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Abstract

We provide an upper bound for the expected
quadratic loss on new data for any regression
model. We derive the bound by modelling
the underlying function by a Gaussian pro-
cess (GP). Instead of a single kernel or fam-
ily of kernels of the same form, we consider
all GPs with translation-invariant and con-
tinuously twice differentiable kernels having a
bounded signal variance and prior covariance
of the gradient. To obtain a bound for the
expected posterior loss, we present bounds
for the posterior variance and squared bias.
The squared bias bound depends on the re-
gression model used, which can be arbitrary
and not based on GPs. The bounds scale well
with data size, in contrast to computing the
GP posterior by a Cholesky factorisation of a
large matrix. More importantly, our bounds
do not require strong prior knowledge as we
do not specify the exact kernel form. We
validate our theoretical findings by numeri-
cal experiments and show that the bounds
have applications in uncertainty estimation
and concept drift detection.

1 INTRODUCTION

In a typical regression problem, we fit a regression
model f̂ on training data and then evaluate its perfor-
mance through its expected error on new data, called
the generalisation loss. Generalisation loss is most
commonly estimated using a labelled holdout set or
cross-validation, assuming that the new data come
from the training distribution P.

Suppose that we want to estimate the (unknown) loss
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of the regressor at a new, unlabelled test point x∗. One
approach is to use the estimate of the generalisation
loss, or an estimate using a different test distribution,
P ′, from which we have holdout data. Under this ap-
proach, we estimate the loss at a data point using the
expected loss over the distribution from which that
data point was drawn.

Estimating the loss at a point this way is often not
enough. First, in many real-world cases, such as under
concept drift (Gama et al., 2014) or domain adaptation
(Redko et al., 2022), we cannot reasonably assume x∗

comes from the training distribution P, and we may
not have enough labelled data from the testing dis-
tribution P ′. Secondly, suppose that we estimate the
unknown loss at a point using the expected loss over
its distribution. In this case, we get the same result
for two different unlabeled test points x∗

1 and x∗
2, even

when they are very far apart. This means that we
cannot compare data points in applications such as
active learning (Settles, 2009) or concept drift detec-
tion without ground truth (Oikarinen et al., 2021). To
say something about the loss at a particular test point,
we have to change our viewpoint from the expectation
E(x,y) over the data space to the expectation Ef over
the space of functions f that generate observations.

In this general setting, we want to upper bound the
expected loss of an arbitrary fixed regressor on an ar-
bitrary, fixed, unlabelled testing data point. Since the
underlying function f that generates data is generally
unknown, the loss we calculate depends on our beliefs
about f . Our beliefs are encoded through the distri-
bution we specify for f , and the expectation over this
distribution gives the expected loss for each test point.

A powerful framework for specifying distributions over
functions is given by Gaussian processes (GP), where
the distribution of interest is the GP posterior. Under
the usual GP workflow, we can estimate the expected
loss as follows: (i) specify a kernel k(x,x′) encoding
one’s prior knowledge about f , such as smoothness or
periodicity, (ii) condition on training observations to
get the posterior distribution, and (iii) use the poste-
rior to evaluate the (expected) posterior loss.
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Using GPs to estimate the expected loss has two draw-
backs. Firstly, specifying the exact form for the kernel
turns out to be a strong prior assumption that heav-
ily affects the posterior distribution. This can make
the posterior loss less reliable since different kernels
result in different losses and since setting a kernel can
be hard to reason about. A domain expert may not
be able to confidently decide between different kernels,
and eliciting a prior from them is in general non-trivial
(Mikkola et al., 2023). Secondly, even if we have suffi-
cient prior knowledge to specify the kernel’s analytical
form, computing the posterior loss can be prohibitively
expensive, as it requires performing a Cholesky factori-
sation for a potentially large matrix.

In this paper, we derive an upper bound for the poste-
rior loss of an arbitrary regressor on an arbitrary test
point using the GP framework using milder, yet easier
to specify modelling assumptions. The bound is com-
putationally efficient, as it does not require Cholesky
factorisation for a large matrix. Using milder assump-
tions, our bound holds uniformly for a general class of
kernels satisfying specific properties. Using assump-
tions that are easier to specify allows the user to ob-
tain an uncertainty estimate without specifying a ker-
nel. The prior knowledge we require involves upper
bounds on the gradient and the signal variance, which
can be easier to elicit from domain experts than an
exact kernel.

Our primary assumption is translation-invariance:
how much two points, p and q, affect each other de-
pends on their relative locations (the difference p-q),
but not their absolute locations (p and q solely). This
general class of kernels contains many commonly used
kernels, such as the radial basis function (RBF), ra-
tional quadratic (RQ), and Matern kernels. Without
any other information about the underlying function
outside the training data, if we want to say anything
about extrapolation behaviour, we need to assume
some properties are shared between the training data
and the testing data. Translation invariance is a sen-
sible assumption since it allows us to extrapolate and
inject prior directional information. The latter is not
possible if we restrict ourselves further to the isotropy
assumption in which how p and q affect each other is
based solely on ∥p− q∥.

The importance of directional information for the error
is illustrated in Figure 1, in which the actual function
f(x1, x2) varies faster on average in the x1 direction
than in x2. We use training data from f to train a
regressor (not pictured) and want to extrapolate out-
side the training data. In that case, the extrapolation
behaviour depends on the direction: the error rises on
average faster when extrapolating in the x1 direction
than in the x2 direction.
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Figure 1: Left: A function y = f(x1, x2), in which
the average gradient in the x1 direction is larger than
in the x2 direction. Right: The errors of a regressor
f̂(x1, x2) ≈ y can rise faster in the x1 direction.

The structure and the contributions of this paper are
as follows. In Sect. 2 we survey the related work, in
Sect. 3, we define the problem and provide desirable
upper bounds and theoretical proofs, and in Sect. 4
we demonstrate that our proposed method works cor-
rectly and efficiently to upper bound the regression
loss. We discuss future work in Sect. 5 and conclude
the paper in Sect. 6.

2 RELATED WORK

Estimating the generalisation error is an essential sub-
ject in statistical learning. In its classical setting, only
one unique distribution generates the data. The gen-
eralisation error can then be estimated, with cross-
validation (Stone, 1974; Nadeau and Bengio, 1999;
Hastie et al., 2009) or bootstrapping (Efron, 1992).

When there is more than one data distribution, the re-
lated fields are out-of-distribution generalisation (Liu
et al., 2023), domain generalisation (Wang et al.,
2022), and domain adaptation (Redko et al., 2022), in
which the goal is to find a model that can generalise to
an unseen test distribution. The main difference with
our work is that we want to upper bound the generali-
sation error for a fixed regressor and a fixed test point
rather than learning the regressor that best generalises
to a test distribution.

Our work is closely related to the literature on poste-
rior variance analysis of GPs, where the goal is a tight
bound for the posterior variance while remaining com-
putationally affordable (Williams and Vivarelli, 2000;
Lederer et al., 2019; Sollich, 1998; Sollich and Halees,
2002; Le Gratiet and Garnier, 2015). The essential
distinction of our work is twofold. Firstly, we do not
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follow the classical setting where the form of the GP
kernel must be specified in advance. Our proposed
bound applies to a vast class of translation-invariant
and twice continuously differentiable kernels and only
requires prior information on the signal variance and
the gradient covariance. It is worth addressing that
knowing the kernel implies knowing the gradient co-
variance and signal variance, but the converse does
not hold. Secondly, we also provide a bound for the
squared bias (the difference between regressor and pos-
terior mean), which is needed to bound the posterior
error. We are not aware of an existing bound for the
squared bias in our general setting with an arbitrary
regressor and an unknown kernel.

