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Abstract

In this paper, we address the problem of test-
ing exchangeability of a sequence of random
variables, X1, X2, · · · . This problem has been
studied under the recently popular framework
of testing by betting. But the mapping of
testing problems to game is not one to one:
many games can be designed for the same
test. Past work established that it is futile to
play single game betting on every observation:
test martingales in the data filtration are pow-
erless. Two avenues have been explored to
circumvent this impossibility: betting in a
reduced filtration (wealth is a test martingale
in a coarsened filtration), or playing many
games in parallel (wealth is an e-process in
the data filtration). The former has proved to
be difficult to theoretically analyze, while the
latter only works for binary or discrete obser-
vation spaces. Here, we introduce a different
approach that circumvents both drawbacks.
We design a new (yet simple) game in which
we observe the data sequence in pairs. Even
though betting on individual observations is
futile, we show that betting on pairs of obser-
vations is not. To elaborate, we prove that
our game leads to a nontrivial test martingale,
which is interesting because it has been ob-
tained by shrinking the filtration very slightly.
We show that our test controls type-1 error de-
spite continuous monitoring, and is consistent
for both binary and continuous observations,
under a broad class of alternatives. Due to
the shrunk filtration, optional stopping is only
allowed at even stopping times: a relatively
minor price. We provide a variety of simula-
tions that align with our theoretical findings.
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1 INTRODUCTION

A sequence of random variables {Xt}t≥1 is exchange-
able if and only if for every t and every permutation σ of
the first t indices, the joint distribution of (X1, · · · , Xt)
is same as the joint distribution of (Xσ(1), · · · , Xσ(t)).
Suppose that we sequentially observe a series of ran-
dom variables X1, X2, · · · one by one. Consider the
fundamental problem of testing if our data form an
exchangeable sequence:

H0 : X1, X2, · · · are exchangeable.

From a single sequence of data, one cannot distinguish
whether the data is iid (independent and identically
distributed) or exchangeable (Ramdas et al., 2022), and
so one can equivalently view this paper as designing a
test for the iid assumption:

H ′
0 : X1, X2, · · · are iid.

We design a new sequential test for H0 or H ′
0, establish

its consistency in both binary and continuous settings,
primarily focusing on first-order Markov and AR(1)
alternatives respectively, and prove that its “growth
rate” asymptotically matches that of an oracle that
knows the ground truth. Using these as building blocks,
we then show that our test is also consistent against a
much more general class of alternatives.

The vast majority of theoretical results in machine
learning heavily rely on the exchangeability assumption,
or the stronger iid assumption. These methods may
encounter significant challenges when this assumption
is violated (for example due to Markovian dependence
between the data), underscoring the importance of
rigorously testing data for its exchangeability.

The current paper seeks to add a new method of test-
ing exchangeability based on pairwise betting to the
two (recent) methods that are known so far, which
are based on conformal prediction (Vovk, 2021) and
universal inference (Ramdas et al., 2022). The former
has proven difficult to analyze and there is currently no
theoretical guarantee of consistency against any class
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of alternatives, while the latter is applicable only for
a sequence of binary observations (or a small discrete
alphabet). What distinguishes our approach is its appli-
cability to general observation spaces (like the former
approach), while we establish theoretical guarantees
like consistency in both binary and continuous cases
against a broad class of alternatives.

The overarching technical umbrella that ties together
all three of the above solutions is that they stem from
constructing “test martingales” (or, more generally,
“e-processes”), which can be interpreted as wealth of a
gambler playing a stochastic game (or, for e-processes,
many games in parallel) (Ramdas et al., 2023). Go-
ing further with such a game-theoretic language, all 3
methods can be thought of as instances of the principle
of “testing by betting”, which we summarize below.

Testing by betting. In order to test a hypothesis,
one designs a game of chance which has two properties.
If the null hypothesis is true, the game rules must be
such that no gambler (starting with one dollar) can
systematically make money, meaning that their wealth
is a nonnegative martingale (defined later): nonneg-
ative because they cannot bet more than they have,
and martingale because the wealth remains constant in
expectation and thus it is unlikely that they will ever
multiply their wealth by a large amount (in other words,
they’re playing roulette). More generally, the wealth
is allowed to be a nonnegative supermartingale under
the null, which means it can decrease in expectation.
However, if the null hypothesis is false, the game rules
must allow smart gamblers to multiply their wealth
exponentially. The achieved exponent, or the aver-
age expected logarithm of the wealth (defined formally
soon), is defined as the “rate of growth” of wealth. The
optimal betting strategy is one which maximizes the
rate of growth of wealth under the alternative.

For testing a simple null hypothesis (that is, the null
hypothesis is a single distribution) against a simple
alternative, testing by betting is very straightforward.
The optimal bet is simply given by a likelihood ratio of
the alternative to the null (Shafer, 2021). However, for
composite null hypotheses like our H0, and composite
alternatives like H1, there is no unique translation of
the testing problem to a game. There are many games
that one could write down that test such nulls, and
each of them permits different betting strategies with
different rates of growth of wealth. It appears to be
difficult to apriori determine which games’ optimal
wealth is the “best” one.

A further nuance is the following key fact: for some
nulls like our H0, a single game in which one observes
a single data point in each round, provably does not
suffice to test the null because the constraints imposed

by the game are too strong. Ramdas et al. (2022) prove
that every nonnegative (super)martingale in such a
game is constant or decreasing (zero rate of growth).

There are two options to circumvent the aforemen-
tioned negative result: (i) one must work in a reduced/-
coarsened filtration, which amounts to throwing some
information away or restricting how much information
is released, or (ii) one must play many games in parallel,
each one against a different subset of the null hypothe-
sis, and be judged on the minimum wealth across all
games; this minimum wealth is no longer a nonnegative
supermartingale, and is called an “e-process” (defined
formally below). It turns out that the conformal strat-
egy (Vovk, 2021) takes route (i), while the universal
inference strategy (Ramdas et al., 2022) takes route (ii),
and this distinction is discussed further in the latter
paper (and a bit more in the current paper).

The main novelty in our work is the consideration of
a different betting game under route (i), which is ap-
plicable to a general observation space. The wealth
process produced is indeed a nonnegative martingale,
except in a (very slightly) reduced filtration, as ex-
plained later. Our solution processes data in pairs, and
we will construct an exact e-value in each round of the
game. E-values are the building block for nonnegative
martingales: our wealth process is simply a product of
these e-values, and will be a nonnegative martingale
under H0. In recent years, e-values have emerged as
a promising alternative to p-values for handling such
problems (Grünwald et al., 2024; Vovk and Wang, 2021;
Ramdas et al., 2023). Below, we provide a concise tech-
nical overview of the key concepts and essentials in this
rapidly evolving field.

E-process. Consider a nonnegative sequence of
adapted random variables E ≡ {Et}t≥0 and let H0,
the null hypothesis, be a set of distributions. We call
E as an e-process for H0, if

EP[Eτ ] ≤ 1, for all stopping times τ, for all P ∈ H0

(1)
Large values of the e-process encode evidence against
the null. (Ideally, the evidence E should increase to
infinity under H1, almost surely.) Further, suppose we
stop and reject the null at the stopping time

τα = inf

{
t ≥ 1 : Et ≥

1

α

}
. (2)

This rule results in a level α sequential test, mean-
ing that if the null is true, the probability that it
ever stop falsely rejects the null is at most α. This
is easily seen by applying Markov’s inequality to the
stopped e-process Eτα (or, equivalently, Ville’s inequal-
ity (Howard et al., 2020, Lemma 1)).
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Test Martingale. An integrable process M ≡ {Mt}
that is adapted to a filtration F ≡ {Ft}t≥0, is called
a martingale for P with respect to filtration F if

EP[Mt | Ft−1] = Mt−1 (3)

for all t ≥ 1. M is called a test martingale for H0 if it is
a martingale for every P ∈ H0, and if it is non-negative
with M0 = 1. Game-theoretically, a test martingale for
P is the wealth process of a gambler who sequentially
bets against H0, starting with an initial wealth of 1.
The optional stopping theorem implies that for any
stopping time τ and any P ∈ H0, we have EP[Mτ ] ≤ 1.
Thus, if M is a test martingale for H0, it is also an
e-process for H0.

An e-process (or test martingale) is called consistent for
H1, if limt→∞ Mt = ∞ almost surely for any P ∈ H1,
meaning that under the alternative, it accumulates
infinite evidence against the null in the limit. Usu-
ally, the evidence grows exponentially, so the “growth
rate” of M is defined as infP∈H1 limt→∞ EP[logMt]/t.
A positive growth rate implies consistency.

Betting score. We call the factor by which the gam-
bler multiplies the money he risks at t-th round of bet-
ting as the betting score Bt. Bt is an e-value, meaning
that it has expectation at most 1 under H0. Note that,
Mt = Mt−1×Bt =

∏t
i=1 Bt. Hence, betting scores can

be viewed as building blocks of test martingales.

