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Abstract

We introduce a lower bounding technique for
the min max correlation clustering problem
and, based on this technique, a combinato-
rial 4-approximation algorithm for complete
graphs. This improves upon the previous
best known approximation guarantees of 5,
using a linear program formulation (Kalhan
et al., 2019), and 40, for a combinatorial algo-
rithm (Davies et al., 2023a). We extend this
algorithm by a greedy joining heuristic and
show empirically that it improves the state
of the art in solution quality and runtime on
several benchmark datasets.

1 INTRODUCTION

Correlation clustering refers to the task of clustering
elements based on pairwise similarity. The objective
is to find a partition of the set of elements such that,
preferably, similar elements are in the same cluster and
dissimilar elements are in distinct clusters. The num-
ber and size of clusters is not predefined but deter-
mined by the pairwise similarities. Originally, the cor-
relation clustering problem is defined by Bansal et al.
(2004) for a graph where each edge {u, v} is labeled ei-
ther + or −, depending on whether u and v are deemed
similar or dissimilar. For any partition of the node set,
an edge {u, v} is said to be in disagreement with the
partition if the edge is labeled − and the nodes u and v
are in the same cluster of the partition, or if the edge is
labeled + and the nodes u and v are in distinct clusters
of the partition. Bansal et al. (2004) study the problem
of finding a partition that minimizes the number of dis-
agreeing edges. More recently, Puleo and Milenkovic
(2016) have introduced the correlation clustering prob-
lem with locally bounded errors. They define for each
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node in the graph the disagreement of that node as the
number of edges that are incident to that node and in
disagreement with the partition. They study the prob-
lem of finding a partition that minimizes a function of
the disagreements of the nodes. Among others, they
consider `p norms for p ≥ 1. In the special case of
p =∞, this leads to the problem of finding a partition
such that the maximum disagreement over all nodes
is minimal. This special case, called min max correla-
tion clustering, has attracted attention as a model of a
sense of fairness (Davies et al., 2023a). Here, we con-
centrate on the special case of complete graphs, i.e.,
every pair of nodes is either a + or a − edge.

As a first contribution, we present a lower bound-
ing technique for the min max correlation clustering
problem for complete graphs. This lower bound can
be computed efficiently, by a combinatorial algorithm,
and does not require solving a linear program (LP).
Moreover, this bound is different from that obtained
by solving the canonical LP relaxation, i.e. instances
exist where either of these bounds is strictly stronger.
As a second contribution, we use this lower bounding
technique to derive a 4-approximation algorithm for
the min max correlation clustering problem for com-
plete graphs. This improves upon the previous best
known approximation guarantees of 5, using an LP
formulation (Kalhan et al., 2019), and 40, for a com-
binatorial algorithm (Davies et al., 2023a). We briefly
discuss generalizations to non-complete and weighted
graphs. However, we do not establish any approxima-
tion guarantees for these cases. As a third contribu-
tion, we extend the 4-approximation by a local search
algorithm that is designed in due consideration of the
insights provided by the lower bound. Empirically,
we show: The lower bound and the 4-approximation
with the local search extension outperform the current
state of the art in both solution quality and runtime
on a variety of benchmark datasets. In particular, we
present lower bounds and approximate solutions for
large graphs out of reach of previous methods.

The remainder of the article is organized as follows.
In Section 2, we discuss related work. In Section 3,
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we state the min max correlation clustering problem
formally. In Section 4, we present the lower bound-
ing technique and derive a 4-approximation algorithm.
In Section 5, we extend the 4-approximation by an
efficient local search heuristic. In Section 6, we ex-
amine the bound and the approximation algorithm
empirically, on several benchmark datasets, and com-
pare these to the state of the art. In Section 7,
we draw conclusions and discuss perspectives for fu-
ture work. Implementations of all our algorithms and
the complete code for reproducing the experiments
are available at https://github.com/JannikIrmai/

min-max-correlation-clustering.

2 RELATED WORK

The correlation clustering problem is introduced orig-
inally by Bansal et al. (2004). It is closely related to
the clique partitioning problem (Grötschel and Wak-
abayashi, 1989, 1990) and the graph partition problem
(Chopra and Rao, 1993) which ask for partitions of
a graph with positive and negative edge weights that
minimize the costs of the edges within clusters and
between clusters, respectively. The graph partition
problem is also known as the multicut problem (Deza
et al., 1992), not to be confused with the multitermi-
nal cut problem (Dahlhaus et al., 1994) or multicom-
modity cut problem (Leighton and Rao, 1999). The
complexity and hardness of approximation of the cor-
relation clustering problem are studied, among others,
by Bansal et al. (2004); Demaine et al. (2006); Ailon
et al. (2008); Voice et al. (2012); Bachrach et al. (2013);
Veldt (2022); Klein et al. (2023). The best known ap-
proximation guarantee for the correlation clustering
problem in unweighted complete graphs is 1.996 + ε,
due to Cohen-Addad et al. (2022).

