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Abstract

Transformers are ubiquitous models in the nat-
ural language processing (NLP) community
and have shown impressive empirical successes
in the past few years. However, little is under-
stood about how they reason and the limits of
their computational capabilities. These mod-
els do not process data sequentially, and yet
outperform sequential neural models such as
RNNs. Recent work has shown that these
models can compactly simulate the sequential
reasoning abilities of deterministic finite au-
tomata (DFAs). This leads to the following
question: can transformers simulate the rea-
soning of more complex finite state machines?
In this work, we show that transformers can
simulate weighted finite automata (WFAs),
a class of models which subsumes DFAs, as
well as weighted tree automata (WTA), a
generalization of weighted automata to tree
structured inputs. We prove these claims
formally and provide upper bounds on the
sizes of the transformer models needed as a
function of the number of states the target
automata. Empirically, we perform synthetic
experiments showing that transformers are
able to learn these compact solutions via stan-
dard gradient-based training.

1 INTRODUCTION

Transformers are the backbone of modern NLP systems
(Vaswani et al., 2017). These models have shown im-
pressive gains in the past few years. Large pretrained
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language models can translate texts, write code and
can solve math problems, tasks which all require some
level of sequential reasoning capabilities (Brown et al.,
2020; Chen et al., 2021). However, unlike recurrent
neural networks (RNNs) (Elman, 1990; Hochreiter and
Schmidhuber, 1997), transformers do not perform their
computations sequentially. Instead they process all in-
put tokens in parallel. This defies our intuition as these
models do not possess the inductive bias that naturally
arises from treating a sequence from beginning to end.

In order to understand how transformers implement
sequential reasoning, recent work by Liu et al. (2022)
studied connections between deterministic finite au-
tomata (DFAs) and transformers. DFAs are simple
models that perform deterministic sequential reasoning
on strings from a given alphabet, which makes them a
perfect candidate for exploring sequential reasoning in
attention-based models. To do so, the authors consider
the perspective of simulation. Informally, a transformer
is said to simulate a DFA if for an input sequence of
length T , it can output the sequence of states visited
throughout the DFAs computation. The authors also
consider how the complexity needed to perform this
simulation task varies as a function of T . They find
that it is possible to simulate all DFA at length T with
a transformer of size O(log T ). They also show that in
the case where the automaton is solvable, it is possi-
ble to achieve such a result with O(1) size. This sheds
light on how transformers can compactly encode sequen-
tial behavior without explicitly performing sequential
computation.

However this is not representative of the capacities of
transformers. The type of reasoning they implement
can indeed go much further than the simple reasoning
done by DFAs. In this work, we propose to go further
and consider (i) weighted finite automata (WFAs), a
family of automata that generalize DFAs by computing
a real-valued function over a sequence instead of simply
accepting or rejecting it, and (ii) weighted tree au-
tomata (WTA), a generalization of weighted automata
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to tree structured inputs. We show that transformers
can simulate both WFAs as well as WTAs, and that
they can do so compactly.

More precisely, we show that, using hard attention and
bilinear layers, transformers can exactly simulate all
WFAs at length T with O(log T ) layers. Moreover, we
show that using a more standard transformer imple-
mentation, with soft attention and an MLP (multilayer
perceptron), transformers can approximately simulate
all WFAs at length T up to arbitrary precision with
O(log T ) layers and MLP width constant in T . This
first set of results shows that transformers can learn
shortcuts to sequence models significantly more com-
plex than deterministic finite automata. Our second set
of results is about computation over trees. For WTAs,
the notion of simulation we introduce assumes that
the transformer is fed a string representation of a tree
and outputs the states of the WTA for each subtree
of the input. We show that transformers can simulate
WTA to arbitrary precision at length T with O(log T )
layers over balanced trees. Since the class of WTA
subsumes classical (non-weighted) tree automata, an
important corollary we obtain is that transformers can
also simulate tree automata. Our results thus extend
the ones of Liu et al. (2022) for DFAs in two directions:
from boolean to real weights and from sequences to
trees.

Empirically, we study to which extent transformers can
be trained to simulate WFAs. We first show that com-
pact solutions can be found in practice using gradient-
based optimization. To do so, we train transformers
on simulation tasks using synthetic data. We also in-
vestigate if the number of layers and embedding size of
such solutions scale as theory suggests.

2 PRELIMINARIES

2.1 Notation

We denote with N, Z and R the set of natural, integers
and real numbers, respectively. We use bold letters for
vectors (e.g. v ∈ Rd1), bold uppercase letters for matri-
ces (e.g. M ∈ Rd1×d2) and bold calligraphic letters for
tensors (e.g. T ∈ Rd1×...×dn). All vectors considered
are column vectors unless otherwise specified. We de-
note with I the identity matrix and write Im to denote
the m×m identity matrix. We will also denote 0 as the
matrix full of zeros and use 0m×n to denote the m× n
zero matrix or simply 0m when said matrix is square.
The i-th row and the j-th column of a matrix M are
denoted by Mi,: and M:,j . We denote the Frobenius
norm of a matrix as ∥M∥F Finally, we will use ei to
refer to the ith canonical basis vector.

Let Σ be a fixed finite alphabet of symbols, Σ∗ the set

of all finite strings (words) with symbols in Σ and Σn

the set of all finite strings of length n. We use ε to
denote the empty string. Given p, s ∈ Σ∗, we denote
with ps their concatenation.

2.2 Weighted Finite Automata

Weighted finite automata are a generalization of finite
state machines (Droste et al., 2009; Mohri, 2009; Salo-
maa and Soittola, 1978). This class of models subsumes
deterministic and non-deterministic finite automata, as
WFAs can calculate a function over strings in addition
to accepting or rejecting a word. While general WFAs
can have weights in arbitrary semi-rings, we focus our
attention on WFAs with real weights, as they are more
relevant to machine learning applications.
Definition 2.1. A weighted finite automaton (WFA)
of n states over Σ is a tuple A = ⟨α, {Aσ}σ∈Σ,β⟩,
where α, β ∈ Rn are the initial and final weight vectors,
respectively, and Aσ ∈ Rn×n is the matrix containing
the transition weights associated with each symbol σ ∈
Σ. Every WFA A with real weights realizes a function
fA : Σ∗ → R, i.e. given a string x = x1 · · ·xt ∈ Σ∗, it
returns fA(x) = α⊤Ax1 · · ·Axtβ = α⊤Axβ.

To simplify the notation, we write the product of tran-
sition maps Ax1 · · ·Axt as Ax1···xt or even Ax1:t for
longer sequences.

Similarly to ordinary DFAs, we define the state
of a WFA on a word x1 · · ·xt to be the product
α⊤Ax1 . . .Axt . In light of this, we define A(x) to
be the function that returns the sequence of states for
a given word x ∈ ΣT . More formally, we have

A(x) = (α⊤,α⊤Ax1 ,α⊤Ax1x2 , . . . ,α⊤Ax1:T )⊤

There exist many model families encompassed by
WFAs, one of the most well-known subsets of these
models are hidden Markov models (HMMs).

2.3 Weighted Tree Automata

Weighted tree automata (WTA) extend the notion of
WFAs to the tree domain. In all generality, WTAs can
be defined with weights over an arbitrary semi-ring and
have as domain the set of ranked trees over an arbitrary
ranked alphabet (Droste et al., 2009). Here, we only
consider WTAs with real weights (for their relevance
to machine learning applications) defined over binary
trees (for simplicity of exposition). We first formally
define the domain of WTAs we will consider.
Definition 2.2. Given a finite alphabet Σ, the set of
binary trees with leafs labeled by symbols in Σ is denoted
by TΣ (or simply T if the leaf alphabet is clear from
context). Formally, TΣ is the smallest set such that
Σ ⊂ TΣ and (t1, t2) ∈ TΣ for all t1, t2 ∈ TΣ.
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A WTA (with real weights) computes a function map-
ping trees in TΣ to real values. In the context of
machine learning, they can thus be thought of as pa-
rameterized models for functions defined over trees (e.g.
probability distributions or scoring functions). The
computation of a WTA is performed in a bottom up
fashion: (i) for each leaf, the state of a WTA with n
states is an n-dimensional vector, (ii) the states for all
subtrees are computed recursively from the ground up
by applying a bilinear map to the left and right child of
each internal nodes (iii) similarly to WFAs, the output
of a WTA is then a linear function of the state of the
root. Formally,

Definition 2.3. A weighted tree automaton (WTA)
A with n states on TΣ is a tuple ⟨α ∈ Rn,T ∈
Rn×n×n, {vσ ∈ Rn}σ∈Σ⟩. A WTA A computes a func-
tion fA : TΣ → R defined by fA(t) = ⟨α, µ(t)⟩ where
the mapping µ : TΣ → Rn is recursively defined by

• µ(σ) = vσ for all σ ∈ Σ,

• µ((t1, t2)) = T ×2µ(t1)×3µ(t2) for all t1, t2 ∈ TΣ.

