 1)2

}
1

{
q(t′n−1) <

1

3
pτ(t′n−1)

}
︸ ︷︷ ︸

A3

Let us start with bounding A2:

A2 =

ν∗∑
ν=ν′

∑
n∈Nν

K∑
j=ν+1

(µ(j) − µ(ν))1{n ≤ nE,ν′}1{n ≤ nA,j}1
{
τn−1 ≤ 8(ν∗ + 1)2

}
≤

ν∗∑
ν=ν′

∑
n∈Nν

K∑
j=ν+1

1{n ≤ nA,j}1
{
τn−1 ≤ 8(ν∗ + 1)2

}

We then use that
K∑

j=ν+1

1{n ≤ nA,j} = Number of arms not yet accepted at phase n

= τn − τn−1
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Note that τn − τn−1 is the number of pulls during phase n which is equal to |Kn \ An| − un and therefore equal
to the number of arms that should be accepted but are not yet accepted.

and the following bound follows:

A2 ≤
ν∗∑

ν=ν′

∑
n∈Nν

(τn − τn−1)1
{
τn−1 ≤ 8(ν∗ + 1)2

}
≤ 8(ν∗ + 1)2

Let us then focus on A3:

A3 =

ν∗∑
ν=ν′

∑
n∈Nν

K∑
j=ν+1

(µ(j) − µ(ν))1{n ≤ nE,ν′}1{n ≤ nA,j}1
{
τn−1 ≥ 8(ν∗ + 1)2

}
1

{
q(t′n−1) <

1

3
pτ(t′n−1)

}

≤
∑
n∈N

(τn−1 − τn−1)1

{
q(t′n−1) <

1

3
pτ(t′n−1)

}
≤

∑
n∈N

K1

{
q(t′n−1) <

1

3
pτ(t′n−1)

}

where we use

τn − τn−1 = |Kn−1 \ An−1| − (νn−1 − |[K] \ Kn−1|
= |Kn−1| − |An−1| − νn−1 +K − |Kn−1|
= K − |An−1| − νn−1

≤ K

We have:

E[A3] ≤
∑
n∈N

P (q(t′n−1) <
1

3
pτ(t′n−1))

≤ K2
∑

n∈N,τ(t′n−1)>0

exp(−2

9
pτ(t′n−1))

≤ K2

∫ ∞

0

exp(−2

9
pt)dt (At each phase, all active arms are played at least one time)

≤ 9K2

2p

Then we turn to A1. Call En the event

En = {q(t′n−1) ≥
1

3
pτ(t′n−1), τn−1 ≥ 8(ν∗ + 1)2}

Under En, we can write

n ≤ nA,j =⇒ q(t′n−1) ≤ qA,j

=⇒ 1

3
pτ(t′n−1) ≤ qA,j

=⇒ 1

3
p

τn−1

4(ν∗ + 1)
≤ qA,j

=⇒ τn−1 ≤
96(ν∗ + 1) log(2T 3K2)

(µ(j) − µ(ν))2p
(By Lemma A.10)

=⇒ µ(j) − µν ≤

√
96(ν∗ + 1) log(2T 3K2)

τn−1

∆
= δn
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Calling nν the last phase before ν is increased, we have

A1 =

ν∗∑
ν=ν′

∑
n∈Nν

K∑
j=ν+1

(µ(j) − µ(ν))1{n ≤ nE,ν′}1{n ≤ nA,j}1{En}

=

ν∗−1∑
ν=ν′

K∑
j=ν+1

∑
n∈Nν

(µ(j) − µ(ν))1{n ≤ nE,ν′}1{n ≤ nA,j}1{En}

+

K∑
j=ν∗+1

∑
n∈Nν∗

(µ(j) − µ(ν∗))1{n ≤ nE,ν′}1{n ≤ nA,j}1{En}

≤
∑
n∈N

(τn − τn−1)δn

(
1{n ≤ nν∗−1}+ 1{n ≤ nE,ν∗}

)
1{En}

Using the identity
√

96(ν∗+1) log(2T 3K2)
τn−1p

= δn, we get

τn − τn−1 =
96(ν∗ + 1) log(2T 3K2)

p

(
1

δ2n+1 − δ2n

)
=

96(ν∗ + 1) log(2T 3K2)

p

(
1

δn
+

1

δn+1

)(
1

δn+1
− 1

δn

)

Note that τn−τn−1 ≤ K and τ0 = K (since all arms are active at the first iteration) so that 2τn−1 ≥ τn−1+K ≥ τn
This implies

δn−1

δn
=

√
τn

τn−1
≤
√
2.

We can then write:

A1 ≤
96(ν∗ + 1) log(2T 3K2)

p
(
√
2 + 1)

∑
n∈N

(
1

δn+1
− 1

δn

)(
1{n ≤ nν∗−1}+ 1{n ≤ nE,ν}

)
1{En}

Under En, we have

n ≤ nE,ν∗ =⇒ q(t′n−1) ≤ qE,ν∗

=⇒ 1

3
pτ(t′n−1) ≤ qE,ν∗

=⇒ τ(t′n−1) ≤
24 log(2T 3K2)

p(µ(ν∗+1) − µ(ν∗))2
(By Lemma A.9)

=⇒ µ(ν∗+1) − µ(ν∗) ≤

√
96(ν∗ + 1) log(2T 3K2)