Table 1: Comparing our pairwise betting with the
universal inference e-process (Ramdas et al., 2022) and
the conformal test martingale (Vovk, 2021).

Applicable
to general
observation

spaces

Optional
stopping in
the data
filtration

Provably
Consistent
with growth
rate analysis

Pairwise betting ✓ × ✓
Universal inference × ✓ ✓
Conformal inference ✓ × ×

Related Work. Sequential hypothesis testing has
a long-standing history, beginning with the sequential
probability ratio test of Wald (1945). However, while
the basic theory holds for parametric hypotheses, it
is often inadequate in the face of nonparametrically
defined composite nulls and alternatives. More recently,
the “testing by betting” methodology (Shafer and Vovk,
2019; Shafer, 2021) has led to a “game-theoretic” ap-
proach to sequential hypothesis testing that has shown
promise for nonparametric nulls (Shekhar and Ram-
das, 2023; Podkopaev et al., 2023; Waudby-Smith and
Ramdas, 2023).

One popular approach for testing exchangeability relies
on conformal prediction (Vovk et al., 2003; Fedorova

et al., 2012; Vovk, 2021; Vovk et al., 2022). The core
idea implicitly replaces the canonical filtration with a
coarser filtration formed by the independent conformal
p-values in each round. These are converted to e-values
by “calibration”, which are multiplied to form a test
martingale for testing H0. However, it is worth noting
that the consistency (and growth rate) of conformal
testing remains theoretically unproven.

On the other hand, Ramdas et al. (2022) approaches
the problem of testing exchangeability by using uni-
versal inference (Wasserman et al., 2020) to derive an
e-process for H0, although this method is only suitable
for binary (or small, discrete alphabet) data sequences.
It is unclear how to extend it to more general observa-
tion spaces.

Our approach circumvents the limitations of these ex-
isting methods: it comes with provable growth rate
guarantees unlike conformal testing, and it applies to
any observation space unlike the universal e-process.
Table 1 summarizes the comparison.

Paper outline. The rest of the paper is organized
as follows. In Section 2, we construct a pairwise bet-
ting game for testing exchangeability. More precisely,
Subsection 2.1 presents a test designed for binary data
sequence and demonstrates its power against the nat-
ural class of first-order Markov alternatives. We also
extend it to a larger class of alternatives. Then, in
Subsection 2.2, we develop a test for the continuous
case. Section 3 presents a comprehensive set of simula-
tion studies that validate our theoretical findings. This
article is concluded in Section 5, following Section 4,
which provides a discussion on the key aspects of our
approach. All proofs and relevant mathematical details
are provided in the Supplementary Materials.

2 PAIRWISE BETTING

We begin here with the binary case for simplicity. The
idea of pairwise betting readily extends from binary to
any general observation space, offering versatility, and
we get to this later.

Given a binary sequence of observations, it might seem
intuitive to consider a betting game where a gambler
places bets on individual data points in each round.
However, as demonstrated by Ramdas et al. (2022),
this game results in a powerless test. To overcome this
challenge, we design a game that reveals data in pairs.

In each odd step t, nature tells us the unordered set
of the t-th and (t+ 1)-th observations. Based on this
information (and all past observations), we bet on the
order in which they are observed. It turns out that
the composite null hypothesis collapses to a point null,
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when we condition on the unordered pair.

For example, suppose that nature reveals the obser-
vations to be {0, 1}, but we don’t know whether the
order was 01 or 10. Under the exchangeable or iid null,
both of these are equally likely (and knowing previ-
ous observations gives no further information), so the
null is simply a Bernoulli(0.5) for the two possibilities.
However, under a Markovian alternative, one of them
is more likely than the other (which one is more likely
depends on the past, which we know), and we can use
this information to bet. We bet by invoking the obser-
vations of Shafer (2021), who proved that for a point
(conditional) null, the optimal bet is the likelihood ratio
of the (conditional) alternative to the null.

Of course, when we start, we don’t know the alternative
(the true Markov model, or its implied probabilities for
the observed pair) and so our betting is noisy. A prag-
matic strategy is to bet using a maximum likelihood
estimate (regularized or smoothed, if needed) of the
alternative based on the first t − 1 observations that
have been revealed to us. As we learn the true alterna-
tive, our betting becomes more accurate and we can
provably make money, as argued formally below. This
is known as the plug-in method (Waudby-Smith and
Ramdas, 2023; Ramdas et al., 2023), because we simply
plug in empirical estimates of unknown parameters into
our alternative model when we bet.

Algorithm 1 contains an overview of pairwise betting.

Algorithm 1: Pairwise Betting

Input : Sequence of observations x1, x2, · · ·
output : Test Martingale M2,M4, · · ·
M2 = 1;
for t = 3, 5, · · · do

if xt = xt+1 then
Mt+1 = Mt−1 (no betting)

end
else

Zt := (Xt, Xt+1);
Et := Event that either Zt = (xt, xt+1) or
Zt = (xt+1, xt);

xt := (x1, · · · , xt);

Lt := PH1

[
Zt = (xt, xt+1)|xt−1, Et

]
;

Estimate Lt by L̂t, based on xt−1;

B̂t+1 := 2L̂t;

Mt+1 = Mt−1 × B̂t+1;

end

end

Next, our objective is to formulate and analyze our
test for two different scenarios: first, we concentrate on
the binary case, with a focus on a first order Markov
alternative, and second, we shift to the continuous case,

with an emphasis on an AR(1) alternative.

2.1 Test for Binary Observations

Suppose, we have a sequence of binary random variables
X1, X2, · · · . The realization of the random variables
are denoted as x1, x2, · · · . We primarily focus on first-
order Markov alternative, i.e, P[Xt+1|Xt, · · · , X1] =
P[Xt+1|Xt], for all t ≥ 1.

We consider a betting game, starting with an initial
wealth M0 = M2 = 1. Define, Zt = (Xt, Xt+1). At
each odd time step t, nature tells us the unordered
set of the t th and (t + 1) th observations. If it is
either (0, 0) or (1, 1), no betting occurs in this case.
Otherwise, we place bets on Zt, according to the like-
lihood ratio, conditioned on the observed values of
Xt−1 := (X1, · · · , Xt−1) and the event that either
Zt = (1, 0) or Zt = (0, 1) (denote this event as Et)
and then nature unveils the observed value of Zt. So,
the conditional likelihood under H0 is

PH0
(Zt = (xt, xt+1)|Xt−1 = xt−1, Et) =

1

2
, (4)

since (1,0) and (0,1) are equally likely under H0. For
t = 3, 5, · · · , the conditional likelihood under H1 is

PH1(Zt = (xt, xt+1)|Xt−1 = xt−1, Et)

=
pxt|xt−1

pxt+1|xt

pxt|xt−1
pxt+1|xt

+ pxt+1|xt−1
pxt|xt+1

, (5)

where pi|j is the transition probability from j to i of
the underlying Markov model. Then, the betting score
at t+1

2 th round of betting is the likelihood ratio of
the (conditional) alternative (Equation (5)) to the null
(which is 1

2 ). But, in a practical situation, we typi-
cally lack knowledge of the true transition probabilities.
Therefore, it becomes necessary to estimate them. One
viable option is to replace pi|j by its maximum likeli-
hood estimator (MLE) based on the first t− 1 many
observations (denote it by p̂i|j) in Equation (5). But,
there could be other choices too (see Remark 2.2). We
do not bet in the first round. So, B̂2 = 1. And betting
score at t+1

2 th round (t = 3, 5, · · · ) of betting is

B̂t+1 = 1Ec
t
+

2p̂Xt|Xt−1
p̂Xt+1|Xt

p̂Xt|Xt−1
p̂Xt+1|Xt

+ p̂Xt+1|Xt−1
p̂Xt|Xt+1

1Et
.

(6)
Thus, the bettor’s wealth after t+1

2 rounds of betting is

Mt+1 = Mt−1 × B̂t+1 =

(t+1)/2∏
i=1

B̂2i; t = 3, 5, · · · . (7)

It is easy to check that {M2,M4, · · · } is a test mar-
tingale for H0. (Optionally, one could always set
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M3 := M2, M5 := M4, etc., to impute a wealth process
at all times). Hence, recalling (2),

τ∗ = inf{t : Mt ≥ 1/α} (8)

is the stopping time at which we reject the null, yield-
ing a level α sequential test. It is worth noting that
due to the shrunk filtration, optional stopping is only
permissible at even stopping times, not at odd ones.

2.1.1 Consistency of the test

In this subsection, we present the main theorem charac-
terizing the consistency and the rate of convergence of
our test against first order Markov alternative. Within
the class of first-order Markov chains, the special case
of iid Bernoulli data is characterized by the restric-
tion p1|0 = p1|1. Therefore, our test achieves power
1 against the first-order Markov alternative, as estab-
lished by the following theorem. Below, jc denotes the
complement of j, i.e. jc = 1 when j = 0, and jc = 0
when j = 1.