The states of an n state WTA are thus the n-
dimensional vectors µ(τ) for each subtree τ of the
input tree. The computation of states of a WTA on an
exemple tree is illustrated in Figure 2 (left).

WTAs are naturally related to weighted (and proba-
bilistic) context free grammars in the following ways.
First, the set of derivation trees of a context free gram-
mar is a regular tree language, that is a language that
can be recognized by a tree automaton (Magidor and
Moran, 1970; Comon et al., 2008). Furthermore, a
weighted context free grammar (WCFG)) maps any
sequence to a real value by summing the weights of
all valid derivation trees of the input sequence, where
the weight of a tree is the value computed by a given
WTA (which defines the WCFG) (Droste et al., 2009).

2.4 Transformers

The transformer architecture used in our construction
is very similar to the encoder in the original transformer
architecture (Vaswani et al., 2017). First, we define
the self-attention mechanism as

f(X) = softmax(XWQW
⊤
KX⊤)XWV ,

where WQ,WK ,WV ∈ Rd×k, d is the embedding di-
mension and k is some chosen dimension, usually with
k < d. Note that the softmax is taken row-wise.

One can also define the self attention layer using hard
attention by setting the largest value row-wise to 1 and
all others to 0. This can be thought of as each row
"selecting" a specific token to attend to.

By taking h copies of this structure, concatenating the
outputs of each head and applying a linear layer, we
obtain a multi-head attention block, which we denote
fattn.

We can now define the full transformer architecture.
Given a sequence of length T with embedding dimen-
sion d, an L-layer transformer is a sequence to sequence
network ftf : RT×d → RT×d where each layer is com-
posed of a multi-head attention block followed by a
feedforward block in the following manner

fft = f
(L)
mlp ◦ f

(L)
attn ◦ f

(L−1)
mlp ◦ f (L−1)

attn ◦ . . . ◦ f (1)
mlp ◦ f

(1)
attn.

The feedforward block is simply a multilayer perceptron
(MLP). The parameters of this MLP are not necessarily
the same from one layer to another.

2.5 Bilinear Layers

We now introduce a special feed-forward layer which
will be used in the construction for exact simulation of
WFAs.

Definition 2.4. Given two vectors x1 ∈ Rd1 and x2 ∈
Rd2 , a bilinear layer is a map from Rd1 × Rd2 to Rd3

such that

BilinearLayer(x1,x2) = T ×1 x1 ×2 x2 + b

where T ∈ Rd1×d2×d3 and b ∈ Rd3 are learnable pa-
rameters.

It is easy to see that any bilinear map can be computed
by such a layer given that all bilinear maps can be rep-
resented as a tensors (similarly to how linear maps are
represented by matrices). Note that bilinear layers have
been introduced and used for practical applications pre-
viously, especially in the context of multi-modal and
multiview learning (Gao et al., 2016; Li et al., 2017;
Lin et al., 2015).

3 SIMULATING WEIGHTED
AUTOMATA OVER SEQUENCES

In this section, we start by introducing the definition of
simulation for WFAs, which is crucial to understanding
the results in this section. We then state and briefly
analyze our main theorems.

3.1 Simulation Definition

Intuitively, simulation can be thought of as reproduc-
ing the intermediary steps of computation for a given
algorithm. For a WFA, these intermediary steps corre-
spond to the state vectors throughout the computation
over a given word.
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Transformer Simulation

Figure 1: Simulation of the WFA computation over the input w = abba with a transformer.

Definition 3.1. Given a WFA A over some alphabet Σ,
a function f : ΣT → RT×n exactly simulates A at length
T if, for all x ∈ ΣT as input, we have f(x) = A(x),
where A(x) = (α⊤,α⊤Ax1 , . . . ,α⊤Ax1:T )⊤.

Additionally, we define the notion of approximate simu-
lation. Intuitively, given some error tolerance ϵ, we can
always find a function f which can simulate a WFA up
to precision ϵ.

Definition 3.2. Given a WFA A over some alphabet
Σ, a function f : ΣT → RT×n approximately simulates
A at length T with precision ϵ > 0 if for all x ∈ ΣT ,
we have ∥f(x)−A(x)∥F < ϵ.

Using a T layer transformer, it is easy to simulate a
WFA over a sequence of length T . We simply use the
transformer as we would an unrolled RNN; performing
each step of the computation at the corresponding
layer.

However, transformers are typically very shallow net-
works (Brown et al., 2022), which defies intuition given
how deep models tend to be more expressive than their
shallow counterparts (Eldan and Shamir, 2016; Cohen
et al., 2016). This naturally leads to the following ques-
tion: can transformers simulate WFAs using a number
of layers that is less than linear (in the sequence length)?
Following the work of Liu et al. (2022), we define the
notion of shortcuts.

Definition 3.3. Let A be a WFA. If for every T ≥ 0,
there exists a transformer fT that simulates (exactly
or approximately) A at length T with depth L ≤ o(T ),
then we say that there exists a shortcut solution to the
problem of simulating A.

3.2 Main theorems

In the following section, we state our main theorems
and discuss their scope as well as their limitations. The
proofs of these theorems can be found in Appendix B.

Theorem 1. Transformers using bilinear layers in
place of an MLP and hard attention can exactly sim-
ulate all WFAs with n states at length T , with depth

O(log T ), embedding dimension O(n2), attention width
O(n2), MLP width O(n2) and O(1) attention heads.

The proof of this theorem relies on hard attention as
well as the use of bilinear layers. Since this does not
correspond to the typical definition of transformer used
in practice, we derive a second result. This consists in
an approximate version of the previous theorem and
relies on a more standard transformer implementation,
using a softmax and a standard feedforward MLP.

Theorem 2. Transformers can approximately simu-
late all WFAs with n states at length T , up to arbitrary
precision ϵ > 0, with depth O(log T ), embedding dimen-
sion O(n2), attention width O(n2), MLP width O(n4)
and O(1) attention heads.

Notice that the size of the construction does not de-
pend on the approximation error ϵ. This is one of the
advantages of our approximate construction: we can
achieve arbitrary precision without compromising the
size of the model.

The proofs of both theorems rely on the prefix sum
algorithm (Blelloch, 1990), an algorithm that can
compute all T prefixes of a sequence in O(log T )
time (for more details we refer the reader to the ap-
pendix). Formally, this means that given a sequence
x1, x2, . . . , xT as input, the algorithm returns all partial
sums (x1), (x1 + x2), . . . , (x1 + . . .+ xT ).

For both proofs in this section, we consider sequences
of transition maps, and use composition as our "sum"
operation. Using the definition of the transformer
given in Section 2.4, we present a construction which
implements this algorithm. Figure 1 illustrates the key
elements of this construction. Here, we take f

(ℓ)
tf to

be the ℓth layer of an L layer transformer such that
f
(ℓ)
tf = f

(ℓ)
mlp ◦ f

(ℓ)
attn.

4 SIMULATING WEIGHTED TREE
AUTOMATA

We now turn our focus to analyzing the capacity of
transformers to efficiently simulate weighted tree au-
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Transformer Simulation

WTA States Computation

WTA Output

Input Tree

Figure 2: Computation of a WTA on the input tree t = (a, ((b, b), b)) (left) and simulation of the WTA computation
over t with a transformer (right).

tomata.

4.1 Simulation definition

As mentioned in Section 2.3, the states of a WTA
of size n are the n-dimensional vectors µ(τ) for all
subtrees τ of the input tree t. Intuitively, we will say
that a transformer can simulate a given WTA if it can
compute all subtree states µ(τ) when fed as input a
string representation of t. We now proceed to formalize
this notion of simulation.

Given a tree t ∈ TΣ, we denote by str(t) its string
representation, omitting commas. More formally,
str(t) ∈ Σ∗ ∪ {[[, ]]} is recursively defined by

• str(σ) = σ for all σ ∈ Σ,

• str((t1, t2)) = [[ str(t1) str(t2) ]] for all t1, t2 ∈ TΣ.