Although the posterior variance of GPs is sometimes
used as an error bound, it only holds under the cor-
rect prior assumption, i.e., when the regressor is also
a GP with the same prior as the true function (Sol-
lich, 1998). Capone et al. (2022) propose a uniform
error bound for GPs with translation-invariant kernels
that holds under misspecification of the kernel length
scale. However, the kernel form must be given in ad-
vance and the regressor must be a GP with that kernel
form. We do not require the kernel form and consider
a general regressor.

3 THEORY

3.1 Definitions and setting

Assume a function f : Rp → R that generates data as
y = f(x)+ϵ, where the covariate x ∈ Rp and ϵ is inde-
pendent Gaussian noise with zero mean E [ϵ] = 0 and
variance E

[
ϵ2
]
= σ2. Furthermore, assume that we

have n training data points x1, . . . ,xn, where xi ∈ Rp.
We denote the training data set by D = {(xi, yi)}i∈[n],

where we use the shorthand notation [n] = {1, . . . , n},
the set of training covariates by X = {xi}i∈[n] and the

vector of training labels by y = [y1, y2, . . . , yn]
⊤
.

Assume that we have a regression model f̂ and a test-
ing data point x∗ ∈ Rp. The main object of interest
is the discrepancy between the prediction and its true
value at the test point, (y∗ − f̂(x∗))2 = (f(x∗) + ϵ∗ −
f̂(x∗))2.

We model f as a GP with a zero mean function and
covariance between points of f characterised by a sym-
metric, positive definite kernel k : Rp × Rp → R. The
GP specifies a prior distribution F over functions f .
When conditioning on the observations D, we obtain
the posterior distribution of f , denoted by F ′. The
predictive distribution of f(x∗) is given by a normal
distribution (Rasmussen and Williams, 2006, Page 16)

with a (posterior) mean, denoted by f̄(x∗),

Ef∼F ′ [f(x∗)] = K(x∗,X)[K(X,X) + σ2I]−1y, (1)

and (posterior) variance

Vf∼F ′ [f(x∗)] = k(x∗,x∗)

−K(x∗,X)[K(X,X) + σ2I]−1K(X,x∗), (2)

whereK(U,V) denotes the matrix whose elements are
k(u,v), u ∈ U,v ∈ V. To ensure that Equations (1)
and (2) are well-defined even when the kernel matrix
K(X,X) is singular, we assume σ > 0, but we can
always take the limit of σ → 0+.

We consider kernels that are (i) continuously twice
differentiable, (ii) translation invariant, (iii) have the
prior signal variance upper bounded by σ̃2

0 , and (iv)
the prior covariance of the gradient upper bounded
by C̃. Translation invariance means that k(p,q) =
k(p + u,q + u) for any p,q,u ∈ Rp. Since k only
depends on the difference of its inputs, it can be ex-
pressed as k(p,q) = κ(p − q) for some function κ.
Examples are the radial basis function (RBF), ratio-
nal quadratic (RQ), and Matern kernels. We assume
the signal variance is bounded as:

σ2
0 := Ef∼F

[
f(p)2

]
≤ σ̃2

0 , (3)

and the prior gradient covariance is bounded as:

C := Ef∼F
[
∇f(p)(∇f(p))⊤

]
⪯ C̃, (4)

which means C̃ − C ∈ Rp×p is positive semi-definite.
Lemma 2 will show that C is not dependent on p.

Since f is generally unknown, the best we can do in
this paradigm is to upper-bound the expected poste-
rior loss:

L(x∗) = Ef∼F ′,ϵ∗

[(
y∗ − f̂(x∗)

)2]
. (5)

Our main problem is as follows.

Problem 1. Given the definitions above, find an
upper bound U(x∗) for the expected posterior loss
L(x∗) ≤ U(x∗) when the kernel is translation-
invariant, continuously twice differentiable, with a
prior signal variance bounded by σ̃2

0 as in Eq. (3) and a
prior gradient covariance bounded by C̃ as in Eq. (4).

We intend to find an upper bound U that is as tight
as possible in a computationally efficient manner. We
will use the bias-variance decomposition of L(x∗):

L(x∗) = I(x∗) + V(x∗) + B(x∗)2, (6)

where the irreducible loss is given by I(x∗) = σ2, the
posterior variance by

V(x∗) = Ef∼F ′

[(
f(x∗)− f̄(x∗)

)2]
, (7)
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where f̄(x) = Ef∼F ′ [f(x)], and the squared bias by

B(x∗)2 =
(
f̂(x∗)− f̄(x∗)

)2
. (8)

We specify a fixed value for the irreducible loss σ2.
The problem remains to give a tight upper bound for
the posterior variance (Sect. 3.2) and the squared bias
(Sect. 3.3).

3.2 Posterior variance bound

This section gives an upper bound for the posterior
variance (Theorem 3). First, we present some lem-
mas that will be used in the proofs. The follow-
ing celebrated theorem gives characterisation for a
translation-invariant kernel.

Lemma 1 (Bochner’s representation theorem (Rudin,
1960)). Let k(p,q) = κ(p− q) be a continuous, posi-
tive definite, translation-invariant kernel. Then κ is
the Fourier transformation of a finite, non-negative
measure µ̂:

κ(p− q) =
1

(2π)p

∫
Rp

exp
(
i(p− q)⊤ω

)
dµ̂(ω),

which can be simplified since we consider real kernels:

κ(p− q) =
1

(2π)p

∫
Rp

cos((p− q)⊤ω)dµ̂(ω).

Lemma 2. Let k be a twice continuously differen-
tiable, positive definite, translation invariant kernel.
Then:

1. k(p,p) = σ2
0 is constant for all p ∈ Rp.

2. |k(p,q)| ≤ σ2
0 for any p,q ∈ Rp.

3. Cij =
∂2k(p,q)

∂pi∂qj

∣∣∣∣
q=p

, and it is constant with re-

spect to p.

Proof. Item 1 is straightforward and Item 2 follows
from the Cauchy-Schwartz inequality. Item 3 follows
from the fact that differentiation is a linear operator,
so for each i, ∂f(p)/∂pi is again a Gaussian process,
and the covariance between these processes can be
computed in terms of the second derivative of k (Ras-
mussen and Williams, 2006, Sect 9.4). In particular,

Ef∼F

[
∂f(p)

∂pi

∂f(q)

∂qj

]
=

∂2k(p,q)

∂pi∂qj
.

By translation invariance, it then further holds

∂2k(p,q)

∂pi∂qj
= −∂2κ(p− q)

∂pi∂qj
.

We denote the norm ∥p∥2C := p⊤Cp. Recall C is the
matrix whose elements are Cij from Lemma 2, or C =
Ef∼F

[
(∇f)(∇f)⊤

]
= −Hessκ(0), where Hessκ(0)

denotes the Hessian matrix of κ at 0.

One of our main results is the following theorem:
a local cosine-type lower bound for any translation-
invariant and continuously twice differentiable kernel.

Theorem 1. Given the definitions above, it holds

k(p,q) ≥ σ2
0 cos

(
∥q− p∥C

σ0

)
for any p,q ∈ Rp such that ∥q− p∥C ≤ πσ0.

Proof. We prove here a special case that provides ge-
ometric intuition. The rigorous proof for the general
claim is in Appendix A.1.

We can write k(p,q) = ⟨ϕ(p), ϕ(q)⟩ where ϕ is a
feature map whose values are in some Hilbert space
H. Since k(p,p) = σ2

0 for all p, it follows that
∥ϕ(p)∥ = σ0 for all p, meaning that the range of the
feature map ϕ is restricted to a sphere of radius σ0.