τn−1p
= δn

so that
µ(ν∗+1) − µ(ν) ≤ δnE,ν

Similarly, under En, we have:

n ≤ nν =⇒ q(t′n−1) ≤ qν

=⇒ 1

3
pτ(t′n−1) ≤ qν

=⇒ τ(t′n−1) ≤
24M2p2 log(2T 3K2)

(∆(ν))2p
(By Lemma A.7)

=⇒ ∆(ν)

Mp
≤

√
96(ν∗ + 1) log(2T 3K2)

τn−1p
= δn



Constant or Logarithmic Regret in Asynchronous Multiplayer Bandits with Limited Communication

so that

∆(ν∗)

Mp
≤ ∆(ν)

Mp
≤ δnν

Using again that 1
δn
≤
√
2 1
δn−1

, we get

A1 ≤
384(ν∗ + 1) log(2T 3K2)

p

1

µ(ν∗+1) − µν′
+Mp

384(ν∗ + 1) log(2T 3K2)

p

1

∆ν∗−1

where we used 2 +
√
2 ≤ 4

so that

(ii) ≤
ν∗∑

ν′=1

384(ν∗ + 1) log(2T 3K2)

µ(ν∗+1) − µν′
+ ν∗Mp

384(ν∗ + 1) log(2T 3K2)

∆(ν∗)
+

9K2

2
+ 8p(ν∗ + 1)2

From the bound of (i) and (ii), we get:

RE ≤
ν∑

ν′=1

672(ν∗ + 1) log(2T 3K2)

µ(ν∗+1) − µν′
+ ν∗Mp

576(ν∗ + 1) log(2K2T 3)

∆(ν∗)
+ 200K(ν∗ + 1)2 + 5K2

It remains to bound RM . Recall that RM measures the mismatch between the chosen assignment M(t) and the
best possible assignment with the same support. Crucially there is no support mismatch and therefore we are in
a setting close to the full information setting which allows us to bound RM by a quantity independent of the
horizon T .

Lemma A.13 (Bound on RM ).

E[RM ] ≤ 4Mp(ν∗ + 1)2 + 2MK
6(ν∗ + 1)

r

Proof of Lemma A.13. The proof of Lemma A.13 follows similar techniques as Huang et al. (2017).

E[RM ] = E[
T∑

t=1

⟨µ, g(M∗
E(t))− g(M(t))⟩]

= E[
2(ν∗+1)2∑

t=1

⟨µ, g(M∗
E(t))− g(M(t))⟩] + E[

T∑
t=2(ν∗+1)2

⟨µ, g(M∗
E(t))− g(M(t))⟩]

≤ 4Mp(ν∗ + 1)2 + E[
T∑

t=2(ν∗+1)2

⟨µ, g(M∗
E(t))− g(M(t))⟩]

︸ ︷︷ ︸
(i)

(By Equation (9))
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Then we write

(i) ≤
T∑

t=2(ν∗+1)2

E[⟨µ− µ̂(t′), g(M∗
E(t))− g(M(t))⟩︸ ︷︷ ︸
Yt

] (With t′ = 2⌊log2(t)⌋)

=

T∑
t=2(ν∗+1)2

E[Yt1
{
q(t′) ≤ p

3
τ(t′)

}
+ Yt1

{
q(t′) ≤ p

3
τ(t′)

}
]

≤
T∑

t=2(ν∗+1)2

(E[Yt1
{
q(t′) ≤ p

3
τ(t′)

}
] + 2MpP (q(t′) ≤ p

3
τ(t′)))

≤
T∑

t=2(ν∗+1)2

E[Yt1
{
q(t′) ≤ p

3
τ(t′)

}
]

︸ ︷︷ ︸
(a)

+

T∑
t=2(ν∗+1)2

2KMp exp(−2

9
pτ(t′))

︸ ︷︷ ︸
(b)

Bounding (b):

(b) ≤
T∑

t=2(ν∗+1)2

2KMp exp(−2

9
pτ(t/2)) (Since t/2 ≤ t′ and τ increasing)

≤
T∑

t=2(ν∗+1)2

2KMp exp(−2

9
p(

t

2(ν∗ + 1)
− ν∗)) (By Lemma A.5)

≤
T∑

t=1

2MKp exp(−2

9
p(

t

2(ν∗ + 1)
))

≤ 18MKp(ν∗ + 1)

p

Bounding (a):

(a) ≤
T∑

t=2(ν∗+1)2

MpE
[
∥µ− µ̂(t′)∥∞1{∥µ− µ̂(t′)∥∞ ≥ r}1

{
q(t′) ≤ p

3
τ(t′)

}]
(By Equation (9) and definition of r)

≤
T∑

t=2(ν∗+1)2

2MpE
[
(rP{|µ− µ̂(t′)|∞ ≥ r}+

∫ ∞

r

P{∥µ− µ̂(t′)∥∞ ≥ ε}dε)1
{
q(t′) ≤ p

3
τ(t′)

}]

≤
T∑

t=2(ν∗+1)2

E[2MpK
(
r exp(−2q(t′)r2) +

∫ ∞

r

exp(−2q(t′)ε2)dε
)
1
{
q(t′) ≤ p

3
τ(t′)

}
]
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so we have

(i) ≤ E[
∞∑

t=2(ν∗+1)2

2MpK
(
r exp(−2q(t′)r2) +

∫ ∞

r

exp(−2q(t′)ε2)dε
)
1
{
q(t′) ≤ p

3
τ(t′)

}
]