Puleo and Milenkovic (2016) propose a generalization
of the correlation clustering problem in which the ob-
jective is a function of the disagreements of the nodes.
This is motivated by the idea of bounding disagree-
ments locally in order to model a sense of fairness
and, e.g., penalize partitions in which individual nodes
have a disproportionally large disagreement. As a
special case, they introduce the min max correlation
clustering problem, show that it is np-hard for com-
plete graphs, and provide a 48-approximation algo-
rithm. In a subsequent study, Charikar et al. (2017)
present approximation algorithms for several variants
of the correlation clustering problem, including a 7-
approximation for the min max objective. This is fur-
ther improved by Kalhan et al. (2019) who, among
other results, present a 5-approximation algorithm for
the correlation clustering problem for complete graphs
with the `p objective for all p ≥ 1, which includes the
min max objective (p =∞). Their algorithm is based

on rounding the solution of the canonical LP relax-
ation of the correlation clustering problem. As solving
an LP can be computationally expensive, Davies et al.
(2023a) propose a method for computing a feasible so-
lution to this specific LP more efficiently. While this
solution is not guaranteed to be optimal for the LP, its
objective is at most 8 times greater than that of the op-
timal integral solution for the min max objective. This
results in a 40-approximation for the min max corre-
lation clustering problem for complete graphs, which
is the first approximation that does not require solv-
ing an LP. They show empirically that their algorithm
performs well in practical applications and scales to
instances previously out of reach. The arguments we
use in order to prove the existence and efficiency of a
combinatorial 4-approximation algorithm (Theorem 3)
are closely related to the non-local charging argument
of Davies et al. (2023a). Our arguments are combi-
natorial while Davies et al. (2023a) use a correlation
metric (i.e. a fractional solution to the LP relaxation)
to prove their result. To the best of our knowledge,
nothing is known about the hardness of approxima-
tion for the min max correlation clustering problem.

The more general `p objective is further studied by
Jafarov et al. (2020) who present approximation algo-
rithms for complete weighted graphs with a bounded
weight range. Davies et al. (2023b) establish an algo-
rithm for computing a partition that simultaneously
approximates all `p-norm objectives within a constant
factor.

Another closely related variant of the correlation prob-
lem is studied by Ahmadi et al. (2019). They con-
sider the objective of minimizing the maximum over
the disagreements within all clusters and develop a
O(log(n))-approximation algorithm. An improved ap-
proximation guarantee of 2+ε is given by Kalhan et al.
(2019) who also establish inapproximability within a
factor better than 2 assuming the unique games con-
jecture (UGC). Hence, their approximation guarantee
is the best possible if UGC holds.

3 MIN MAX CORRELATION
CLUSTERING FOR COMPLETE
GRAPHS

To begin with, we state the min max correlation clus-
tering problem for complete graphs formally, using el-
ementary notation. For any set V , let PV denote the
set of all partitions of V . For any Π ∈ PV and any
u ∈ V , let [u]Π denote the unique U ∈ Π such that
u ∈ U . For any graph G = (V,E) and any v ∈ V , let
us refer to Nv := {v} ∪ {w ∈ V | {v, w} ∈ E} as the
neighborhood of v in G, including v itself.

Definition 1. For any graph G = (V,E), the instance
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of the min max correlation clustering problem with re-
spect to G has the form

min
Π∈PV

max
v∈V

|[v]Π4Nv|︸ ︷︷ ︸
=: ϕ(Π)

(MMCC)

where A4B = (A \ B) ∪ (B \ A) is the symmetric
difference of sets. Here, |[v]Π4Nv| is the disagreement
of node v with partition Π and ϕ(Π) is the maximum
disagreement of Π.

MMCC can be understood as a problem with respect
to an edge signed complete graph. More specifically,
one can identify the graph (V,E) in Definition 1 with
the edge signed complete graph (V,E+∪E−) such that
E+ = E.

4 COMBINATORIAL LOWER
BOUND AND
4-APPROXIMATION

In this section, we present a lower bounding technique
for the min max correlation clustering problem for
complete graphs. From this technique, we derive a
4-approximation algorithm.

We begin by establishing properties of partitions and
their maximal disagreement. The following lemma
states that two nodes whose neighborhoods are partic-
ularly similar (respectively dissimilar) must be in the
same cluster (respectively different clusters) in all par-
titions whose maximal disagreement is small enough.

Lemma 1. Let G = (V,E) be a graph. For every
partition Π ∈ PV and every u, v ∈ V :

(a) If |Nu ∩Nv| > 2ϕ(Π) then [u]Π = [v]Π.
(b) If |Nu4Nv| > 2ϕ(Π) then [u]Π 6= [v]Π.

Proof. To prove (a), we show that [u]Π 6= [v]Π im-
plies |Nu ∩ Nv| ≤ 2ϕ(Π). By definition, ϕ(Π) ≥
|Nu4[u]Π| ≥ |Nu \ [u]Π| ≥ |(Nu ∩ Nv) \ [u]Π|. Anal-
ogously, ϕ(Π) ≥ |(Nu ∩ Nv) \ [v]Π|. The assumption
[u]Π 6= [v]Π and the fact that clusters of Π are disjoint
implies the desired |Nu ∩ Nv| ≤ |(Nu ∩ Nw) \ [u]Π| +
|(Nu ∩Nw) \ [v]Π| ≤ 2ϕ(Π).