Suppose the original feature space is 1D (p = 1),
C = 1, σ0 = 1, and ϕ is differentiable and maps to a
Euclidean space Rq with the canonical inner product.
The range of ϕ is then restricted to the unit sphere of
Rq. Given p,q ∈ R, consider the following path on the
sphere running from ϕ(p) to ϕ(q):

α : [0, 1] → Rq,

t 7→ ϕ((1− t)p+ tq).

Let R be the length of the shortest path in the
sphere connecting ϕ(p) and ϕ(q). It follows that
R ≤ length(α) (illustrated in Figure 2), and cosR =
⟨ϕ(p), ϕ(q)⟩ = k(p,q), since we consider a unit sphere.

Since C = 1, it holds

1 =
∂2k(p,q)

∂p∂q

∣∣∣∣
q=p

= ⟨ϕ′(p), ϕ′(p)⟩ = ∥ϕ′(p)∥2.

The length of α is then given by

length(α) =

∫ 1

0

∥α′(t)∥dt

=

∫ 1

0

∥ϕ′((1− t)p+ tq)(q− p)∥dt

= |q− p|.

It follows that R ≤ |q − p|. For |q − p| ≤ π, then
cosR ≥ cos |q− p|, or k(p,q) ≥ cos |q− p|.

For the general claim, the main idea is that the tri-
angle inequality for angles holds for a general Hilbert
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Figure 2: A feature map ϕ : R → R3 given

by ϕ(x) = [ 12 sin(2x),
1
2 cos(2x),

√
3
2 ]⊤, for which

∥ϕ(x)∥ = ∥ϕ′(x)∥ = 1 and the corresponding kernel is
translation-invariant. The black points are ϕ(p) and
ϕ(q) with p = 5, q = 6.5; the red curve is the shortest
path connecting these two points; the blue curve cor-
responds to the path t 7→ ϕ((1− t)p+ tq).

space (Rao, 1976), and the shortest path idea can still
be deployed by segmenting a path into small pieces.
Everything is then translated back to the kernel, and
final evaluations are done directly on the kernel itself
using Bochner’s representation theorem (Lemma 1).

Using Theorem 1, we derive a bound for the posterior
variance when there is only one training data point:

Theorem 2. When there is one training point, x,

V(x∗) ≤
σ4
0 sin

2
∗

(
∥x− x∗∥C

σ0

)
+ σ2σ2

0

σ2
0 + σ2

(9)

where sin∗ is defined as:

sin∗(t) =

{
sin(t) if 0 ≤ t ≤ π/2,

1 otherwise.

The bound increases faster when x∗ moves in the direc-
tion of high variation because the matrix C contains
directional information (illustrated in Figure 3). In the
special case of an RBF, RQ, or Matern kernel, C re-
covers the notion of length scale, and the bound rises
faster in directions of small length scales. For these
kernels, C is diagonal with Ci := Cii ∝ l−2

i where li
is the length scale with respect to the i-th coordinate
(proved in Appendix A.10).

By observing that adding data points cannot increase
the variance of a GP (Rasmussen and Williams, 2006,
page 31) (shown in Appendix A.3 for completeness),
we obtain the following bound for the posterior vari-
ance when there are n training data points.

Distance |p− q|

Va
ria

nc
e

1
̂1

2
̂2

Figure 3: The posterior variance of Eq. (9) (solid lines)
rises slower in the direction with a smaller Ci (C1 <
C2). The bound (dashed lines) has the same behavior.

Theorem 3. When there are n training data points
x1,x2, . . . ,xn,

V(x∗) ≤ min
i∈[n]

V̂i(x
∗) := V̂(x∗), (10)

where V̂i(x
∗) is the RHS of Eq. (9) for x = xi.

When the test point is one of the training data points,
the bound cannot exceed the irreducible loss σ2.

Finally, in Theorem 4 we derive a uniform bound for
the posterior variance (proof in Appendix A.4). We
write V as Vκ and V̂ as V̂C,σ0 to show that the posterior
variance depends on the kernel, while the bound only
depends on C and σ0. We also write F as Fκ to show
that the prior distribution is kernel-dependent.

Theorem 4. Theorems 2 and 3 still hold if we replace
C and σ0 with C̃ and σ̃0, as long as C ⪯ C̃ and σ0 ≤
σ̃0. As a consequence, we derive the uniform bound

sup
Fκ∈F

Vκ(x
∗) ≤ V̂C̃,σ̃0

(x∗),

where F denotes a class of translation-invariant
and continuously twice differentiable priors satisfying
Ef∼Fκ

[
f2
]
≤ σ̃2

0 and Ef∼Fκ

[
∇f(∇f)⊤

]
⪯ C̃.

Theorem 4 has the following implications:

• If we use our prior knowledge about C̃ and σ̃0,
then the bound holds for all posterior variances
whose prior kernel is compatible with our prior
knowledge: E

[
f2
]
≤ σ̃2

0 , and E
[
∇f(∇f)⊤

]
⪯ C̃.

• If we do not have prior knowledge about C̃ and
σ̃0, we can use empirical Bayes estimates: σ̃0 can
be estimated with the empirical signal variance
and C̃ can be estimated using the gradient of the
underlying function with numerical methods.

Incorporating prior knowledge through σ̃2
0 and C̃ can

be easier to understand and interpret than by elicit-
ing a kernel function. We only require a small piece of
prior information to get an uncertainty estimate: com-
pare specifying a full kernel κ to specifying κ(0) = σ2

0
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and Hessκ(0) = −C, or even just upper bounds for
these quantities (by Theorem 4). One consequence of
being able to overestimate σ2

0 and C is that the user
can vary these upper bounds to implicitly vary their
level of prior confidence and obtain different posteri-
ors; a non-trivial task in the classical setting.

3.3 Squared bias bound

Although the posterior variance is surprisingly stable
(e.g., it cannot exceed σ2

0) even at the limit of vanish-
ing noise (σ → 0+), regardless of the structure of the
training data, the squared bias can be arbitrarily large
in the worst case. This makes it difficult to derive a
sensible bound for the bias for all realistic scenarios.

We first demonstrate that the bias could be arbitrarily
large via the following adversarial examples. The main
factor making the bias explode is that the noise is at
the limit of zero and the kernel matrix is at the limit of
singularity (data points are too close in the following
RBF example, and data points are well aligned with
the kernel’s periodicity in the cosine example).

As a first example, consider an RBF kernel k(p, q) =
exp

(
−(p− q)2/2

)
where p, q ∈ R, two training

data points at x1 = −ϵ and x2 = ϵ > 0,
with y1 = −1 and y2 = 1. Applying Eq. (1)
for a test point at x∗ = 1 we obtain f̄(x∗) =

exp( 5ϵ
2+2ϵ+1

2 )− exp( 5ϵ
2−2ϵ+1

2 )

exp(3ϵ2 + 1)σ2 − exp(ϵ2 + 1) + exp(3ϵ2 + 1)
. If we let

σ = ϵ → 0+, then f̄(x∗) → +∞, and so does the bias.

As another example, consider the cosine kernel
k(p, q) = cos(p − q) where p, q ∈ R, two training data
points x1 = 0 and x2 = 2π+ϵ, with y1 = 0 and y2 = 1.
Then the posterior mean at the test point x∗ = π/2 is
f̄(x∗) = sin(ϵ)(σ2 + 1)/(sin2(ϵ)+2σ2+σ4), which also
tends to infinity if we let σ = sin(ϵ) and let ϵ → 0+.