Theorem 2.1. Under first order Markov alternative,

assume that p0|1, p1|0 ̸= 0. Then, log(M2n)
2n → r almost

surely as t → ∞, where

r =
1

2

∑
i,j∈{0,1}:
pj|i ̸=0

log

(
2pj|ipjc|j

pj|ipjc|j + pjc|ipj|jc

)
pipj|ipjc|j .

Further, r = 0 if p1|0 = p1|1, and r > 0 otherwise.

[See Section A.1 of Supplementary for the proof]

Remark 2.2. It’s important to note that the estima-
tor of pj|i, that we plugged in (5) does not necessarily
have to be the maximum likelihood estimator (MLE).
The Theorem 2.1 holds for any strongly consistent es-
timator, p̂j|i of the transition probabilities, pj|i. For
instance, one can opt for the Bayesian maximum apos-
teriori (MAP) estimator, with a uniform prior, as an
alternative to the MLE.

Theorem 2.1 ensures the consistency of our sequential
level α test (defined in (7)), by showing that our test
martingale {M2n}n≥1 increases to infinity exponen-
tially fast in n, under first order Markov alternatives.
Next, we extend and generalize this result.

2.1.2 Generalization to a larger class of
alternatives

Although our primary focus is on first-order Markov
alternatives, we show that our test martingale is consis-
tent for much more general alternatives. Consider any
binary sequence for which the following almost sure

limits exist:

α := lim
t→∞

n1|1(t)

t
, β := lim

n→∞

n0|0(t)

t
(9a)

γ := lim
t→∞

n1|0(t)

t
= lim

t→∞

n0|1(t)

t
, (9b)

pi,j,jc := lim
t→∞

njc|j|i(t)

t
, for i, j ∈ (0, 1). (9c)

where ni|j(t) denotes the number of i following j up to
time t and ni|j|k(t) represents the count of instances
where i follows j following k up to time t. Define,

p1|1 :=
α

α+ γ
, p0|1 :=

γ

α+ γ
,

p1|0 :=
γ

β + γ
, p1|1 :=

β

β + γ
.

Note that for first-order Markov, these parameters are
nothing but the transition probabilities. Let us also
define the following constants:

a =
p1,1,0

p1,1,0 + p0,1,0
, b =

p1,0,1
p1,0,1 + p0,0,1

.

Theorem 2.3. For any binary data sequence, suppose
that the limits α, β, γ and p defined in (9) exist. Then,
log(M2n)

2n → r′ almost surely as n → ∞, where

r′ =
1

2

∑
i,j∈{0,1}:
pj|i ̸=0

log

(
2pj|ipjc|j

pj|ipjc|j + pjc|ipj|jc

)
pi,j,jc

is strictly greater than 0 if (2p0|1 − 1)(a+ p0|1 − 1) ≥
0, (2p1|0 − 1)(b+ p1|0 − 1) ≥ 0 and p1|0 ̸= p1|1.

[See Section A.2 of Supplementary for the proof]

Remark 2.4. It is straightforward to verify that for
a first-order Markov chain, pi,j,jc = pipj|ipjc|j, which
implies that r = r′. Furthermore, for this particular
case, it can be easily shown that a = p0|1 and b = p1|0
leading trivially to the inequalities required for a strictly
positive r′: (2p0|1 − 1)(a+ p0|1 − 1) = (2p0|1 − 1)2 ≥ 0
and (2p1|0 − 1)(b+ p1|0 − 1) = (2p1|0 − 1)2 ≥ 0. Hence,
Theorem 2.3 can be regarded as a strict generalization
of Theorem 2.1.

2.2 Test for the continuous case

To show the power and versatility of our test, we now
extend it to a sequence of continuous random variables.

Suppose, we observe X1, X2, · · · from some continuous
distribution. It is worth noting that our test is versatile
enough to handle a broad spectrum of scenarios. But
as an illustrative example, we primarily focus on a
stationary Gaussian AR(1) alternative, i.e,

H1 : X is a stationary AR(1) process, with

Xt+1 = aXt + εt+1, t = 1, 2, · · · , where

εt
i.i.d∼ N(0, σ2); a and σ are unknown.
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Using the same idea that we employed in the binary
case, we start with an initial wealth W0 = W2 = 1,
and in each odd step t, nature tells us the unordered
set of the t-th and (t+ 1)-th observations. (We don’t
bet in the first round because we have not seen any
data.) In the continuous case, the probability that
Xt = Xt+1 is zero. So, we now always place bets on
Zt, for each odd t. These bets are determined by the
likelihood ratio, conditioned on the observed values
of Xt−1 := {X1, · · · , Xt−1} and the event that either
Zt = (xt, xt+1) or Zt = (xt+1, xt) (denote this event
as Et) and then nature unveils the observed value of
Zt. Let us denote Et as the event that Zt is either
(xt, xt+1) or (xt+1, xt). So, the conditional likelihood
under H0 is

PH0
(Zt = (xt, xt+1)|Xt−1 = xt−1, Et) =

1

2
, (10)

since (xt, xt+1) and (xt+1, xt) are equally likely under
H0. It is easy to obtain that the conditional likelihood
under the AR(1) alternative is

PH1
(Zt = (xt, xt+1)|Xt−1 = xt−1, Et)

=
f(xt−1, xt, xt+1)

f(xt−1, xt, xt+1) + f(xt−1, xt+1, xt)
, (11)

where f(x, y, z) :=
1

2πσ2
e−

1
2σ2 (y−ax)2− 1

2σ2 (z−ay)2 .

Then, the betting score (for Oracle) at t+1
2 th round is

St+1 =
2f(Xt−1, Xt, Xt+1)

f(Xt−1, Xt, Xt+1) + f(Xt−1, Xt+1, Xt)
. (12)

Recall that we don’t bet at t = 1, so S2 = 1. For
practical use, we need to estimate a and σ2. One viable
option is to estimate f by f̂t−1, which is obtained by
replacing the model parameter a by its least squares
estimator, ât−1 =

∑t−1
i=2 XiXi−1/

∑t−2
i=1 X

2
i and σ2 by

σ̂2
t−1 = 1

t−2

∑t−1
i=2(Xi − ât−1Xi−1)

2, for t = 3, 5, · · · .
So, the bet at t+1

2 th round (t = 3, 5, · · · ) is

Ŝt+1 =
2f̂t−1(Xt−1, Xt, Xt+1)

f̂t−1(Xt−1, Xt, Xt+1) + f̂t−1(Xt−1, Xt+1, Xt)
.

(13)
Thus, the bettor’s wealth after t+1

2 rounds of betting is

Wt+1 = Wt−1 × Ŝt+1 =

(t+1)/2∏
i=2

Ŝ2i. (14)

It is easy to check that {W2,W4, · · · } is a test martin-
gale, (with respect to a shrunk filtration) for testing
exchangeability. Recalling (2),

τ ′ = inf{t : Wt ≥ 1/α} (15)

is a level α sequential test. As before, due to the shrunk
filtration, optional stopping is only permissible at even
stopping times, not at odd ones.

2.2.1 Consistency of the test

In this subsection, we present a crucial result concerning
the consistency of our test with AR(1) alternative.
It’s worth noting that, within the class of AR(1), the
special case of iid N(0, σ2) is characterized by the
restriction a = 0. Therefore, our test is consistent
against the AR(1) alternative, as established by the
following theorem.

Theorem 2.5. Let, {Xt}t be a stationary Gaussian
AR(1) process. Then,

log(W2n)

2n

a.s−→ r∗, as n → ∞,

where r∗ = 1
2E (log (S4)) ≥ 0 and equality holds if and

only if a = 0 (in which case the null would be true).

[See Section A.3 of Supplementary for the proof]

In essence, Theorem 2.5 ensures the consistency of our
sequential level α test (defined in (15)), by revealing
that our test martingale {W2n}n≥1 increases to infinity
exponentially fast in n, under AR(1) alternative. Al-
though it appears to be difficult to find a closed-form
expression of r∗ in terms of the model parameters, one
can get an approximation (for example, using Monte
Carlo simulation). Next, we extend and generalize this
result.

2.2.2 Generalization to a larger class of
alternatives

Although our primary focus is on AR(1) alternatives,
we show that our test is consistent for much more
general alternatives.

Theorem 2.6. Let {Xt}t≥1 be an ergodic process.
Then,

log(W2n)

2n

a.s−→ r∗, as n → ∞,

where r∗ = 1
2E (log (S4)) ≥ 0, which is strictly positive

whenever a ̸= 0 and E
(

1
S4

)
≤ 1.

[See Section A.4 of Supplementary for the proof]

Remark 2.7. An ergodic process is a random process
where the time averages of the process tend to the ap-
propriate ensemble averages. Formal definitions can
be found in Billingsley (1965). Ergodicity serves as a
common and crucial assumption in time series analysis.
For example, all autoregressive and moving average pro-
cesses are ergodic. It can be shown that under AR(1)

model, E
(

1
S4

)
≤ 1 holds true 1. Thus, Theorem 2.6

can be viewed as a strict generalization of Theorem 2.5.