The second statement can be derived from Proposi-
tion 4.1 of Davies et al. (2023a). For completeness,
we provide a self-contained prove below. We show
that [u]Π = [v]Π implies |Nu4Nv| ≤ 2ϕ(Π). Let

C = [u]Π = [v]Π. By definition:

|Nu4Nv| = |Nu \Nv|+ |Nv \Nu|
= |(Nu \Nv) ∩ C|+ |(Nu \Nv) \ C|

+ |(Nv \Nu) ∩ C|+ |(Nv \Nu) \ C|
≤ |C \Nv|+ |Nu \ C|+ |C \Nu|+ |Nv \ C|
= |Nu4C|+ |Nv4C|
= |Nu4[u]Π|+ |Nv4[v]Π| ≤ 2ϕ(Π) . �

If there exists a partition Π with a given maximal dis-
agreement, Lemma 1 can imply that certain nodes are
in the same cluster and certain nodes are in distinct
clusters. These constraints are captured in the follow-
ing definition.

Definition 2. Let G = (V,E) be a graph and let
d ∈ N. Let Gd = (V,Ed) with Ed = {{u, v} ∈

(
V
2

)
|

|Nu∩Nv| > 2d} be the graph with those pairs of nodes
of G as edges whose neighborhoods intersect in more
than 2d nodes. Let Πd ∈ PV be the partition of V
into the maximal connected components of Gd. For
a cluster C ∈ Πd, let Ud

C = {v ∈ V | |Nw4Nu| ≤
2d ∀w ∈ [v]Πd

∀u ∈ C}.

Note that the clusters of Πd are precisely the sets of
nodes that, by Lemma 1 (a), must be in the same
cluster of any partition Π with maximum disagreement
of ϕ(Π) = d. For all clusters C ∈ Πd, the set V \ Ud

C

is precisely the set of nodes that, by Lemma 1 (b),
cannot be in the cluster containing C of any partition
Π with ϕ(Π) = d.

Theorem 1. Let G = (V,E) be a graph. The smallest
d ∈ N with C ⊆ Ud

C for all C ∈ Πd and

max
v∈V

∣∣∣Nv \ Ud
[v]Πd

∣∣∣+
∣∣∣[v]Πd

\Nv

∣∣∣ ≤ d , (1)

is a lower bound for the min max correlation clustering
problem with respect to graph G. We call this value the
combinatorial lower bound and denote it by CLB(G).

Proof. Let Π ∈ PV be a partition with maximum
disagreement d = ϕ(Π). By Lemma 1 and Defini-
tion 2, the clusters of Π are unions of clusters of Πd

that are contained in the sets Ud
C for C ∈ Πd, i.e.

[v]Πd
⊆ [v]Π ⊆ Ud

[v]Πd
for all v ∈ V . With this, the dis-

agreement of any node v ∈ V with Π can be bounded
by

|Nv4[v]Π| = |Nv \ [v]Π|+ |[v]Π \Nv|
≥ |Nv \ Ud

[v]Πd
|+ |[v]Πd

\Nv| . (2)

Now, let d = CLB(G) be the smallest d ∈ N that sat-
isfies the conditions in the statement of the theorem.
Suppose there exists a partition Π ∈ PV with maxi-
mum disagreement ϕ(Π) = d′ < d. By definition of d,
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there exists v ∈ V with |Nv\Ud
[v]Π

d′
|+|[v]Πd′ \Nv| > d′.

By (2), this implies ϕ(Π) ≥ |Nv4[v]Π| > d′ in contra-
diction to the assumption.

Theorem 2. Let G = (V,E) be a graph. The combi-
natorial lower bound CLB(G) can be computed in time
O(n2 log2(δ) +nδ2) where n is the number of nodes in
G, and δ is the maximum degree of all nodes in G.

Proof. To begin with, we show that for all pairs of
nodes the size of the intersections of their neighbor-
hoods can be computed in time O(n2 +nδ2). This can
be done by the following algorithm: For all u, v ∈ V ,
let I{u,v} = 0. For every w ∈ V and every {u, v} ∈ Nw,
increase I{u,v} by one to account for the fact that w
is in Nu ∩Nv. Then, I{u,v} = |Nu ∩Nv|, and clearly,
this can be done in time O(n2 + nδ2).

Next, we show that for a given d ∈ N it can be de-
cided in time O(n2) whether (1) holds. The parti-
tion Πd consists of the connected components of the
graph whose edges are all pairs of nodes {u, v} ∈

(
V
2

)
with I{u,v} > 2d. These connected components can be
computed, for example, by breadth first search in time
O(n2). For every node v ∈ V , the value |[v]Πd

\ Nv|
can clearly be computed in time O(n). It remains to
compute the value |Nv \ Ud

[v]Πd
| for every v ∈ V . To

this end, we construct an auxiliary graph G′ = (V ′, E′)
whose nodes are the clusters in Πd, and two clusters
C,C ′ ∈ Πd are connected by an edge if and only if
|Nu4Nu′ | ≤ 2d for all u ∈ C and u′ ∈ C ′. Clearly,
this graph can be computed in time O(n2). By defini-
tion of Ud

[v]Πd
:

|Nv \ Ud
[v]Πd
| = |{u ∈ Nv | {[u]Πd

, [v]Πd
} /∈ E′}| , (3)

which is the number of neighbors u of v whose cluster is
not connected to the cluster of v inG′. By representing
G′ with an adjacency matrix, (3) can be evaluated in
time O(n) for each node.

