
Faster Convergence with Multiway Preferences

Aadirupa Saha Vitaly Feldman Tomer Koren Yishay Mansour
Apple Apple Tel Aviv University

& Google
Tel Aviv University

& Google

Abstract

We address the problem of convex optimiza-
tion with preference feedback, where the goal is
to minimize a convex function given a weaker
form of comparison queries. Each query con-
sists of two points and the dueling feedback re-
turns a (noisy) single-bit binary comparison of
the function values of the two queried points.
Here we consider the sign-function-based com-
parison feedback model and analyze the conver-
gence rates with batched and multiway (argmin
of a set queried points) comparisons. Our main
goal is to understand the improved convergence
rates owing to parallelization in sign-feedback-
based optimization problems. Our work is the
first to study the problem of convex optimiza-
tion with multiway preferences and analyze the
optimal convergence rates. Our first contribu-
tion lies in designing efficient algorithms with
a convergence rate of Õ( d

min{m,d}ϵ ) for m-
batched preference feedback where the learner
can query m-pairs in parallel. We next study
a m-multiway comparison (‘battling’) feedback,
where the learner can get to see the argmin feed-
back of m-subset of queried points and show a
convergence rate of Õ( d

min{logm,d}ϵ ). We show
further improved convergence rates with an ad-
ditional assumption of strong convexity. Finally,
we also study the convergence lower bounds for
batched preferences and multiway feedback op-
timization showing the optimality of our conver-
gence rates w.r.t. m.

1 Introduction

Studying the problem of convex optimization presents a
unique opportunity to delve deep into a practical field
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of vast applications and make a lasting impact in both
academia and industry. Most commonly, convex optimiza-
tion is studied in a first-order gradient oracle model, where
the optimization algorithm may query gradients of the ob-
jective function; or a more limited model of zero-order or-
acle access, where the optimization algorithm may only
query function values. Such optimization frameworks are
well-studied in the literature [see, e.g., Nesterov, 2003,
Hazan, 2019, Bubeck, 2014].

One major limitation of the above optimization frameworks
lies in the feedback model: In many practical applica-
tions, obtaining complete gradient information or even ac-
cess to a function value (zeroth-order) oracle could be dif-
ficult. E.g. in recommender systems, online shopping,
search engine data, the only data available to the learning
algorithm specifies only the preference feedback of their
users across multiple choices. Similar problems may arise
in other real-world domains including crowd-sourcing sur-
veys, drug testing, tournament ranking, social surveys, etc.

Learning with Preference Feedback. The above line of
problems gave rise to a new field of research where the sys-
tem aims to optimize its performance based on only choice
data or relative preferences across multiple items. The
problem has been widely studied in the bandit community
as Dueling Bandit problems which is an online sequential
game where at each round the learner (algorithm) repeat-
edly selects a pair of items to be compared to each other
in a “duel,” and consequently observes a binary stochas-
tic preference feedback of the winning item in this duel
[Ailon et al., 2014, Wu and Liu, 2016, Sui et al., 2018, Saha
and Gopalan, 2020b]. The goal of the learner is to identify
the ‘best item’ with the least possible number of pairwise
queries.

Need of Optimization Algorithms with Preference Feed-
back. The classical problem of dueling bandits, although
received wide attention in the learning theory community,
most of the studies were limited to finite decision space,
which allowed the learner to examine each item one-by-one
before identifying the best one Sui et al. [2017], Ghoshal
and Saha [2022], Bengs et al. [2021]. This again becomes
unrealistic for large-scale real-world problems where deci-
sion spaces could be extremely large. Precisely, the litera-



Faster Convergence with Multiway Preferences

ture lacks optimization methods based on preference feed-
back, where the decision set could be potentially infinite.

Related Works and Limitations. Two earlier works
that address the problem of convex optimization with pref-
erence feedback are Yue and Joachims [2009], Jamieson
et al. [2012]. However, the first work yields suboptimal
convergence bounds and Jamieson et al. [2012] only deals
with strongly convex and smooth functions. Another re-
cent work by Saha et al. [2021] addresses the problem
of convex optimization with pairwise preference setting
which is closest to our framework: The setting assumes
an underlying (convex) loss function f : Rd 7→ R and
at each round the learner can see the relative ordering of
the function values at the two queried points: Precisely,
upon querying a duel (xt,yt) at round t, the learner can ob-
serve sign(f(xt)− f(yt)), and the objective of the learner
is to find a ‘near-minimizer’ of f as fast as possible. De-
spite their setup having an interesting angle of optimization
with preference feedback, their feedback model is limited
to only pairwise/ dueling queries.

Motivation of Our Work: Optimization with Multiway
Preferences. While pairwise comparison feedback is per-
haps the simplest to model and analyze, in most real-world
systems, users get to make a choice from a set of options,
be that in online marketplaces, Youtube recommendations,
Google maps, restaurant selection, and many more. This
raises a natural question about the relative power of multi-
way comparison feedback in terms of the query complex-
ity. Further, in many settings, it is not feasible to update the
model’s predictions after every comparison feedback pro-
vided by the user, for example, due to communication de-
lays. Instead, the system can ask a number of comparison
queries in parallel and then update its state (and generate
the next set of queries). In such settings, it is natural to ask
how many such rounds of m queries would be necessary to
identify the (approximate) minimizer?

Some Negative Results on Multiway Preferences in
Bandits Literature: The setting of multiway preferences
was studied as a generalization of the dueling bandit frame-
work, however for finite decision spaces and for a very
type of Multinomial Logit (or Plackett Luce) based prefer-
ence model Saha and Gopalan [2019b,a], Ren et al. [2018].
However, their specific feedback model was not able to ex-
ploit the power of multiway queries, precisely, they show
multiway feedback may not yield faster convergence re-
sults, even for finite decision space settings (when D is fi-
nite).

But in this work, we answer the above questions in the af-
firmative and studied two specific types of multiway pref-
erence models which can indeed yield faster convergence
rates with larger strength of multiway queries (m). It is im-
portant to note that our results do not contradict the neg-
ative results with Multinomial Logit (MNL) models [Chen
et al., 2017, Ren et al., 2018, Saha and Gopalan, 2020a]

as we use a different ‘argmin’ based preference model as
opposed to the MNL model. One of our main strengths
lies in identifying such a subsetwise preference feedback
model which could exploit the strength of multiway pref-
erences. The noisy-winner feedback in the MNL model
increases the variability which nullifies the strengths of
querying larger subsets Saha and Gopalan [2019b], Chen
et al. [2018], but our proposed algorithms show how to ex-
ploit the latter with our multiway preference models (Sec-
tions 3 and 4). To the best of our knowledge, our work is
the first to study the problem of convex optimization (on
infinite decision space) with multiway preferences and an-
alyze the optimal convergence rates.

Our contributions. The specific contributions of our are
listed below:

1. Our first contribution is to propose two multiway prefer-
ence feedback models for optimizing fixed convex func-
tions f : D 7→ R: (1) Batched Sign-Feedback-
Optimization: In this setting, the learner can get to query
a subset of m ≤ d distinct pair of points and receives
the sign (or comparison) feedback of each queried pairs.
This can be seen as a batched preference feedback model
where the learner can simultaneously query m pairs of du-
els (2) Battling-Feedback-Optimization: Unlike the previ-
ous model, in this case, the learner gets to query a subset of
m points in the decision space D and only gets to see the
minimizer of the queried set of m-points. We called this as
Battling (or Multiwise Winner) feedback model, inspired
from Saha and Gopalan [2018] (see Section 2 for details).

2. We first consider the batched feedback model. As-
suming f is β-smooth we apply an ‘aggregated normal-
ized gradient descent’ based routine that is shown to yield
O
(

dβD
ϵmin{m,d}

)
convergence rate for finding an ϵ-optimal

point in D (Algorithm 1, Theorem 3). Following this we
also propose an ‘epochwise warm start with smooth opti-
mization blackbox’ idea to yield a faster convergence rate
of O

(
dβ

min{m,d}α log2
(
α
ϵ

))
with an additional assumption

of strong convexity on f (Algorithm 2, Theorem 4). We
also suggest how to deal with noisy preference feedback
for these settings in Remark 1 (Section 3).

3. In Section 4, we propose optimization algorithms for the
Battling-Feedback-Optimization (with Multiwise-winner)
problem. In this case, we first design a novel convergence
routine (Algorithm 3) that yields O

(
dβD

min{logm,d}ϵ

)
conver-

gence rate for the class of smooth convex functions (The-
orem 7). The key novelty in the algorithm lies in querying
structured m subsets at each round, exploiting which we
show how to extract logm distinct pairwise sign feedback
and again use an aggregated normalized gradient descent
method to yield the desired convergence bound. Following
this we also show a faster O

(
dβ

min{logm,d}α log2
(
α
ϵ

))
con-

vergence rate with strong convexity in Theorem 8. We also
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remark on how to deal with noisy feedback models in this
case as well.

4. Finally we show matching convergence lower bounds
for both the multiway preference feedback models (resp.
in Theorem 5 Theorem 9), which shows our dependen-
cies on the multiway parameter m are indeed optimal, i.e.
our algorithms are able to exploit the strength of multiway
queries (m) optimally.

5. We provide empirical evaluations to corroborate our the-
oretical findings in Section 5.

6. Finally another minor contribution lies in dealing with
bounded decision space throughout, unlike Saha et al.
[2021] which assumes the decision space to be unbounded
(Appendix C).

2 Preliminaries and Problem Statement
Notation. Let [n] = {1, . . . n}, for any n ∈ N. Given a set
S and two items x, y ∈ S, we denote by x ≻ y the event
x is preferred over y. For any r > 0, let Bd(r) and Sd(r)
denote the ball and the surface of the sphere of radius r in
d dimensions respectively. Id denotes the d × d identity
matrix. For any vector x ∈ Rd, ∥x∥2 denotes the ℓ2 norm
of vector x. 1(φ) is generically used to denote an indicator
variable that takes the value 1 if the predicate φ is true and
0 otherwise. sign(x) = +1 if x ≥ 0 or −1 otherwise,
∀x ∈ R. Unif(S) denotes a uniform distribution over any
set S. We write Õ for the big O notation up to logarithmic
factors.

2.1 Useful Concepts for Convex Functions

Definition 1 (β-Smooth Convex Function). Assume D ⊆
Rd be any convex and bounded decision space. Then any
differential and convex function f : D 7→ R is also called
β-smooth (any β > 0) if for all x,y ∈ D,

f(x)− f(y) ≤ ∇f(y)⊤(x− y) +
β

2
∥x− y∥2.

Definition 2 (α-Strongly Convex Function). Assume D ⊆
Rd be any convex and bounded decision space. Then any
differential and convex function f : D 7→ R is also called
α-strongly convex (any α > 0) if for all x,y ∈ D,

f(x)− f(y) ≥ ∇f(y)⊤(x− y) +
α

2
∥x− y∥2.