It is worth mentioning that the mapping t 7→ str(t)
is injective, thus any tree t can be recovered from its
string representation (but not all strings in (Σ∪{[[, ]]})∗
are valid representations of trees).

One can then observe that each opening parenthesis
in str(t) can naturally be mapped to a subtree of t.
Formally, given a tree t, let It = {i = 1, · · · , |str(t)| |
str(t)i ̸=]]} be the set of positions of str(t) correspond-
ing to opening parenthesis and leaf symbols. Then,
the set of subtrees of t can be mapped (one-to-one) to
indices in It:
Definition 4.1. Given a tree t ∈ TΣ, we let τ : It →
TΣ be the mapping defined by

τ(i) = str−1(xixi+1 · · ·xj)

where j is the unique index such that the string
xixi+1 · · ·xj is a valid string representation of a
tree (i.e. s = xixi+1 · · ·xj is the only substring starting
in position i such that there exists a tree τ ∈ TΣ for
which str(τ) = s).

Intuitively, we will say that a transformer can simulate
a WTA if, given some input str(t), the output of the
transformer for each position i ∈ It is equal to the
corresponding state µ(τ(i)) of the WTA after parsing
the subtree τi. We can now formally define the notion
of WTA simulation.

Definition 4.2. Given a WTA A = ⟨α,T , {vσ}σ∈Σ⟩
with n states on TΣ, we say that a function f : (Σ ∪
{[[, ]]})T → (Rn)T simulates A at length T if for all trees
t ∈ TΣ such that |str(t)| ≤ T , f(str(t))i = µ(τi) for all
i ∈ It (where the subtrees τi are defined in Def. 4.1).

Furthermore, we say that a family of functions F sim-
ulates WTAs with n states at length T if for any WTA
A with n states there exists a function f ∈ F that
simulates A at length T .

The overall notion of WTA simulation is illustrated in
Figure 2. Note that this definition could be modified
to encode a tree with the closing brackets instead of
the opening ones. In this case, our results would still
hold using attention layers with causal masking.

4.2 Results

We are now ready to state our main results for weighted
tree automata:

Theorem 3. Transformers can approximately simulate
all WTAs A with n states at length T , up to arbitrary
precision ϵ > 0, with embedding dimension O(n), atten-
tion width O(n), MLP width O(n3) and O(1) attention
heads1. Simulation over arbitrary trees can be done with
depth O(T ) and simulation over balanced trees (trees
whose depth is of order log(T )) with depth O(log(T )).

The construction used in the the proof (which can
be found in Appendix C) revolves around two main

1The big O notation does not hide any large constant
here: the depth is exactly 1 + depth(t), the embedding
dimension and the attention width are n+4+ p (where p is
the size of the positional embedding) and the MLP width
is 1

2
(2n+ 1)(2n+ 2).
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ideas: (i) leveraging the attention mechanism to have
each node attend to the positions corresponding to
its left and right subtrees and (ii) using the feed-
forward layers to approximate the bilinear mapping
(µ(t1), µ(t2)) 7→ µ((t1, t2)) = T ×1 µ(t1) ×2 µ(t2). In
the intial embedding, each leaf position is initialized
to the corresponding leaf state vσ. At each layer of
computation, each position computes the output of
the multilinear map applied to the embeddings of its
respective left and right subtrees. Thus, after one
layer the state of all the subtrees of depth up to 2 have
been computed (leafs and subtrees of the form (σ1, σ2)).
Similarly, after the ℓth layer, the transformer will have
simulated all the states corresponding to subtrees of
depth up to ℓ + 1. Thus after as many layers as the
depth of the input tree, all states have been computed.

We will conclude with a few interesting observations.
First, note that for all balanced tree, all states will
have been computed after O(log T ) layers of computa-
tion. Thus, if we only consider well-balanced trees, i.e.
trees whose depth is in O(log T ), then our construc-
tion constitutes a shortcut. However, in the case of
the most extremely unbalanced tree (which is a comb,
i.e. a tree of the form (σ1, (σ2, (σ3, (· · · ))))), it will
take O(T ) layers to compute all states. At the same
time, in this most extreme case, a tree is nothing else
than a string/sequence, and the computation of the
WTA on this tree can be as well be carried out by
a WFA, which could be simulated by a transformer
with O(log T ) layers from our previous results for WFA.
This raises the question of whether there exist a con-
struction interpolating between the WFA and WTA
constructions proposed in this paper which could simu-
late WTA with O(log T ) layers for arbitrary trees. Still,
this result shows that transformers can indeed learn
shortcuts to WTAs when restricting the set of inputs
to balanced trees.

Second, since WTAs subsume classical finite state tree
automata, an important corollary of our result is that
transformers can also simulate (non-weighted) tree au-
tomata. Classical tree automata can be defined as
WTA with weights in the Boolean semi-ring. Intu-
itively, Boolean computations can, in some sense, be
simulated with real weights by interpreting any non-
zero value as true and any zero value as false, thus
WTA can simulate classical tree automata. Since we
just showed that WTA can in turn be simulated by
transformers, we have the following corollary (whose
proof can be found in appendix).

Corollary 1. Transformers can approximately sim-
ulate all tree automata A with n states at length T ,
up to arbitrary precision ϵ > 0, with the same hyper-
parameters and depth as for WTA given in Theorem 3.

5 EXPERIMENTS

In this section, we investigate if logarithmic shortcut
solutions can be found using gradient descent based
learning. We train transformer models on sequence
to sequence simulation tasks, where, for a given input
sequence, the transformer must produce as output the
corresponding sequence of states. We then study how
varying certain parameters impacts model performance
and compare this with results predicted by theory. We
find that transformer models are indeed capable of
approximately simulating WFAs and that the num-
ber of layers of the model has an important effect on
performance, as predicted by theory.

5.1 Can logarithmic solutions be found?

We first investigate if, under ideal supervision, such
solutions can even be found in the first place. We
evaluate models on target WFAs taken from the Pau-
tomac dataset (Verwer et al., 2014). We use the target
automata to generate sequences of states with length
T = 64.

In Table 1, we report the minimum number of lay-
ers necessary for a transformer to reach a test (mean
squared) error below ϵ = 10−3. We report our find-
ings for L ∈ {2, 4, 6, 8, 10}. If no model achieving ϵ
was found, we indicate this using a dash. This table
also includes all practical information about the target
automaton such as its number of states and the size of
its alphabet.

We see that for more than half of the considered au-
tomata, we are indeed able to find a solution which sat-
isfies our error criterion. However, the minimum values
attained are not always consistent with the logarithmic
threshold for shortcuts we propose in theory (since
T = 64, we would expect L = 6 to be the threshold).
Furthermore, for certain automata, the maximum num-
ber of layers considered does not seem to be sufficient to
achieve the target error. This behavior is not consistent
with the measures of complexity of the problem given
in the table (i.e., number of states, alphabet size, sym-
bol sparsity). In future work, it would be interesting
to see if a more thorough hyperparameter search could
lead to finding shortcut solutions for these automata
as well.

5.2 Do solutions scale as theory suggests?

Next, we investigate how such solutions scale as key
parameters in our construction increase. We study how
the number of layers as well as the size of the embedding
dimension influence the performance of transformer
models trained to simulate synthetic WFAs.
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Pautomac nb 4 12 14 20 30 31 33 38 39 45

num states 12 12 15 11 9 12 13 14 6 14
alphabet size 4 13 12 18 10 5 15 10 14 19

type PFA PFA HMM HMM PFA PFA HMM HMM PFA HMM
symbol sparsity 0.4375 0.3526 0.4944 0.3939 0.6555 0.3833 0.5949 0.7857 0.4167 0.8008
nb layers for ϵ 8 6 2 6 - 8 - 2 - -

Table 1: Minimum number of layers to reach error < ϵ = 10−3

For the experiments concerning the number of layers,
the data is generated using a WFA with 2 states which
counts the number of 0s in a binary string with Σ =
{0, 1}. Figure 3 shows how the mean squared error
(MSE) varies as we increase the number of layers. We
consider T ∈ {16, 32, 64}, and each curve represents a
sequence length for which we run the experiment. The
dotted vertical lines represent the theoretical value for
shortcuts to be found, i.e. log2(T ).

For all sequence lengths, the error curves display a
pronounced elbow. We see that, at first, increasing
the number of layers has a notable effect on decreasing
the MSE. However, after a certain threshold, the MSE
seems to stabilize and adding more layers has negligible
effect. It is also interesting to note how close this
stabilization point is to the number of layers necessary
for shortcut solutions in practice.