≤ E[
∞∑

t=2(ν∗+1)2

2MpK
(
r exp(−21

3
pτ(t′)r2) +

∫ ∞

r

exp(−21
3
pτ(t′)ε2)dε

)
]

≤
∞∑
t=1

2MpK
(
r exp(−21

3
p

t

2(ν∗ + 1)
r2) +

∫ ∞

r

exp(−21
3
p

t

2(ν∗ + 1)
ε2)dε

)
(By Lemma A.5)

≤
∞∑
t=1

2MpK
(
r exp(−21

3
p

t

2(ν∗ + 1)
r2) +

∫ ∞

r

exp(−21
3
p

t

2(ν∗ + 1)
ε2)dε

)
≤ 2MpK

(
r
6(ν∗ + 1)

2pr2
+

∫ ∞

r

6(ν∗ + 1)

2pε2
dε
)

≤ 2MpK
6(ν∗ + 1)

2p

(1
r
+

1

r

)
= 2MK

6(ν∗ + 1)

r

so that
E[RM ] ≤ 4Mp(ν∗ + 1)2 + 2MK

6(ν∗ + 1)

r

The upper bound of quasi-centralized Cautious Greedy in Proposition 3.1 follows by combining the previous
lemmas:

E[R] ≤ RUB
cCG

∆
=

960M2p log(2K2T 3)(ν∗ + 1)

∆(ν∗)
+

ν∑
ν′=1

672(ν∗ + 1) log(2T 3K2)

µ(ν∗+1) − µν′
+

265MK(ν∗ + 1)

r

where all constants have been put in the term in 1
r .

Then we move on to Cautious Greedy with limited communication and show

Lemma A.14. The regret of Cautious Greedy with limited communication is given by:

E[RCG] ≤ 4RUB
CG +

16M2p

− log(1− pg)
+ 16M2p

log(2MT 2)

− log(1− pg))
1{ν∗ ̸= 0}+ 2Mp+ log2(8M)2Mp

Proof. Call Es the event "∀m ∈ [M ], at least one call of SENDm→gateway and at least one call of SENDgateway→m

succeeds".

Call s∗ = min{s, 2s ≥ ⌈ 8M log(2MT 2)
− log(1−pg)

⌉}, we have that

∀s ≥ s∗P(Ēs) ≤ 2M(1− pg)
2s−2

M ≤ 1

T 2

and in particular,

P(∪log(T )
s=s∗ Ēs) ≤

1

T

The regret RCG can therefore be decomposed as

E[RCG] ≤
s∗∑
s=1

2s+1∑
t=2s

E[RCG(t)]︸ ︷︷ ︸
(i)

+

⌊log2(T )⌋∑
s=s∗+1

2s+1∑
t=2s

E[RCG(t)1
{
∩log(T )
s=s∗ Es

}
]︸ ︷︷ ︸

(ii)

+2Mp
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Under ∩log(T )
s=s∗ Es, stage l > s∗ uses 2s samples for each phase s ≤ l − 2 but only 2s−1 samples from phase l − 1.

In particular it uses 2s−1 samples from each phase up to phase l − 1. Therefore:

(ii) ≤ 2RUB
CG

For (i), we can write

(i) = (i)(1{ν∗ = 0}+ 1{ν∗ ̸= 0})

≤ (i)1{ν∗ = 0}+ 16M2p
log(2MT 2)

log(1/(1− pg))
1{ν∗ ̸= 0}

Then we have

(i)1{ν∗ = 0} ≤
s∗∑

s=log2(8M)

2s+1∑
t=2s

E[RCG(t)]1{ν∗ = 0}+ log2(8M)2Mp

The condition s > log2(8M) is to ensure that at least 2M call to SEND can be performed.

Let us then write:

s∗∑
s=log2(8M)

2s+1∑
t=2s

E[RCG(t)1{ν∗ = 0} (1{Es}+ 1
{
Ēs

}
])

≤ 2RUB
CG1{ν∗ = 0}+

s∗∑
s=log2(8M)

2Mp2sE[1
{
Ēs

}
]

and we have:
s∗∑

s=log2(8M)

2sE[1
{
Ēs

}
] ≤

s∗∑
s=log2(8M)

2s exp(
log(1− pg)

8M
2s)

≤ 8M

− log(1− pg)

which concludes the proof

Summing up, the upper bound of cautious greedy with limited communication is given by:

E[RCG] ≤ 4RUB
cCG +

16M2p

− log(1− pg)
+ 16M2p

log(2MT 2)

− log(1− pg))
1{ν∗ ̸= 0}+ 2Mp+ log2(8M)2Mp

≤ 3840M2p log(2K2T 3)(ν∗ + 1)

∆(ν∗)
+

ν∗∑
ν=1

2688(ν∗ + 1) log(2T 3K2)

µ(ν∗+1) − µν
+

1078MK(ν∗ + 1)

r

+
16M2p

− log(1− pg)
(1 + log(2MT 2)1{ν∗ ̸= 0})

A.4 Proof of Lemma 4.1

Proof. We assume M = 2N + 1. Take m1 = 1
2 , m2 = 1

2 +∆, µ1 = (m1,m2) and µ2 = (m2,m1).