2.2 Problem Setup.

We address the convex optimization problem with binary-
valued sign preference feedback: Assume f : D 7→ R be
any convex map defined on a convex set D ⊆ Rd. At every
iteration t, the goal of the learner is to pick a pair of points
(xt,yt), upon which it gets to see a binary 0 − 1 bit noisy
comparison feedback ot s.t.:

Pr[ot = sign(f(xt)− f(yt))] = 1− ν,

where ν ∈ [0, 1/2) is the (unknown) noise-parameter, ν =
0 corresponds to pure sign feeedback (without any noise).

We consider the following two generalizations of sign-
feedback considered in Saha et al. [2021].

Batched-Sign Feedback: In this setting, at any round t,
the learner can query m-parallel (batched) pair of points
{(xi

t,y
i
t)}mi=1 and gets to see the sign feedback for each

pair of points, i.e. the learner receive m-bits of sign feed-
back {oit}mi=1 such that Pr[oit = sign(f(x1

t ) − f(yi
t))] =

1− ν, i ∈ [m].

Battling (Multiwise-Winner) Feedback: In this setting,
at any round t, the learner can query a set St of m points
St = (x1

t ,x
2
t , . . . ,x

m
t ) and gets to see the argmin feed-

back of the m-points – i.e., the learner receive only 1-
bit of argmin feedback {ot ∈ [m]} such that: Pr[ot =
argmin(f(x1

t ), f(x
2
t ), . . . , f(x

m
t ))] = 1− ν.

Objective. We consider the objective of minimizing the
function sub-optimality gap: So if xT+1 is the point sug-
gested by the algorithm after T rounds, then the goal is to

min
x∈D

(
E[f(xT+1)]− f(x∗)

)
,

with least number of queries (T ) possible.

3 Batched Dueling Convex Optimization
with Sign Feedback

We first analyze the Batched Sign-Feedback-Optimization
problem, where at each iteration the learner can query m-
parallel (batched) pair of points {(xi

t,y
i
t)}mi=1 and gets to

see the sign feedback for each pair of points, {oit}mi=1 such
that Pr[oit = sign(f(x1

t )−f(yi
t))] = 1−ν, i ∈ [m], (m ≤

d). We present two algorithms for this setup, respectively
for smooth and strongly convex optimization settings and
show an O(1/m) improved convergence rate in both set-
tings compared to the single pair sign-feedback setting ad-
dressed in [Saha and Krishnamurthy, 2022] (see Theorem 3
and Theorem 4). We analyze the above algorithms for the
noiseless setting (i.e. ν = 0), but Remark 1 discusses
how they can be easily extended to the noisy sign-feedback
setup for any arbitrary ν ∈ [0, 0.5). Following this we also
prove a convergence lower bound for the batched feedback
setting which shows our 1/m rate of improvement with the
batch size m is indeed optimal (see Theorem 5).

3.1 Proposed Algorithm: Batched-NGD

The main idea in this setup is to estimate gradient direc-
tions (normalized gradient estimates) in m different direc-
tions and take an aggregated descent step. Formally, at each
round t, we can query m iid random unit directions, say



Faster Convergence with Multiway Preferences

u1
t , . . . ,u

m
t

iid∼ Unif(Sd(1)), and find the normalized gradi-
ent estimates git = oitu

i
t along each direction, where oit =

sign
(
f(xi

t)− f(yi
t)
)

is the sign feedback of the i-th pair of
queried duel (xi

t, y
i
t). Subsequently, we update the running

prediction as wt+1 ← wt − ηgt, where gt =
1
m

∑m
i=1 g

i
t

denotes the aggregated normalized gradient estimate. The
algorithm also maintains a running minimum mt which es-
sentially keeps track of min{w1, . . . ,wt}1. The complete
algorithm is given in Algorithm 1.

Algorithm 1 Batched-NGD (B-NGD)
1: Input: Initial point: w1 ∈ D, Learning rate η, Pertur-

bation parameter γ, Query budget T (depends on error
tolerance ϵ), Batch-size m

2: Initialize Current minimum m1 = w1

3: for t = 1, 2, 3, . . . , T do
4: Sample u1

t ,u
2
t , . . .u

m
t ∼ Unif(Sd(1))

5: Set xi
t := wt + γui

t, yi
t := wt − γui

t

6: Play the duel (xi
t,y

i
t), and observe oit ∈ ±1 such

that oit = sign
(
f(xi

t)− f(yi
t)
)
.

7: Update w̃t+1 ← wt−ηgt, where gt =
1
m

∑m
i=1 g

i
t,

gi
t = oitu

i
t

8: Project wt+1 = argminw∈D∥w − w̃t+1∥
9: Query the pair (mt,wt+1) and receive

sign
(
f(mt)− f(wt+1)

)
.

10: mt+1 ←

{
mt if sign

(
f(mt)− f(wt+1)

)
< 0

wt+1 otherwise
11: end for
12: Return mT+1

Theorem 3 (Convergence Analysis of Algorithm 1 for
β-Smooth Functions). Consider f to be β smooth. Sup-
pose Algorithm 1 is run with η = m

√
ϵ

20
√
dβ

, γ =

ϵ3/2

960βd
√
dD2

√
log 480

√
2
β and Tϵ = O

(
dβD
mϵ

)
, where ∥w1 −

x∗∥2 ≤ D (is an assumed known upper bound). Then Al-
gorithm 1 returns E[f(w̃T+1)] − f(x∗) ≤ ϵ with sample
complexity 2Tϵ, for any m ≤ d.

Proof Sketch of Theorem 3. We start by noting that by
definition: ∥wt+1 − x∗∥2 ≤ ∥w̃t+1 − x∗∥2 =

∥wt − η
m

∑m
i=1 g

i
t − x∗∥2, where the first inequality holds

since projection reduces the distance to optimal x∗. This
further leads to

m2∥wt+1 − x∗∥2 = m(∥wt − x∗∥2 + η2)

− 2η

m∑
i=1

(wt − x∗)⊤gi
t − 2η

m−1∑
i=1

m∑
j=i+1

(
wt − x∗)⊤(gi

t + gj
t )

1Interested readers can check the analysis of Projected-
Normalized Gradient Descent algorithms for single sign-
Feedback in Appendix C. This is unlike the version studied in
the literature which considered unconstrained optimization (i.e.
D = Rd) [Saha et al., 2021], although the analysis is quite simi-
lar, except we have to account for the projection step additionally.
This also leads to simpler tuning of the perturbation parameter γ
in our case.

+ 2
m(m− 1)

2
∥wt − x∗∥2 + 2η

m−1∑
i=1

m∑
j=i+1

gi
t

⊤
gj
t .

Let us denote by nt = ∇f(wt)
∥∇f(wt)∥ the normalized gradient

at point wt. Also letHt the history {wτ , Uτ ,oτ}t−1
τ=1 ∪wt

till time t and Ut := {u1
t , . . . ,u

m
t }. Then one important

observation is that the estimated gradients are nearly inde-
pendent (their inner products are small): More precisely,
for any i ̸= j, since ui

t and uj
t are independent, from The-

orem 21 we get:

EUt
[gi

t

⊤
gj
t | Ht] = Eui

[gi
t

⊤
Euj

[gj
t | ui

t] | Ht]

≤ 1√
d

(
n⊤
t nt√
d

)
+ 4λt =

1

d
+ 4λt,

where recall from Theorem 21 and Lemma 22, λt ≤
βγ

√
d

∥∇f(x)∥

(
1 + 2

√
log ∥∇f(x)∥√

dβγ

)
. Combining this with the

main equation, and further applying Theorem 21, with a bit
of algebra one can get:

m2EUt [∥wt+1 − x∗∥2 | Ht] = m(∥wt − x∗∥2 + η2)

− 2η

m−1∑
i=1

m∑
j=i+1

(
wt − x∗)⊤EUt

[(gi
t + gj

t ) | Ht]

+ 2
m(m− 1)

2
∥wt − x∗∥2 − 2η

m∑
i=1

(wt − x∗)⊤gi
t

+ 2η2
m−1∑
i=1

m∑
j=i+1

EUt
[gi

t

⊤
gj
t | Ht]

= m2∥wt − x∗∥2 + η2(m+
m(m− 1)

d
)

− 2ηm2[(wt − x∗)⊤nt + 4m2
√
dη∥wt − x∗∥λt

+ 4m2
√
dη∥wt − x∗∥λt.

Further from Claim-2 of Lemma 19, and from the fact that
m < d, we can derive:

m2Eut [∥wt+1 − x∗∥2 | Ht] ≤ m2∥wt − x∗∥2

+m2(−2η c
√
2ϵ√
dβ

+ 8ηλt

√
d∥wt − x∗∥) + 2mη2,

and choosing γ ≤ ∥∇f(wt)∥
960βd

√
d∥wt−x∗∥

√
log 480

√
2ϵ
β , we get:

EHt [Eut [∥wt+1 − x∗∥2] | Ht] ≤ ∥wt − x∗∥2

− η
√
2ϵ

10
√
dβ

+
η
√
2ϵ

20
√
dβ

+
2η2

m
.

One possible choice of γ is γ = ϵ3/2

960βd
√
dD2

√
log 480

√
2
β

(since ∥∇f(x)∥ ≥ ϵ
D for any x s.t. f(x) − f(x∗) > ϵ by

Lemma 20). Then following from above, we further get:

EHt
[Eut

[∥wt+1 − x∗∥2 | Ht]] ≤ ∥wt − x∗∥2,
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− (
√
2− 1)mϵ

400dβ

(
setting η =

m
√
ϵ

20
√
dβ

)
=⇒ EHT

[∥wT+1 − x∗∥2] ≤ ∥w1 − x∗∥2

− (
√
2− 1)mϵT

400dβ
,
(
summing t = 1, . . . T

)
.

Above implies, if indeed f(wτ )− f(x∗) > ϵ continues to
hold for all τ = 1, 2, . . . T , then E[∥wT+1 − x∗∥2] ≤ 0,
for T ≥ 400mdβ

(
√
2−1)ϵ

(∥w1 − x∗∥2), which basically implies
wT+1 = x∗ (i.e. f(wT+1) = f(x∗)). Otherwise there
must have been a time t ∈ [T ] such that f(wt)−f(x∗) < ϵ.
The complete proof is given in Appendix A.1.

3.2 Improved Convergence Rates with Strong
Convexity

We now show how to obtain a better convergence rate
with an additional assumption of α-strong convexity on
f : D 7→ R by simply reusing any optimal optimization al-
gorithm for β-smooth convex functions (and hence we can
use our B-NGD Algorithm 1, proposed earlier). Our pro-
posed method Improved Batched-NGD (Alg. Algorithm 2)
adapts a phase-wise iterative optimization approach, where
inside each phase we use B-NGD as a blackbox to locate
a ϵk-optimal point in that phase, say wk+1, with exponen-
tially decaying ϵk = O( 1

2k−1 ). We then warm start the
B-NGD algorithm in the next phase from wk+1 and repeat
– the idea is adapted from the similar warm starting idea
proposed by Saha et al. [2021]. The method yields im-
proved O(log 1

ϵ ) convergence due to the nice property of
strong convexity where nearness in function values implies
nearness from the optimal x∗ in ℓ2-norm, unlike the case
for only β-smooth functions (see Lemma 10). Algorithm 2
gives the complete detail.