1Indeed, note that S4 is just a simple likelihood ratio,
which always satisfies that its expectation is 1 under the
null and its inverse has expectation 1 under the alternative.
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(a) Bernoulli(0.2) (b) Bernoulli(0.5) (c) Bernoulli(0.8)

Figure 1: Evolution of our pairwise betting (logMt), universal inference (Ramdas et al., 2022) and conformal
inference (simple jumper algorithm, with rate = 0.1, 0.01, 0.001) (Vovk, 2021; Vovk et al., 2022) under iid
Bernoulli models. The average +/- standard deviation of 10 independent simulations is plotted. This experiment
is a sanity check: as expected, none of the evidence processes grow up with time since the null is true.

(a) Markov(0.9,0.1) (b) Markov(0.1,0.9)

(c) Markov(0.6,0.4) (d) Markov(0.4,0.6)

Figure 2: Evolution of our pairwise betting process (logMt), universal inference (Ramdas et al., 2022) and
conformal inference (simple jumper with rate J = 0.1, 0.01, 0.001) (Vovk, 2021; Vovk et al., 2022) under four
different Markov Models. The average +/- standard deviation of 10 independent simulations is plotted. The
black dotted lines are the lines with slope r (Theorem 2.1), which perfectly predicts the evolution of our process.

3 EXPERIMENTAL RESULTS

We present results on both simulated and real data.

3.1 Simulation study for binary case

In this subsection, we investigate the performance of
our test martingales for the binary case and compare it
with the universal inference (Ramdas et al., 2022) and

conformal inference (simple jumper algorithm) (Vovk,
2021; Vovk et al., 2022). These two approaches have
been described in Appendix A.

No power against iid Bernoulli. We conduct a
sanity check to verify that our evidence measure does
grow against iid Bernoulli sources (which are exchange-
able). Our experiments encompass three specific cases:
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Bernoulli(0.2), Bernoulli(0.5) and Bernoulli(0.8). In all
instances, log(Mt) does not grow with t; see Figure 1.

Power against a Markov alternative. The prob-
ability that the first observation is 1 is assumed
0.5. In our computational experiments, we explore
four specific cases: Markov(0.4, 0.6), Markov(0.6, 0.4),
Markov(0.1, 0.9) and Markov(0.9, 0.1) (We use the no-
tation Markov(π1|0, π1|1) for the probability distribu-
tion of a Markov chain with the transition probabilities
π1|0 and π1|1). Figure 2 shows that our theoretical
black dotted line perfectly predicts practical perfor-
mance, and also that in 3 out of the 4 plots, our method
outperforms the simple jumper algorithm (for which
there are no guarantees of consistency). Although the
universal inference approach is better than ours, it does
not apply to continuous data settings.

3.2 Simulation study for continuous case

We now investigate the performance of our test mar-
tingales for the continuous case. We have drawn the
first observation from a standard normal distribution.
Our computational experiments encompass five specific
values of the unknown parameter a of AR(1) model
with a known variance of the white noise, σ2 = 1.

As illustrated in Figure 3, we observe that for a = 0
(representing the iid normal case), the logarithm of
our process does not grow with time, whereas for a =
±0.2,±0.8, the logarithm of our process grows linearly
with time.

Figure 3: Average values of logWt (+/- standard devi-
ation) of 10 independent simulations for AR(1) model
with five different choices of the parameter a. Except
for a = 0 (when the null is true), logWt grows linearly
with time t, as predicted by our theory. Note that pos-
itive and negative a behave differently, as they should.
When a > 0, all terms are positively correlated, and
when a < 0, the correlations between odd-spaced terms
is negative and even-spaced terms is positive.

3.3 Real data experiment

We conclude the empirical evaluation with an imple-
mentation of our method on the Beijing Multi-Site
Air-Quality Data (Chen, 2019), which contains hourly
observations of six main air pollutants over the time
period from March 1, 2013 to February 28, 2017 at
multiple sites in Beijing. For our analysis, we focus
on the time series data from the Aotizhongxin station.
Figure 4, shows the growth of log(Wt) with t, which
clearly indicates that the null hypothesis can be safely
rejected, for all these six sequences. This empirical
validation reaffirms the practical utility of our testing
methodology in real-world scenarios.

Figure 4: Accumulating evidence against the individual
hypotheses that the sequences of hourly concentration
of six air-pollutants are exchangeable.

4 DISCUSSION

4.1 Versatility of Our Method

It is crucial to emphasize that in both binary and
continuous cases, the models we employed under the
alternative only serve as a strategic aid for betting.
The model’s use does not impose any constraints on
our H0: it just guides our betting in an attempt to
prove the null false, but if the null is true, the evidence
cannot grow no matter what model we use.

The choice of a model is most impactful in terms of the
power of the test. If the model does not perfectly align
with the underlying data generation process, it may
potentially reduce the power. However, it is essential
to note that our test is “safe” in the sense that it never
compromises the control of the type-1 error.

The two specific cases (first-order Markov and AR(1))
we considered in our paper serve as illustrative ex-
amples for the sake of clarity and simplicity, offering
valuable insights into the testing process due to analyti-
cal tractability of optimal bets and wealth growth rates.
However, our method can be readily used in any other
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setting. The conditional likelihood under null is always
1
2 . So, the key requirement is the availability of a con-
ditional generative model that can be learned/updated
online, to facilitate the betting process.

4.2 Even and odd games

It is important to note that instead of betting in the
odd time steps, as described earlier, we could bet in
the even time steps as well. And it may initially seem
that the average wealth of these two games might be a
valid measure of evidence against null, but this turns
out to not be the case, as we explain below.

Clearly, the same player cannot play both the games:
betting relies on uncertainty, and it’s meaningless to
consider a game where the bettor wagers on something
already known to them. Once a bet has been placed
on Z2t+1 = (X2t+1, X2t+2), and one has learned the
outcome, it becomes meaningless to bet on Z2t+2 =
(X2t+2, X2t+3) because X2t+2 is already known. One
may think to not reveal the outcome of the first bet
until after the second bet is made, but this does not
work because knowing X2t+1 is key to betting on Z2t+2.

Additionally, the games corresponding to even and odd
times yield two different filtrations, which we denote
as F1 and F2, respectively. Both F1 and F2 repre-
sent coarsenings of the data filtration (F), but in two
different ways. If we denote the wealth processes in
these two games as {Mt}t≥0 and {Nt}t≥0, respectively,
they are test martingales with respect to F1 and F2,
respectively. Consequently, the object T = M+N

2 is not
a test martingale because it is neither adapted to F1

nor to F2, and it doesn’t seem to be an e-process either.
While it is adapted to F , it does not qualify as a test
martingale with respect to F (indeed, these do not
exist). However, techniques from Choe and Ramdas
(2024) can be used to combine them.

It is intriguing to consider the average wealth obtained
by two independent, non-communicating players en-
gaging in two different games with nature. It may be
interesting future work to investigate its properties.

4.3 Pairwise Betting: A Broader Outlook

The absence of a powerful test martingale in the origi-
nal data filtration is a phenomenon that is encountered
in other significant nonparametric hypothesis classes.
For example, for the fundamental problem of indepen-
dence testing, Henzi and Law (2023) shows that test
martingales are powerless. However, Podkopaev et al.
(2023) showed that a (different) pairwise betting strat-
egy yields a consistent and powerful test martingale for
the problem, while Henzi and Law (2023) reduced the
filtration in a different fashion analogous to conformal

prediction.

Thus, there are interesting parallels between the sit-
uations encountered for testing independence and for
testing exchangeability. These two problems are def-
initely related; in nonsequential settings, most tests
for independence proceed via testing exchangeability
using a permutation test. But the relationship in the
sequential setting is complicated by the fact that test-
ing independence can occur in non-iid settings as well,
as was demonstrated in Podkopaev et al. (2023).

4.4 Testing with more than two observations
together

Our strategy involves betting on pairs of observations
due to the powerlessness of betting on individual obser-
vations, but one also has the flexibility to process more
than two observations at a time. The obvious cost of
doing this is further shrinkage of filtration, meaning
that optional stopping is effectively constrained to only
stop at times divisible by the number of data points
processed simultaneously. However, utilizing larger
batches of data points often improve the growth rate of
the wealth. For example, a detailed analysis of testing
by betting with three consecutive observations is in
Appendix B.

5 CONCLUSION

Our paper introduces a novel approach to the funda-
mental question of sequentially testing exchangeability,
centered around the new (yet simple) idea of pairwise
betting, which leads to a nontrivial test martingale.
Importantly, our method applies to any general obser-
vation space and is amenable to analytical study. We
have provided a detailed analysis of our approach for
both binary and continuous cases, specifically focusing
on Markov and AR(1) alternatives (but extended to a
broader class of alternatives), respectively, for which
we demonstrated the consistency of our approach and
explored its growth rate.
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Podkopaev, A., Blöbaum, P., Kasiviswanathan, S., and
Ramdas, A. (2023). Sequential kernelized indepen-
dence testing. In International Conference on Ma-
chine Learning, pages 27957–27993. PMLR.