Lastly, the minimal d that satisfies (1) can be com-
puted by a bisection algorithm. Clearly, 0 ≤
CLB(G) ≤ δ. Thus, O(log2(δ)) bisection steps are
sufficient.

This worst case time complexity of O(n2 log2(δ) +
nδ2) ⊆ O(n3) for computing the combinatorial lower
bound is smaller than that of solving the LP relaxation
with O(n2) variables and O(n3) constraints.

Below, Lemma 2 and Corollary 1 state that for every
partition whose maximal disagreement is less than a
quarter of the size of the neighborhood of a given node,
the cluster of that node in the partition is uniquely de-
termined. Afterward, Theorem 3 states that this yields

a 4-approximation algorithm for min max correlation
clustering.

Lemma 2. Let G = (V,E) be a graph and let d =
CLB(G) be the combinatorial lower bound according
to Theorem 1. For any node v ∈ V with |Nv| > 4d:

[v]Πd
= Ud

[v]Πd
= {u ∈ V | |Nu ∩Nv| > |Nv|/2} .

Proof. By definition of the combinatorial lower bound
in Theorem 1: [v]Πd

⊆ Ud
[v]Πd

. To prove the claim,

it remains to show Ud
[v]Πd

⊆ {u ∈ V | |Nu ∩ Nv| >
|Nv|/2} ⊆ [v]Πd

.

By the assumption that |Nv| > 4d, we have |Nv|/2 >
2d, which implies that every u ∈ V that satisfies |Nu∩
Nv| > |Nv|/2 is in [v]Πd

, by definition of Πd. This
yields the second inclusion.

For u ∈ V with |Nu ∩Nv| ≤ |Nv|/2, we have

|Nu4Nv| = |Nu ∪Nv| − |Nu ∩Nv|
≥ |Nv| − |Nv|/2 = |Nv|/2 > 2d ,

and Lemma 1 (b) implies u /∈ Ud
[v]Πd

. This yields the

first inclusion.

Corollary 1. Let G = (V,E) be a graph. For every
partition Π ∈ PV and every node v ∈ V with |Nv| >
4ϕ(Π): [v]Π = {u ∈ V | |Nu ∩Nv| > |Nv|/2}.
Theorem 3. There exists a 4-approximation algo-
rithm for the min max correlation clustering prob-
lem. The 4-approximation can be computed in time
O(n2 + nδ2) where n is the number of nodes and δ is
the largest degree.

Proof. The algorithm starts with the partition into
singleton clusters. Iteratively, a node v with largest
disagreement with respect to the current partition is
selected. If there exists a partition with maximum
disagreement strictly less than |Nv|/4, then the clus-
ter of v is uniquely determined by C = {u ∈ V |
|Nu ∩Nv| > |Nv|/2}, according to Corollary 1. If the
cluster C is in conflict with any previously computed
cluster (i.e. it contains nodes that have been assigned
to a different cluster in an earlier iteration) or it con-
tains a node whose disagreement with respect to that
cluster is greater than |Nv|/4, then there cannot exists
a partition with disagreement less than |Nv|/4. This
implies that the current partition is a 4-approximation,
and the algorithm terminates. Otherwise, C is added
to the current partition and the algorithm continues.

As in Theorem 2, the size of the intersections of neigh-
borhoods of all pairs of nodes can be computed in
O(n2 + nδ2). The algorithm described above termi-
nates after at most O(n) iterations. In each iteration,
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Figure 1: For the graph depicted in a, the combinato-
rial bound (3) is stronger than the LP bound ( 7

4 ). For
the graph depicted in b, the LP bound ( 5

4 ) is stronger
than the combinatorial bound (1). For details, see Ex-
amples 1 and 2.

the cluster C can be computed in O(n). The disagree-
ment of a node with a given cluster can be computed
in O(δ). As each node is assigned to a cluster at most
once, the disagreement needs to be computed for at
most O(n) nodes. Together, this implies the claimed
runtime.

4.1 Relation to LP bound

The combinatorial lower bound from Theorem 1 differs
from the bound obtained by solving the canonical LP
relaxation of the min max correlation clustering prob-
lem. In this section, we show by Examples 1 and 2 that
neither bound is stronger. For an in-depth discussion
of the LP bound, we refer to Kalhan et al. (2019).
An efficient algorithm for computing the combinato-
rial lower bound is detailed in the proof of Theorem 2.