For the experiments on the embedding dimension, we
generate data using a WFA which counts k distinct
symbols in sequences over some alphabet Σ. One can
define such a WFA using k + 1 states, where the first
k components of the state correspond to the current
counts for each of the k symbols, and the last com-
ponent is constant and equal to one. As an example,
consider Σ = {a, b, c}, we could define a 2-counting au-
tomata which counts a and b. For the word w = aaabb
such an automaton would return the state

(
3, 2, 1

)
,

where the two first dimensions count a and b respec-
tively. More details about the considered automata
can be found in the appendix.

For the purpose of this experiment, we consider Σ =
{0, 1, 2, ..., 9} and k ∈ {2, 4, 6, 8}, where we count the
k first characters in the alphabet (in numerical order).
For simplicity, we fix both the embedding dimension
and the hidden size of the model to the same value.

The results are presented in Figure 4, where we also
notice that the curves show a pronounced elbow shape.
Interestingly, we note that the stabilisation of the error
does not seem to follow the value n2 predicted by the
theory as closely as for the number of layers. This
may be due to the training procedure considered. For
instance, training on a bigger dataset, for more epochs
or using more varied hyperparameters, the results may
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Figure 3: Average MSE vs. number of layers: For
all considered sequence lengths, adding layers has an
notable effect on the MSE at first, however past a
certain point, the improvement is negligible. This
stabilization is consistent with our theoretical results
(shown as dotted lines).

match more closely the trend predicted by the theory.

6 RELATED WORKS

Formal languages and Neural Networks There
has been extensive study of the relationship between
formal languages and neural networks. Many studies
investigate the empirical performances of sequential
models on formal language recognition tasks. Delétang
et al. (2022); Bhattamishra et al. (2020) show where
transformers and RNN variants lie on the Chomsky
hierarchy by training these models on simple language
recognition tasks. Ebrahimi et al. (2020) study the
empirical performance of transformers on Dyck lan-
guages, which describe balanced strings of brackets.
Merrill et al. (2020) give an alternative hierarchy using
space complexity and rational recurrence. There are
also many theoretical results concerning connections
between formal languages and neural models. Chiang
and Cholak (2022); Daniely and Malach (2020) show
constructions of feedforward neural networks and trans-
formers for PARITY (a language of binary strings such
that the number of 1s is even) and FIRST (a language
of binary strings starting with a 1). Yao et al. (2021),
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Figure 4: Average MSE (log scale) vs. embedding size:
Increasing the embedding size also has a notable effect
on the MSE. However the stabilization of the curves
does not agree with as closely with our theoretical
results (shown as dotted lines).

on the other hand, give constructions of transformers
for Dyck languages.

Neural networks and models of computation
Work has also been done investigating theoretical con-
nections between classical computer science models
and neural networks. The most widely-known result
is certainly Chung and Siegelmann (2021), showing
that RNNs are Turing-complete. However, this work
assumes unbounded computation time and infinite pre-
cision and thus such a result is not very applicable in
more practical settings. Several work focus on extract-
ing DFAs (Weiss et al., 2018; Giles et al., 1992; Omlin
and Giles, 1996; Merrill and Tsilivis, 2022; Muškardin
et al., 2022) and WFAs (Weiss et al., 2019; Okudono
et al., 2020; Zhang et al., 2021) from recurrent neural
networks. A similar, more general approach can be
found in a line of work focusing on extraction from
black-box models on sequential data (Ayache et al.,
2018; Eyraud and Ayache, 2020; Lacroce et al., 2021)
and on knowledge distillation from RNNs and trans-
formers (Eyraud et al., 2023). Interestingly, it is pos-
sible to formally show that WFA are equivalent to 2-
RNNs, a family of RNNs which uses bilinear layers (Li
et al., 2022). Moreover, connections have been shown
between transformers and Boolean circuits. Merrill
et al. (2022); Hao et al. (2022) and Chiang et al. (2023)
show that transformers can implement Boolean circuits
and show which circuit complexity classes transformers
can recognize. On another line of thought, Weiss et al.
(2021) show how transformers can realize declarative
programs.

Closest to our work is Liu et al. (2022), which first
introduced the notion of transformers simulating DFAs.
This paper initially prompted us to investigate what

other families of automata could be simulated by trans-
formers. Moreover, many of the technical ideas used
in Theorem 1 and Theorem 2 are inspired by the proof
they present for the logarithmic case.

Lastly, Zhao et al. (2023) is also very relevant to our
work. Their work shows that transformers can simulate
probabilistic context free grammars (PCFGs). More
precisely, they show that transformers can implement
the inside-outside algorithm (Baker, 1979), which is
a dynamic programming algorithm used to compute
the probability of a given sequence under a PCFG.
I.e., to compute the sum of the values returned by a
given WTA (which defines the PCFG) on all possible
derivation trees of the input sequence: a task orthog-
onal (and more difficult) than the one of simulating
a WTA we consider here. Their construction (under-
standably) requires more parameters than ours (O(T )
layers with O(n) attention heads each and embedding
size of O(nT )).

7 CONCLUSION

In this paper, we theoretically demonstrate that trans-
formers can simulate both WFAs and WTAs. For
WFAs, simulation can be achieved using a number of
layers logarithmic in the sequence length, whereas for
WTAs, the number of layers must be equivalent to the
depth of the tree given as input. Our results extend the
ones of Liu et al. (2022) showing that transformers can
learn shortcuts to models significantly more complex
than deterministic finite automata. We verified on sim-
ple synthetic experiments that such shortcut solutions
to WFAs can indeed be found using gradient based
training methods. We hope that our results may shed
some light on the success of transformers for sequential
reasoning tasks, and give practical considerations in
terms of depth and width of such models for given
tasks.

There are many theoretical and empirical directions in
which our work could be extended. A first question is
whether such shortcut solutions can be found in the
wild. Do transformer models trained on downstream
tasks implement exactly or approximately the algorith-
mic reasoning capabilities of WFAs or WTAs? It may
be interesting to analyze to what extent transformers
natively implement the algorithmic reasoning used in
our constructions. Concerning theoretical results, we
only provide upper bounds to the simulation capacities
of the considered models. One could extend the results
presented in this paper by deriving lower bounds for
either WFA or WTA. We posit that there should exist
languages for which these bounds are tight. Another
interesting question would be to analyze how such so-
lutions scale with sample complexity and optimization
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schemes. Our results are about the existence of short-
cut solutions, but the question of learnability for such
solutions remains open. Empirically or theoretically, it
would be interesting to show how the quantity of data,
optimization procedure, or various aspects of the target
structure can affect the quality of found shortcuts. In
the same line of thought, an analysis of the training
dynamics may be interesting.
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− Supplementary Material −

A Background and Notation

A.1 The Recursive Parallel Scan Algorithm

In this section, we give an in-depth explanatation of the recursive parallel scan algorithm, which is crucial to the
construction in the two first theorems in this paper. The recursive parallel scan algorithm or prefix sum algorithm
is an algorithm which calculates the running sum of a sequence Blelloch (1990) Given a sequence of numbers
{x0, x1, x2, . . . xn}, the method outputs the running sum

y0 = x0

y1 = x0 ⊕ x1

...
yn = x0 ⊕ x1 ⊕ . . .⊕ xn.

Where ⊕ represents any associative binary operator such as addition, string concatenation or matrix multiplication,
for example. In order to compute this running sum, the algorithm uses a divide-and-conquer scheme. The
pseudocode for the algorithm is given below.

Algorithm 1: Prefix Sum (Scan) Algorithm
Data: Input sequence {x0, x1, x2, . . . xn}
for i← 0 to floor(log2 n) do

for j ← 0 to n− 1 do
if j < 2i then

xi+1
j ← xi

j

else
xi+1
j ← xi

j+← xi
j−2i

Here, we take xi
j to be the jth element in the sequence at timestep i.

The key idea of this algorithm is to recursively compute smaller partial sums at each step and combine them
in the step after. The first for loop iterates through the powers of two which determine how far apart each
precomputed sum is to the next (indexed by i). The second for loop recursively combines all partial sums that
are powers of 2i apart. By doing this a total of log n times, we are able to compute the running sum. Figure ??
gives an example of this procedure for a sequence of length 8.