We do not provide bounds for such adversarial cases;
instead, we provide bounds that work if the noise term
σ is not at the limit of zero (Theorem 5) or the train-
ing data points are well separated in the sense that
the kernel matrix can be approximated by its diagonal
(Theorem 6), thus avoiding the potentially large pos-
terior gradients. Proofs of these theorems are given in
Appendices A.5 and A.6.

Theorem 5. If σ > 0, a bound for the bias is given
by |B(x∗)| ≤ B̂1(x

∗), where:

B̂1(x
∗) :=

∥y∥
2

+

min
i∈[n]

{
|f̂(x∗)− yi|+

|yi|
2

+
∥y∥σ0

σ
sin∗

(
∥xi − x∗∥C

2σ0

)}
,

(11)

where sin∗ is defined in Theorem 2.

Theorem 5 is still valid if we replace C, σ0 by C̃, σ̃0

where C ⪯ C̃ and σ0 ≤ σ̃0, so a uniform bound can
be derived for the bias, similar to Theorem 4 (shown
in Appendix A.4).

As discussed in Remark 3.6 and the experimental re-
sults of Capone et al. (2022), the term ∥y∥/σ can be
overly conservative and in many applications it is com-
monly replaced with a fixed value, such as 2; see also
Berkenkamp et al. (2017); Umlauft et al. (2017); Srini-
vas et al. (2012). In Section 5, we propose replacing it
instead with β∥y∥/

√
n (for some β > 0) using a prob-

abilistic argument to obtain a practical bias bound.

When the training data points are well separated, the
kernel matrix can be effectively approximated by its
diagonal, leading to the approximate bound in Theo-
rem 6, which also works at the limit of vanishing noise.

Theorem 6. Assuming the kernel matrix is diagonal,
a bound for the bias is given by |B(x∗)| ≤ B̂2(x

∗),
where B̂2(x

∗) is given by

min
i∈[n]

{∣∣∣∣f̂(x∗)− σ2
0yi

σ2
0 + σ2

∣∣∣∣+ 2σ2
0∥y∥

σ2
0 + σ2

sin∗

(
∥xi − x∗∥C

2σ0

)}
,

where sin∗ is defined as in Theorem 2. Consequently,
at the limit of zero noise, σ → 0+, we obtain the fol-
lowing bound

min
i∈[n]

{
|f̂(x∗)− yi|+ 2∥y∥ sin∗

(
∥xi − x∗∥C

2σ0

)}
.

4 EXPERIMENTS

The experiments show that the bounds of Theorems 3,
5 and 6 are valid, fast, and useful. The experiments
were run in Python 3.10.8 on a high-performance com-
puting cluster1. Appendix B contains experimental
details and additional results.

The bounds are evaluated using the difference between
the value and its bound, denoted by V̂ −V, B̂−B, and
U −L, where U = V̂ + B̂2. We report the median and
quantiles of these differences (divided by the median
value) over test data points and repeated samplings.

4.1 Bound evaluation with synthetic data

We evaluate the bounds on synthetic data generated
from a GP. We show that the bounds are valid for
various translation-invariant kernels and compare their
tightness to baseline bounds, described below.

1Our code is publicly available at https://github.com/
edahelsinki/gpbound.
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One training point. We first examine the variance
bound in 1D for one training point at p = 0 and test
points q ∈ [0, π/2]. In Figure 4 (left), the cosine bound
of Theorem 1 lower bounds the RBF, RQ, and Matern
kernels. For the same kernels, in Figure 4 (right) the
variance bound V̂ of Equation (9) upper bounds the
true posterior variance V. The variance bound holds
for all kernels and is tightest for the cosine kernel2. If
C is overestimated (dashed lines), the bound is more
conservative, but it is still valid, due to Theorem 4.

0 π/2 π
‖p− q‖

−1

0

1

k(
p,
q) cos

rbf
rq
matern

0.0 0.5 1.0


0.0

0.5

1.0

̂

Figure 4: 1D with one training point. Left: Various
kernels against the cosine kernel lower bound. Right:
The variance bound V̂ upper bounds the true variance
V. The dashed lines denote an overestimated C̃ = 4C.

Many training points. We examine the variance
and bias bounds for 2D data with N = 50 train points.
Higher dimensional cases are in Appendix B.3. Table
1 compares three variance bounds to the true poste-
rior variance V. The variance bound V̂ of Theorem 3
is always valid, as V̂ − V > 0, and tighter than the
baseline variance bound of a constant σ2

0 = 1, since
V̂ − V ≈ 0.1 · (σ2

0 − V). The third entry V1/2 is the
exact variance when using half as many points as the
true variance V. V1/2 is not a bound, but it is wider
than V, and it provides context for the tightness of the
bound V̂, since V̂ − V ≈ 6 · (V1/2 − V).

Table 2 compares three bias bounds with the actual
bias B of a random forest. The bias bound B̂Thm. 5 is
always valid, similarly to the variance bound V̂. The
bias bound B̂Thm. 6 is tighter, but may not be valid
when the kernel matrix cannot be approximated by
a diagonal matrix. Since, to the best of our knowl-
edge, there is no prior work on the bias bound when
the kernel form is unknown, for the third entry we
include the following baseline bias bound (derived in
Appendix A.9):

|B| ≤ B̂V̂ :=
|f̂(x∗)|+

√
∥y∥2 + f̂(x∗)2

2σ2

(
V̂(x∗) + σ2

)
.

(12)
This baseline bound uses the variance bound V̂ and
is looser than the proposed bias bounds B̂Thm. 5 and
B̂Thm. 6.

2The cosine kernel cos(p−q) is a valid kernel for p, q ∈ R.

Table 1: Evaluation of variance bound V̂. Each value
is a median (and 5% quantile) over 100 test points
sampled 200 times. See Appendix B for details. Pa-
rameters for V̂: C = 1, σ2

0 = 1, σ2 = 0.1.

Kernel V̂−V
median(V)

σ2
0−V

median(V)

V1/2−V
median(V)

RBF 5.64 (4.06) 56.81 (52.15) 0.96 (0.183)
RQ 3.75 (2.34) 40.55 (36.47) 0.82 (0.044)
Matern 3.61 (2.35) 38.71 (34.84) 0.78 (0.077)

Table 2: Evaluation of bias bounds for the bias B of
a random forest. The values and parameters are as in
Table 1.

Kernel B̂Thm. 5−B
median(B)

B̂Thm. 6−B
median(B)

B̂Eq. (12)−B
median(B)

RBF 40.49 (19.98) 7.44 (1.41) 59.54 (29.22)
RQ 50.22 (26.35) 9.74 (2.13) 74.12 (38.23)
Matern 42.83 (23.59) 8.32 (1.71) 62.01 (35.09)

4.2 Bound evaluation with real data

We next examine the total bound U(x) = V̂(x) +
B̂2
Thm. 6(x) with real datasets and regressors. U(x) up-

per bounds the expected loss L(x) = Ey[(y − f̂(x))2]

of a regression model f̂ at a given point x, ignoring
the irreducible error. When used in practice, U(x) is

compared to the observed error e(x, y) = (y − f̂(x))2

at a point x with an unknown y. Figure 5 shows the
range of U(x)− e(x, y) on test points (x, y) from sev-
eral real datasets (described in Appendix B.1), using
as regressors a random forest and an SVM. The bound
is valid for all datasets, as U(x)− e(x, y) > 0 on aver-
age. Since C is not known for the real datasets, it is
estimated using the regressor’s gradient, approximated
and averaged over training points (see Appendix B.3).