Example 1. Consider the graph G = (V,E) depicted
in Figure 1a. Suppose there exists a partition Π with
maximum disagreement ϕ(Π) ≤ 2. By Lemma 1 (a),
all pairs of nodes whose neighborhoods share at least
five nodes must be in the same cluster in Π. In the
given graph, the neighborhoods of all pairs of nodes
share at most 3 nodes, i.e. Π2 = {{v} | v ∈ V } con-
sists of singleton clusters. By Lemma 1 (b), all pairs of
nodes whose neighborhoods have a symmetric differ-
ence containing five or more nodes must be in distinct
clusters of Π. For the given graph, this implies that 4
must be in a cluster different from that of 1, 2, and 3,
i.e U2

{4} = {0, 4, 5, 6}. We can bound the disagreement
of 4 with respect to partition Π by

|N44[4]Π| = |N4 \ [4]Π|+ |[4]Π \N4|
≥ |N4 \ {0, 4, 5, 6}|+ |{4} \N4| = 3

which is strictly greater than 2, in contradiction to
the assumption. Therefore, every partition has max-
imum disagreement at least 3. In fact, this is the
optimal value assumed e.g. by the partition Π =
{{0, 1}, {2}, {3}, {4, 5, 6}}.

In contrast, the LP bound is 7
4 , which is strictly less

than the combinatorial bound of 3. The LP bound is

assumed by the solution x{4,5} = 0, x{0,1} = x{0,2} =
x{0,3} = x{1,4} = x{1,5} = x{2,4} = x{2,5} = x{3,4} =

x{3,5} = 1
2 , x{1,6} = x{2,6} = x{3,6} = 3

4 , and xe = 1
for all other edges e. The maximum disagreement of
7
4 is obtained at node 4.

Example 2. Consider the graph G = (V,E) depicted
in Figure 1b. Suppose there exists a partition Π with
disagreement ϕ(Π) = 0. Then, by Lemma 1 (a),
all pairs of nodes whose neighborhoods intersect in
at least one node must be in the same cluster in Π.
For the given graph, this implies that all nodes are in
the same cluster, i.e. Π0 = {V }. However, this parti-
tion has disagreement 3, in contrast to the assumption.
Thus, there cannot exist a partition of with disagree-
ment 0.

Next, suppose there exists a partition Π with dis-
agreement ϕ(Π) = 1. By Lemma 1 (a), all pairs of
nodes whose neighborhoods share at least three nodes
must be in the same cluster in Π. This implies that
the nodes 3, 4, and 5 are in the same cluster, i.e.
Π1 = {{0}, {1}, {2}, {3, 4, 5}}. Lemma 1 (b) implies
that all pairs of nodes whose neighborhoods have a
symmetric difference containing more than three nodes
must be in distinct clusters of Π. For the given graph,
we get U1

{0} = {0, 1, 2}, U1
{1} = {0, 1}, U1

{2} = {0, 2}
and U1

{3,4,5} = {3, 4, 5}. For all nodes, the bound (1)
is less than or equal to 1. Therefore, the combinatorial
lower bound of the given graph is 1.

In contrast, the LP bound is 5
4 which is strictly greater

than the combinatorial lower bound of 1. The LP
bound is assumed by the solution x{0,1} = x{0,2} = 1

2 ,

x{1,3} = x{2,4} = 3
4 , x{3,4} = x{3,5} = x{4,5} = 1

4 , and
xe = 1 for all other edges. The maximum disagree-
ment of 5

4 is obtained at nodes 3 and 4.

4.2 Non-complete and weighted graphs

The combinatorial lower bound can be adapted to the
case of non-complete graphs. However, Lemma 1 (b)
needs to be adjusted: If the number of nodes that are
in the negative neighborhood of u and in the positive
neighborhood of v, or vice versa, is greater than 2ϕ(Π),
then u and v must be in distinct clusters. This leads
to a different definition of Ud in Definition 2 which
in turn leads to a different definition of the combina-
torial lower bound in Theorem 1. For this adapted
version, Lemma 2, Corollary 1, and Theorem 3 no
longer hold. Whether this bounding technique for non-
complete graphs can be used to derive an approxima-
tion algorithm is an open problem.

The bounding technique can even be adapted to the
weighted variant of the min max correlation clustering
problem. Again, the main difference lies in Lemma 1.
For two nodes u, v in distinct clusters of a partition,
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each node w in the positive neighborhood of both u
and v contributes to either the disagreement of u or
v. Therefore, w contributes a disagreement of at least
min(θuw, θvw) where θe is the weight of edge e. As
a consequence, the maximum disagreement of u and
v is at least 1

2

∑
w∈Nu∩Nv

min(θuw, θvw). This yields
an analogue to Lemma 1 (a) for the weighted case: If∑

w∈Nu∩Nv
min(θuw, θvw) > 2ϕ(Π), then [u]Π = [v]Π.

Similarly, an analogue to Lemma 1 (b) can be derived.

5 GREEDY JOINING ALGORITHM

The 4-approximation due to Theorem 3 only adds a
cluster if it decreases the maximum disagreement of
the nodes contained in it by at least a factor of four.
Nodes with smaller degree may remain in singleton
clusters. For example, all graphs from practical ap-
plications we consider in Section 6 are such that the
largest node degree is less than four times the combi-
natorial lower bound. For these graphs, the partition
into singleton clusters is a 4-approximation. In prac-
tical applications like these, it is desirable not only
to find a feasible solution that satisfies the approxima-
tion guarantee but also to further improve this feasible
solution by local search.