Algorithm 2 Improved Batched-NGD with Strong Con-
vexity (ImpB-NGD)

1: Input: Error tolerance ϵ > 0, Batch size m
2: Initialize Initial point: w1 ∈ Rd such that D := ∥w1−

x∗∥2 (assume known).
Phase counts kϵ := ⌈log2

(
α
ϵ

)
⌉, t← 800dβ

(
√
2−1)α

η1 ← m
√
ϵ1

20
√
dβ

, ϵ1 = 400dβD

(
√
2−1)t1

= 1, t1 = t∥w1 − x∗∥2

γ1 ← ϵ
3/2
1

960βd
√
dD2

√
log 480

√
2
β , m1 = w1

3: Update w2 ← B-NGD
(
w1, η1, γ1, t1

)
4: for k = 2, 3, . . . , kϵ do
5: ηk ← m

√
ϵk

20
√
dβ

, ϵk = 400dβ

(
√
2−1)tk

, tk = 2t

γk ←
ϵ
3/2
k

960βd
√
dD2

√
log 480

√
2
β .

6: Update wk+1 ← B-NGD
(
wk, ηk, γk, tk,m

)
7: end for
8: Return mϵ = wkϵ+1

Theorem 4 (Convergence Analysis of Algorithm 2 for
α-strongly convex and β-Smooth Functions). Consider f
to be α-strongly convex and β-smooth. Then Algorithm 2
returns E[f(mϵ)] − f(x∗) ≤ ϵ with sample complexity

O
(

dβ
mα (log2

(
α
ϵ

)
+ ∥x1 − x∗∥2)

)
, for any m ≤ d.

Due to space constraints, the proof is moved to Ap-
pendix A.2.

Remark 1. [Noisy Feedback ν ∈ (0, 1/2))]. Note Al-
gorithm 1 and Algorithm 2 (and consequently Theorem 3
and Theorem 4) work only for the noiseless feedback set-
ting, when ν = 0. However, it is easy to extend the
above two algorithms for the noisy sign-feedback setting
(for any ν ∈ (0, 0.5)) by the resampling trick proposed in
Saha et al. [2021]: Precisely, the idea is to query any pair
of point (xt, yt) for O( 1

ν2 ) times to recover the true sign
feedback sign(f(xt) − f(yt)) with high confidence, and
rest of the algorithm remains as is. Clearly, this would
lead to the convergence bounds of O

(
dβD

m(0.5−ν)2ϵ

)
and

O
(

dβ
mα(0.5−ν)2 (log2

(
α
ϵ

))
respectively for settings of The-

orem 3 and Theorem 4, where the additional O(1/(0.5 −
ν)2)-multiplicative factor is accounted for resampling of
every pairwise query in Algorithm 1 and Algorithm 2.

3.3 Lower Bound for Batched
Sign-Feedback-Optimization

In this section, we show the convergence lower bounds for
the Batched Sign-Feedback-Optimization problem. The-
orem 5 shows indeed our 1/m rate of improvement with
m-batch size is optimal.

Theorem 5 (Convergence Lower Bound: m-Batched
Sign-Feedback-Optimization Problem). Assume the noise-
less setting ν = 0 and f : D 7→ R be any smooth and
strongly convex function. Then the ϵ-convergence bound
for any algorithm for the m-Batched Sign-Feedback-
Optimization problem is at least Ω( d

m log 1
ϵ ).

Proof of Theorem 5. We first require to show Ω(d log 1
ϵ )

convergence lower bound for the Sign-Feedback-
Optimization problem for smooth and strongly convex
functions, as we prove below 2:

Lemma 6 (Convergence Lower Bound for Sign-Feed-
back-Optimization Problem). Let f : D 7→ R be
any smooth and strongly convex function. Then the

2It is important to note that Theorem 1 of [Jamieson et al.,
2012] claims to yield an Ω(d log 1

ϵ
) lower bound for the same

problem (for their setting κ = 1). However, they still need to
assume their noise parameter µ, which is equivalent to µ = 1/2−
ν in our case, satisfies µ ≤ 1/2, which is equivalent to assuming
γ > 0 in our case. So their lower bound is information-theoretic
owning to the noisy sign feedback, but not an optimization-based
lower bound. Precisely, their lower bound does not apply in the
noiseless setting µ = 1/2 (or ν = 0).
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ϵ-convergence bound for any algorithm for the Sign-
Feedback-Optimization problem is at least Ω(d log 1

ϵ ).

To proof above, assume D = Bd(1) is the unit ball in di-
mension d and let N(D, ϵ, ∥∥2) be the ϵ packing of D w.r.t.
ℓ2-norm [Wu, 2016]. Let f(x) = ∥x− x∗∥22, and the ad-
versary can select x∗ arbitrarily as any x∗ ∈ N(D, ϵ, ∥∥2).
Then note any single pair of sign feedback can allow
the learner to remove at most half of the point in deci-
sion space D, so after t number of pairwise sign feed-
back, the adversary still has the choice to select x∗ from
1
2t |N(D, ϵ, ∥∥2)| ≤

1
2t

(
3
ϵ

)d
many numbers of points. This

yields the desired ϵ-convergence sample complexity lower
bound of Ω(d log 1

ϵ ), as the learner would need to make at
least t ≥ d log 1

ϵ many pairwise sign queries before the ad-

versary would be left with atmost 1
2t

(
3
ϵ

)d

≤ 1 choice for
x∗. The above derivation is inspired by the lower bound
proof of Blum et al. [2024].

Having equipped with the lower bound of Lemma 6, this
immediately implies the desired lower bound of Theorem 5
as one can hope to get an improved convergence bound of
at most 1/m-multiplicative factor, even when m rounds are
merged into a single round.

Remark 2. It is worth noting that the lower bound above
assumes f to be both strongly convex and smooth which
yields a convergence lower bound of Ω(d log 1

ϵ ) in the first
place. However, it remains an open problem if we can ob-
tain Ω(dϵ ) lower bound for the class of just smooth func-
tions to match the upper bound of Theorem 3 for only
smooth convex functions (without strong convexity).

4 Battling (Multiwise-Winner) Convex
Optimization with Sign Feedback

In this section, we investigate the Battling-Feedback-
Optimization problem. Recall from Section 2, in this case
at each iteration t, the learner can query a set St of m points
St = (x1

t ,x
2
t , . . . ,x

m
t ) and gets to see the argmin feed-

back of the m-points: {ot ∈ [m]} such that: Pr[ot =
argmin(f(x1

t ), f(x
2
t ), . . . , f(x

m
t ))] = 1 − ν, ν ∈

[0, 1/2). As before, We consider the noiseless case (ν = 0)
first, and present two algorithms for smooth and strongly
convex optimization settings. The interesting fact is, in
this case, we could only show O( 1

logm ) improved conver-
gence rate in this feedback model compared to the O( 1

m ) in
the Batched Sign-Feedback-Optimization setting (see The-
orem 7 and Theorem 8). In fact, a more interesting fact
is we also show that O( 1

logm ) improvement is the best we
can hope for in this feedback model, proving a matching
convergence lower bound (see Theorem 9).

4.1 Proposed Algorithm: Battling-NGD

Useful Notations. We denote by Vn = {(±1)n}, for any
n ∈ N+. Clearly |Vn| = 2n. Let G(V) be the graph with
vertex set Vn ⊆ {±1}n and there exists an (undirected)
edge between two nodes v and ṽ iff v and ṽ only differs
sign in one of the n coordinates, i.e. ∃k ∈ [n], v(k) = ṽ(k)
and v(k′) = ṽ(k′) for any k′ ̸= k. Clearly the num-
ber of neighboring nodes of any vertex v ∈ Vn in graph
G is |N (v,G)| = n. In other words, the degree of any
node in graph G is n. We show an example for n = 3
in the right figure. Also, let us define ℓm = ⌊logm⌋.

Algorithm Description. There are three novelties in our
algorithmic idea: (i). Structure of the query sets, (ii). One-
vs-All feedback idea and (iii). Extracting logm batched
sign feedback. We explain them in more detail below.

(i). Structured Query Sets: As before, the algorithm
maintains a current point wt (initialized to w1 ∈ D).
At each time t, it queries a set St of m points around
wt such that for every point x ∈ St, there exists ex-
actly ℓm neighboring points which are symmetrically op-
posite to x in exactly one of the realization of ui

ts: More
precisely, at each time t, the algorithm first samples ℓm

vectors ui
t

iid∼ Unif(Sd( 1√
ℓm

)) independently, i ∈ [ℓm].

Let Ut = [u1
t , . . . ,u

ℓm
t ] ∈ Rd×ℓm , and define St =

{wt + γUtv | v ∈ Vℓm}. Note that by construction
indeed St = 2ℓm ≤ m. Further, note for any point
x = wt + γUtv ∈ St there exists exactly ℓm symmet-
rically opposing points x′

i = wt + γUtv
′
i ∈ St, for all

v′
i ∈ N (v,G) such that (x−x′

i)
2γvi

= ui
t, i ∈ [ℓm]. Given

any such point xv := wt + γUtv, let us denote by the set
N (xv) = {wt + γUtv

′
i | v′

i ∈ N (v,G)} of all symmet-
rically opposing points of x in St around wt which differs
in exactly one of the realization of ui

ts. This property will
play a very crucial role in our analysis, as we will see in
the convergence proof of Algorithm 3 (see proof of Theo-
rem 7).

Upon constructing the set St, the algorithm queries the m-
subset St and receives the winner feedback ot ∈ [m].

(ii). One-vs-All Feedback Idea: Note by definition of the
winner feedback model, f(xot

t ) < f(xi
t), ∀i ∈ [m], i ̸=
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ot. Thus clearly, sign
(
f(xot

t ) < f(xi
t)
)
= −1. So one may

essentially recover exactly m− 1 pairwise sign-feedback.

(iii). Extracting logm Batched Sign Feedback: How-
ever, there are inherent dependencies among these pair of
points and most of these extracted sign feedback is redun-
dant. We precisely identify O(logm) specific winner-vs-
loser pairs and use their pairwise sign feedback to obtain
a normalized gradient estimate. Let us denote by xot

t =
wt+γUtv for some v ∈ Vℓm . Then we choose all the sym-
metrically opposing pairs (xot

t ,yi
t) for all yi

t ∈ N (xot
t )

(as described in #(i) above), and extract the correspond-
ing ℓm pairwise sign feedback. The setting then can simply
reduce back to the O(logm)-batched sign feedback setting
and one use the similar algorithmic idea of Algorithm 1.