4.3 Scalability

Figure 6 shows the scaling of the variance bound V̂
of Equation (10) evaluated on N points in D dimen-
sions. Table 6 contains additional results. The bound
is compared to a GP trained and evaluated on the
same points using the RBF, RQ, and Matern kernels.
The variance bound is faster than a GP for all N and
D. For example, for N = 10000 and D = 25, a GP
requires ≈ 50 seconds while the bound requires ≈ 4
seconds. Besides being faster, recall that the bound
is more general, as we don’t need to specify a kernel.
The computational complexity of the variance bound
for N train points and M test points is O(MND2),
while a GP is O(N3 +N2(M +D) +NMD).
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yearpredictionmsd − svm
yearpredictionmsd − rf
winequality − svm
winequality − rf
qm9 − svm
qm9 − rf
oe62 − svm
oe62 − rf
cpu_small − svm
cpu_small − rf
concrete − svm
concrete − rf
california − svm
california − rf
autompg − svm
autompg − rf
airquality − svm
airquality − rf
airfoil − svm
airfoil − rf
abalone − svm
abalone − rf
aa − svm
aa − rf

0 1 10 100 1000
(U − e) / median(e)

Figure 5: The total bound U = V̂ + B̂2
Thm.6 evaluated

on real data sets to bound the regression errors e =
(y − f̂(x))2, for f̂ ∈ {rf, svm}. Points are medians,
and error bars are 1% and 99% quantiles over test
data points (x, y) and 100 random splits.
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Figure 6: Scalability experiment. Error bars are 5%
and 95% quantiles over 100 repetitions. For Figure A,
D = 25. For Figure B, N = 10000.

4.4 Application: Drift detection

The potential application areas for the variance bound
are the same as for the posterior variance of a GP. The
total error bound U can be used when the squared er-
ror is needed, but ground truth labels are not available.
One such application is drift detection.

In this experiment, we view drift detection as a binary
classification: there is drift at a given point if the error
exceeds a threshold (80% quantile of the validation set
errors), and we detect drift if a drift indicator exceeds
a threshold. We compare the AUC of two drift indi-
cators: the bound U and the Euclidean distance from
the training data centroid.

Figure 7 shows the squared error of a random forest
regressor against the bound U = V̂ + B̂2

Thm.6 (left fig-

ure), the practical bound U ′ = V̂ + B̂2
Thm.7 (middle

figure; discussed in Sect. 5), and the distance (right fig-
ure) evaluated at data points from airquality; Ap-
pendix B.3 shows more datasets. Visually, both the
bound and the distance follow the error reasonably
well, suggesting that they can act as drift indicators.

Table 3 shows the AUC score of the total bound U
and the distance for several real data sets and regres-
sors. For most datasets, the bound can detect high
errors fairly reliably. The lowest AUC scores can be
attributed to the noisy estimation of C, which is not
known a priori here. Note also that while the distance
is a baseline for drift detection, it is not an error bound.

Table 3: Drift detection results. AUC scores for the
bound U = V̂ + B̂2

Thm.6 and the Euclidean distance as
drift indicators.

Dataset f̂ Bound Distance

aa rf 0.85 0.52
svm 0.92 0.49

abalone rf 0.65 0.59
svm 0.65 0.59

airfoil rf 0.84 0.66
svm 0.81 0.73

airquality rf 0.90 0.83
svm 0.87 0.83

autompg rf 0.72 0.74
svm 0.88 0.90

california rf 0.70 0.59
svm 0.66 0.56

concrete rf 0.60 0.51
svm 0.59 0.53

cpu small rf 0.75 0.63
svm 0.77 0.67

oe62 rf 0.64 0.62
svm 0.64 0.62

qm9 rf 0.76 0.71
svm 0.77 0.71

winequality rf 0.67 0.52
svm 0.61 0.54

yearpredictionmsd rf 0.58 0.55
svm 0.55 0.53

5 DISCUSSION & FUTURE WORK

Non-negative kernels. We postulate that for non-
negative kernels the kernel lower bound of Theorem 1
can be tightened to k(p,q) ≥ (1/2) cos

(√
2∥q− p∥

)
+

1/2 whenever ∥p− q∥ ≤ π/
√
2 and k(p,q) ≥ 0 other-

wise (assuming unit signal variance and identity ma-
trix C). This lower bound allows us to tighten both
the posterior variance and the squared bias bounds.

Practical bias bound. The term ∥y∥ in the bias
bounds can be overly conservative, and it is commonly
replaced with a smaller value when applying the bound
in practice (Capone et al., 2022; Berkenkamp et al.,
2017; Umlauft et al., 2017; Srinivas et al., 2012). We
can replace ∥y∥ in a principled way to obtain a prac-
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Figure 7: Drift detection on the airquality dataset.
Left: Using U = V̂ + B̂2

Thm.6. Middle: Using U ′ =

V̂ + B̂2
Thm.7. Right: Using the distance from the train-

ing data centroid. Black crosses are train points, blue
circles are validation points, red x’s are test points,
vertical lines denote error thresholds, tilted lines de-
note x = y.

tical bias bound as follows. Theorem 5 relies on the
inequality ⟨ y

∥y∥ ,
α

∥α∥ ⟩ ≤ 1, where the equality holds iff

y and α point toward the same direction. The LHS is
the cosine of two unit vectors, which is likely to be close
to zero in large dimensions (and is non-negative since
⟨y,α⟩ ≥ 0). Since the dimension of y and α is n, the
number of training points, which can be very large,
the above inequality considers a worst-case scenario.
In practice, the RHS can be replaced with a smaller
value with high confidence by modeling α as random
(α is unknown, since the kernel is unknown). Using
a uniform distribution on α

∥α∥ leads to the practical

bound of Theorem 7 (proof in Appendix A.7). Future
work can consider similar arguments using more infor-
mative distributions for α

∥α∥ , or even directly for the

unknown kernel.

Theorem 7. Assume α
∥α∥ is distributed uniformly on

the half unit sphere with a pole y
∥y∥ . Then, with prob-

ability of at least γ, it holds |B(x∗)| ≤ B̂3(x
∗), where:

B̂3(x
∗) :=

β∥y∥√
n

(13)

+ min
i∈[n]

{
|f̂(x∗)− yi|+

β∥y∥σ0√
nσ

sin∗

(
∥xi − x∗∥C

2σ0

)}

where β =

√
2 log

(
2

1−γ

)
.

Bias bound from optimization. Theorem 8
presents an alternative direction for obtaining a bias
bound in the case of a diagonal kernel matrix in The-
orem 6. The idea is to obtain a bias bound by di-
rectly maximizing (or minimizing) the bias, under con-
straints implied by the kernel’s properties. Future
work can study this optimization problem to find ef-
ficient solutions. The optimization problem can be
infeasible if the diagonality assumption is unmet, i.e.,
if data points are not well-separated. This assump-
tion can be easily tested by checking that two arbi-

trary training data points xi and xj are distant in the
sense that ∥xi−xj∥C > πσ0. In addition, to meet the
assumption in practice, the data can be modified by,
for example, dropping or combining overly close data
points.

Theorem 8. Given a test point x∗, a bias bound is
given by |B(x∗)| ≤ B̂4(x

∗), defined as:

B̂4(x
∗) := max

{
|f̂(x∗)− f̄min(x

∗)|, |f̂(x∗)− f̄max(x
∗)|
}

where f̄min(x
∗) and f̄max(x

∗) denote respectively the
optimal values of the following optimization problems:

min (max)
1

σ2 + σ2
0

⟨y,v⟩

s.t.