In this section, we introduce an algorithm that seeks to
iteratively improve a given partition by greedily join-
ing clusters. While we do not establish any improved
approximation guarantee, the feasible solutions found
by this algorithm improve upon the empirical state of
the art for the applications we consider in Section 6.

The algorithm is remarkable simple: In each iteration,
a node w with largest disagreement with respect to
the current partition Π is chosen. Every neighbor v
of w that is not in the same cluster as w in Π con-
tributes to the disagreement for w. The disagreement
of w can potentially be decreased by joining the clus-
ter of w with the cluster of v. If no such neighbor
v exists, the disagreement of w cannot be improved
by joining two clusters, and the algorithm terminates.
Otherwise, we choose one such v that fits well to w ac-
cording to Lemma 1, i.e. such that the intersection of
neighborhoods |Nw ∩ Nv| is large and the symmetric
difference of |Nw4Nv| neighborhoods is small. This
algorithm is detailed in Algorithm 1.

In several places of Algorithm 1, ties can occur: In
Line 3, multiple nodes with largest agreement can ex-
ist. In Line 5, multiple neighbors v of w can have the
same value |Nw∩Nv|− |Nw4Nv|. We break these ties
by considering node degree, as the secondary order-
ing criterion, and node index, as the tertiary ordering
criterion. In Line 3, we select among all nodes with
largest disagreement a node with largest/smallest de-
gree and refer to these two options as Design Choice

Algorithm 1: Greedy Joining

Data: Graph G = (V,E)
Result: Partition Π of V

1 Let Π be the partition computed by the
4-approximation algorithm (Theorem 3)

2 while True do
3 w ∈ argmaxv∈V |Nv4[v]Π|
4 made join = False
5 for v ∈ Nw sorted by |Nw ∩Nv| − |Nw4Nv| in

descending order do
6 if [v]Π = [w]Π then
7 continue // v is already in the

cluster of w.
8 C = [v]Π ∪ [w]Π // join the clusters of v

and w
9 d = maxu∈C |Nu4C| // maximal

disagreement of all nodes in C
10 if d > |Nv4[v]Π| then
11 continue // the maximal disagreement

in C is greater than the current
maximal disagreement

12 Π := Π \ {[v]Π, [w]Π} ∪ {C} // replace the
clusters of v and w by C.

13 made join = True
14 break
15 if not made join then
16 return Π

1 (DC1). In Line 5, we sort neighbors v of w with
the same value |Nw ∩ Nv| − |Nw4Nv| by increas-
ing/decreasing degree (DC2). We investigate two more
choices in the design of Algorithm 1: Instead of sort-
ing the neighbors of w by |Nw ∩ Nv| − |Nw4Nv|,
we consider sorting these only by |Nw ∩ Nv| or only
by −|Nw4Nv| (DC3). Finally, we consider making
Line 10 stricter by discarding a join if there exists
u ∈ C such that the disagreement of u with Π is strictly
less than that of w, but the disagreement of u with C
is equal to the disagreement of w with Π (DC4).

We denote by A the variant of Algorithm 1 where ties
are resolved in favor of largest degree, where neighbor-
hoods are sorted by |Nw ∩ Nv| − |Nw4Nv| and with
the stricter version of Line 10. We denote by A∗ the
algorithm that executes Algorithm 1 for all 24 combi-
nations of DC1-4 and outputs the best solution.

Lemma 3. Algorithm 1 has worst case time complex-
ity of O(n2δ2).

Proof. The algorithm terminates after O(n) joins.
Each join can be computed in time O(nδ2): There are
|Nw| ≤ δ candidate clusters that can be joined with
the cluster of w (Line 5). For each candidate cluster,
the maximum disagreement with respect to the joint
cluster (Line 9) is computed in time O(nδ).

Despite its high worst case time complexity, Algo-
rithm 1 is efficient in practice (see Section 6) for the
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following reason: In real world instances there are typ-
ically only a few nodes with large degree and thus large
disagreement. Therefore, Algorithm 1 only operates
on a few nodes and their neighborhoods. In particu-
lar, it is not necessary to compute the size of the in-
tersections of the neighborhoods of all pairs of nodes.
Note, however, that these computations are required
in order to compute the combinatorial lower bound as
well as in the algorithm by Davies et al. (2023a).

6 EXPERIMENTS

We follow Davies et al. (2023a) and evaluate the com-
binatorial lower bound and the greedy joining algo-
rithm on social network graphs as well as synthetic
graphs. We compare the results to those of Davies
et al. (2023a). All experiments were performed on
a Lenovo X1 Carbon laptop equipped with an Intel
Core i7-10510U CPU @ 1.80GHz and 16 GB LPDDR3
RAM.

6.1 Datasets

Social network graphs The ego-Facebook dataset
(McAuley and Leskovec, 2012) contains ten graphs
that represent circles of friends from the social network
Facebook. The graphs contain 52 to 1,034 nodes and
146 to 30,025 edges. The feather-lastfm-social dataset
(Rozemberczki and Sarkar, 2020) is a social network of
7,624 LastFM users with 27,806 edges. The ca-HepPh
and ca-HepTh datasets (Leskovec et al., 2007) are col-
laboration networks of authors in the field of high en-
ergy physics. They contain 12,008 and 9,977 nodes
and 118,489 and 25,998 edges, respectively. Lastly, the
com-Youtube dataset is a social network of 1,134,890
Youtube users with 2,987,624 edges. These datasets
are available online1.