More precisely, the algorithm finds the ℓm normalized gra-
dient estimates git = oitv

i
t for all i ∈ [ℓm], where oit =

sign
(
f(xot

t ) − f(yi
t)
)
= −1 is the sign feedback of the i-

th (winner-loser) pair and vi
t = viu

i
t ∼ Unif(Sd( 1√

ℓm
)) is

the corresponding ‘scaled-unit’ direction. Finally, we up-
date the running prediction using the normalized gradient
descent technique wt+1 ← wt − ηgt, using the aggre-
gated descent direction gt = 1

ℓm

∑ℓm
i=1 g

i
t. As before, we

also maintain a running minimum mt which keeps track
of min{w1, . . . ,wt}. The complete algorithm is given in
Algorithm 3.

One important thing to note is that from m-argmin feed-
back one can extract actually m − 1 i.e. all ‘winner-vs-
loser comparison pair’, then why are we exploiting only
specific logm pairs out of them? - The answer is on a high
level, at any round t, our goal is to find out the maximum
number of ‘independent’ descent directions or directional
gradients around the current optimizer wt and then sim-
ply take an η-step along the aggregated descent direction
(Line 8, Alg 3). The number ℓm is carefully chosen since,
following the argument in Sec 4.1, that is the maximum
number of “consistent winner-vs-rest type of sign feedback”
one can extract such that the resulting normalized gradi-
ents gi

t, i ∈ [ℓm] are still independent. Even if one de-
rives more normalized gradients (from the rest m− 1− ℓm
pairs), that will only result in linearly dependent gradients
and hence could be expressed in terms of the linear com-
bination of g1

t , . . . ,g
ℓm
t , thus yielding no additional infor-

mation. For a formal justification, please see the proof of
Theorem 7 to see how the independence assumption comes
into play. Moreover, our matching lower bound argument
in Theorem 9 corroborates that one could only hope for an
O(1/ℓm)-multiplicative factor improved convergence with
m-argmin feedback (w.r.t. single sign feedback), which
further ensures the tightness of our algorithmic approach
and analysis.

Theorem 7 (Convergence Analysis of Algorithm 3 for
β-Smooth Functions). Consider f to be β smooth.
Suppose Alg. 3 is run with η = ℓm

√
ϵ

20
√
dβ

, γ =

Algorithm 3 Battling-NGD
1: Input: Initial point: w1 ∈ D, Learning rate η, Pertur-

bation parameter γ, Query budget T (depends on error
tolerance ϵ), Batch-size m. Define ℓm := ⌊logm⌋ and
m̃ := 2ℓm ≤ m.

2: Initialize Current minimum m1 = w1

3: for t = 1, 2, 3, . . . , T do
4: Sample u1

t ,u
2
t , . . .u

ℓm
t

iid∼ Unif(Sd( 1√
ℓm

)). Denote

Ut := [u1
t , . . . ,u

ℓm
t ] ∈ Rd×ℓm

5: Define St := {wt+γUtv | v ∈ Vℓm} (see definition
of Vℓm in the description)

6: Play the m-subset St

7: Receive the winner feedback ot =
argmin(f(x1

t ), f(x
2
t ), . . . , f(x

m̃
t ))

8: Update w̃t+1 ← wt−ηgt, where gt =
1
ℓm

∑ℓm
i=1 g

i
t,

gi
t = −viui

t

9: Project wt+1 = argminw∈D∥w − w̃t+1∥
10: Query the pair (mt,wt+1) and receive

sign
(
f(mt)− f(wt+1)

)
.

11: mt+1 ←

{
mt if sign

(
f(mt)− f(wt+1)

)
< 0

wt+1 otherwise
12: end for
13: Return mT+1

ϵ3/2

960βdℓm
√
dℓmD2

√
log 480

√
2
β and Tϵ = O

(
dβD
ϵℓm

)
, where

∥w1 − x∗∥2 ≤ D, ℓm = ⌊logm⌋ ≤ d. Then Algorithm 3
returns E[f(mT+1)]− f(x∗) ≤ ϵ with sample complexity
2Tϵ.

Proof Sketch of Theorem 7. Due to space limitations, the
complete proof is deferred to Appendix B.1. The key idea
relies on the idea of constructing the structured query set St

which allows us to derive O(logm) winner-vs-loser sign
feedback from the m-multiwise winner ot, each of which
results in an independent (normalized) gradient estimate
gi
t, ∀i ∈ [ℓm]. Note here the independence of gi

ts is crucial,
which was possible due to the special structure of the query
set St. We prove the formal statement in Theorem 11, Ap-
pendix B.2. The final stretch of the proof relies on exploit-
ing the aggregated normalized gradient gt =

1
ℓm

∑ℓm
i=1 g

i
t,

similar to the batched feedback model that yields the final
O( 1

ℓm
) factor improvement in the sample complexity of the

convergence analysis.

4.2 Improved Convergence Rates with Strong
Convexity

It is easy to argue that, with the additional assumption of
strong convexity, we can again obtain an improved con-
vergence rate of O( d

logm log 1
ϵ ) similar to batched setting

(Section 3.2). Following the same ‘phase-wise progress
with warm starting’ idea of Algorithm 2 with now using
Battling-NGD (Algorithm 3) as the underlying black-box
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for an algorithm of Battling-Feedback-Optimization the
problem for smooth convex functions, we can design an
algorithm, say Improved Battling-NGD, to achieve im-
proved O(log 1

ϵ ) convergence rate with strong convexity.
We omit the specific details for brevity which can be easily
inferred by combining Algorithm 2 and Algorithm 3. The-
orem 8 gives the convergence rate of the above approach.
Further details are deferred to Appendix B.3.
Theorem 8 (Improved Convergence Rate for α-strongly
convex and β-Smooth Functions). Consider f to be α-
strongly convex and β-smooth and let ℓm = ⌊logm⌋ ≤ d.
Then Improved Battling-NGD returns an ϵ-optimal point
within O

(
dβ
αℓm

(log2
(
α
ϵ

)
+ ∥x1 − x∗∥2)

)
many multiwise

queries.

Noisy Argmin Feedback ν ∈ (0, 1/2). This
setting can be handled using the same ‘resampling
idea’ explained in Remark 1. This would respec-
tively yield convergence bounds of O

(
dβD

(0.5−ν)2ϵ logm

)
and

O
(

dβ
α(0.5−ν)2 logm (log2

(
α
ϵ

)
+∥x1−x∗∥2)

)
for the settings

of Theorem 7 and Theorem 8.

4.3 Lower Bound: Battling-Feedback-Optimization

Theorem 9 (Convergence Lower Bound for Battling-Feed-
back-Optimization Problem). Let f : D 7→ R be
any smooth and strongly convex function. Then the ϵ-
convergence bound for any algorithm for the m-Battling-
Feedback-Optimization problem is at least Ω( d

logm log 1
ϵ ).

Proof. We appeal back to the lower bound derivation idea
of Theorem 5 to derive the lower bound of Theorem 9.
Same as before, let us assumeD = Bd(1) and N(D, ϵ, ∥∥2)
be the ϵ packing of D w.r.t. ℓ2-norm. Also assume f(x) =

∥x− x∗∥22, and the adversary can select x∗ arbitrarily as
any x∗ ∈ N(D, ϵ, ∥∥2).

Then in this battling (multiwise-winner) feedback model,
note that a single m-point subsetwise query can allow the
learner to remove at most 1/m portions the points in de-
cision space D. Then after t number of such queries,
the adversary will still have the choice to select x∗ from
1
mt |N(D, ϵ, ∥∥2)| ≤

1
2t

(
3
ϵ

)d

many numbers of points.

This immediately yields the desired Ω( d
logm log 1

ϵ ) sam-
ple complexity lower bound for the Battling-Feedback-
Optimization setting, as the learner would need to make at
least t ≥ d

logm log 1
ϵ many m-multiwise queries before the

adversary would be left with at most 1
mt

(
3
ϵ

)d

≤ 1 choice
for x∗.

Note, Theorem 7 shows that our proposed algorithms ac-
tually yield optimal convergence rate in terms of m, but it
is still an open problem to see if one can prove a matching
Ω( d

ϵ logm ) convergence lower bound for the class of smooth
functions (without strong convexity).

5 Experiments

In this section, we provide an empirical evaluation of our
proposed methods to compare the convergence rates with
different types of feedback models (1) Single sign Feed-
back, (2) m-Batched sign Feedback, and (3) m-Argmin
Feedback. We run experiments in the following settings:

Algorithms. We compare three algorithms, (1) NGD, (2)
Batched-NGD (m-NGD) and (3) Battling-NGD (s-NGD)
for the above three different types of feedback.

Experiment Tradeoff between the Query complexity (T )
vs SubOptimality Gap (f(wt)− f(x∗)) for different types
of multiway preference feedback:

Figure 1: Query complexity (T ) vs SubOptimality Gap
(f(wt)− f(x∗)) for (1) Single sign Feedback (NGD), (2)
m-Batched sign Feedback (m-NGD), and (3) m-Argmin
sign Feedback (s-NGD). First plot uses f(x) = ∥x∥22. The
second plot uses f(x) = 3+

∑d
i=1 sin(xi). We set d = 32,

m = 6 and initialized x0(i) = 0.5, ∀i ∈ [d].

Observations: Figure 1 corroborates our results showing
that indeed we get the fastest convergence for m-Batched
sign Feedback, followed by m-Multiway Feedback and sin-
gle sign feedback leads to the slowest convergence in each
case. Further, note f(x∗) is respectively 0 and −29 for
the above two functions, and the algorithms indeed tend to
converge to the true minimum over time. Since m-NGD
converges the fastest, note it already converged to the true
minimum in both settings.

We report some additional experiments to reflect the trade-
off between convergence rate vs size of multiway prefer-
ences, for both m-Batched sign and m-Argmin feedback.
We use the function f : R32 7→ R such that f(x) =
∥x∥22 + 1

2∥x∥
2
1. So we have d = 32.

Figure 2: (left) Convergence rate vs time with increasing
m (right) Convergence rate vs time with increasing m. We
use f(x) = ∥x∥22 + 1

2∥x∥
2
1 for both cases, with d = 32,

and initialized x0(i) = 0.5, ∀i ∈ [d].
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Observations: Figure 2 again corroborates with our in-
ferences on the tradeoff between convergence rates vs in-
creasing m for the m-batched and m-argmin feedback. In-
deed the rate of convergence decays linearly as O(1/m)
for m-Batched sign Feedback, as derived in Theorem 3,
Theorem 4; whereas with m-argmin feedback the decay is
only logarithmic O( 1

logm ) in m, as derived in Theorem 7,
Theorem 8. The algorithms converge to the true minimum
f(x∗) = 0 in both settings, although the rate of conver-
gence is much faster in the left case (i.e. with m-batched
sign feedback).