Considering there are O(n) sums to compute at every step, this leads to a total runtime of O(n log n). In terms
of space complexity, such an algorithm can be executed in place, by storing the results of each intermediate
computation in the input array, thus leading to a space complexity of O(1).
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Figure 5: Illustration of the prefix sum algorithm

A.2 Weighted Finite Automata

In this section, we give a more thorough treatment of WFAs and detail the families/instances of automata
considered in the experiments section. We start by recalling the definition of a WFA

Definition A.1. A weighted finite automaton (WFA) of n states over Σ is a tuple A = ⟨α, {Aσ}σ∈Σ,β⟩,
where α, β ∈ Rn are the initial and final weight vectors, respectively, and Aσ ∈ Rn×n is the matrix containing
the transition weights associated with each symbol σ ∈ Σ. Every WFA A with real weights realizes a function
fA : Σ∗ → R, i.e. given a string x = x1 · · ·xt ∈ Σ∗, it returns fA(x) = α⊤Ax1 · · ·Axtβ = α⊤Axβ.

Hidden Markov models Hidden Markov models (HMMs) are statistical models that compute the probability
of seeing a sequence of observable variables subject to some "hidden" variable which follows a Markov process. It
is possible to show that HMMs are a special case of WFAs. Recall the definition of a HMM

Definition A.2. Given a set of states S = {1, . . . , n}, and a set of observations Σ = {1, . . . , p}, a HMM is given
by

• Transition probabilities T ∈ Rn×n, where Tij = P(ht+1 = j | ht = i);

• Observation probabilities O ∈ Rp×n, where Oij = P(ot = i | ht = j);

• An initial distribution π ∈ Rn, where πi = P(h1 = i).

A HMM defines a probability distribution over all possible sequences of observations. The probability of a given
sequence x1x2x3 . . . xk is given by

P(x1x2x3 . . . xk) =
∑
i1

πiOx1,i1

∑
i2

Ti1,i2Ox2,i2 . . .
∑
ik

Tik−1,ikOxk,ik .

Here, notice the similarities between this computation and that of a WFA. This lets us rewrite the HMM
computation in terms of the definition of a WFA:

α = π

Ax = diag(Ox,1, . . . ,Ox,n)T, ∀x ∈ Σ

β = 1 ∈ Rn.

Where 1 is taken to be the vector full of ones. Thus, we have that

P(x1x2x3 . . . xk) = α⊤Ax1Ax2Ax3 . . .Axkβ.

Probabilistic Finite Automata Probabilistic finite automata (PFA) Vidal et al. (2005) are another subcategory
of WFAs which compute probabilities. Here, we do not assume the matrices are row-stochastic as is the case for
HMMs.

Definition A.3. A PFA is a tuple A = ⟨QA,Σ, δA, IA, FA, PA⟩, where:
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• QA is a finite set of states;

• Σ is the alphabet;

• δA ⊆ Q× Σ×Q;

• IA : QA → R+;

• PA : δA → R+;

• FA : QA → R+.

IA, PA and FA are functions such that: ∑
q∈Q

IA(q) = 1

and

∀q ∈ QA, FA(q) +
∑

σ∈Σ,q′∈QA

PA(q, σ, q
′) = 1.

Assuming we have QA = {0, . . . , |Q| − 1}, we can relate PFAs to WFAs in the following way:

αi = IA(i), ∀i ∈ QA

Aσ
ij = PA(i, σ, j) ∀i, j ∈ QA ×QA

βi = FA(i), ∀i ∈ QA.

Counting WFA The WFA which counts the number of 0s considered in the Section 5 is defined with n = 2
and Σ = {0, 1}. The parameters of this automaton are

α =
(
0 1

)⊤
, A0 =

(
1 0
1 1

)
, A1 =

(
1 0
0 1

)
, β =

(
1 0

)⊤
.

Observe that the matrix A0 has the following property

(
A0
)n

=

(
1 0
n 1

)
,

The matrix A1 on the other hand is the identity and leaves the count alone. Thus for some word w ∈ Σ∗, the
state at the end of the computation would be

α⊤Aw =
(
|w|0 1

)
.

k-Counting WFA The k-counting WFA is a generalization of the automata presented in the previous
paragraph. For the purpose of this work, we assume that we always count the k first characters of Σ and that
Σ = {0, 1, . . . N − 1}, where N = |Σ|. Such an automaton needs n = k + 1 states to execute such a computation.
The parameters of this automaton are:

α =
(
1 0 . . . 0

)
∈ Rk+1

Ai = Ik+1 + ek+1e
⊤
i , ∀i < k

Ai = Ik+1, ∀i ≥ k,

with i ∈ Σ. The value of β is not important here as we are solely interested in the state. One could choose a
terminal vector with 1s at specific positions to count the sum of certain symbols or even use 1s and -1s to verify
if two symbols appear the same number of times.
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B Simulating Weighted Finite Automata

B.1 Proof of Theorem 1

First, we recall our first theorem.

Theorem 1. Transformers using bilinear layers and hard attention can exactly simulate all WFAs A at length
T , with depth log T , embedding dimension 2n2 + 2, attention width 2n2 + 2 and MLP width 2n2, where n is the
number of states of A.

Before diving into the details of our construction, we provide a high-level intuition of the proof. Similarly to (Liu
et al., 2022), the key idea of this proof is using the recursive parallel scan algorithm to compute the composition
of all transition maps efficiently. To implement this algorithm using a transformer, we store two copies of each
symbol’s transition map in the embeddings and use the attention mechanism to "shift" one of them by a power of
two.

Then we can use the MLP to calculate the matrix product between both transition maps to obtain the next set of
values in the trajectory. By iterating this process for each of the log T layers, we are able to obtain every ordered
combination of transition maps as it would be the case with the recursive parallel scan algorithm.

Proof. We prove our result by construction. After recalling the main assumptions, we define each element in the
construction.

Important assumptions We list our main assumptions.

• For simplicity, we will only consider cases where the sequence length T is a power of 2. Using padding, we
can extend the construction to arbitrary T .

• We pad the input sequence with an extra T tokens whose embedding are vectorized identities. This extra
space will be used as a buffer to store the "shifted" version of the transition maps. The positions are indexed
as −T + 1, . . . , 0, 1, . . . , T . This could equally be achieved using a more complicated MLP.

• Similarly to (Liu et al., 2022), our construction does not use any residual connections.

• This construction uses hard (or saturated) attention in the self attention block as well as a unique bilinear
layer as the MLP block.

• We assume access to positional encodings at each layer. This could easily be implemented using either a
third attention head (only two are used here) or using residual connections.

Please note that these assumptions are only for ease of exposition. It would be possible, but more complicated, to
give a proof without them.

Embeddings For the embeddings, we will use an embedding dimension of d = 2n2 + 2, where n is the number
of states in the WFA. For a given symbol σt, t ∈ [T ], we define the embedding vector as:

xt =
(
vec(Aσt) vec(Aσt) P1(t) P2(t)

)
=
(
xL xR xP1

xP2

)
,

with positional embeddings P1(t) = cos πt
T and P2(t) = sin πt

T . For t ≤ 0 we have xt =(
vec(I) vec(I) P1(t) P2(t)

)
. We refer to the dimensions associated to the first vectorized transition map as

the left dimensions (indexed xL) and similarly the dimensions associated to the second vectorized transition map
as the right dimensions (indexed xR). We also use indices xP1 and xP2 to refer to the positions associated with
each positional encoding.

Note that the positional embeddings are defined for all values of t ∈ {−T + 1, . . . , 0, 1, . . . , T}, meaning that they
are also defined in the extra T identity-padded dimensions. This is crucial in order to implement the shifting
mechanism explained in the following step.
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Attention mechanism The attention mechanism used in this construction leverages the fact that transformers
process tokens in parallel to implement the recursive parallel scan algorithm. We now detail its parameters and
give some intuition as to their use in the construction.

Every self-attention block in this construction has a total of h = 2 heads. We index the heads using superscripts (L)
and (R). This simplifies the notation as the left and right heads process the left and right parts of the embedding
respectively. The construction uses L = log2(T ) layers, where a layer is taken to be the compositionfmlp ◦ fattn.

For all l layers with 1 ≤ l ≤ L let

W
(L)
Q = W

(R)
Q = W

(R)
K =

(
0n2×2 0n2×2 I2

)⊤
W

(L)
K =

(
0n2×2 0n2×2 ρθ

)⊤
where ρθ is the rotation matrix given by

ρθ =

(
cos θ sin θ
− sin θ cos θ

)
,

and θ is defined as

θ = −π2l−1

T
.