Ramdas, A., Grünwald, P., Vovk, V., and Shafer, G.
(2023). Game-theoretic statistics and safe anytime-
valid inference. Statistical Science.

Ramdas, A., Ruf, J., Larsson, M., and Koolen, W. M.
(2022). Testing exchangeability: Fork-convexity, su-
permartingales and e-processes. International Jour-
nal of Approximate Reasoning, 141:83–109.

Shafer, G. (2021). Testing by betting: A strategy for
statistical and scientific communication. Journal of
the Royal Statistical Society Series A: Statistics in
Society, 184(2):407–431.

Shafer, G. and Vovk, V. (2019). Game-theoretic foun-
dations for probability and finance, volume 455. John
Wiley & Sons.

Shekhar, S. and Ramdas, A. (2023). Nonparametric
two-sample testing by betting. IEEE Transactions
on Information Theory.

Vovk, V. (2021). Testing randomness online. Statistical
Science, 36(4):595–611.

Vovk, V., Nouretdinov, I., and Gammerman, A. (2003).
Testing exchangeability on-line. In Proceedings of the
20th International Conference on Machine Learning
(ICML-03), pages 768–775.

Vovk, V., Nouretdinov, I., and Gammerman, A. (2022).
Conformal testing: binary case with Markov alter-
natives. In Conformal and Probabilistic Prediction
with Applications, pages 207–218. PMLR.

Vovk, V., Petej, I., Nouretdinov, I., Ahlberg, E., Carls-
son, L., and Gammerman, A. (2021). Retrain or not
retrain: Conformal test martingales for change-point
detection. In Conformal and Probabilistic Prediction
and Applications, pages 191–210. PMLR.

Vovk, V. and Wang, R. (2021). E-values: Calibra-
tion, combination and applications. The Annals of
Statistics, 49(3):1736–1754.

Wald, A. (1945). Sequential tests of statistical hy-
potheses. The Annals of Mathematical Statistics,
16(2):117–186.

Wasserman, L., Ramdas, A., and Balakrishnan, S.
(2020). Universal inference. Proceedings of the Na-
tional Academy of Sciences, 117(29):16880–16890.

Waudby-Smith, I. and Ramdas, A. (2023). Estimating
means of bounded random variables by betting. Jour-
nal of the Royal Statistical Society Series B (Method-
ology), with discussion.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.

Yes. (Section 2)

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.

Not Applicable.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results.

Yes.

(b) Complete proofs of all theoretical results.

Yes (In Supplementary Materials).

(c) Clear explanations of any assumptions.

Not Applicable.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).

Yes.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen).

Not Applicable.



Aytijhya Saha, Aaditya Ramdas

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times).

Not Applicable.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider).

Not Applicable.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets.

Not Applicable.

(b) The license information of the assets, if appli-
cable.

Not Applicable.

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable.

Not Applicable.

(d) Information about consent from data provider-
s/curators.

Not Applicable.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content.

Not Applicable.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots.

Not Applicable.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable.

Not Applicable.

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation.

Not Applicable.



Supplementary Materials:
Testing exchangeability by pairwise betting

A DETAILS OF EXISTING METHODS

A.1 Universal Inference based approach:

Ramdas et al. (2022) has used universal inference (Wasserman et al., 2020), incorporating the method of mixtures
with Jeffreys’ prior, to handle the composite alternative, along with the maximum likelihood under the null, to
ultimately yield a computationally efficient closed-form e-process

Rn :=
Γ
(
n0|0 +

1
2

)
Γ
(
n0|1 +

1
2

)
Γ
(
n1|0 +

1
2

)
Γ
(
n1|1 +

1
2

)
2Γ
(
1
2

)4
Γ
(
n0|0 + n1|0 + 1

)
Γ
(
n0|1 + n1|1 + 1

) /
((n1

n

)n1
(n0

n

)n0
)
; n = 1, 2, 3, · · · .

Here Γ denotes the usual gamma function, ni is the number of times i has observed among first n observations
and ni|j is the number of transitions from j to i observed upto n-th observations, for i, j = 1, 2. This process
is not a test supermartingale, but is upper-bounded by some nonnegative martingale for every exchangeable
distribution, and thresholding it at level 1/α yields a level α sequential test for exchangeability.

A.2 Conformal Inference based approach:

Vovk (2021) introduced a method for testing exchangeability based on conformal prediction, wherein the canonical
data filtration is replaced by a less informative filtration composed of conformal p-values. In this approach, a
sequence of independent conformal p-variables are generated under the null, which are transformed into a test
martingale through suitable calibration. The idea is to bet against the uniform distribution of the conformal
p-values. The Simple Jumper Algorithm (Vovk et al., 2021) is one such method, which takes the conformal
p-values as input and produces a conformal test martingale as output. It also involves a hyperparameter, J ∈ (0, 1).
The method is briefly described below.

The conformal p-values p1, p2, . . . are transformed into conformal test martingale as follows:

F (p1, . . . , pn) :=

∫ ( n∏
i=1

fϵi (pi)

)
µ (d (ϵ0, ϵ1, . . .)) , (16)

where
fϵ(p) := 1 + ϵ(p− 0.5), (17)

and µ denotes the following Markov chain with state space {−1, 0, 1}: the initial state is ϵ0 ∈ {−1, 0, 1} with
equal probabilities, and the transition function prescribes maintaining the same state with probability 1− J and,
with probability J , choosing a random state from the state space {−1, 0, 1}. The intuition is that at each step
i, one of the betting functions 17 is used: f−1 corresponds to betting on small values of pi, f1 corresponds to
betting on large values of pi, and f0 corresponds to not betting.

B TESTING BY BETTING WITH THREE CONSECUTIVE OBSERVATION

Instead of processing the data sequence pairwise, we now consider three consecutive observations together. This
new betting game leads to a test martingale, which appears to have a higher growth rate than the existing one in
many situations. Notably, the introduced modification comes with a minor trade-off: optional stopping is now
permitted only at times divisible by three, in contrast to the even stopping times permitted in pairwise betting.
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B.1 Test for Binary Observations

Consider a sequence of binary random variables X1, X2, · · · . The realization of the random variables are denoted
as x1, x2, · · · . We primarily focus on first-order Markov alternative, as done before.

For a betting game starting with an initial wealth of M∗
0 = 1, we define Vt = {X3t+1, X3t+2, X3t+3} for

t = 0, 1, , · · · to be the unordered set of three consecutive random variables. If Vt = {0, 0, 0} or {1, 1, 1}, there is
nothing to bet for, and we denote this event as At. Otherwise, we place bets on the order in which they occur,
according to the likelihood ratio, conditioned on the observed values of X3t := {X1, · · · , X3t} and the unordered
set Vt and the event Ac

t . Thereafter, nature unveils the observed values of X3t+1, X3t+2 and X3t+3, which is some
permutation of the elements of Vt. Notably the conditional likelihood under H0 is 1/3, since all the permutations
are equally likely under the null of exchangeability, and given that all three binary observations are not equal,
two of them must be equal, implying there are three distinct permutations (we dente them by πt,i, i = 1, 2, 3).
And the conditional likelihood under H1 is

PH1(X3t+1 = x3t+1, X3t+2 = x3t+2, X3t+3 = x3t+3|X3t = x3t, Vt = vt, A
c
t) =

h(x3t, x3t+1, x3t+2, x3t+3)∑3
i=1 h(x3t, xi

t,1, x
i
t,2, x

i
t,3)

, (18)

where h(w, x, y, z) := pz|ypy|xpx|w and (xi
t,1, x

i
t,2, x

i
t,3) is the ordered set corresponding to the permutation πt,i of

the unordered set vt. Here, pi|j is the transition probability from j to i of the underlying Markov model. Then,
the betting score at t-th round of betting for the Oracle (denoted as B∗

t ) is the likelihood ratio of the alternative

(Equation (18)) to the null (which is 1
3 ), i.e., B

∗
t = 1At

+ 3h(X3t,X3t+1,X3t+2,X3t+3)∑3
i=1 h(X3t,Xi

t,1,X
i
t,2,X

i
t,3)
1Ac

t
.

But, in practice, we replace pi|j (which is unknown) by its maximum likelihood estimator (MLE) based on the
first 3t many observations (denoted by p̂i|j) in Equation (18). But there could be other choices too.