6 Perspective
We address the problem of convex optimization with mul-
tiway preference feedback, where the learner can only re-
ceive relative feedback of a subset of queried points and
design gradient descent-based algorithms with fast conver-
gence rates for smooth and strongly convex functions. In
particular, we worked with batched and argmin-type m-
multiway preferences and designed algorithms with opti-
mal convergence dependencies on m. Our work is the first
to study and analyze the problem of convex optimization
with multiway preferences.

Future Works. A natural extension of this work could
be to understand if one can work with the class of any ar-
bitrary convex functions (beyond the smoothness assump-
tion which is crucially used to derive the normalized gradi-
ent estimates in the current algorithms). Investigating our
problem setup to a more general class of preference func-
tions could be useful to understand what is the right rate of
improvement one can hope for with parallelism Ren et al.
[2018]. Another interesting direction could be to generalize
the setting to an online model, where the underlying func-
tions can vary across time. Can we even hope to achieve
sublinear convergence (or regret bounds) for such cases?
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links to Institutional Review Board (IRB) ap-
provals if applicable. [Yes/No/Not Applicable]
-Not Applicable

(c) The estimated hourly wage paid to participants
and the total amount spent on participant com-
pensation. [Yes/No/Not Applicable] -Not Appli-
cable
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Supplementary: Faster Convergence with Multiway Preferences

A Appendix for Section 3

A.1 Proof of Theorem 3

Theorem 3 (Convergence Analysis of Algorithm 1 for β-Smooth Functions). Consider f to be β smooth. Suppose Algo-
rithm 1 is run with η = m

√
ϵ

20
√
dβ

, γ = ϵ3/2

960βd
√
dD2

√
log 480

√
2
β and Tϵ = O

(
dβD
mϵ

)
, where ∥w1 − x∗∥2 ≤ D (is an assumed

known upper bound). Then Algorithm 1 returns E[f(w̃T+1)]− f(x∗) ≤ ϵ with sample complexity 2Tϵ, for any m ≤ d.

Proof of Theorem 3. We start by noting that in this case:

∥wt+1 − x∗∥2 ≤ ∥w̃t+1 − x∗∥2 = ∥wt −
η

m

m∑
i=1

gi
t − x∗∥2, (1)

where the first inequality holds since projection reduces the distance to optimal x∗. This further leads to

m2∥wt+1 − x∗∥2 =

m∑
i=1

∥wt − ηgi
t − x∗∥2 + 2

∑
1≤i<j≤K

(
wt − ηgi

t − x∗)⊤(wt − ηgi
t − x∗)

= m(∥wt − x∗∥2 + η2)− 2η

m∑
i=1

(wt − x∗)⊤gi
t − 2η

m−1∑
i=1

m∑
j=i+1

(
wt − x∗)⊤(gi

t + gj
t ) + 2

m(m− 1)

2
∥wt − x∗∥2

+ 2η

m−1∑
i=1

m∑
j=i+1

gi
t

⊤
gj
t .

Let us denote by Ht the history {wτ , Uτ ,oτ}t−1
τ=1 ∪ wt till time t. Then conditioning on the history Ht till time t, and

taking expectation over Ut := {u1
t , . . . ,u

m
t } we further get:

m2EUt [∥wt+1 − x∗∥2 | Ht]

= m(∥wt − x∗∥2 + η2)− 2η

m−1∑
i=1

m∑
j=i+1

(
wt − x∗)⊤EUt

[(gi
t + gj

t ) | Ht] + 2
m(m− 1)

2
∥wt − x∗∥2

− 2η

m∑
i=1

(wt − x∗)⊤gi
t + 2η2

m−1∑
i=1

m∑
j=i+1

EUt
[gi

t

⊤
gj
t | Ht].

Let us denote by nt = ∇f(wt)
∥∇f(wt)∥ the normalized gradient at point wt. Now note for any i ̸= j, since ui

t and uj
t are

independent, from Theorem 21 we get:

EUt
[gi

t

⊤
gj
t | Ht] = Eui

[Euj
[gi

t

⊤
gj
t | ui

t] | Ht]

≤ Eui

[
gi
t

⊤ nt√
d
+ 2λt | Ht

]
≤ 1√

d

(
n⊤
t nt√
d

)
+ 4λt =

1

d
+ 4λt.

where recall from Theorem 21 and Lemma 22, λt ≤ βγ
√
d

∥∇f(x)∥

(
1 + 2

√
log ∥∇f(x)∥√

dβγ

)
. Combining this with the main

equation, and further applying Theorem 21, we get:
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m2EUt [∥wt+1 − x∗∥2 | Ht]

≤ m(∥wt − x∗∥2 + η2)− 2η

m−1∑
i=1

m∑
j=i+1

(
wt − x∗)⊤EUt

[(gi
t + gj

t ) | Ht] + 2
m(m− 1)

2
∥wt − x∗∥2

− 2η

m∑
i=1

(wt − x∗)⊤gi
t + 2η2

m(m− 1)

2

(
1

d
+ 4λt

)
,

≤ m(∥wt − x∗∥2 + η2)− 2mη∥wt − x∗∥
m∑
i=1

(
wt − x∗)⊤
∥wt − x∗∥

EUt [g
i
t | Ht] + 2

m(m− 1)

2
∥wt − x∗∥2

+ 2η2
m(m− 1)

2

(
1

d
+ 4λt

)
,

= m(∥wt − x∗∥2 + η2)− 2mη∥wt − x∗∥
m∑
i=1

[
(wt − x∗)⊤

∥wt − x∗∥
nt + 2λt] + 2

m(m− 1)

2
∥wt − x∗∥2

+ 2η2
m(m− 1)

2

(
1

d
+ 4λt

)
,

= m(∥wt − x∗∥2 + η2)− 2mη∥wt − x∗∥
m∑
i=1

[
(wt − x∗)⊤

∥wt − x∗∥
nt + 2λt] + 2

m(m− 1)

2
∥wt − x∗∥2

+ 2η2
m(m− 1)

2

(
1

d
+ 4λt

)
,

= m2∥wt − x∗∥2 + η2(m+
m(m− 1)

d
)− 2ηm2[(wt − x∗)⊤nt

+ 4η2m2λt + 4m2η∥wt − x∗∥λt,

= m2∥wt − x∗∥2 + η2(m+
m(m− 1)

d
)− 2ηm2[(wt − x∗)⊤nt

+ 4m2
√
dη∥wt − x∗∥λt + 4m2

√
dη∥wt − x∗∥λt

where the last inequality follows by a choice of η such that η

∥wt−x∗∥
√
d
≤ 1 (will see shortly below why this is true).

Further from Claim-2 of Lemma 19, and from the fact that m < d, we can derive:

m2Eut
[∥wt+1 − x∗∥2 | Ht] ≤ m2∥wt − x∗∥2 +m2(−2η c

√
2ϵ√
dβ

+ 8ηλt

√
d∥wt − x∗∥) + 2mη2.

Now, similar to the derivation followed in Saha et al. [2021] (see proof of Lem 6, Saha et al. [2021]), choosing γ ≤
∥∇f(wt)∥

960βd
√
d∥wt−x∗∥

√
log 480

√
2ϵ
β , we can get:

EHt
[Eut

[∥wt+1 − x∗∥2] | Ht] ≤ ∥wt − x∗∥2 − η
√
2ϵ

10
√
dβ

+
η
√
2ϵ

20
√
dβ

+
2η2

m
.

One possible choice of γ is γ = ϵ3/2

960βd
√
dD2

√
log 480

√
2
β (since ∥∇f(x)∥ ≥ ϵ

D for any x s.t. f(x) − f(x∗) > ϵ by
Lemma 20). Then following from the above equation, we further get:

EHt
[Eut

[∥wt+1 − x∗∥2 | Ht]] ≤ ∥wt − x∗∥2 − η

√
2ϵ

20
√
dβ

+
2η2

m
,

= ∥wt − x∗∥2 − (
√
2− 1)mϵ

400dβ
,

(
setting η =

m
√
ϵ

20
√
dβ

)
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=⇒ EHT
[∥wT+1 − x∗∥2] ≤ ∥w1 − x∗∥2 − (

√
2− 1)mϵT

400dβ
,(

summing overt = 1, . . . T and laws of iterated expectation
)
.

Above implies, if indeed f(wτ ) − f(x∗) > ϵ continues to hold for all τ = 1, 2, . . . T , then E[∥wT+1 − x∗∥2] ≤ 0, for
T ≥ 400mdβ

(
√
2−1)ϵ

(∥w1 − x∗∥2), which basically implies wT+1 = x∗ (i.e. f(wT+1) = f(x∗)). Otherwise there must have
been a time t ∈ [T ] such that f(wt)− f(x∗) < ϵ.

The last bit of the proof lies in ensuring that indeed η

∥wt−x∗∥
√
d
≤ 1 in all those rounds where f(wt+1)− f(x∗) > ϵ. This

is easy to note given β-smoothness as:

η

∥wt − x∗∥
√
d
≤ m

√
ϵ

20d
√
β∥wt − x∗∥

≤
m
√
f(wt)− f(x∗)

20d
√
β∥wt − x∗∥

≤ m
√
β∥wt − x∗∥

20d
√
β∥wt − x∗∥

≤ m

20d
< 1.

This concludes the proof with Tϵ = T , which gives an O(m)-factor improvement over the convergence bounds with
single-sign feedback (as derived in Theorem 14).

A.2 Proof of Theorem 4

Theorem 4 (Convergence Analysis of Algorithm 2 for α-strongly convex and β-Smooth Functions). Consider f to
be α-strongly convex and β-smooth. Then Algorithm 2 returns E[f(mϵ)] − f(x∗) ≤ ϵ with sample complexity

O
(

dβ
mα (log2

(
α
ϵ

)
+ ∥x1 − x∗∥2)

)
, for any m ≤ d.

Proof of Theorem 4. Let Hk := {wk′ , (wt′ , Ut′ , ot′)t′∈tk′}kk′=0 ∪ {wk+1} denotes the complete history till the end of
phase k for all k ∈ [kϵ]. By Theorem 4 we know that, for any fixed T > 0, when Algorithm 1 is run with η = m

√
ϵ

20
√
dβ

,

γ = ϵ3/2

960βd
√
dD2

√
log 480

√
2
β and ϵ = 400dβD

(
√
2−1)T

(D := ∥w1 −w∗∥2), Algorithm 1 returns

E[f(mT+1)]− f(x∗) ≤ ϵ =
400dβ∥w1 − x∗∥2

(
√
2− 1)T

with sample complexity (number of pairwise comparisons) 2T .