The three first matrices directly select the positional embeddings from the input, and the last matrix selects the
positional embeddings and rotates them according to the value of l. In essence, this rotation is what creates the
power of two shifting necessary for the prefix sum algorithm.

Finally, we set

W
(L)
V =

In2 0n2 0n2×2

0n2 0n2 0n2×2

0n2 0n2 0n2×2


W

(R)
V =

0n2 0n2 0n2×2

0n2 In2 0n2×2

0n2 0n2 0n2×2



These can be thought of as selector matrices. They select the submatrices corresponding to the left and right
embedding sequence blocks.

Feedforward network The feedforward network in this construction is the same for all L layers. It uses a
bilinear layer to compute the vectorized matrix product between transition maps. Note that the bilinear layer is
applied batch-wise. This means that the bilinear layer is applied independently to each row of the input matrix.

We define two linear transformations

W
(L)
sel =

(
In2 0n2 0n2×2

)⊤
W

(R)
sel =

(
0n2 In2 0n2×2

)⊤
.

These matrices select the left and right embeddings. Next, using Lemma 1, we define the weight tensor T . This
tensor computes the matrix product between the left and right embeddings of the transition maps previously
selected by the linear transformations

Finally, we need one last linear layer to copy the result of the compositions into both the left and the right
embeddings. To do so, we define

Wout =
(
In2 In2 0n2×2

)⊤
.

Using this construction, we are able to recover, at the final layer the transition maps
vec(Aσ

1 ), vec(Aσ1σ2), ..., vec(Aσ1...σT ) in the right embedding dimension of the output. In order to transform
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these transition maps into states, we need only apply a transformation Wreadout that maps each transition map
to its corresponding state such that vec(Aσ1...σt) 7→ α⊤Aσ1...σt .

Lemma 1. Let A ∈ Rn×n,B ∈ Rn×n be two square matrices and let vec(·) denote their vectorization. Then there
exists a tensor T ∈ Rn×n×n that computes the vectorized matrix product such that

T ×1 vec(A)×2 vec(B) = vec(AB)

Proof. Let C = AB. Using the component wise definition of matrix product, we have

Cij =

n∑
k=1

AikBkj

Summing over all possible values in A and B, we can write this as

=
∑

i′,j′,i′′,j′′

1{i′ = i, j′ = i′′, j′′ = j}Ai′j′Bi′′j′′

Which lets us define the tensor T ∈ Rn2×n2×n2

componentwise as

T (i′, j′, j′′) = 1{i′ = i, j′ = i′′, j′′ = j}.

This operation can be thought of as taking all multiplicative interactions between the two transition matrices and
summing together those that are related through the matrix product.

B.2 Proof of Theorem 2

First, let us recall the theorem.

Theorem 2. Transformers can approximately simulate all WFAs A at length T , up to arbitrary precision ϵ > 0,
with depth log T , embedding dimension 2n2 + 2, attention width 2n2 + 2 and MLP width 2n4 + 3n2 + 1, where n
is the number of states of A.

The proof of this construction is very similar to that of Theorem 1, as we use the same key idea of the shifting
mechanism. The main difference comes from the fact that we can no longer compute the attention filter exactly
and that the MLP is no longer able to compute the composition of transition maps exactly. The most important
aspect of this proof is understanding how the error propagates through the construction and choosing sufficient
error tolerances. Given a certain ϵ, we want to make sure there exists a construction whose total error is no more
than said ϵ. For the MLP, we leverage the result from (Chong, 2020) on approximating polynomial functions
using neural networks. To state the theorem, we first give some related definitions.

Let C(R) denote the set of all real valued functions, P≤d(R) denote the set of all real polynomials of degree at
most d and P≤d(Rm1 ,Rm2) denote the set of all multivariate polynomials from Rm1 to Rm2 .

Theorem 4. (abridged version of Theorem 3.1 of (Chong, 2020)) Let d ≥ 2 be an integer, let f ∈ P≤d(Rm1 ,Rm2)
and let ρσΘ be a two-layer MLP with activation function σ and parameters Θ = (W1,W2). If σ ∈ C(R) \ P≤d−1,
then for every ϵ > 0, there exists some Θ ∈ {(W1,W2) |W1 ∈ Rm1×N ,W2 ∈ RN×m2} with N =

(
m1+d

d

)
such

that ∥f − ρσΘ∥∞ < ϵ.

Note here that m,n and N do not depend on ϵ. This means that the size of the construction stays constant for
all ϵ > 0.

Proof. We prove our result by construction. Given the similarities to the proof of the exact case, we will only
detail the sections where the construction differs. Let ϵ∗ > 0 be the error tolerance of the transformer.

Important assumptions The assumptions for this proof are the same as the previous one.
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Embeddings We use exactly the same embedding scheme as in the previous proof.

Attention mechanism For the attention mechanism, we use a similar construction as in the previous proof
with some key differences we highlight in this section.

For this attention mechanism, we still use h = 2 heads indexed with (L) and (R). We also use L = log2(T ) layers.

For all l layers, with 1 ≤ l ≤ L, let:

W
(L)
Q = W

(R)
Q = W

(R)
K =

√
C
(
0n2×2 0n2×2 I2

)⊤
W

(L)
K =

√
C
(
0n2×2 0n2×2 ρθ

)⊤
with

ρθ =

(
cos θ sin θ
− sin θ cos θ

)
,

θ = −π2l−1

T

and

C > 0,

where C is a saturating constant used to approximate hard attention. This lets us approximate the shifting
mechanism to arbitrary precision. Notice that C is a constant and thus has no effect on the number of parameters
of our construction.

Feedforward network We do not give an explicit construction for our MLP. Instead, we invoke Theorem 4
leveraging the fact that matrix multiplication is a multivariate polynomial. Let m1,m2 be the input and output
dimensions respectively and N be the size of the hidden layer.

First, we set d = 2 as the multivariate polynomial corresponding to matrix multiplication considers second order
interactions at most. Then, we set m1 = 2n2 + 2 and m2 = n2. The input dimension is the embedding dimension
and the output dimension is the size of the resulting matrix multiplication.

Using Theorem 4, this gives us a hidden size of N =
(
n2+2

2

)
= 2n4 + 3n2 + 1 ∈ O(n4). Note that this value does

not depend on ϵ.

Finally, to this MLP, we append the following linear layer:

Wout =
(
In2 In2 0n2×2

)⊤
,

which lets us copy the result of the composition into both the left and right embeddings.

Error analysis Using an MLP with approximation error ϵmlp and an attention layer with saturating constant
C, we want to derive an expression which recursively bounds the error. Let A(X) be the attention filter. After
the attention block of the first layer, we have

(A(X) +Eattn)XWV = A(X)XWV +EattnXWV︸ ︷︷ ︸
=E′

attn

where Eattn is a matrix representing the error generated by the soft attention. Row-wise at the output of the
MLP block, we have

(Aσ1 + mat(e′1))(A
σ2 + mat(e′2)) + mat(ei,mlp) = Aσ1Aσ2+

Aσ1mat(e′2) + mat(e′1)A
σ2 + mat(e′1)mat(e′2) + (ei,mlp)︸ ︷︷ ︸

error after 1st layer
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where e′i is the ith row vector of E′
attn, ei,mlp is the error generated by the MLP and mat(·) represents matricization.

Taking the norm, we get

ϵ
(1)
tot = ∥Aσ1mat(e′2) + mat(e′1)A

σ2 + mat(e′1)mat(e′2) + (ei,mlp)∥2.

Using the triangle inequality and Cauchy-Schwarz, we obtain the following bound

ϵ
(1)
tot ≤ ϵattn

(
∥Aσ1∥2 + ∥Aσ2∥2

)
+ ϵ2attn + ϵmlp

≤ ϵattn
(
2max

σ∈Σ
∥Aσ∥2︸ ︷︷ ︸

=M

)
+ ϵ2attn + ϵmlp

where ϵattn is the norm of the attention layers error and ϵmlp is the norm of the error incurred by the MLP. Thus
at the second layer attention mechanism, we getA(X+E

(1)
tot)︸ ︷︷ ︸

=A(X)

+Eattn

(X+E
(1)
tot

)
WV = A(X)XWV +A(X)E

(1)
totWV +EattnXWV +EattnE

(1)
totWV︸ ︷︷ ︸

error after attention layer 2

.

Here, E(1)
tot is a matrix such that the norm of each row is ϵ

(1)
tot. To simplify the error analysis through the layer 2

MLP, we set

E
(1)
tot := E

(1)
tot +A(X)E

(1)
totWV +EattnXWV +EattnE

(1)
totWV .