We do not bet on the first round, i.e., B̂∗
1 = 1. And betting score at t-th round of betting is

B̂∗
t = 1At

+
3ĥt(X3t, X3t+1, X3t+2, X3t+3)∑3

i=1 ĥt(X3t, Xi
t,1, X

i
t,2, X

i
t,3)

1Ac
t
; t = 2, 3, · · · . (19)

Here, ĥt is the plug-in MLE of h, that is obtained by replacing pi|j by p̂i|j in the expression of ĥ, for i, j = 1, 2
and k = 1, 2, 3. Thus, the bettor’s wealth after t rounds of betting is

M∗
t = M∗

t−1 × B̂∗
t =

t∏
i=1

B̂∗
i ; t = 1, 2, 3, · · · . (20)

It is easy to check that {M∗
t }t∈N is a test martingale for H0. Hence, τ := inf{3t : M∗

t ≥ 1/α, t ∈ N} is the
stopping time at which we reject the null, yielding a level α sequential test.

Theorem B.1. Under the first-order Markov alternative, assume that p0|1, p1|0 ≠ 0. Then,
log(M∗

n)
3n → r̃′ almost

surely as t → ∞, where

r̃′ =
1

3

∑
i,j,k,l∈{0,1}:

(j,k,l) ̸=(0,0,0),(1,1,1);
pj|ipk|jpl|k ̸=0

log

(
3pj|ipk|jpl|k∑

π∈Π(j,k,l) pπ(j)|ipπ(k)|π(j)pπ(l)|π(k)

)
pipj|ipk|jpl|k.

Here Π(j, k, l) is the set of all distinct permutations of the numbers j, k, l and pi is the stationary probability of
i-th state. Further, r̃′ = 0 if p1|0 = p1|1, and r̃′ > 0 otherwise.

This theorem shows the consistency of our sequential level α test, by proving that our test martingale increases
to infinity exponentially fast in n. The result is quite similar to the result for the pairwise betting approach.

B.2 Test for Continuous Observations

Consider a sequence of continuous random variables X1, X2, · · · . The realization of the random variables is
denoted as x1, x2, · · · . Our focus is on first-order Gaussian autoregressive alternative, as before :

H1 : X is a stationary AR(1) process, with Xt+1 = aXt + εt+1, t = 1, 2, · · · , εt
i.i.d∼ N(0, σ2).



Testing exchangeability by pairwise betting

Here a and σ are unknown. Using the same idea that we employed in the binary case, we obtain the test
martingale. The only difference is that for continuous random variables, the probability that two random variables
are equal is zero. Hence, the likelihood under H0 becomes 1/6, since there are 3! distinct permutations (denote
them by τt,i, i = 1, · · · , 6). Similarly, as before, conditional likelihood under alternative

PH1
(X3t+1 = x3t+1, X3t+2 = x3t+2, X3t+3 = x3t+3|X3t = x3t, Vt = vt) =

g(x3t, x3t+1, x3t+2, x3t+3)∑6
i=1 g(x3t, xi

t,1, x
i
t,2, x

i
t,3)

, (21)

with g(w, x, y, z) := 1
2πσ2 exp

(
− 1

2σ2 (x− aw)2 − 1
2σ2 (y − ax)2 − 1

2σ2 (z − ay)2
)
and (xi

t,1, x
i
t,2, x

i
t,3) is the ordered

set corresponding to the permutation τt,i of the unordered set vt. So, betting score for Oracle at t(≥ 2)-th

round is S∗
t = 6g(X3t,X3t+1,X3t+2,X3t+3)∑6

i=1 g(X3t,Xi
t,1,X

i
t,2,X

i
t,3)

. Recall that we don’t bet at t = 1, so S∗
1 = 1. For practical use,

we need to estimate the parameters a and σ2. One viable option is to estimate g by ĝt, which is obtained
by replacing the model parameter a by its least squares estimator, ât =

∑3t
i=2 XiXi−1/

∑3t−1
i=1 X2

i and σ2 by

σ̂2
t = 1

3t−1

∑3t
i=2(Xi − ât−1Xi−1)

2. So, the bet at t-th round (t = 2, 3, · · · ) is

Ŝ∗
t =

6ĝt(X3t, X3t+1, X3t+2, X3t+3)∑6
i=1 ĝt(X3t, Xi

t,1, X
i
t,2, X

i
t,3)

. (22)

Thus, starting with an initial wealth of W ∗
0 = 1, the bettor’s wealth after t rounds of betting is

W ∗
t = W ∗

t−1 × Ŝ∗
t =

t∏
i=1

Ŝ∗
i . (23)

It is easy to check that {W ∗
t }t∈N is a test martingale, (with respect to a shrunk filtration) for testing exchangeability

and τ ′ = inf{3t : W ∗
t ≥ 1/α; t ∈ N} is a level α sequential test.

Theorem B.2. Let, {Xt}t be a stationary Gaussian AR(1) process. Then,
log(W∗

n)
3n

a.s−→ r̃∗, as n → ∞, where
r̃∗ = 1

3E (log (S∗
2 )) ≥ 0 and equality holds if and only if a = 0 (in which case the null would be true).

This theorem shows the consistency of our sequential level α test, by proving that our test martingale increases to
infinity exponentially fast in n. Although the result is quite similar to the result for the pairwise betting approach,
the growth rate r of this new test martingale is higher, as demonstrated by our simulation studies in the next
section.

B.3 Experimental Results

In this subsection, we investigate the performance of our test martingales for the binary case and compare it with
the universal inference (Ramdas et al., 2022) and our pairwise betting method.

Simulation study for binary case: Figure 5 shows that our theoretical black dotted line perfectly predicts
practical performance, and also that in both cases, our approach is better than the pairwise betting and in one
case, it is better than universal inference approach.

Simulation study for continuous case: We now investigate the performance of our test martingales for the
continuous case. We have drawn the first observation from the standard normal distribution. Our computational
experiments encompass five specific values of the unknown parameter a of AR(1) model with a known variance
of the white noise, σ2 = 1. As illustrated in Figure 6, we observe that for a = ±0.2,±0.8, the logarithm of our
process grows linearly with time. In all these examples, our process demonstrates a higher growth rate than the
pairwise betting approach.
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(a) Markov(0.9, 0.1) (b) Markov(0.6, 0.4)

Figure 5: Evolution of our new wealth process based on betting with three observations, pairwise betting process
and the Universal Inference approach (Ramdas et al., 2022) for the Markov model (with four different choices of
the parameters). The black dotted lines have slope r̃′ (Theorem B.1), which perfectly predicts the evolution of
our process.

(a) a = −0.8 (b) a = −0.2

(c) a = 0.2 (d) a = 0.8

Figure 6: Evolution of the log-wealth of our new approach (betting on three observations) and the pairwise betting
process for the AR(1) model (with four choices of parameter a). The log-wealths grow linearly as predicted by
theory, but betting on triples is more powerful.
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C OMITTED PROOFS

Here, we present the formal proofs of the theorems stated and discussed in the main paper. The key mathematical
tool that we employ to establish these proofs is the ergodic theorem (Billingsley, 1965).

C.1 Proof of Theorem 2.1

For t ≥ 2, let us define Y2t = {X2t−2, X2t−1, X2t}, D̂2t = log B̂2t. So, we can write log(M2n) =
∑n

t=2 D̂2t.

Now, by using ergodic theorem, we can show that the MLE of the transition probability from i th state to j th
state, p̂j|i is strongly consistent for pj|i, i.e,

p̂j|i(t) → pj|i, almost surely, as t → ∞, for i, j ∈ {0, 1}. (24)

And since X1, X2, · · · is a Markov chain of first order, Y2, Y4, · · · is also a Markov chain of first order. So, again
by ergodic theorem,

1

n− 1

n∑
t=2

IY2t={i,j,jc} → pipj|ipjc|j , almost surely, as n → ∞, for i, j ∈ {0, 1}, (25)

where pi =
pi|ic

pi|ic+pic|i
. is the stationary probability of ith state. Let us first assume that pj|i ≠ 0, for all i, j ∈ {0, 1}.

1

n− 1

n∑
t=2

D̂2t

=
1

n− 1

n∑
t=2

1∑
i=0

1∑
j=0

log

(
2p̂j|i(2t)p̂jc|j(2t)

p̂j|i(2t)p̂jc|j(2t) + p̂jc|i(2t)p̂j|jc(2t)

)
IY2t={i,j,jc}

=
1∑

i=0

1∑
j=0

1

n− 1

n∑
t=2

[
log

(
2p̂j|i(2t)p̂jc|j(2t)

p̂j|i(2t)p̂jc|j(2t) + p̂jc|i(2t)p̂j|jc(2t)

)
− log

(
2pj|ipjc|j

pj|ipjc|j + pjc|ipj|jc

)]
IY2t={i,j,jc}

+

1∑
i=0

1∑
j=0

log

(
2pj|ipjc|j

pj|ipjc|j + pjc|ipj|jc

)
1

n− 1

n∑
t=2

IY2t={i,j,jc}.