However, in this case since f is also α-strongly convex Lemma 10 further implies

E[α/2∥mT+1 − x∗∥2] ≤ E[f(mT+1)]− f(x∗) ≤ 400dβ∥w1 − x∗∥2

(
√
2− 1)T

(2)

=⇒ E[∥mT+1 − x∗∥2] ≤ 800dβ∥w1 − x∗∥2

(
√
2− 1)αT

Now initially for k = 1, clearly applying the above result for T = t∥w1 − x∗∥2, we get

E[∥w2 − x∗∥2] ≤ 800dβ∥w1 − x∗∥2

(
√
2− 1)αT

= 1

Thus, for any k = 2, 3, . . . kϵ − 1, given the initial point wk, if we run Algorithm 3 with T = 2t = 1600dβ

(
√
2−1)α

, we get from
(2)

EHk
[∥wk+1 − x∗∥2 | Hk−1] ≤

800dβ∥wk − x∗∥2

(
√
2− 1)αT

=
∥wk − x∗∥2

2

This implies given the history till phase k − 1, using Equation (2) and our choice of tk,

EHk
[f(wk+1)− f(x∗) | Hk−1] ≤ EHk

[
1

4α
∥wk − x∗∥2 | Hk−1] ≤

1

4α
(
1

2
)k−1∥w1 − x∗∥2 ≤ 1

α2k+1
.
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Thus, to ensure at k = kϵ, E[f(wkϵ+1) − f(x∗)] ≤ ϵ, this demands (1/2)kϵ+1α ≤ ϵ, or equivalently α
2ϵ ≤ 2kϵ+1, which

justifies the choice of kϵ = log2
(
α
ϵ

)
. By Theorem 3, recall running the subroutine B-NGD(wk, ηk, γk, tk,m) actually

requires a query complexity of 2tk = 4t, and hence the total query complexity (over kϵ phases) of Algorithm 3 becomes
4tkϵ + t1 = O

(
800dβ

(
√
2−1)α

(log2
(
α
ϵ

)
+D)

)
, where recall D := ∥w1 − x∗∥2.

Lemma 10 ([Hazan, 2019, Bubeck, 2014]). If f : D 7→ R is an α-strongly convex function, with x∗ being the minimizer
of f . Then for any x ∈ R, α

2 ∥x
∗ − x∥2 ≤ f(x)− f(x∗).

Proof. This simply follows by the properties of α-strongly convex function. Note by definition of α-strong convexity, for
any x,y ∈ R,

f(x)− f(y) ≥ ∇f(y)⊤(x− y) +
α

2
∥x− y∥2.

The proof simply follows setting y = x∗.

B Appendix for Section 4

B.1 Proof of Theorem 7

Theorem 7 (Convergence Analysis of Algorithm 3 for β-Smooth Functions). Consider f to be β smooth. Suppose Alg. 3 is
run with η = ℓm

√
ϵ

20
√
dβ

, γ = ϵ3/2

960βdℓm
√
dℓmD2

√
log 480

√
2
β and Tϵ = O

(
dβD
ϵℓm

)
, where ∥w1 − x∗∥2 ≤ D, ℓm = ⌊logm⌋ ≤ d.

Then Algorithm 3 returns E[f(mT+1)]− f(x∗) ≤ ϵ with sample complexity 2Tϵ.

Proof of Theorem 7. We start by noting that at each round t, the the algorithm receives the winner feedback ot =
argmin(f(x1

t ), f(x
2
t ), . . . , f(x

m̃
t )), upon playing the subset St = {x1

t ,x
2
t , . . . ,x

m̃
t }, we recall m̃ = 2ℓm .

Moreover by definition, f(xot
t ) < f(xi

t), ∀i ̸= ot, i ∈ [ℓm], and hence sign
(
f(xot

t ) − f(xi
t)
)
= −1 for all i. Now let us

denote by yi
t = wt + γUtv

′
i, where v′i = −vi and v′j = vj ,∀j ∈ [ℓm]. Note v′

i ∈ N (v,G), i.e. v′
i is a neighboring node

of v in the graph G(Vℓm), and also yi
t ∈ St by construction. Hence

sign
(
f(xot

t )− f(yi
t)
)
= −1.

Combining the above and the definition of gi
t, this actually implies

sign
(
f(xot

t )− f(yi
t)
)
ui
t = viu

i
t = git.

But then by Theorem 11 we have, for any d-dimensional unit norm vector b ∈ Sd(1):

c√
d

∇f(w)⊤

∥∇f(w)∥
b− 2λt ≤ Eui

t
[−viui⊤

t b] ≤ c√
d

∇f(w)⊤

∥∇f(w)∥
b+ 2λt, (3)

λt ≤ βγ
√
dℓm

∥∇f(wt)∥

(
1 + 2

√
log ∥∇f(wt)∥

βγ
√
dℓm

)
.

Now note, by the update rule:

∥wt+1 − x∗∥2 ≤ ∥w̃t+1 − x∗∥2 = ∥wt −
η

ℓm

ℓm∑
i=1

gi
t − x∗∥2,

since we had gt :=
1
ℓm

∑ℓm
i=1 g

i
t and the first inequality holds since projection reduces the distance to optimal x∗. Note the

update of wt+1 appears to be the same update by ℓm-batched sign feedback. Then following the same derivation of Theo-
rem 3 (as it proceeds from Equation (1) in the proof of Theorem 3), with η = ℓm

√
ϵ

20
√
dβ

, and γ = ϵ3/2

960βdℓm
√
dℓmD2

√
log 480

√
2
β

yields the desired result.
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B.2 Key Lemmas to Prove Theorem 7

Theorem 11. Let f is β-smooth function. Assume u1
t ,u

2
t , . . .u

ℓm
t

iid∼ Unif(Sd( 1√
ℓm

)). Denote Ut := [u1
t , . . . ,u

ℓm
t ] ∈

Rd×ℓm . Let x = w+ γUtv for any v ∈ Vℓm , and y = w+ γUtv
′, for any v′ ∈ N (v,G), i.e. v′ is any neighboring node

of v in the graph G(Vℓm). In particular, let v′i = −vi and v′j = vj ,∀j ∈ [ℓm]. Then

c√
d

∇f(w)⊤

∥∇f(w)∥
b− 2λ ≤ Eui

[sign(f(x)− f(y))u⊤
i b] ≤

c√
d

∇f(w)⊤

∥∇f(w)∥
b+ 2λ,

for some universal constant c ∈ [ 1
20 , 1], λ ≤

βγ
√
dℓm

∥∇f(w)∥

(
1 + 2

√
log ∥∇f(w)∥

βγ
√
dℓm

)
and b ∈ Sd(1) being any unit vector of

dimension d.

The proof of Theorem 11 follows combining the results of Lemma 12 and Lemma 13 (from [Saha et al., 2021]), proved
below.
Lemma 12. Let f is β-smooth function. Assume u1

t ,u
2
t , . . .u

ℓm
t

iid∼ Unif(Sd( 1√
ℓm

)). Denote Ut := [u1
t , . . . ,u

ℓm
t ] ∈

Rd×ℓm . Let x = w + γUtv for any v ∈ Vℓm , and y = w + γUtv
′, for any v′ ∈ N (v,G), i.e. v′ is any neighboring

node of v in the graph G(Vℓm). In particular, let v′i = −vi and v′j = vj ,∀j ∈ [ℓm]. Then for any unit dimension d vector
b ∈ Sd(1) we have: ∣∣∣Eui

[sign(f(x)− f(y))u⊤
i b]−Eui

[sign(∇f(w) · ui)u
⊤
i b]

∣∣∣ ≤ 2λ,

where λ ≤ βγ
√
dℓm

∥∇f(w)∥

(
1 + 2

√
log ∥∇f(w)∥

βγ
√
dℓm

)
.

Proof. Without loss of generality, assume v = (1, 1, . . . , 1) ∈ {0, 1}ℓm and v′ = (−1, 1, . . . , 1), i.e. i = 1. Thus
x = w+γ(u1+u2+ . . .+uℓm), and y = w+γ(−u1+u2+ . . .+uℓm). Also let us denote by u = (u1+u2+ . . .+uℓm),
u′ = (−u1 + u2 + . . .+ uℓm).

From smoothness we have

γui ·∇f(w)− 1
2βγ

2 ≤ f(w + γu)− f(w) ≤ γu ·∇f(w) + 1
2βγ

2;

γu′ ·∇f(w)− 1
2βγ

2 ≤ f(w + γu′)− f(w) ≤ γu′ ·∇f(w) + 1
2βγ

2.

Subtracting the inequalities, we get

|f(w + γu)− f(w + γu′)− 2γu1 ·∇f(x)| ≤ βγ2.

Therefore, if βγ2 ≤ γ|u1 ·∇f(w)|, we will have that sign(f(w + γu) − f(w + γu′)) = sign(u1 · ∇f(w)). Let us
analyse Pru1(βγ ≥ |u1 ·∇f(w)|). We know for v ∼ N (0d, Id), ṽ := v/∥v∥ ∼ Sd(1), i.e. ṽ is uniformly distributed
on the unit sphere, and hence

v

∥v∥
√
ℓm
∼ Sd(1/

√
ℓm). Then can write:

Pu1

(
|u1 ·∇f(w)| ≤ βγ

)
= Pv

(
|v ·∇f(w)| ≤ βγ∥v∥

√
ℓm

)
≤ Pv

(
|v ·∇f(w)| ≤ 2βγ

√
dℓm log(1/γ′)

)
+Pv(∥v∥ ≥ 2

√
dℓm log(1/γ′))

≤ Pv

(
|v ·∇f(w)| ≤ 2βγ

√
dℓm log(1/γ′)

)
+ γ′,

where the final inequality is since Pv(∥v∥2 ≤ 2dℓm log(1/γ′)) ≥ 1 − γ′ for any γ′ (see Lemma 23). On the other hand,
since v ·∇f(w) ∼ N (0, ∥∇f(w)∥2), we have for any a > 0 that

Pr(|v ·∇f(w)| ≤ a) ≤ 2a

∥∇f(w)∥
√
2π
≤ a

∥∇f(w)∥
.

Setting, a = 2βγ
√
dℓm log(1/γ′), and combining the inequalities, we have that sign(f(w + γu) − f(w − γu)) =

sign(u ·∇f(w)) except with probability at most

inf
γ′>0

{
γ′ +

2βγ
√
dℓm log(1/γ′)

∥∇f(w)∥

}
= λ (say),
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and further choosing γ′ = βγ
√
dℓm

∥∇f(w)∥ , we get that λ ≤ βγ
√
dℓm

∥∇f(w)∥

(
1 + 2

√
log ∥∇f(w)∥

βγ
√
dℓm

)
. As for the claim about the

expectation, note that for any vector b ∈ Sd(1),∣∣∣Eu1
[sign(f(w + γu)− f(w + γu′))u1

⊤b]−Eu1
[sign(∇f(w) · u1)u1

⊤b]
∣∣∣ ≤ 2λ,

as with probability 1− λ the two expectations are equal, and otherwise, they differ by at most 2.