Condition on ∆ such that M∗ = (N,N + 1) if µ = µ1 and M∗ = (N + 1, N) if µ = µ2 Let us first find ∆
such that the optimal assignment is (N,N + 1) when µ = µ1 and (N + 1, N) when µ = µ2. Assume µ = µ1, the
reasoning is symmetric for µ = µ2. We want to find ∆ such that for any −(N + 1) ≤ x ≤ N such that x ̸= 0:

g(N − x)
1

2
+ g(N + 1 + x)(

1

2
+ ∆) ≤ g(N)

1

2
+ g(N + 1)(

1

2
+ ∆) (12)
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First for x = N we look for ∆ in the form ∆ = O(p)

g(2N + 1)(
1

2
+ ∆) ≤ g(N)

1

2
+ g(N + 1)(

1

2
+ ∆)

⇐⇒ (2N + 1)(1− p)2N (
1

2
+ ∆) ≤ N

1

2
+ (N + 1)(1− p)(

1

2
+ ∆)

⇐= (2N + 1)(1− p)(
1

2
+ ∆) ≤ N

1

2
+ (N + 1)(1− p)(

1

2
+ ∆) (Using (1− p)2N ≤ (1− p))

⇐⇒ N(1− p)(
1

2
+ ∆) ≤ N

1

2

⇐⇒ ∆ ≤ 1

2
(

1

1− p
− 1)

⇐⇒ ∆ ≤ p

2(1− p)

Then if ∆ ≤ p
1−p , Equation (12) is satisfied for x = N .

For x = −(N + 1), the left-hand side of Equation (12) is g(2N + 1) 12 ≤ g(2N + 1)( 12 + ∆) so if ∆ ≤ p
1−p

Equation (12) is satisfied for x = −(N + 1).

For 0 < x < N , we have

g(N − x)
1

2
+ g(N + 1 + x)(

1

2
+ ∆) ≤ g(N)

1

2
+ g(N + 1)(

1

2
+ ∆)

⇐⇒ (N − x)
1

2
+ (N + 1 + x)(1− p)1+2x(

1

2
+ ∆) ≤ N(1− p)x + (N + 1)(1− p)x+1(

1

2
+ ∆)

⇐=
(
x(1− p)x+1

)
(
1

2
+ ∆) ≤ N(1− p)x − (N − x)

1

2
(Using (1− p)2x+1 ≤ (1− p)x+1)

⇐=
(
x(1− p)x+1

)
(
1

2
+ ∆) ≤ x

2
(Using (1− p)x ≥ 1√

e
≥ 1

2 since x ≤ 1
−2 log(1−p) )

⇐=
(
x(1− p)

)
(
1

2
+ ∆) ≤ x

2
(Using (1− p)x+1 ≤ (1− p))

⇐⇒ ∆ ≤ 1

2
(

1

1− p
− 1)

⇐⇒ ∆ ≤ p

2(1− p)

Therefore if ∆ ≤ p, Equation (12) is satisfied for 0 < x < N .

For −(N + 1) < x < 0, set y = −x− 1 so that x = −y − 1 and 0 ≤ y ≤ N . We can write g(N − x) 12 + g(N +
1 + x)( 12 +∆) = g(N + y + 1) 12 + g(N − y)( 12 +∆) < g(N + y + 1)( 12 +∆) + g(N − y) 12 which gives the desired
inequality for y = 0. For y > 0, Equation (12) is satisfied if ∆ ≤ p

1−p . Therefore if ∆ ≤ p
1−p , Equation (12) is

satisfied and therefore, the optimal assignment if µ = µ1 is M∗ = (N,N + 1).

Computing r Let us now compute r. Assume again µ = µ1 and the reasoning is symmetric for µ = µ2. We
have M1 ∪M0 =M and we know M∗ = (N,N + 1) so that r = minµ′,argmaxM∈M⟨µ′,g(M)⟩̸=M∗ ∥µ′ − µ∥∞. Call
µr = argminµ′,argmaxM∈M⟨µ′,g(M)⟩̸=M∗ ∥µ′ − µ∥∞ and Mr = argmaxM∈M⟨µr, g(M)⟩.

Since the number of players assigned to an arm increases with the reward of this arm, we have either µr =
µ+ (r1,−r1) and then Mr = M∗ + (1,−1) or µr = (−r2, r2) and then Mr = M∗ + (−1, 1).

r1 is the minimum value such that

g(N + 1)(
1

2
+ r1) + g(N)(

1

2
+ ∆− r1) ≥ g(N)(

1

2
+ r1) + g(N + 1)(

1

2
+ ∆− r1)

⇐⇒ (g(N + 1)− g(N))(
1

2
+ r1) ≥ (g(N + 1)− g(N))(

1

2
+ ∆− r1)
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and therefore r1 = ∆
2

r2 is the minimum value such that

g(N − 1)(
1

2
− r2) + g(N + 2)(

1

2
+ ∆+ r2) ≥ g(N)(

1

2
− r2) + g(N + 1)(

1

2
+ ∆+ r2)

⇐⇒ (g(N + 2)− g(N + 1))(
1

2
+ ∆+ r2) ≥ (g(N)− g(N − 1))(

1

2
− r2)

⇐⇒ r2(g(N + 2)− g(N + 1) + g(N)− g(N − 1)) ≥ (g(N + 1)− g(N + 2))(
1

2
+ ∆) + (g(N)− g(N − 1))

1

2

=⇒ r2 ≥
(g(N + 1)− g(N + 2))( 12 +∆) + (g(N)− g(N − 1)) 12

2(g(N)− g(N − 1))

⇐⇒ r2 ≥
((N + 1)(1− p)2 − (N + 2)(1− p)3)( 12 +∆) + (N(1− p)− (N − 1)) 12

2(N(1− p)−N − 1)

⇐⇒ r2 ≥
(1− p)2((N + 2)p− 1)( 12 +∆) + (1−Np) 12

2(1−Np)

=⇒ r2 ≥
2p(1− p)2 1

2 + (1− p)2((N + 2)p− 1)∆

2(1−Np)
(Using (1− p)2 ≤ 1)

=⇒ r2 ≥
1
4 (p−∆)

2(1−Np)
(Using (1− p)2 ≥ 1

4 since p ≤ 1
2 )

=⇒ r2 ≥
1

4
(p−∆) (Using p ≤ 1

2N )

Therefore, we choose ∆ ≤ p
6 so that ∆

2 < 1
4 (p−∆) meaning r = r1 = ∆

2 .