Using a similar approach as for the first layer, we get

ϵ
(2)
tot ≤ ϵ

(1)
totM +

(
ϵ
(1)
tot

)2
+ ϵ

(2)
mlp.

Thus, we can derive the following recursive expression for ℓ ∈ [L]:

ϵ
(ℓ)
tot ≤ ϵ

(ℓ−1)
tot M +

(
ϵ
(ℓ−1)
tot

)2
+ ϵ

(ℓ)
mlp, (1)

where M = 2maxσ∈Σ ∥Aσ∥2, ϵ(ℓ)mlp is the error incurred by the MLP at layer ℓ and ϵ
(ℓ)
tot is the total error at layer

ℓ. For any number of layers, the error remains bounded. This means that we can always choose a large enough C

and a small enough ϵ(ℓ) such that ϵ
(ℓ)
tot ≤ ϵ∗.

Moreover, given that the size of the MLP N does not depend on the target accuracy epsilon to approximate
matrix products, and that the saturating constant C does not affect the parameter count of the attention layer,
we get this bound on ϵ

(ℓ)
tot without ever increasing the number of parameters in our construction.

C Proof of Theorem 3

First, let us recall the theorem

Theorem 3. Transformers can approximately simulate all WTAs A with n states at length T , up to arbitrary
precision ϵ > 0, with embedding dimension O(n), attention width O(n), MLP width O(n3) and O(1) attention
heads. Simulation over arbitrary trees can be done with depth O(T ) and simulation over balanced trees (trees
whose depth is of order log(T )) with depth O(log(T )).

Let A = ⟨α ∈ Rn,T ∈ Rn×n×n, {vσ ∈ Rn}σ∈Σ⟩ be a WTA with n states on TΣ. We will construct a transformer
f such that, for any tree t ∈ TΣ, the output after O(depth(t)) layers is such that f(str(t))i = µ(τ(i)) for all
i ∈ It, where T = |str(t)| and the subtree τ(i) is defined in Def. 4.1. This will show both parts of the theorem as
the depth of any tree t is upper bounded by |str(t)| = T .
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The construction has two parts. The first part complements the initial embeddings with relevant structural
information (such as the depth of each node). This first part has a constant number of layers. The second part of
the transformer computes the sub-tree embeddings µ(τi) iteratively, starting from the deepest sub-trees up to the
root. After depth(t) layers of the second part of the transformer, all the subtree embeddings have been computed.

Proof. We prove our result by construction. Each section details a specific part of the considered construction.

Initial embedding The initial embedding for the ith symbol σi in str(t) is given by

x
(0)
i = (vσi

|| pi || mi || 1)

where

• || denotes vector concatenation

• vσi
is taken from the WTA A if σi ∈ Σ and vσi

= 0 if σi ∈ {[[, ]]}

• pi is the positional encoding

• mi is a marker to distinguish leaf symbols, opening and closing parenthesis. It is defined by mi = 0 if σi ∈ Σ,
mi = 1 if σi = [[ and mi = −1 if σi =]].

• the last entry equal to 1 is for convenience (to compactly integrate the bias terms in the attention computa-
tions).

Enriched embedding The purpose of the first layers of the transformer is to add structural information
related to the tree structure to the initial embedding. We want to obtain the following representation for the ith
symbol σi in str(t):

x
(1)
i = (vσi

|| pi || mi || 1 || di || d2i )

where di is the depth of the root of τi in t.

Computing the depth at each position i ∈ It can easily be done with two layers. The role of the first layer is
simply to add a new component corresponding to shifting the markers mi one position to the right (as shown in
the construction for simulating WFAs, this can be done easily by the attention mechanism). After this first layer,
we will have the intermediate embedding

x
(0.5)
i = (vσi || pi || mi || 1 || mi+1).

Now one can easily check that, by construction,
∑

j≤i mj+1 = depth(τi) for all i ∈ It since the summation is
equal to the difference between the number of open and closed parenthesis before position i. Hence, the attention
mechanism of the second layer can compute the sum di =

∑
j≤i mj+1 by attending to all previous positions

with equal weight. The component d2i can then be approximated to arbitrary precision by an MLP layer with a
constant number of neurons (see Theorem 4).

Tree parsing The next layers of the transformer are used to compute the final output of the WTA, µ(t).
The two heads of each attention layer are built such that each position i ∈ pos([[) := {i | σi = [[} attends to
the corresponding left and right subtrees, respectively. The MLP layers are used to compute the bilinear map
(µ(τ), µ(τ ′)) 7→ T ×1 µ(τ)×2 µ(τ

′), which can be approximated to an arbitrary precision (from Theorem 4).

− Left head − First observe that, by construction, for each i ∈ It, the left child of τi is τi+1. We thus let the
left head attention weight matrices W

(L)
Q ,W

(L)
K ∈ R(n+6)×2 be defined by

A
(L)
i,j = x⊤

i W
(L)
Q W

(L)
K

⊤xj = p⊤
i R

⊤pj

where R denotes the matrix of a 2D rotation of angle π
T . One can easily check that i+ 1 = argmaxj Ai,j , thus by

multiplying the weight matrices by a large enough constant, the attention mechanism will have each position
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attend to the next one. We then use the value matrix W
(L)
V to select the first part of the corresponding embedding.

The output of the left head is thus given by

H(L) = (vσ2 ,vσ3 , · · · ,vσT
,vσT

)

and satisfies H
(L)
:,i = vleft(i) for all i ∈ It, where left(i) denotes the index of the left child of τ(i) in str(t).

− Right head − As mentioned above, for each position i ∈ pos([[), the left child of τi is τi+1, which is also
the next tree in the sequence τi, τi+1, · · · , τT whose depth is depth(τi) + 1. Similarly, the right child of τi is the
second tree in the sequence with depth equal to depth(τi) + 1. Thus, we use the attention mechanism to have
position i attend to the closest position j > i+ 1 satisfying dj = di + 1. In order to do so, we let the right head
attention weight matrices W

(R)
Q ,W

(R)
K ∈ R(n+6)×7 be such that

A
(R)
i,j = x⊤

i W
(R)
Q W

(R)
K

⊤xj = −β(1− (dj − di))
2 + p⊤

i R
⊤pj + 2I[j ≥ i+ 2]

where R denotes the matrix of a 2D rotation of angle 2π
T . The first term ensures that j∗ = argmaxj Ai,j is such

that dj∗ = di + 1; we choose β to be a constant large enough such that the attention weights Ai,j are very small
for all j such that dj ̸= di + 1 (while they are unilaterally 0 for all positions such that dj = di + 1). For all
positions j such that dj = di + 1, the second term enforces that the closest one to position i+ 2 is chosen. Lastly,
the last term enforces that j∗ ≥ i+ 2. It is obtained by using the Fourier approximation of the Heaviside step
function which can be constructed using a constant number of positional embeddings and feedforward layers:

I[j ≥ i+ 2] =
1

2

(
1 +

k∑
l=0

1

2l + 1
sin

(
(2l + 1)(i− j − 1.25π

T
)

))
≃

{
1 for j = i+ 2, i+ 3, ..., T

0 for j = 1, · · · , i+ 1

We thus have that, for all i ∈ It, the position with largest attention weight, j∗ = argmaxj Ai,j , is equal to the
second position after i satisfying dj = di+1, which is the position of the right subtree of τ(i). By multiplying the
weight matrices by a large enough constant, the attention mechanism will thus have each position in It attend to
the corresponding right subtree. We then use the value matrix W

(R)
V to select the first part of the corresponding

embedding. The output of the right head H(R) thus satisfies H
(R)
:,i = vright(i) for all i ∈ It, where right(i) denotes

the index of the right child of τ(i) in str(t).

− Computing embeddings of depth 1 subtrees − We use a third attention layer to simply copy the input
tokens. The MLP is thus fed the input vectors

x̃i = (x
(left)
i || x(right)

i || vσi
|| pi || mi || 1 || di || d2i )

in a batch. These inputs are constructed such that, for all positions i ∈ It, x(left)
i = vleft(i) and x

(right)
i = vright(i).

We thus choose the weight of the MLP layer such that it approximates the map

x̃i 7→
(
m2

i · (T ×1 x
(left)
i ×2 x

(right)
i ) + (1−m2

i )vσi
|| pi || mi || 1 || di || d2i

)
to an arbitrary precision. Since this map is a 4th order polynomial, this can be done with arbitrary precision
with O(n4) neurons (from Theorem 4).