Synthetic graphs In order to compare algorithms
for the min max correlation clustering problem also in
a more controlled setting, Davies et al. (2023a) syn-
thesize instances of the problem as follows: Beginning
with 10 distinct cliques containing 10 nodes each, a
given number of pairs of nodes are selected at random.
A selected pair is added to the edge set in case the
nodes are not in a clique, and removed from the edge
set, otherwise. I.e., edge are flipped from attractive to
repulsive, or vice versa. The number of disagreements
increases with the number of flips. For each number
f ∈ {0, 50, 100, . . . , 1000} of flips, we construct 10 in-
stances randomly, in this way.

Results In Tables 1 and 2, we report empirical re-
sults for the social network graphs. In Columns 1-4, we

1https://snap.stanford.edu/data/

report the name of the dataset, the number of nodes,
number of edges and largest degree of the graph. In
the columns CLB and LP, we report the combinato-
rial lower bound and the LP bound. In the columns
A and A∗, we report the maximum disagreements of
the partitions found by algorithms A and A∗, as de-
scribed in Section 5. In the columns DMN and KMZ,
we report the maximum disagreements of the parti-
tions found by the algorithm of Davies et al. (2023a)
and Kalhan et al. (2019). Note that the rounding
algorithm utilized by the DMN and KMZ algorithm
is parameterized by two parameters. We denote by
DMN and KMZ the results that are obtained by us-
ing the same parameters for all problem instances and
denote by DMN∗ and KMZ∗ the results that are ob-
tained by searching for the best parameters for each
problem instances individually (for details, see Davies
et al. (2023a)). In the last columns, we report the
times for computing the combinatorial lower bound,
for computing the LP bound, and for running the al-
gorithms A, A∗, and DMN. As our algorithms are im-
plemented in c++ and the DMN algorithm of Davies
et al. (2023a) is originally implemented in python, we
contribute, in addition, a performance optimized c++
implementation of DMN that exploits sparsity of the
input graph. We report the runtime of the original
python implementation (tDMN), as well as that of our
c++ implementation (t++

DMN). We do not report the
runtime of the KMZ algorithm explicitly as it is dom-
inated by solving the LP (tLP). The LP is solved with
Gurobi Optimization, LLC (2023), using the barrier
method.

In Figure 2, we report bounds, maximum disagree-
ments and runtimes for the synthetic instances of the
min max correlation clustering problem. In this fig-
ure, thick lines indicate the median across the 10 ran-
dom instances, shaded areas indicate the second and
third quartile, and dashed lines indicate the 0.1 and
0.9-quantile.

Analysis As can be seen from Tables 1 and 2, the
partitions computed by A have a lower maximum dis-
agreement than those computed by DMN and KMZ,
across all instances. For the Facebook ego-network
with ID 3437, the disagreement of the partition com-
puted by A is 58, compared to 107 computed by DMN.
The runtime of A is approximately one order of mag-
nitude shorter than that of DMN. This is due to the
fact that in DMN, the intersections of neighborhoods
of all pairs of nodes need to be computed, while in A,
these intersections only for the node with the largest
disagreement and its neighbors need to be computed
(Line 5). The disagreement of partitions computed
by A∗ is often strictly less than that computed by A.
The greatest relative improvement of A∗ over A can

https://snap.stanford.edu/data/
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ID |V | |E| δ CLB LP A A∗ DMN DMN∗ KMZ KMZ∗ tCLB tLP tA tA∗ tDMN t++
DMN

0 333 2519 77 32 - 46 44 49 49 - - 5.32 - 0.36 10.4 159 6.58
107 1034 26749 253 95 - 123 122 152 134 - - 112.38 - 3.30 84.1 1,294 230.05
348 224 3192 99 39 39.13 61 50 72 71 89 69 2.12 1.5 · 106 0.53 12.4 117 13.04
414 150 1693 57 18 19.66 27 27 34 31 38 28 2.06 2.0 · 105 0.54 14.5 72 3.27
686 168 1656 77 31 30.48 45 43 47 43 69 47 1.06 4.1 · 105 0.21 6.7 84 4.17
698 61 270 29 11 10.64 16 16 20 18 18 17 0.20 1.6 · 103 0.06 1.5 13 0.27

1684 786 14024 136 52 - 80 78 93 93 - - 65.76 - 2.11 50.0 814 67.03
1912 747 30025 293 118 - 166 163 220 187 - - 41.66 - 4.63 116.4 877 272.84
3437 534 4813 107 49 - 58 57 107 77 - - 7.79 - 0.89 14.9 405 16.24
3980 52 146 18 8 7.34 11 11 12 12 13 13 0.10 6.7 · 102 0.07 1.2 7 0.20

Table 1: This table summarizes the results for the ego-Facebook graphs. The runtime is reported in milliseconds.
The LP bound and KMZ objective is only reported for the five smallest instances as solving the LP for the graph
348 already takes approximately 25 minutes.