Improve the power of the algorithm Let A be any algorithm that we run on data µ such that either µ = µ1

or µ = µ2 (the choice is made by an adversary). Let us increase the amount of information available to A. A is
told that the optimal solution is either µ1 or µ2. Furthermore, at each time step, A chooses M(t) and observes
a sample from arm 1 with probability g(M) and similarly for arm 2. However A does not observe the rewards.
Note that this problem is simpler than the original problem since in the original problem A observes a sample
from arm k with probability g(Mk(t)) ≤ g(M). Therefore, at each time step, A should play either (N, N+1) or
(N+1, N) since any other play would lead to a higher regret.

Link with classical 2-arms bandit problem With the additional information A can be seen as playing a 2
arm bandits with probabilistic triggered arms: playing arm 1 means playing M(t) = (N,N + 1) and playing arm
2 means playing M(t) = (N + 1, N). Call i∗ the optimal arm.

We follow the technique used in Wang and Chen (2017) to rewrite a bandit problem with probabilistically triggered
arms into a classical bandit problem with well chosen discrete random variables: at each time step t, A chooses an
arm it ∈ {1, 2} and observes X(t) = (X1t, X2t) where Xit = 1 with probability g(M)µi, Xit = 0 with probability
g(M)(1− µi) and Xit =⊥ with probability 1− g(M).

However, the regret of A is computed as in the original problem (and this information is known to A):

E[RA] = E[
T∑

t=1

1{it ̸= i∗} ⟨µ, g(M∗)− g(M(t))⟩]

= E[
T∑

t=1

1{it ̸= i∗} (1
2
+ ∆)(g(N + 1)− g(N)) + (

1

2
)(g(N)− g(N + 1))]

= E[
T∑

t=1

1{it ̸= i∗} (∆)(g(N + 1)− g(N))

Then, the rest of the proof is then identical to Mourtada and Gaïffas (2019). Call for i = 1, 2, let Pi be the joint
probability on (X(1), . . . ,X(T )) when µ = µi.
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The regret incurred by A on the worst choice of µ is higher than the regret incurred by choosing the worst
between µ1 and µ2.

E[RA] ≥ max
i∗∈{1,2}

Ei∗ [

T∑
t=1

1{it ̸= i∗} (∆)(g(N + 1)− g(N))]

≥ 1

2

2∑
i∗=1

Ei∗ [

T∑
t=1

1{it ̸= i∗} (∆)(g(N + 1)− g(N))]

=
∆(g(N + 1)− g(N))

2

2∑
i∗=1

Ei∗ [T − Ni∗︸︷︷︸
∆
=
∑T

t=1 1{it=i∗}

]

≥ ∆(g(N + 1)− g(N))

2

T

2

2∑
i∗=1

Pi∗ [
T

2
≥ Ni∗ ]

≥ ∆(g(N + 1)− g(N))

2

T

2
(P1(N1 ≥

T

2
) + P2(N2 ≥

T

2
))

Then by Bretagnolle–Huber inequality (Th 14.2 in Lattimore and Szepesvári (2020)), we have

P1(N1 ≥
T

2
) + P2(N2 ≥

T

2
) ≥ 1

2
exp(−KL(P1,P2))

where KL is the KL-divergence.

More precisely, we have

KL(P1,P2) ≤ Tg(M)(KL(B((1
2
+ ∆)),B(1

2
)) +KL(B((1

2
)),B(1

2
+ ∆)))

≤ 4Tg(M)∆2

and therefore

E[RA] ≥
∆(g(N + 1)− g(N))

2

T

4
exp(−4Tg(M)∆2)

and since the regret increases with T (see (a)), we can assume without loss of generality that T = ⌊ 1
4g(M)∆2 ⌋ ≥

1
8g(M)∆2 and obtain

E[RA] ≥
(g(N + 1)− g(N))

64g(M)∆
exp(−1)

≥ (g(N + 1)− g(N))

64Mp∆
exp(−1)

=
((N + 1)(1− p)−N)

64M∆
exp(−1)

=
(1− (N + 1)p)

64M∆
exp(−1)

≥ 1

128M∆
exp(−1) (Using p ≤ 1

2(N+1) )

A.5 Proof of Lemma 4.2

Take K = ν∗ + 2 arms, M players and µ = (µ1, µ0, µ0 + ∆(1) − ∆(2), . . . , µ0 + ∆(1) − ∆(ν∗), µ0 + ∆(1)). For
simplicity denote ∆ = ∆(1).
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Let us choose µ1, µ0 and ∆ such that the ν∗ + 1-st best assignments are to put M − 1 player on the first arm and
one player on a different arm.