 ∥v∥ ≤ σ2
0 ,

vi ≥ σ2
0 cos

(
∥xi − x∗∥C

σ0

)
∀i ∈ I,

where I = {i ∈ [n] : ∥xi − x∗∥C ≤ πσ0}.

Joint bound on multiple points. A potentially
tighter bound can be obtained by bounding the joint
error of test points rather than the error of each test
point separately. However, considering the interac-
tions between data points makes this joint bound more
challenging to derive.

Estimation of C. When a suitable value for C is
not available, it can be estimated from the data. How-
ever, estimating C from data is non-trivial, especially
in high dimensions. An estimator that improves the
simple estimator used in the experiments can improve
the bounds. An estimator for C can also replace the
costly O(n3) maximization of the marginal likelihood
required for learning the length scales li of the RBF
kernel since Cii ∝ l−2

i (see Appendix A.10).

6 CONCLUSION

We derived a tight bound for the posterior variance
and a bound for the squared bias of a regressor when
the true function follows a GP. The bounds apply to a
large class of kernels and can be viewed as the worst-
case loss over this class. Our results offer a trade-
off: the user provides less information (upper bounds
on gradients and signal variance, instead of a kernel
function) to obtain a fast error bound over a general
class of kernels (instead of an error estimate for a single
kernel).
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A PROOFS

This Appendix contains technical proofs for the theorems.

A.1 Proof of Theorem 1

We first state some auxiliary lemmas.

Lemma 3 (Triagle inequality for angles in Hilbert space (Rao, 1976)). Let x,y, z be unit vectors in a Hilbert
space, and define the angle θxy by cos θxy = ⟨x,y⟩, 0 ≤ θxy ≤ π. The following triangle inequality for angles
holds:

θxz ≤ θxy + θyz.

As a consequence, for three vectors x,y, z with the same length σ0, it holds:

arccos
⟨x, z⟩
σ2
0

≤ arccos
⟨x,y⟩
σ2
0

+ arccos
⟨y, z⟩
σ2
0

.

Lemma 4.

lim
δ→0+

arccos
(
1− δ2

2

)
δ

= 1. (14)

Proof. From l’Hôpital’s one-sided rule:

lim
δ→0+

arccos
(
1− δ2

2

)
δ

= lim
δ→0+

[
arccos

(
1− δ2

2

)]′
= lim

δ→0+
− 1√

1−
(
1− δ2

2

)2 (−δ)

= lim
δ→0+

δ√
δ2 − δ4

4

= 1.

The proof of Theorem 1 is given below.

Proof. Given two points p,q, by chopping the segment from p to q into m equal pieces and applying the triangle
inequality in Lemma 3:

arccos
⟨ϕ(p), ϕ(q)⟩

σ2
0

≤
m∑
r=1

arccos
⟨ϕ(p+ r−1

m (q− p)), ϕ(p+ r
m (q− p))⟩

σ2
0

or

arccos
k(p,q)

σ2
0

≤
m∑
r=1

arccos
k(p+ r−1

m (q− p),p+ r
m (q− p))

σ2
0

. (15)

By translation-invariance

k

(
p+

r − 1

m
(q− p),p+

r

m
(q− p)

)
= k

(
0,

1

m
(q− p)

)
,

the inequality (15) becomes:

arccos
k(p,q)

σ2
0

≤ m arccos
k(0, 1

m (q− p))

σ2
0

, ∀m ∈ N,
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therefore,

arccos
k(p,q)

σ2
0

≤ lim
ϵ→0+

arccos
k(0, ϵ(q− p))

σ2
0

ϵ
. (16)

By Bochner’s representation theorem, the RHS of (16) can be written as:

lim
ϵ→0+

arccos
k(0, ϵ(q− p))

σ2
0

ϵ
= lim

ϵ→0+

arccos

∫
Rp cos(ϵ(q− p)⊤ω)dµ̂(ω)

(2π)pσ2
0

ϵ
.

By applying the inequality:

cos(ϵ(q− p)⊤ω) ≥ 1− ϵ2((q− p)⊤ω)2

2
,

we obtain (notice µ̂(ω) is a non-negative measure)∫
Rp cos(ϵ(q− p)⊤ω)dµ̂(ω)

(2π)pσ2
0

≥ 1− ϵ2

2σ2
0(2π)

p

∫
Rp

((q− p)⊤ω)2dµ̂(ω).

Note that q,p are fixed from the beginning, and here we are at the limit of ϵ tending to 0, by choosing ϵ small

enough, we can always make sure 1 − ϵ2

2σ2
0(2π)

p

∫
Rp ((q− p)⊤ω)2dµ̂(ω) is close to 1. Furthermore, arccos is a

decreasing function in its domain [−1, 1], therefore:

arccos

∫
Rp cos(ϵ(q− p)⊤ω)dµ̂(ω)

(2π)pσ2
0

≤ arccos

[
1− ϵ2

2σ2
0(2π)

p

∫
Rp

((q− p)⊤ω)2dµ̂(ω)

]
.

Combining this inequality with (16), we obtain:

arccos
k(p,q)

σ2
0

≤ lim
ϵ→0+

arccos

[
1− ϵ2

2σ2
0(2π)

p

∫
Rp ((q− p)⊤ω)2dµ̂(ω)

]
ϵ

.

By applying Lemma 4, we get

lim
ϵ→0+

arccos

[
1− ϵ2

2σ2
0(2π)

p

∫
Rp ((q− p)⊤ω)2dµ̂(ω)

]
ϵ

=

√∫
Rp ((q− p)⊤ω)2dµ̂(ω)

σ2
0(2π)

p
.

On the other hand,

1

(2π)p

∫
Rp

ωiωjdµ̂(ω) = Ef∼F

(
∂f

∂qi

∂f

∂qj

)
.

It follows that:

1

(2π)p

∫
Rp

((q− p)⊤ω)2dµ̂(ω)

=
1

(2π)p

∑
i,j

∫
Rp

ωiωjdµ̂(ω)(qi − pi)(qj − pj)

=
∑
i,j

Ef∼F

(
∂f

∂qi

∂f

∂qj

)
(qi − pi)(qj − pj)

= (q− p)⊤C(q− p).
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Putting these together, we derive:

arccos
k(p,q)

σ2
0

≤ ∥q− p∥C
σ0

.

Now, we want to apply cos to two sides of the above inequality. Notice that as cos is a decreasing function on
[0, π], we will require ∥q− p∥C ≤ πσ0.

A.2 Proof of Theorem 2

Proof.

V(x∗) = k(x∗,x∗)− k(x∗,x)2

k(x,x) + σ2

= σ2
0 −

k(x∗,x)2

σ2
0 + σ2

≤ σ2
0 −

σ4
0 cos

2

(
∥x− x∗∥C

σ0

)
σ2
0 + σ2

=

σ4
0 sin

2

(
∥x− x∗∥C

σ0

)
+ σ2σ2

0

σ2
0 + σ2

.

(17)

A.3 Proof of Theorem 3

We prove that adding points does not increase the variance of a GP.

Proof. Denote by D the set of n observations (x1, y1), (x2, y2), . . . , (xn, yn) and by D′ the set of D and one
extra observation (xn+1, yn+1). We also denote by X and X ′ the covariate variables extracted from D and D′,
respectively. We find the relation between the posterior variance given D and the posterior variance given D′.
Conditioned on D, the posterior variance of the prediction at x∗ is expressed as

Vn(f(x
∗)) = k(x∗,x∗)− k⊤

∗ G
−1
n k∗

where Gn = K(X,X) + σ2I and k∗ = K(X,x∗). On the other hand, conditioned on D′, the variance is given by

Vn+1(f(x
∗)) = k(x∗,x∗)−

(
k∗
a

)⊤

G−1
n+1

(
k∗
a

)
, (18)

where a = k(x∗,xn+1) and

Gn+1 =

(
Gn νn+1

νT
n+1 cn+1

)
,

whereas νn+1 = K(X,xn+1), cn+1 = k(xn+1,xn+1) + σ2.