First, observe that we only care about the indices in It, which correspond to leaf symbols or opening parenthesis.
We now make the following observations:

• For positions corresponding to leaf symbols (i.e. all sub-trees of depth 0), we have mi = 0, thus this first
attention layer copies only the corresponding input token without any modifications, which already contains
the sub-tree embedding µ(σi) since the first embedding layer.

• Similarly, for all positions i ∈ It such that depth(τ(i)) > 1, this first layer only copies the corresponding input.
Indeed, for such positions we necessarily have that (i) σi = [[, thus mi = 1 and vσi = 0 and (ii) at least one of
the children of τ(i) is not a leaf and has an initial embedding equal to zero, hence T ×1 x

(left)
i ×2 x

(right)
i = 0.



Michael Rizvi, Maude Lizaire, Clara Lacroce, Guillaume Rabusseau

• For all positions i ∈ It such that depth(τ(i)) = 1, we have that both child embeddings x(left)
i and x

(right)
i have

been initialized to the corresponding leaf embeddings µ(τ(left(i))) and µ(τ(right(i))), respectively. Hence,
for such positions, the corresponding output tokens are equal to

x̃i =
(
T ×1 µ(τ(left(i)))×2 µ(τ(right(i))) || pi || mi || 1 || di || d2i

)
=
(
µ(τi) || pi || mi || 1 || di || d2i

)
.

It follows that after this transformer layer, the output tokens x
(2)
1 , · · · ,x(2)

T are such that, for any i ∈ It such that
depth(τ(i)) ≤ 1, we have x

(2)
i = µ(τi).

− Computing embeddings of all subtrees − One can then check that by constructing the following layers
in a similar fashion, the output tokens x

(ℓ)
1 , · · · ,x(ℓ)

T will be such that x
(ℓ)
i = µ(τi) for any i ∈ It satisfying

depth(τ(i)) ≤ ℓ− 1, which concludes the proof.

D Experiments

D.1 Experimental Details

In this section, we give an in-depth description of the training procedure used for the experiments in Section 5.

General considerations For all experiments, we use the PyTorch TransformerEncoder implementation and use
a model with 2 attention heads. We train using the AdamW optimizer with a learning rate of 0.001 as well as MSE
loss with mean reduction. We use a standard machine learning pipeline with an 80, 10, 10 train/validation/test
split and retain the model with best validation MSE for evaluation on the test set. We evaluate our models on
a sequence to sequence task, where, for a given input sequence, the transformer must produce as output the
corresponding sequence of states. All experiments are conducted on synthetic data with number of examples
N = 10 000. For each task, we record the mean and minimum MSE over 10 runs. All experiments were run on
the internal compute cluster of our institution.

Experiments with Pautomac For the experiments using the automata from the Pautomac Verwer et al.
(2014) dataset, we consider only hidden Markov models (HMMs) and probabilistic finite automata (PFA), as
deterministic probabilistic finite automata (DPFAs) are very close to DFAs and are more in the scope of the
results of (Liu et al., 2022). We also consider only automata with a number of states inferior to 20 to keep the size
of the required transformers small and use a hidden layer size/embedding size of 64 for all experiments. We use a
linear layer followed by softmax at the output for readout, as the task at hand implies computing probability
distributions. For all experiments, we use synthetic data sampled uniformly from the automata’s support with
sequence length T = 64.

Experiments with counting WFA For the experiments using the WFA which counts 0s, we use an embedding
size and a hidden layer size of 16 and use a linear layer for readout at output. Note that here we do not append
a softmax layer to the linear layer. We consider sequence lengths T ∈ {16, 32, 64} and number of layers
L ∈ {1, 2, . . . , 10}. The synthetic data is generated using the following procedure:

For each t ∈ [T ]

• Sample a sequence x uniformly from Σ = {0, 1}.

• Compute the sequence of states for x and store in a T × n array.

An interesting remark concerning this experiment is that if we round the output to the nearest integer at test
time, we obtain an MSE of 0.

Experiments with k-counting WFA For the experiments with the k-counting WFA, we fix the number of
layers to 4 and evaluate the model on sequences of length T = 32. Here, we consider k ∈ {2, 4, 6, 8} and choose
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the embedding size d ∈ {2, 4, 8, 16, 32, 64}. Note here that we use the same value for both embedding dimension
and hidden size. As it is the case for the binary counting WFA, here we also use a linear layer for readout. The
data is generated using the same procedure as described in the above section with the exception that here we
sample from Σ = {0, 1, . . . , k − 1}.

Feature visualization experiment

• fixed embedding size and hidden layer size of 16, nb heads of 2

• trained on sequences of length 16

D.2 Additional Experiments

In this section, we present an extended version of the results of the experiments presented in Section 5.

D.2.1 Can logarithmic solutions be found?

Here, we present the full table of results containing all MSE values for each considered automata. Here we report
the minimum MSE over 10 runs and bold the best MSE for each automaton.

Table 2: MSE for all Pautomac automata

Nb/Nb layers 2 4 6 8 10

pautomac 12 0.005486 0.001660 0.000770 0.000356 0.000710
pautomac 14 0.000264 0.000130 0.000109 0.000158 0.006189
pautomac 20 0.007433 0.002939 0.000911 0.000628 0.000979
pautomac 30 0.029165 0.017486 0.013498 0.012403 0.068889
pautomac 31 0.007002 0.003804 0.001114 0.000890 0.000899
pautomac 33 0.003654 0.001160 0.008794 0.017104 0.016844
pautomac 38 0.001056 0.000466 0.000316 0.000216 0.000213
pautomac 39 0.014218 0.002677 0.001310 0.002736 0.002686
pautomac 45 0.020730 0.018859 0.021852 0.024375 0.023893

D.2.2 Do solutions scale as theory suggests?

Here we present the plots for both the mean and minimum MSE values for the synthetic experiments on number
of layers and embedding size. We equally include tables containing the average MSE values with their respective
standard deviation values. We include these values in a table instead of on the plots directly for readability.
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(a) Average MSE over 10 runs
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(b) Minimum MSE over 10 runs

Figure 6: MSE vs. number of layers: We notice that for both Figures 6a
and 6b, the trend is very similar
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(a) Average MSE over 10 runs
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(b) Minimum MSE over 10 runs

Figure 7: MSE vs. embedding size: Here the trend between average and minimum values is also very similar

Table 3: MSE with standard deviation across layers

number of layers L = 16 L = 32 L = 64

1 0.202724 ± 0.162529 0.445007 ± 0.337551 1.107175 ± 0.660082
2 0.020226 ± 0.01240 0.073415 ± 0.0454464 0.834934 ± 0.253568
3 0.008247 ± 0.002069 0.030223 ± 0.0099422 0.718981 ± 0.506068
4 0.003796 ± 0.002531 0.016276 ± 0.0187777 0.198496 ± 0.369018
5 0.003137 ± 0.001482 0.014042 ± 0.0087545 0.077845 ± 0.1208077
6 0.002000 ± 0.001380 0.009957 ± 0.008190 0.055315 ± 0.060973
7 0.001449 ± 0.002166 0.006567 ± 0.004517 0.049691 ± 0.09459
8 0.001223 ± 0.000897 0.004663 ± 0.006610 0.044012 ± 0.059172
9 0.000945 ± 0.000558 0.003357 ± 0.002276 0.046805 ± 0.146278

10 0.001156 ± 0.000687 0.003093 ± 0.004135 0.029291 ± 0.059460

Table 4: MSE with standard deviation across embedding sizes

embedding size k = 2 k = 4 k = 6 k = 8

2 1.316259 ± 0.0361747 1.537641 ± 0.0553744 1.619518 ± 0.0454326 1.669770 ± 0.046430
4 0.643738 ± 0.0401225 1.016194 ± 0.704216 1.021940 ± 0.091605 1.208901 ±0.092536
8 0.023678 ± 0.011056 0.038078 ± 0.011791 0.186437 ± 0.769370 0.459510 ± 0.164538

16 0.010134± 0.0027882 0.01299 ± 0.002661 0.01768 ± 0.003942 0.026244 ± 0.003718
32 0.006623 ± 0.002187 0.008674 ± 0.002234 0.010712 ± 0.001917 0.011528 ± 0.001126
64 0.003882 ± 0.001105 0.006435 ± 0.003151 0.007041 ± 0.001648 0.009701 ± 0.002908
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