For this we need to ensure the three conditions:

g(M − 1)µ1 + g(1)(µ0 +∆) ≥ g(M − 2)µ1 + 2g(1)(µ0 +∆) (13)
g(M − 1)µ1 + g(1)µ0 ≥ g(M)µ1 (14)

g(M)µ1 ≥ g(M − 2)µ1 + g(2)(µ0 +∆) (15)

Equation (13) ensures that putting strictly less than M − 1 players on the first arm is sub-optimal. Equation (14)
ensures that putting M players on the first arm is worse than any assignment that puts exactly M − 1 players on
the first arm. Equation (15) ensures that putting stricly less than M − 1 players on the first arm is worse than
putting all players on the first arm.

Equation (13) yields

g(M − 1)µ1 + g(1)(µ0 +∆) ≥ g(M − 2)µ1 + 2g(1)(µ0 +∆)

⇐⇒ (µ0 +∆) ≤ g(M − 1)− g(M − 2)

g(1)︸ ︷︷ ︸
h1

µ1

Equation (14) yields

g(M − 1)µ1 + g(1)µ0 ≥ g(M)µ1

⇐⇒ µ0 ≥
g(M)− g(M − 1)

g(1)︸ ︷︷ ︸
h2

µ1

Equation (15) yields

g(M)µ1 ≥ g(M − 2)µ1 + g(2)(µ0 + ∆)

⇐⇒ g(M)− g(M − 2)

g(2)︸ ︷︷ ︸
h3

µ1 ≥ (µ0 +∆)

We have h1 > h2 and

h3 =
g(M)− g(M − 1) + g(M − 1)− g(M − 2)

g(2)
µ1

>
2(g(M)− g(M − 1))

2g(1)
µ1

= h2.

We therefore choose µ1 = 1, µ0 = h2+min(h1,h3)
2 and need ∆ ≤ min(h1,h3)−h2

4

Since g(M)− g(M − 1) = p(1− p)M−2(1−Mp) and

g(M)− g(M − 2) = Mp(1− p)M−1 − (M − 2)p(1− p)M−3

= p(1− p)M−3(M(1− p)2 − (M − 2))

= p(1− p)M−3(M(1− 2p+ p2)−M + 2)

= p(1− p)M−3(2− 2Mp+Mp2)
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we get

h1 − h2 = (1− p)M−3(1− (M − 1)p)− (1− p)M−2(1−Mp)

= (1− p)M−3(1− (M − 1)p− (1− p)(1−Mp))

= (1− p)M−3(1− (M − 1)p− (1− p)(1−Mp))

= (1− p)M−3(1−Mp+ p− (1−Mp− p+Mp2))

= (1− p)M−3(2p−Mp2)

≥ (1− p)M−3p (Using p ≤ 1
M )

≥ (1− p)M−3p (Using p ≤ 1
M )

≥ p

M − 3
(Using minx∈[M ] g(x) = p)

and

h3 − h2 =
1

2
(1− p)M−4(2− 2Mp+Mp2)− (1− p)M−2(1−Mp)

=
1

2
(1− p)M−4(2− 2Mp+Mp2 − 2(1−Mp)(1− p)2)

=
1

2
(1− p)M−4(2− 2Mp+Mp2 − (1−Mp)(2− 4p+ 2p2))

=
1

2
(1− p)M−4(2− 2Mp+Mp2 − (2− 4p+ 2p2 − 2Mp+ 4Mp2 − 2Mp3))

=
1

2
(1− p)M−4(4p− 2p2 + 2Mp3 − 3Mp2)

≥ 1

2
(1− p)M−4(4p− (3M + 2)p2)

≥ 1

2
(1− p)M−4(p) (Using p ≤ 1

M+1 )

≥ p

2(M − 4)
(Using minx∈[M ] g(x) = p)

Noting that 2(M − 4) ≥M − 3 ⇐⇒ M ≥ 5, we obtain that ∆ ≤ min(h1,h3)−h2

4 is implied by ∆ ≤ p
8(M−4) .

Let Nk(T ) be the number of samples of arm k + 1 observed by the consistent algorithm A. Using arguments
similar to Lai & Robbins result Lai et al. (1985) 3 we can prove that

lim inf
T

E[Nk(T )]

log(T )
≥ 1

2∆2
(k)

If mt denotes the number of players put on arm k+1 at stage t, then E[Nk(T )] =
∑T

t=1 g(mt). Denote by ∆k(m)
the cost of the best assignment with m > 0 players on arm k + 1, i.e.,

∆k(m) :=
(
g(M − 1)µ1 + g(1)(µ0 +∆)

)
−

(
g(M −m)µ1 + g(m)(µ0 +∆−∆(k)

)
≥

(
g(M −m)µ1 + g(m)(µ0 +∆)

)
−

(
g(M −m)µ1 + g(m)(µ0 +∆−∆(k)

)
= g(m)∆(k)

and ∆k(0) = 0.
3Consider for any sub-optimal arm k the two possibilities µ and µ′ such that µ′

i = µi for all i except for i = k where
µ′
k = µ0 +∆1 + ϵ and use the same arguments as in Lai & Robbins
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Then consider Ck the cost of the assignment putting the optimal number of players on arm k + 1 and the rest on
arm 1, under the constraint that arm k + 1 has been played sufficiently often.