The inverse of Gn+1 is given as (see, e.g., Rasmussen and Williams (2006, Appendix A.3))

G−1
n+1 =

(
G̃n ν̃n+1

ν̃⊤
n+1 c̃n+1

)
where 

G̃n = G−1
n +G−1

n νn+1r
−1ν⊤

n+1G
−1
n

r = cn+1 − ν⊤
n+1G

−1
n νn+1

ν̃n+1 = −G−1
n νn+1r

−1

c̃n+1 = r−1.
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We observe that r is the posterior variance of the prediction with noise at xn+1 conditioned on D, i.e.,

r = Vn(f(xn+1)) + σ2 > 0. (19)

By extending (18), we get

Vn+1(f(x
∗)) = k(x∗,x∗)− k⊤

∗ G̃nk∗ − aν̃⊤
n+1k∗ − ak⊤

∗ ν̃
⊤
n+1 − a2c̃n+1

= k(x∗,x∗)− k⊤
∗
[
G−1

n +G−1
n νn+1r

−1ν⊤
n+1G

−1
n

]
k∗ − 2ak⊤

∗ ν̃
⊤
n+1 − a2c̃n+1

= Vn(f(x
∗))− r−1

[
k⊤
∗ G

−1
n νn+1ν

⊤
n+1G

−1
n k∗ − 2aν⊤

n+1G
−1
n k∗ + a2

]
= Vn(f(x

∗))− r−1
(
k⊤
∗ G

−1
n νn+1 − a

)2
≤ Vn(f(x

∗)).

A.4 Proof of Theorem 4

We prove that the posterior variance bounds (Theorems 2 and 3) still hold if we overestimate C and σ0 (Theo-
rem 4). We also prove the bias bound of Theorem 5 still holds for overestimated C and σ0.

Proof. We consider two cases.

Case 1: σ0 is fixed, C is overestimated

In Theorem 2, when σ0 is fixed, if we overestimate C by C̃ in the sense that C ⪯ C̃, the informative region,
∥x − x∗∥C ≤ πσ0/2, becomes smaller, while the bound rises higher in that region since sin2(t) is increasing in
[0, π/2]. For Theorem 3, taking the min retains the monotonicity of C. For Theorem 5, similar arguments apply:
the informative region is shrunk, while the bias bound rises higher in that region.

Case 2: C is fixed, σ0 is overestimated

Since taking the min does not change the monotonicity, it suffices to show the monotonicity with respect to σ0

of the core function under the min. Let us fix A := ∥x− x∗∥C.

For the posterior variance, we prove that the following function is increasing with respect to t > 0

φ(t) :=


t4 sin2

(
A

t

)
+ σ2t2

t2 + σ2
if t ≥ 2A

π

t2 if 0 < t <
2A

π
.

The derivative of φ is given by

φ′(t) =


4t3 sin2

(
A

t

)
+ 2σ2t− 2At2 cos

(
A

t

)
sin

(
A

t

)
σ2 + t2

−
2σ2t3 + 2t5 sin2

(
A

t

)
(σ2 + t2)2

if t >
2A

π

2t if 0 < t <
2A

π
.

It then holds

lim
t→( 2A

π )
+
φ′(t) = lim

t→( 2A
π )

−
φ′(t) =

4A

π
,

so φ is differentiable in (0,∞). We prove φ′(t) ≥ 0 for all t ∈ (0,∞). It is trivially the case for t ∈ (0, 2A/π].
Let t > (2A)/π, φ′(t) ≥ 0 is equivalent to

2t2σ2 sin2
(
A

t

)
+ σ4 + t4 sin2

(
A

t

)
−Atσ2 cos

(
A

t

)
sin

(
A

t

)
−At3 cos

(
A

t

)
sin

(
A

t

)
≥ 0,
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which can be rewritten as

t2σ2 cos

(
A

t

)
sin

(
A

t

)[
2 tan

(
A

t

)
− A

t

]
+ t4 cos

(
A

t

)
sin

(
A

t

)[
tan

(
A

t

)
− A

t

]
+ σ4 ≥ 0.

The last inequality holds by noting that A/t < π/2 so tan(A/t) ≥ A/t.

For the bias, we prove that the following function is increasing with respect to t > 0

ϑ(t) := t sin∗

(
A

2t

)
=


t sin

(
A

2t

)
if t ≥ A

π

t if 0 < t <
A

π
.

The derivative of ϑ is given by

ϑ′(t) =


sin

(
A

2t

)
− A

2t
cos

(
A

2t

)
if t >

A

π

1 if 0 < t <
A

π
.

It holds

lim
t→(A

π )
+
ϑ′(t) = 1,

so ϑ(t) is differentiable in (0,∞). Moreover, we shall show ϑ′(t) > 0 for all t > 0. We only need to verify that
for t > A/π. Let s := A/(2t) ∈ (0, π/2), using the inequality tan(s) ≥ s, we derive the conclusion.

A.5 Proof of Theorem 5

Proof. The posterior mean is given by:

f̄(x∗) =

n∑
i=1

αik(xi,x
∗) =

〈
n∑

i=1

αiϕ(xi), ϕ(x
∗)

〉

where α = (K+ σ2I)−1y. Note that α implies ∀j ∈ [n]:

yj =

n∑
i=1

k(xj ,xi)αi + σ2αj =

〈
ϕ(xj),

n∑
i=1

αiϕ(xi)

〉
+ σ2αj ,

and:

n∑
i=1

αiyi =

∥∥∥∥∥
n∑

i=1

αiϕ(xi)

∥∥∥∥∥
2

+ σ2
n∑

i=1

α2
i . (20)

The posterior mean then is written ∀j ∈ [n] as:

f̄(x∗) =

〈
n∑

i=1

αiϕ(xi), ϕ(x
∗)− ϕ(xj)

〉
+

〈
n∑

i=1

αiϕ(xi), ϕ(xj)

〉

=

〈
n∑

i=1

αiϕ(xi), ϕ(x
∗)− ϕ(xj)

〉
+ yj − σ2αj ,
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and the bias is written ∀j ∈ [n] as:

|f̂(x∗)− f̄(x∗)| =

∣∣∣∣∣f̂(x∗)−

〈
n∑

i=1

αiϕ(xi), ϕ(x
∗)− ϕ(xj)

〉
− yj + σ2αj

∣∣∣∣∣
≤ |f̂(x∗)− yj |+ σ2|αj |+

〈
n∑

i=1

αiϕ(xi), ϕ(x
∗)− ϕ(xj)

〉

≤ |f̂(x∗)− yj |+ σ2|αj |+

∥∥∥∥∥
n∑

i=1

αiϕ(xi)

∥∥∥∥∥ ∥ϕ(x∗)− ϕ(xj)∥

= |f̂(x∗)− yj |+ σ2|αj |+

(
n∑

i=1

αiyi − σ2∥α∥2
)1/2

∥ϕ(x∗)− ϕ(xj)∥ (21)

≤ |f̂(x∗)− yj |+ σ2|αj |+
(
∥α∥∥y∥ − σ2∥α∥2

)1/2 ∥ϕ(x∗)− ϕ(xj)∥

≤ |f̂(x∗)− yj |+ σ2|αj |+
∥y∥
2σ

∥ϕ(x∗)− ϕ(xj)∥ (22)

≤ |f̂(x∗)− yj |+
|yj |+ ∥y∥

2
+

∥y∥
2σ

∥ϕ(x∗)− ϕ(xj)∥, (23)

≤ |f̂(x∗)− yj |+
|yj |+ ∥y∥

2
+

∥y∥σ0

σ
sin∗

(
∥x∗ − xi∥C

2σ0

)
, (24)

where we used Equation (20) at (21), a2 + b2 ≥ 2ab at (22), Lemma 5 at (23), and Lemma 6 at (24).