Lemma 13 (Saha et al. [2021]). For a given vector g ∈ Rd and a random unit vector u drawn uniformly from Sd(1), we
have

E[sign(g · u)u] = c√
d

g

∥g∥
,

for some universal constant c ∈ [ 1
20 , 1].

This proof is same as the proof in Saha et al. [2021]. Without loss of generality we can assume ∥g∥ = 1, since one can
divide by ∥g∥ in both side of Lem. 13 without affecting the claim. Now to bound E[|g · u|], note that since u is drawn
uniformly from Sd(1), by rotation invariance this equals E[|u1|]. For an upper bound, observe that by symmetry E[u2

1] =
1
dE[

∑d
i=1 u

2
i ] =

1
d and thus

E[|u1|] ≤
√

E[u2
1] =

1√
d
.

We turn to prove a lower bound on E[|g · u|]. If u were a Gaussian random vector with i.i.d. entries ui ∼ N (0, 1/d),
then from standard properties of the (truncated) Gaussian distribution we would have gotten that E[|u1|] =

√
2/πd. For u

uniformly distributed on the unit sphere, ui is distributed as v1/∥v∥ where v is Gaussian with i.i.d. entries N (0, 1/d). We
then can write

Pr

(
|u1| ≥

ϵ√
d

)
= Pr

(
|v1|
∥v∥

≥ ϵ√
d

)
≥ Pr

(
|v1| ≥

1√
d

and ∥v∥ ≤ 1

ϵ

)
≥ 1− Pr

(
|v1| <

1√
d

)
− Pr

(
∥v∥ > 1

ϵ

)
.

Since
√
dv1 is a standard Normal, we have

Pr

(
|v1| <

1√
d

)
= Pr

(
−1 <

√
dv1 < 1

)
= 2Φ(1)− 1 ≤ 0.7,

and since E[∥v∥2] = 1 an application of Markov’s inequality gives

Pr
(
∥v∥ > 1

ϵ

)
= Pr

(
∥v∥2 >

1

ϵ2
)
≤ ϵ2E[∥v∥2] = ϵ2.

For ϵ = 1
4 this implies that Pr

(
|u1| ≥ 1/4

√
d
)
≥ 1

5 , whence E[|g · u|] = E[|u1|] ≥ 1/20
√
d.

B.3 Proof of Theorem 8

Theorem 8 (Improved Convergence Rate for α-strongly convex and β-Smooth Functions). Consider f to be α-strongly
convex and β-smooth and let ℓm = ⌊logm⌋ ≤ d. Then Improved Battling-NGD returns an ϵ-optimal point within

O
(

dβ
αℓm

(log2
(
α
ϵ

)
+ ∥x1 − x∗∥2)

)
many multiwise queries.

Proof of Theorem 8. The proof follows from the exactly same analysis as the proof of Theorem 4.
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Algorithm 4 Improved Battling-NGD (with Strong Convexity)
1: Input: Error tolerance ϵ > 0, Batch size m
2: Initialize Initial point: w1 ∈ Rd such that D := ∥w1 − x∗∥2 (assume known).

Phase counts kϵ := ⌈log2
(
α
ϵ

)
⌉, t← 800dβ

(
√
2−1)α

η1 ← m
√
ϵ1

20
√
dβ

, ϵ1 = 400dβD

(
√
2−1)t1

= 1, t1 = t∥w1 − x∗∥2

γ1 ← ϵ
3/2
1

960βdℓm
√
dℓmD2

√
log 480

√
2
β .

3: Update w2 ← Battling-NGD
(
w1, η1, γ1, t1,m

)
4: for k = 2, 3, . . . , kϵ do
5: ηk ← m

√
ϵk

20
√
dβ

, ϵk = 400dβ

(
√
2−1)tk

, tk = 2t

γk ←
ϵ
3/2
k

960βdℓm
√
dℓmD2

√
log 480

√
2
β .

6: Update wk+1 ← Battling-NGD
(
wk, ηk, γk, tk,m

)
7: end for
8: Return mϵ = wkϵ+1

C Projected Dueling Convex Optimization with Single Sign Feedback

Main Idea: Estimating Gradient Directions (Normalized Gradients): The algorithmic idea of our proposed algorithm
is almost the same as what was proposed in Saha et al. [2021]. Essentially, we start with any arbitrary ‘current estimate’
of the function minimizer w1 ∈ D, and at any round t, we compute normalized gradient estimate gt such that gt := otut,
ut ∼ Unif(Sd(1)) being any random unit direction in Rd and ot = sign

(
f(xt) − f(yt)

)
is the sign feedback of the

queried duel (xt, yt) at round t, such that xt = wt + γut, and yt = wt − γut, γ being any tunable perturbation step size.
Subsequently, the algorithm takes a step along the estimated descent direction gt with (tunable) step-size η and updates the
current estimate wt+1 ← wt − ηgt and repeat up to any given number of T steps before outputting the final estimate of
the minimizer wT+1.

C.1 Algorithm Design: Projected Normalized Gradient Descent (P-NGD)

In this section, we analyzed the Sign-Feedback-Optimization problem for a bounded decision space D. We describe a
normalized gradient descent based algorithm for the purpose and anlyzed its convergence guarantee in Theorem 14. It’s
important to note that the same problem was analyzed in [Saha et al., 2021], but their analysis was limited to limited
unbounded decision spaces only, which is unrealistic for practical problems and also led to more complication tuning of
the learning parameters γ > 0 and η > 0.

Algorithm 5 Projected Normalized Gradient Descent (P-NGD)
1: Input: Initial point: w1 ∈ D, Initial distance: D s.t. D ≥ ∥w1 − x∗∥2, Learning rate η, Perturbation parameter γ,

Query budget T
2: Initialize Current minimum m1 = w1

3: for t = 1, 2, 3, . . . , T do
4: Sample ut ∼ Unif(Sd(1))
5: Set xt := wt + γut, yt := wt − γut

6: Play the duel (xt,yt), and observe ot ∈ ±1 such that ot = sign
(
f(xt)− f(yt)

)
.

7: Update w̃t+1 ← wt − ηgt, where gt = otut

8: Project wt+1 = argminw∈D∥w − w̃t+1∥
9: Query the pair (mt,wt+1) and receive sign

(
f(mt)− f(wt+1)

)
.

10: Update mt+1 ←

{
mt if sign

(
f(mt)− f(wt+1)

)
< 0

wt+1 otherwise
11: end for
12: Return mT+1

Algorithm description: P-NGD Our algorithm follows the same strategy same as the β-NGD (Algorithm 1) of [Saha
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et al., 2021] modulo a projection step (see Line 8) which we had to incorporate for assuming bounded decision space
D: The main idea is to estimate gradient direction of any point w ∈ D (normalized gradient estimate) querying the sign
feedback of two symmetrically opposite points (w+ γu,w− γu), u ∼ Unif(Sd(1)) being any random unit direction, and
simply take a ‘small-enough’ step (η) in the opposite direction of the estimated gradient. More formally, at each round t
the algorithm maintains a current point wt, initialized to any random point w1 ∈ D, and query two symmetrically opposite
points (wt + γut,wt − γut) along a random unit direction ut ∼ Unif(Sd(1)). Following this it finds a normalized
gradient estimate at wt, precisely gt = otut based on Theorem 21, where ot = sign

(
f(wt + γut) − f(wt + γut)

)
is the sign feedback of the queried duel (xt, yt). Subsequently, we update the running prediction using a (normalized)
gradient descent step: w̃t+1 ← wt − ηgt followed by a projection wt+1 = argminw∈D∥w − w̃t+1∥. The algorithm also
maintains a running minimum mt which essentially keeps track of min{w1, . . . ,wt}. The complete algorithm is given in
Algorithm 5.

Theorem 14 (Convergence Analysis of Algorithm 5 for β-Smooth Functions). Consider f to be β smooth, and the desired
accuracy level (suboptimality gap) is given to be ϵ > 0. Then if Alg. 5 is run with η =

√
ϵ

20
√
dβ

, γ = ϵ3/2

480βdD2
√
log 480

√
2
β

and T = Tϵ = O
(

dβD
mϵ

)
, D ≥ ∥w1 − x∗∥2 being any upper bound on the initial distance from the optimal, Alg. 5 returns

an ϵ-optimal point in at most 2Tϵ pairwise queries; i.e.

E[f(mT+1)]− f(x∗) ≤ ϵ.

Proof of Theorem 14. The proof idea crucially relies on Lemma 15, which essentially shows that if we start from an initial
point (w1), which is more than ϵ-suboptimal, i.e. f(w1)− f(w∗) > ϵ, then we will have E[f(mT+1)]− f(x∗) ≤ ϵ.

The formal statement is as follows:

Lemma 15. Consider f is β smooth. Then in Alg. 5, if the initial point w1 is such that f(w1) − f(x∗) > ϵ (for ϵ > 0),
and the tuning parameters T , γ and η is as in defined in Theorem 14, we will have E[f(mT+1)]− f(x∗) ≤ ϵ.

Given Lemma 15, the statement of Theorem 14 follows straightforwardly: Note mt essentially keeps track of mint∈[T ] wt.
Now either w1 is such that f(w1) − f(x∗) < ϵ, in case the bound of Theorem 14 is trivially true as by definition
f(mT+1) ≤ f(w1). On the other hand, if f(w1)− f(x∗) > ϵ, bound of Theorem 14 follows by Lemma 15. We discuss
the proof of Lemma 15 below.