Ck = min
m1,...,mT :

∑
t g(mt)≥ log(T )

2∆2
(k)

T∑
t=1

∆k(mt) (16)

It is clear that

lim inf
T

E[R(T )]

log(T )
≥ lim inf

T

∑ν∗

k=1 Ck

log(T )

The solution of Equation (16) has a specific form: for t ∈ [τ ], mt is constant, equal to mτ , and defined by

τg(mτ ) ≥
log(T )

2∆2
(k)

and mt = 0 afterwards (with a cost also equal to zero).

As a consequence, one gets that, for a specific value of τ∗,

Ck = τ∗∆k(mτ∗) ≥ log(T )

2∆2
(k)

∆k(mτ∗)

g(mτ∗)
≥ log(T )

2∆(k)

as ∆k(m) ≥ g(m)∆(k).

This implies that, for any consistent algorithm, one must have

lim inf
T

E[R(T )]

log(T )
≥

ν∗∑
ν=1

1

2∆(ν)

B Arms elimination when rewards are close

Lemma B.1 (Necessary conditions for arm elimination). Let k∗ = argmaxk∈[K] µk and α = Mp
K . If p ≤ 0.1,

α ∈ (2p, 1), and mink′∈[K]
µk′
µk∗ ≥ 1.3 exp(−α)(1− α), then ν∗ = 0.

Proof of Lemma B.1. From Bonnefoi et al. (2017), g is concave if x ≤ 2
− log(1−p) and so this is also the case for

x ≤ 1
− log(1−p) . Therefore, we have that for any x ≤ 1

− log(1−p) , g(x)− g(x− 1) ≤ g(y)− g(y − 1) for any y ≤ x.

Assume ν∗ > 0 and consider the optimal policy M∗. Then take an eliminated arm i and consider M′ constructed
from M∗ by taking one player from k∗ and putting it on the eliminated arm i. Using M′ instead of M∗ increase
the utility by: G = µip− µk(g(M

∗
k∗)− g(M∗

k∗ − 1)).

Note that M∗
k∗ ≥Mk for any k ̸= k∗ since k∗ is the best arm. In particular Mk∗ ≥ M

K and by the hypothesis on
the range of α, we have M

K > 2. Also note that by definition of ∆max, µi ≥ ρµk∗ .

We can then write :

G = µip− µk(g(M
∗
k∗)− g(M∗

k∗ − 1))

≥ µk∗

[
ρp− (g(M∗

k∗)− g(M∗
k∗ − 1))

]
(Since µi ≥ ρµk∗)

≥ µk∗

[
ρp− (g(

α

p
)− g(

α

p
− 1))

]
(By concavity of g and M∗

k∗ ≥ M
K = α

p )

= µk∗

[
ρp− p(1− p)

α
p −2(1− α)

]
= µk∗

[
ρp− p(1− p)

α
p (1− α)

(1− p)2

]
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The gain is positive if ρ ≥ 1.3 exp(−α)(1− α) since exp(−α) ≥ exp(−− log(1−p)
p α) = (1− p)

α
p and 1.3 ≥ 1

0.92 ≥
1

(1−p)2 .

Therefore, M∗ cannot be an optimal policy. This shows that ν∗ = 0.

C Centralized UCB

C.1 Description

At time t ∈ [T ], for all k ∈ [K], compute an estimate µ̂k(t) of µk using (6) and an upper bound using

µ̂H
k (t) = min(µ̂k(t) + ζk(t), 1) where ζ is given by k ∈ [K], ζk(t) =

√
log(2T 3K2)

2Tk(t)
and take

M(t+ 1) = argmax
M∈M

⟨µ̂H(t), g(M)⟩

where µ̂H [k] = µ̂H
k .

The code is given in Algorithm 4.

Algorithm 4 UCB
1: Input : M (number of players), K (number of arms), p (probability that a player is active), T (horizon)
2: Initialize estimated rewards: µ̂H = 1
3: for t from 1 to T do
4: Play argmaxM∈M⟨µ̂H , g(M)⟩
5: Compute µ̂ according to (6)

6: Compute ζ according to k ∈ [K], ζk(t) =
√

log(2T 3K2)
2Tk(t)

7: Set µ̂H = min(µ̂+ ζ,1)
8: end for

C.2 Analysis

The next Lemma gives an upper bound on the regret of UCB:

Lemma C.1 (Regret of UCB). The regret of UCB satisfies

E[RUCB ] ≤ 2

√
2K log(2T 3K2)T min(K,Mp+

K

T
) + 2 (17)

Proof. Define the GOOD event as in Lemma A.1.

From Lemma A.2, we have E[RCUCB ] = E[RUCB1{GOOD}] + 2.
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Then, under the GOOD event, we have:

RCUCB =

T∑
t=1

⟨µ, g(M∗)⟩ −
T∑

t=1

⟨µ, g(M(t))⟩

=

T∑
t=1

⟨µ− µ̂H(t), g(M∗)⟩+ ⟨µ̂H(t), g(M∗)− g(M(t))⟩+ ⟨µ̂H(t)− µ, g(M(t))⟩

≤ ⟨µ̂H(t), g(M∗)− g(M(t))⟩+ ⟨µ̂H(t)− µ, g(M(t))⟩ (Since µ̂H ≥ µ by the GOOD event)

≤
T∑

t=1

⟨µ̂H(t)− µ, g(M(t))⟩ (Since M(t) = argmaxM∈M⟨µ̂H , g(M)⟩)

=

K∑
k=1

T∑
t=1

min(1, 2ζk(t))g(Mk(t)) (Since µ ≥ max(µ̂− ζ,0) by the GOOD event)

=

K∑
k=1

T∑
t=1

min(1,

√
2
log(2T 3K2)

Tk(t)
)(g(Mk(t))− ηk(t) + ηk(t)) (*)

≤
K∑

k=1

T∑
t=1

(g(Mk(t))− ηk(t))︸ ︷︷ ︸
(i)

+

K∑
k=1

T∑
t=1

√
2
log(2T 3K2)

Tk(t)
ηk(t)︸ ︷︷ ︸

(ii)

(*) Recall the convention that µ̂k = 1 if Tk(t) = 0. In order to ease the notation, we do not make the distinction
and write 1

Tk(t)
instead of 1{Tk(t)̸=0}

Tk(t)
+ 1{Tk(t) = 0}.