The first term goes to 0 (follows from (24) by first invoking continuous mapping theorem to conclude each term
inside the bracket converges a.s. to zero from which it also follows that running average converge to 0) and the

second term converges to log
(

2pj|ipjc|j
pj|ipjc|j+pjc|ipj|jc

)
pipj|ipjc|j (follows from (25)) almost surely. Hence,

1

n− 1

n∑
t=2

D̂2t →
1∑

i=0

1∑
j=0

log

(
2pj|ipjc|j

pj|ipjc|j + pjc|ipj|jc

)
pipj|ipjc|j , almost surely, as n → ∞,

which implies, logM2n

2n → r, almost surely, as n → ∞, where
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r =
1

2

1∑
i=0

1∑
j=0

log

(
2pj|ipjc|j

pj|ipjc|j + pjc|ipj|jc

)
pipj|ipjc|j

=
p0|1p1|0

2(p0|1 + p1|0)
log

((
2(1− p0|1)

1− p0|1 + p1|0

)1−p0|1 ( 2p0|1

1 + p0|1 − p1|0

)p0|1 ( 2p1|0

1− p0|1 + p1|0

)p1|0

×
(

2(1− p1|0)

1 + p0|1 − p1|0

)1−p1|0
)

=
p0|1p1|0

2(p0|1 + p1|0)

[
log 4− (1− p0|1) log

(
1 +

p1|0

1− p0|1

)
− p1|0 log

(
1 +

1− p0|1

p1|0

)

− (1− p1|0) log

(
1 +

p0|1

1− p1|0

)
− p0|1 log

(
1 +

1− p1|0

p0|1

)]
.

Since log is a concave function, we can use Jensen’s inequality to obtain

r ≥
p0|1p1|0

p0|1 + p1|0
[log 4− (1− p0|1 + p1|0) log 2− (1− p1|0 + p0|1) log 2] = 0,

where the equality holds if and only if
p1|0

1−p0|1
=

1−p0|1
p1|0

and
p1|0

1−p0|1
=

1−p0|1
p1|0

, which is equivalent to p1|0 = p1|1.

Similarly, we obtain in general that if p0|1, p1|0 ̸= 0, log(M2n)
2n → r almost surely as t → ∞, where

r =
1

2

∑
i,j∈{0,1}:
pj|i ̸=0

log

(
2pj|ipjc|j

pj|ipjc|j + pjc|ipj|jc

)
pipj|ipjc|j .

C.2 Proof of Theorem 2.3

Note that, by definition of pj|i and pi,j,jc , we have

p̂j|i(t) =
nj|i(t)

nj|i(t) + njc|i(t)
=

nj|i(t)/t

nj|i(t)/t+ njc|i(t)/t
→ pj|i, almost surely, as t → ∞, for i, j ∈ {0, 1}, (26)

1

n− 1

n∑
t=2

IY2t={i,j,jc} → pi,j,jc , almost surely, as n → ∞, for i, j ∈ {0, 1}. (27)

Let us first assume that pj|i ̸= 0, for all i, j ∈ {0, 1}. Hence, by the same argument, as shown in the proof of

Theorem 2.1, we have logMn

2n → r′, almost surely, as n → ∞, where
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2r′ =

1∑
i=0

1∑
j=0

log

(
2pj|ipjc|j

pj|ipjc|j + pjc|ipj|jc

)
pi,j,jc

=p1,1,0 log

(
2(1− p0|1)

1− p0|1 + p1|0

)
+ p0,1,0 log

(
2p0|1

1 + p0|1 − p1|0

)
+ p1,0,1 log

(
2p1|0

1− p0|1 + p1|0

)
+ p0,0,1 log

(
2(1− p1|0)

1 + p0|1 − p1|0

)
=(p1,1,0 + p0,1,0)

[
log 2− p1,1,0

p1,1,0 + p0,1,0
log

(
1 +

p1|0

1− p0|1

)
− p1,1,0

p1,1,0 + p0,1,0
log

(
1 +

1− p0|1

p1|0

)]
+ (p1,0,1 + p0,0,1)

[
log 2− p1,0,1

p1,0,1 + p0,0,1
log

(
1 +

p0|1

1− p1|0

)
− p0,0,1

p1,0,1 + p0,0,1
log

(
1 +

1− p1|0

p0|1

)]
.

≥(p1,1,0 + p0,1,0)

[
log 2− log

(
1 +

ap20|1 + (1− a)(1− p0|1)
2

p0|1(1− p0|1)

)]

+ (p1,0,1 + p0,0,1)

[
log 2− log

(
1 +

bp21|0 + (1− b)(1− p1|0)
2

p1|0(1− p1|0)

)]
(by using Jensen’s inequality)

=(p1,1,0 + p0,1,0)

[
log 2− log

(
2 +

(2p0|1 − 1)(a+ p0|1 − 1)

p0|1(1− p0|1)

)]
+ (p1,0,1 + p0,0,1)

[
log 2− log

(
2 +

(2p1|0 − 1)(b+ p1|0 − 1)

p1|0(1− p1|0)

)]
≥0, when (2p0|1 − 1)(a+ p0|1 − 1) ≥ 0 and (2p1|0 − 1)(b+ p1|0 − 1) ≥ 0.

Note that equality holds in the first inequality (which follows from Jensen’s inequality) if and only if
p1|0

1−p0|1
=

1−p0|1
p1|0

and
p1|0

1−p0|1
=

1−p0|1
p1|0

, which is equivalent to p1|0 = p1|1. Therefore, r′ > 0 if (2p0|1 − 1)(a + p0|1 − 1) ≥
0 and (2p1|0 − 1)(b+ p1|0 − 1) ≥ 0 and p1|0 ̸= p1|1.

Similarly, we obtain in general that if p0|1, p1|0 ̸= 0, log(M2n)
2n → r almost surely as t → ∞, where

r =
1

2

∑
i,j∈{0,1}:
pj|i ̸=0

log

(
2pj|ipjc|j

pj|ipjc|j + pjc|ipj|jc

)
pi,j,jc .

C.3 Proof of Theorem 2.5

Define, C2t = logS2t, and Ĉ2t = log Ŝ2t. So, we have log(W2n) =
∑n

t=2 Ĉ2t.

Note that C2t = log
(

2f(X2t−2,X2t−1,X2t)
f(X2t−2,X2t−1,X2t)+f(X2t−2,X2t,X2t−1)

)
is a continuous function of X2t, X2t−1, X2t−2. Since,

under the alternative, {Xt}t is a stationary AR(1) process, it is an ergodic process and so is the process {C2t}t.
Now, using ergodic theorem, we can directly say that

1

n− 1

n∑
t=2

C2t → E(C4) = E log(S4), almost surely as n → ∞. (28)

Also, using ergodic theorem, it can be shown that ât−1 =
∑t−1

i=2 XiXi−1/
∑t−2

i=1 X
2
i

a.s→ a and σ̂2
t−1 = 1

t−2

∑t−1
i=2(Xi−

ât−1Xi−1)
2 a.s→ σ2, as t → ∞, which implies Ĉ2t − C2t

a.s→ 0, as t → ∞. Then,

1

n− 1

n∑
t=2

Ĉ2t −
1

n− 1

n∑
t=2

C2t
a.s→ 0. (29)
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Hence,

logW2n

2n
=

n− 1

2n
× 1

n− 1

n∑
t=2

Ĉ2t →
1

2
E log(S4) almost surely, as n → ∞, (30)

r∗ =
1

2
E log(S4) =

1

2
log 2− 1

2
E
(
log

(
1 +

f(X2, X4, X3)

f(X2, X3, X4)

))
≥ 1

2
log 2− 1

2
log

(
1 + E

(
f(X2, X4, X3)

f(X2, X3, X4)

))
(31)

The last step follows from Jensen’s inequality and equality holds if and only if log
(
1 + f(X2,X4,X3)

f(X2,X3,X4)

)
is a linear

function in X2, X3, X4, which is equivalent to a = 0.

It can be easily verified that E(log f(X2, X3, X4)) = −1− log(2π) and

E(log f(X2, X4, X3)) = −1− a2

1 + a
− log(2π) ≤ E(log f(X2, X3, X4)), (32)

which implies

log

(
E
(
f(X2, X4, X3)

f(X2, X3, X4)

))
≤ E

(
log

(
f(X2, X4, X3)

f(X2, X3, X4)

))
= E(log f(X2, X4, X3))− E(log f(X2, X3, X4)) ≤ 0,

i.e, E
(

f(X2,X4,X3)
f(X2,X3,X4)

)
≤ 1, where equality holds iff a = 0 (follows from Equation (32)).

Hence, from Equation (31), r∗ ≥ 0 and equality holds if and only if a = 0.