Name |V | |E| δ CLB A A∗ DMN DMN∗ tCLB tA tDMN t++
DMN

lastfm 7,624 27,806 216 106 116 116 216 160 1,724 8.74 6.4 · 104 281
HepPh 12,006 118,489 491 208 251 250 333 267 8,023 27.91 1.2 · 105 2,410
HepTh 9,875 25,973 65 34 42 42 65 58 3,611 8.52 1.7 · 105 212

Youtube 1,134,890 2,987,624 28,754 - 15,486 14,796 - - - 4.1 · 104 - -

Table 2: This table summarizes the results for the feather-lastfm-social, ca-HepPh, ca-HepTh, and com-Youtube
graphs. The runtime is reported in milliseconds. For the largest graph, the combinatorial lower bound and DMN
are not computed as this would exceed time and memory constraints.

Figure 2: Depicted above are the maximum disagree-
ments of the partitions computed by the DMN algo-
rithm and our algorithms A, A∗ as well as the lower
bounds according to the combinatorial lower bound
(CLB) and the LP bound. Depicted below are the
runtimes in seconds of all algorithms and both bound-
ing techniques. f is the number of random flips in a
graph with 100 nodes (10 cliques of size 10).

be observed on the Facebook ego-network with ID 348.
Here, the disagreement of 50 is achieved by the greedy
joining algorithm in which neighborhoods are sorted
by −|Nv4Nw|. Similarly, the disagreement of parti-
tions computed by DMN∗ and KMZ∗ are often strictly
less than that computed by DMN and KMZ. The dis-
agreements achieved by A∗ are less than that of DMN∗

and KMZ∗ on all instances except one where there is
a tie.

The combinatorial lower bound (CLB) and the LP
bound are similar. However, the combinatorial lower
bound can be computed many orders of magnitude
faster than the LP bound. For the Facebook ego-
network with ID 348, solving the LP requires approx-
imately 25 minutes while computing the combinato-
rial lower bound takes approximately 2 milliseconds.
The fact that the combinatorial lower bound can be
computed so much more efficiently allows us to com-
pute the first non-trivial lower bounds for larger in-
stances. This includes the five large instances of the
ego-Facebook dataset for which we cannot report an
LP bound in Table 1, and it includes the even larger
graphs in Table 2. Only for the com-Youtube graph
in Table 2 with more than one million nodes have we
found the computation the combinatorial lower bound
to be impractical. Across all other instances, the great-
est relative gap between the maximum disagreement of
the partition computed by A and the lower bound is
1.56 (Facebook ego-network with ID 348).
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For synthetic graphs (Figure 2), the results are similar:
For small numbers of flips, both DMN and A compute
the optimal partition, which can be seen from the fact
that there is no gap between the optimal solution and
the lower bound. For larger numbers of flips, the gap
between the lower bounds and the maximum disagree-
ment of the computed partitions increases. Notably,
the gap of the partitions computed by A is approx-
imately half of the gap of the partitions computed
by DMN. The combinatorial lower bound (CLB) is
slightly stronger than the LP bound. The runtime
of the greedy joining algorithm A is about one order
of magnitude shorter than that of DMN. The differ-
ence in runtime is even greater between CLB and the
LP bound. Similar to the social network graphs, the
greatest relative gap we observe between CLB and the
maximum disagreement of the partition computed by
A is approximately 1.5. In fact, we have not found
instances where the relative gap between CLB and the
maximum disagreement of the partition computed by
A is greater than 2.

7 CONCLUSION

We have introduced a combinatorial lower bounding
technique for the min max correlation clustering prob-
lem for complete graphs. There are instances where
this bound is stronger than the canonical LP bound,
and vice versa. This motivates future work to com-
bine these bounds. To this end, the constraints from
Lemma 1 can be expressed in the form of quadratic
inequalities. However, we have not observed improve-
ments over the LP bound when adding linear relax-
ations of these quadratic inequalities to the LP (results
not shown). From the combinatorial lower bound, we
have derived a 4-approximation that we have extended
by a greedy local search heuristic. On all instances
we have considered in the experiments for this article,
the greedy joining algorithm yields a 2-approximation.
Whether the greedy joining algorithm is indeed a 2-
approximation algorithm is an open problem. We have
discussed briefly generalizations of the combinatorial
lower bound to non-complete and weighted graphs.
Whether approximation guarantees can be derived for
these cases, or other objectives than the min max ob-
jective discussed in this article, remains open.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes (Definition 1, Theorems 2 and 3, Algo-
rithm 1)

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes (Theorems 2 and 3, Lemma 3). The
space complexity of all algorithm is clearly
O(n2) for storing adjacency matrices.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes (supplemental mate-
rial)

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes (Section 4)

(b) Complete proofs of all theoretical results. Yes
(Section 4)

(c) Clear explanations of any assumptions. Yes
(Section 4)

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). Yes (supplemental material)

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Not
Applicable

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes (Section 6)

(d) A description of the computing infrastructure
used. Yes (Section 6)

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. Yes

(b) The license information of the assets, if ap-
plicable. Not Applicable

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. Not Applica-
ble

(d) Information about consent from data
providers/curators. Not Applicable

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable
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5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. Not Applica-
ble

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. Not Applicable
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