Proof of Lemma 15. Our main claim lies in showing that at any round t, if the iterate is at least ϵ away from the optional,
i.e. f(wt) − f(x∗) > ϵ, then on expectation wt+1 comes closer to x∗ (in ℓ2 distance), compared to wt. The following
argument proves it formally:

Consider any t = 1, 2, . . . T , such that f(wt) > f(x∗) + ϵ. Let us denote by nt =
∇f(wt)

∥∇f(wt)∥ , the normalized gradient at
point wt. Now from the update rule, we get that:

∥wt+1 − x∗∥2 ≤ ∥w̃t+1 − x∗∥2 ≤ ∥wt − x∗∥2 − 2ηg⊤
t (wt − x∗) + η2.

where the first inequality holds since projection reduces distance to optimal x∗. Let us denote by Ht the history
{wτ ,uτ ,mτ}t−1

τ=1 ∪ wt till time t. Then conditioning on the history Ht till time t, and taking expectation over ut we
further get:

Eut
[∥wt+1 − x∗∥2 | Ht] ≤ Eut

[∥wt − x∗∥2 | Ht]− 2ηEut
[g⊤

t | Ht](wt − x∗) + η2,

Further applying Theorem 21, one can get:

Eut
[∥wt+1 − x∗∥2 | Ht] ≤ ∥wt − x∗∥2 − 2η

(
Eut

[sign(∇f(wt) · u)u⊤ (wt − x∗)

∥wt − x∗∥
]− 2λt

)
∥wt − x∗∥+ η2,

≤ ∥wt − x∗∥2 − 2η
c√
d
n⊤
t (wt − x∗) + 4ηλt∥wt − x∗∥+ η2,
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where recall from Theorem 21 and Lemma 22, λt ≤ βγ
√
d

∥∇f(x)∥

(
1+2

√
log ∥∇f(x)∥√

dβγ

)
. Further from Claim-2 of Lemma 19,

we have:

Eut
[∥wt+1 − x∗∥2 | Ht] ≤ ∥wt − x∗∥2 − 2η

c
√
2ϵ√
dβ

+ 4ηλt∥wt − x∗∥+ η2,

Now, similar to the derivation followed in Saha et al. [2021] (see proof of Lem 6, Saha et al. [2021]), choosing γ ≤
∥∇f(wt)∥

480βd∥wt−x∗∥
√
log 480

√
2ϵ
β , we can get:

EHt
[Eut

[∥wt+1 − x∗∥2] | Ht] ≤ EHt
[∥wt − x∗∥2]− η

√
2ϵ

10
√
dβ

+
η
√
2ϵ

20
√
dβ

+ η2,

so one possible choice of γ is γ = ϵ3/2

480βdD2
√
log 480

√
2
β (since ∥∇f(x)∥ ≥ ϵ

D for any x s.t. f(x) − f(x∗) > ϵ). Then
following from the above equation, we further get:

EHt
[Eut

[∥wt+1 − x∗∥2 | Ht]] ≤ EHt
[∥wt − x∗∥2]− η

√
2ϵ

20
√
dβ

+ η2,

= EHt [∥wt − x∗∥2]− (
√
2− 1)ϵ

400dβ
,

(
since η =

√
ϵ

20
√
dβ

)
=⇒ EHT

[∥wT+1 − x∗∥2] ≤ ∥w1 − x∗∥2 − (
√
2− 1)ϵT

400dβ
,
(
summing t = 1, . . . T and laws of iterated expectation

)
Above implies, if indeed f(wτ ) − f(x∗) > ϵ continues to hold for all τ = 1, 2, . . . T , then E[∥wT+1 − x∗∥2] ≤ 0, for
T ≥ 400dβ

(
√
2−1)ϵ

(∥w1 − x∗∥2), which basically implies wT+1 = x∗ (i.e. f(wT+1) = f(x∗)). Otherwise there must have
been a time t ∈ [T ] such that f(wt)− f(x∗) < ϵ. This concludes the proof with Tϵ = T .

D Some Useful Results on Convex Functions

Definition 16 (Convex Function). Assume D ⊆ Rd be any convex and bounded decision space. Then any differential
function f : D 7→ R is called convex if for all x,y ∈ D,

f(x)− f(y) ≥ ∇f(y)⊤(x− y).

Definition 17 (β-Smooth Convex Function). Assume D ⊆ Rd be any convex and bounded decision space. Then any
differential and convex function f : D 7→ R is also called β-smooth (any β > 0) if for all x,y ∈ D,

f(x)− f(y) ≤ ∇f(y)⊤(x− y) +
β

2
∥x− y∥2.

Definition 18 (α-Strongly Convex Function). Assume D ⊆ Rd be any convex and bounded decision space. Then any
differential and convex function f : D 7→ R is also called α-strongly convex (any α > 0) if for all x,y ∈ D,

f(x)− f(y) ≥ ∇f(y)⊤(x− y) +
α

2
∥x− y∥2.

Lemma 19. Suppose f : D 7→ R is a convex function such that f(y) < f(x). Then
(

∇f(x)
∥∇f(x)∥2

)⊤
(y− x) ≤ 0. Further if

z is a point such that f(z)− f(x∗) > ϵ, then one can show that − ∇f(z)
∥∇f(z)∥

⊤
(z − x∗) ≤ −

√
2ϵ
β .

Proof. Proof of Claim-1: To show the first part of the claim, note that since f is convex,

f(y) ≥ f(x) +∇f(x)⊤(y − x) =⇒ ∇f(x)⊤(y − x) ≤ f(y)− f(x) ≤ 0,
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which proves the claim by dividing both sides with ∥∇f(x)∥2.

Proof of Claim-2: Assume another point z̃ := x∗+
√

2ϵ
β nz , where we denote by nz := ∇f(z)

∥∇f(z)∥ . Now using β-smoothness

of f we have: f(z̃) ≤ f(x∗) +∇f(x∗)(z̃ − x∗) + β
2 ∥z̃ − x∗∥2 = f(x∗) + ϵ. Thus we have f(z̃) < f(x∗) + ϵ < f(z),

and hence from Lemma 19, we get n⊤
z (z̃ − z) ≤ 0. But note this further implies n⊤

z

(
x∗ +

√
2ϵ
β nz − z

)
≤ 0 =⇒

−n⊤
z (z− x∗) ≤ −

√
2ϵ
β .

Lemma 20. Suppose f : D 7→ R is a convex function for some convex set D ⊆ Rd such that for any x,y ∈ Rd,
f(x) − f(y) > ϵ. Then this implies ∥∇f(x)∥ > ϵ

∥x−y∥ . Further, assuming D := maxx,y∈Rd ∥x − y∥2, we get
∥∇f(x)∥ > ϵ

D for any x ∈ D.

Proof. The proof simply follows using convexity of f as:

f(x)− f(y) > ϵ =⇒ ϵ < f(x)− f(y) ≤ ∇f(x)(x− y) ≤ ∥∇f(x)∥2∥x− y∥2

=⇒ ∥∇f(x)∥ ≥ ϵ

∥x− y∥
.

As shown in Saha et al. [2021], using the above result one can obtain the normalized gradient estimate of f at any given
point x, as described below:

Theorem 21 (Adapted from Saha et al. [2021] with Slight Modifications). If f is β-smooth, for any u ∼ Unif(Sd(1)),
δ ∈ (0, 1) and vector b ∈ Sd(1):

Eu[sign(f(x+ δu)− f(x− δu))u⊤b] ≤ c√
d

∇f(x)⊤

∥∇f(x)∥
b+ 2λ,

for some universal constant c ∈ [ 1
20 , 1], and λ ≤ βγ

√
d

∥∇f(x)∥

(
1 + 2

√
log ∥∇f(x)∥√

dβγ

)
.

Proof of Theorem 21. The proof mainly lies on the following lemma that shows how to the comparison feedback of two
close points, x+ γu and x− γu, can be used to recover a directional information of the gradient of f at point x.

Lemma 22. If f is β-smooth, for any u ∼ Unif(Sd(1)), and γ ∈ (0, 1), then with probability at least 1 − λ where

λ = βγ
√
d

∥∇f(x)∥

(
1 + 2

√
log ∥∇f(x)∥√

dβγ

)
, we have

sign(f(x+ γu)− f(x− γu))u = sign(∇f(x) · u)u.

Consequently, for any vector b ∈ Sd(1) we have
∣∣∣Eu[sign(f(x+γu)−f(x−γu))u⊤b]−Eu[sign(∇f(x)·u)u⊤b]

∣∣∣ ≤ 2λ.

Remark 3 (Ensuring λ denotes a valid probability). It is important and assuring to note that when for any x ∈ D such
that f(x) − f(x∗) > ϵ (which in turn implies ∥∇f(x)∥ ≥ ϵ

D by Lemma 20), λ ∈ [0, 1] for any choice of γ ∈ [0, ϵ
βD

√
d
]

(Note we respect this in our choice of γ for the algorithm guarantees, e.g. Theorem 14, Theorem 3, etc).

The result of Thm. 21 now simply follows by combining the guarantees of Lem. 13 and 22. □

Proof of Lemma 22. From smoothness we have

γu ·∇f(x)− 1
2βγ

2 ≤ f(x+ γu)− f(x) ≤ γu ·∇f(x) + 1
2βγ

2;

−γu ·∇f(x)− 1
2βγ

2 ≤ f(x− γu)− f(x) ≤ −γu ·∇f(x) + 1
2βγ

2.

Subtracting the inequalities, we get

|f(x+ γu)− f(x− γu)− 2γu ·∇f(x)| ≤ βγ2.
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Therefore, if βγ2 ≤ γ|u ·∇f(x)|, we will have that sign(f(x + γu) − f(x − γu)) = sign(u ·∇f(x)). Let us analyse
Pru(βγ ≥ |u ·∇f(x)|). We know for v ∼ N (0d, Id), u := v/∥v∥ is uniformly distributed on the unit sphere. Then can
write:

Pu

(
|u ·∇f(x)| ≤ βγ

)
= Pv

(
|v ·∇f(x)| ≤ βγ∥v∥

)
≤ Pv

(
|v ·∇f(x)| ≤ 2βγ

√
d log(1/γ′)

)
+Pv(∥v∥ ≥ 2

√
d log(1/γ′))

≤ Pv

(
|v ·∇f(x)| ≤ 2βγ

√
d log(1/γ′)

)
+ γ′,

where the final inequality is since Pv(∥v∥2 ≤ 2d log(1/γ′)) ≥ 1−γ′ for any γ′ (see Lemma 23). On the other hand, since
v ·∇f(x) ∼ N (0, ∥∇f(x)∥2), we have for any γ > 0 that

Pr(|v ·∇f(x)| ≤ γ) ≤ 2γ

∥∇f(x)∥
√
2π
≤ γ

∥∇f(x)∥
.

Combining the inequalities, we have that sign(f(x+γu)−f(x−γu)) = sign(u ·∇f(x)) except with probability at most

inf
γ′>0

{
γ′ +

2βγ
√
d log(1/γ′)

∥∇f(x)∥

}
= λ(say),

and further choosing γ′ = βγ
√
d

∥∇f(w)∥ , we get that λ ≤ βγ
√
d

∥∇f(x)∥

(
1 + 2

√
log ∥∇f(x)∥√

dβγ

)
. As for the claim about the expecta-

tion, note that for any vector b ∈ Sd(1),∣∣∣Eu[sign(f(x+ γu)− f(x− γu))u⊤b]−Eu[sign(∇f(x) · u)u⊤b]
∣∣∣ ≤ 2λ,

since with probability 1− λ the two expectations are identical, and otherwise, they differ by at most 2.

Lemma 23. For v ∼ N (0d, Id) and any λ > 0, it holds that ∥v∥2 ≤ d+ 4 log(1/λ) with probability at least 1− λ.

Proof. Let X = ∥v∥2. Then X is distributed Chi-squared with d degrees of freedom, and so its moment generating
function is E[ezX ] = (1− 2z)−d/2 for z < 1/2. Using Markov’s inequality we have, for all t > 0 and 0 < z < 1/2,

Pr(X ≥ t) = Pr(ezX ≥ ezt) ≤ e−ztE[ezX ] = e−zt(1− 2z)−d/2 ≤ e−z(t−d).

Choosing z = 1/4 and t = d+ 4 log(1/λ) makes the right-hand side smaller than λ, as we require.