C.4 Proof of Theorem 2.6

Note that in the proof of Theorem 2.5, we only required {Xt}t to an ergodic process, in order to conclude
Equation (30). Hence, given {Xt}t to be an ergodic process, we have

logW2n

2n
→ 1

2
E log(S4) almost surely, as n → ∞, (33)

r∗ =
1

2
E log(S4) = −1

2
E log

(
1

S4

)
≥ − logE

(
1

S4

)
(34)

which follows from Jensen’s inequality and equality holds if and only if log
(
1 + f(X2,X4,X3)

f(X2,X3,X4)

)
is a linear function

in X2, X3, X4, which is equivalent to a = 0. Now, given that E
(

1
S4

)
≤ 1, we have r∗ ≥ 0. Moreover, r∗ > 0, if

a ̸= 0 and E
(

1
S4

)
≤ 1.

C.5 Proof of Theorem B.1

For t ≥ 2, let us define Yt = (X3t, X3t+1, X3t+2, X3t+3), D̂
∗
t = log B̂∗

t . So, we can write log(M∗
n) =

∑n
t=2 D̂

∗
t .

Now, by using ergodic theorem, we can show that the MLE of the transition probability from i th state to j th
state, p̂j|i is strongly consistent for pj|i, i.e,

p̂j|i(t) → pj|i, almost surely, as t → ∞, for i, j ∈ {0, 1}. (35)

And since X1, X2, · · · is a Markov chain of first order, Y1, Y2, · · · is also a Markov chain of first order. So, again
by ergodic theorem,

1

n− 1

n−1∑
t=1

IYt={i,j,k,l} → pipj|ipk|jpl|k, almost surely, as n → ∞, for i, j, k, l ∈ {0, 1}, (36)
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where pi =
pi|ic

pi|ic+pic|i
. is the stationary probability of ith state. Let us first assume that pj|i ≠ 0, for all i, j ∈ {0, 1}.

Now,

1

n− 1

n∑
t=2

D̂∗
t

=
1

n− 1

n∑
t=2

1∑
i=0

1∑
j,k,l=0
(j,k,l)̸=

(0,0,0),(1,1,1)

log

(
3p̂j|i(t)p̂k|j(t)p̂l|k(t)∑

π∈Π(j,k,l) p̂π(j)|i(t)p̂π(k)|π(j)(t)p̂π(l)|π(k)(t)

)
IYt={i,j,k,l}

=

1∑
j,k,l=0
(j,k,l)̸=

(0,0,0),(1,1,1)

1

n− 1

n∑
t=2

[
log

(
3p̂j|i(t)p̂k|j(t)p̂l|k(t)∑

π∈Π(j,k,l) p̂π(j)|i(t)p̂π(k)|π(j)(t)p̂π(l)|π(k)(t)

)

− log

(
3pj|ipk|jpl|k∑

π∈Π(j,k,l) pπ(j)|ipπ(k)|π(j)pπ(l)|π(k)

)]
IYt={i,j,k,l}

+

1∑
j,k,l=0
(j,k,l)̸=

(0,0,0),(1,1,1)

log

(
3pj|ipk|jpl|k∑

π∈Π(j,k,l) pπ(j)|ipπ(k)|π(j)pπ(l)|π(k)

)
1

n− 1

n∑
t=2

IYt={i,j,k,l}.

The first term goes to 0 (follows from (35) by first invoking continuous mapping theorem to conclude each term
inside the bracket converges a.s. to zero from which it also follows that running average converge to 0) and

the second term converges to log
(

3pj|ipk|jpl|k∑
π∈Π(j,k,l) pπ(j)|ipπ(k)|π(j)pπ(l)|π(k)

)
pipj|ipk|jpl|k (follows from (36)) almost surely.

Hence,

1

n− 1

n∑
t=2

D̂∗
2t →

1∑
i=0

1∑
j,k,l=0
(j,k,l)̸=

(0,0,0),(1,1,1)

log

(
3pj|ipk|jpl|k∑

π∈Π(j,k,l) pπ(j)|ipπ(k)|π(j)pπ(l)|π(k)

)
pipj|ipk|jpl|k.,

almost surely, as n → ∞, which implies,
logM∗

n

3n → r̃′, almost surely, as n → ∞, where

r̃′ =
1

3

1∑
i=0

1∑
j,k,l=0
(j,k,l)̸=

(0,0,0),(1,1,1)

log

(
3pj|ipk|jpl|k∑

π∈Π(j,k,l) pπ(j)|ipπ(k)|π(j)pπ(l)|π(k)

)
pipj|ipk|jpl|k.

=− 1

3

1∑
i=0

pici

1∑
j,k,l=0
(j,k,l)̸=

(0,0,0),(1,1,1)

pj|ipk|jpl|k

ci
log

(∑
π∈Π(j,k,l) pπ(j)|ipπ(k)|π(j)pπ(l)|π(k)

3pj|ipk|jpl|k

)
.

≥1

3

1∑
i=0

pici log(3ci)−
1

3

1∑
i=0

pici log

(
1∑

j,k,l=0
(j,k,l)̸=

(0,0,0),(1,1,1)

∑
π∈Π(j,k,l)

pπ(j)|ipπ(k)|π(j)pπ(l)|π(k)

)
= 0

Since log is a concave function, we have use Jensen’s inequality here and equality holds iff for fixed i ∈ {0, 1},∑
π∈Π(j,k,l) pπ(j)|ipπ(k)|π(j)pπ(l)|π(k)

3pj|ipk|jpl|k
takes the same value for all j, k, l ∈ {0, 1}, (j, k, l) ̸= (0, 0, 0), (1, 1, 1), which implies

p1|1 = p0|1.
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Similarly, we obtain in general that if p0|1, p1|0 ̸= 0,
log(M∗

n)
3n → r̃′ almost surely as t → ∞, where

r̃′ =
1

3

∑
i,j,k,l∈{0,1}:

(j,k,l) ̸=(0,0,0),(1,1,1);
pj|ipk|jpl|k ̸=0

log

(
3pj|ipk|jpl|k∑

π∈Π(j,k,l) pπ(j)|ipπ(k)|π(j)pπ(l)|π(k)

)
pipj|ipk|jpl|k.

C.6 Proof of Theorem B.2

Define, C∗
t = logS∗

t , and Ĉ∗
t = log Ŝ∗

t . So, we have log(W ∗
n) =

∑n
t=2 Ĉ

∗
t .

Note that C∗
t = log

(
6g(X3t,X3t+1,X3t+2,X3t+3)∑6

i=1 g(X3t,Xi
t,1,X

i
t,2,X

i
t,3)

)
is a continuous function of X3t, X3t+1, X3t+2 and X3t+3. Since,

under the alternative, {Xt}t is a stationary AR(1) process, it is an ergodic process and so is the process {C∗
t }t.

Now, using ergodic theorem, we can directly say that

1

n− 1

n∑
t=2

C∗
t → E(C∗

2 ) = E log(S∗
2 ), almost surely as n → ∞. (37)

Also, using ergodic theorem, it can be shown that ât−1 =
∑t−1

i=2 XiXi−1/
∑t−2

i=1 X
2
i

a.s→ a and σ̂2
t−1 = 1

t−2

∑t−1
i=2(Xi−

ât−1Xi−1)
2 a.s→ σ2, as t → ∞, which implies Ĉ∗

t − C∗
t

a.s→ 0, as t → ∞. Then,

1

n− 1

n∑
t=2

Ĉ∗
t − 1

n− 1

n∑
t=2

C∗
t

a.s→ 0. (38)

Hence,

logW ∗
n

3n
=

n− 1

3n
× 1

n− 1

n∑
t=2

Ĉ∗
t → 1

3
E log(S∗

2 ) almost surely, as n → ∞, (39)

r̃∗ =
1

3
E log(S∗

2 ) =
1

3
log 6− 1

3
E

(
log

(∑6
i=1 g(X3, X

i
1, X

i
2, X

i
3)

g(X3, X4, X5, X6)

))

≥ 1

3
log 6− 1

3
log

(
6∑

i=1

E
(
g(X3, X

i
1, X

i
2, X

i
3)

g(X3, X4, X5, X6)

))
(40)

The last step follows from Jensen’s inequality and equality holds if and only if log
(∑6

i=1 g(X3,X
i
1,X

i
2,X

i
3)

g(X3,X4,X5,X6)

)
is a

linear function in X3, X4, X5, X6, which is equivalent to a = 0.

It can be easily verified that

E(log g(X3, X
i
1, X

i
2, X

i
3)) ≤ E(log g(X3, X4, X5, X6)), (41)

which implies

log

(
E
(
g(X3, X

i
1, X

i
2, X

i
3)

g(X3, X4, X5, X6)

))
≤ E

(
log

(
g(X3, X

i
1, X

i
2, X

i
3)

g(X3, X4, X5, X6)

))
= E(log g(X3, X

i
1, X

i
2, X

i
3))− E(log g(X3, X4, X5, X6)) ≤ 0,

i.e, E
(

g(X3,X
i
1,X

i
2,X

i
3)

g(X3,X4,X5,X6)

)
≤ 1, where equality holds iff a = 0 (follows from Equation (41)).

Hence, from Equation (40), r̃∗ ≥ 0 and equality holds if and only if a = 0.
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