We have that E[(i)] = 0 since

E[g(Mk(t))− ηk(t)] = E[g(Mk(t)]− E[E[ηk(t)|Mk(t)]]

= E[g(Mk(t)]− E[g(Mk(t)]

= 0

and

(ii) =

K∑
k=1

T∑
t=1

√
2
log(2T 3K2)ηk(t)

Tk(t)
(Since ηk(t) =

√
ηk(t) as ηk(t) ∈ {0, 1})

=

K∑
k=1

√
2 log(2T 3K2)

T∑
t=1

√
ηk(t)∑t

ρ=1 ηk(ρ)

=

K∑
k=1

√
2 log(2T 3K2)

max(Tk(T ),1)∑
i=1

1√
i

(Since ∀ρ ∈ [t], ηk(ρ) ∈ {0, 1})

≤
K∑

k=1

2
√
2 log(2T 3K2)max(Tk(T ), 1)

Then we have trivially:

E[(ii)] ≤ 2K
√

2 log(2T 3K2)T (18)
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Otherwise, we write:

E[(ii)] ≤ E[2

√√√√2K log(2T 3K2)

K∑
k=1

(Tk(T ) + 1{Tk(T ) = 0})] (Using
∑K

i=1

√
ai ≤

√
K

∑K
i=1 ai)

≤ 2

√√√√2K log(2T 3K2)

K∑
k=1

(E[Tk(T )] + P(Tk(T ) = 0)) (By Jensen inequality)

= 2

√√√√2K log(2T 3K2)

K∑
k=1

(

T∑
ρ=1

g(Mk(ρ)) +

T∏
ρ=1

(1− g(Mk(ρ))))

≤ 2

√√√√2K log(2T 3K2)

K∑
k=1

(

T∑
ρ=1

Mkp+ 1) (Since 0 ≤ g(Mk) ≤ 1 and g(Mk) ≤Mkp)

≤ 2
√
2K log(2T 3K2)(TMp+K))

and therefore

E[(ii)] ≤ 2

√
2K log(2T 3K2)T min(K,Mp+

K

T
)

so that

E[RUCB ] ≤ 2

√
2K log(2T 3K2)T min(K,Mp+

K

T
)

E[RUCB] ≤ 2K
√
2 log(2T 3K2)T also holds in the case where players have different probability of activation

(pi)i ∈[M ]. This is shown by following the same proof and stopping at Equation (18).

D Solving argmaxME
⟨g(M),v⟩ via a sequential algorithm

We want to solve
argmax

ME

⟨g(M),v⟩ (19)

where E ⊂ [K].

The sequential algorithm of (Dakdouk, 2022, Algorithm 5) is optimal if E = ∅ and Mp
1−p ≤ K (Th 4.2). At each

time step, the sequential algorithm chooses a new player to assign to an arm based on some arm-specific criterion
that decreases with the number of players assigned to this arm (Lemma 4.2).

Call a1, . . . , aM ∈ [K] the arms chosen by the sequential algorithm for players 1, . . . ,M . The first thing to note is
that if the first player is assigned to ai and then the sequential algorithm is run. The resulting algorithm that we
call A reaches the same solution as the sequential algorithm (ignoring the order).

Indeed as adding a player to some arm can only decrease its criterion, the assignment chosen by A is ai, a1, . . . , ak
until ak+1 = ai. Then everything happens as if the assignment chosen by A was a1, . . . , ak+1 and therefore the
rest of the run is the same as the sequential algorithm.

Consider A∗ is the algorithm that assigns the first |E| players to a different arm in E and then follow the sequential
algorithm. Call E ′ the set of arms in E such that for any arm k ∈ E ′ there exists an index i such that ai = k.
Then from the previous argument A∗ behaves as if one player was assigned to every arm in E ′′ = E \ E ′ and then
the sequential algorithm is run. But since none of the arms in E ′′ are equal to a1, . . . , aM and again because
the arm specific criterion decreases with the number of players, the run of A∗ after arms in E ′′ are assigned one
player is a1, . . . , aM−|E′′| which is the optimal solution with M − |E ′′| players. This implies that A∗ produces the
optimal solution.

In addition, we note that this algorithm applied in a fully decentralized setting (typically when a communication
phase fails). Still ensures that the final assignment belongs to ME even if we loose the optimality property in this
case.
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Figure 2: (left) ν∗ = 0, (right) ν∗ = 1, T ∈ {10, 1e3, 1e4, 2e4, 5e4, 1e5}

E Additional experiment

We rerun the experiments in Figure 1 with a larger range of values for T (see Figure 2). Cautious Greedy and
UCB have a better scaling in T than ETC.
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