By taking the min over j ∈ [n], we obtain the desired bound.

Lemma 5.

|αi| ≤
|yi|+ ∥y∥

2σ2
, ∀i ∈ [n]. (25)

Proof. Derived for i = 1, from Equation (20):

σ2
n∑

i=1

α2
i ≤

n∑
i=1

αiyi,

σ2α2
1 + σ2

∑
i̸=1

α2
i −α1y1 ≤

∑
i ̸=1

αiyi,

σ2
(
α1 −

y1
2σ2

)2
≤
∑
i ̸=1

αiyi − σ2
∑
i̸=1

α2
i +

y21
4σ2

≤ 1

4σ2
∥y−1∥2 +

y21
4σ2

=
∥y∥2

4σ2

|α1| ≤
|y1|+ ∥y∥

2σ2
,

where y−j denotes the vector y excluded the j-th element yj .

Lemma 6. Let k be a translation invariant kernel with signal variance σ2
0, prior gradient covariance C, and a

feature space denoted by ϕ(·). Then:

∥ϕ(x1)− ϕ(x2)∥ ≤ 2σ0 sin∗

(
∥x1 − x2∥C

2σ0

)
,

where sin∗ is defined in Theorem 2.
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Proof. For ∥x1 − x2∥C ≤ πσ0, from the kernel lower bound of Theorem 1 we get:

∥ϕ(x1)− ϕ(x2)∥2 = k(x1,x1) + k(x2,x2)− 2k(x1,x2)

= 2σ2
0 − 2k(x1,x2)

≤ 2σ2
0 − 2σ2

0 cos

(
∥x1 − x2∥C

σ0

)
= 4σ2

0 sin
2

(
∥x1 − x2∥C

2σ0

)
For ∥x1 − x2∥C > πσ0, from Bochner’s theorem we get:

∥ϕ(x1)− ϕ(x2)∥2 = k(x1,x1) + k(x2,x2)− 2k(x1,x2)

=
2

(2π)p

∫
Rp

(1− cos((x2 − x1)
⊤ω))dµ̂(ω)

≤ 4

(2π)p

∫
Rp

dµ̂(ω) = 4σ2
0 .

A.6 Proof of Theorem 6

Proof. Since K is diagonal, the posterior mean can be expressed as

f̄(x∗) =
1

σ2
0 + σ2

n∑
i=1

yik(xi,x
∗)

=
1

σ2 + σ2
0

〈
ϕ(x∗),

n∑
i=1

yiϕ(xi)

〉

=
1

σ2 + σ2
0

〈
ϕ(x∗)− ϕ(xj),

n∑
i=1

yiϕ(xi)

〉
+

1

σ2 + σ2
0

〈
ϕ(xj),

n∑
i=1

yiϕ(xi)

〉

=
1

σ2 + σ2
0

〈
ϕ(x∗)− ϕ(xj),

n∑
i=1

yiϕ(xi)

〉
+

σ2
0yj

σ2
0 + σ2

for all j ∈ [n]. Therefore, ∣∣∣∣f̄(x∗)− σ2
0yj

σ2
0 + σ2

∣∣∣∣ ≤ 1

σ2 + σ2
0

∥∥∥∥∥
n∑

i=1

yiϕ(xi)

∥∥∥∥∥ · ∥ϕ(x∗)− ϕ(xj)∥

≤ 2σ2
0∥y∥

σ2 + σ2
0

sin∗

(
∥x∗ − xj∥C

2σ0

)
.

It follows that for all j ∈ [n], it holds

|f̂(x∗)− f̄(x∗)| ≤
∣∣∣∣f̂(x∗)− σ2

0yj
σ2
0 + σ2

∣∣∣∣+ 2σ2
0∥y∥

σ2 + σ2
0

sin∗

(
∥x∗ − xj∥C

2σ0

)
By taking the min over j ∈ [n], we derive the result.

A.7 Proof of Theorem 7

Proof. Since α/∥α∥ is distributed uniformly on the half unit sphere with the pole y/∥y∥, it follows from Lemma

8 that 1
2

(
⟨ α
∥α∥ ,

y
∥y∥ ⟩+ 1

)
∼ Beta[1/2,1]((n− 1)/2, (n− 1)/2). By using Lemma 10, for any C > 0,

P (⟨α, y⟩ ≤ C∥α∥∥y∥) ≥ 1− 2 exp

(
−nC2

2

)
. (26)
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Equivalently, with the probability of at least γ, it holds

⟨α,y⟩ ≤

√
2

n
log

(
2

1− γ

)
∥α∥∥y∥ :=

β√
n
∥α∥∥y∥. (27)

From (21), by applying the above probabilistic evaluation, we get

|f̂(x∗)− f̄(x∗)| ≤ |f̂(x∗)− yj |+ σ2|αj |+
(

β√
n
∥α∥∥y∥ − σ2∥α∥2

)1/2

∥ϕ(x∗)− ϕ(xj)∥

≤ |f̂(x∗)− yj |+ σ2|αj |+
β∥y∥
2σ

√
n
∥ϕ(x∗)− ϕ(xj)∥. (28)

Similarly,

σ2
n∑

i=1

α2
i ≤

n∑
i=1

αiyi ≤
β√
n
∥α∥∥y∥

so σ2∥α∥ ≤ (β/
√
n)∥y∥, which further implies σ2|αj | ≤ (β/

√
n)∥y∥ for all j ∈ [n].

Therefore,

|B(x∗)| ≤ min
i∈[n]

{
|f̂(x∗)− yi|+

βσ0∥y∥
σ
√
n

sin∗

(
∥xi − x∗∥C

2σ0

)}
+

β∥y∥√
n

. (29)

Lemma 7 (Surface area of a hyperspherical cap (Li, 2010)). Let SD−1 be the unit hypersphere in RD, and let
it be cut into two parts (called caps) by a hyperplane above the equator in RD, where eD = [0, 0, . . . , 1]⊤ is the
northern direction. The upper cap’s surface area is given by

Acap
D =

1

2
ADIsin2(ϕ)

(
D − 1

2
,
1

2

)
where AD is the surface area of the entire sphere, AD = 2πD/2/Γ(D/2) (here Γ is the gamma function), Ix(a, b)
is the regularized incomplete beta function Ix(a, b) =

∫ x

0
sa−1(1− s)b−1ds/B(a, b), B(a, b) is the beta function

B(a, b) =
∫ 1

0
sa−1(1− s)b−1ds, and ϕ ∈ [0, π] is the colatitude angle of a point in the intersection of the hyperplane

and the hypersphere, i.e., the angle (in radians) down from the north pole to the point.

Lemma 8. Let u be a random unit vector distributed uniformly on the upper half part of the unit sphere SD−1

(with the convention that eD = [0, 0, . . . , 0, 1]⊤ is the north pole). Then (uD + 1)/2 follows a truncated Beta
distribution Beta[1/2,1]((D − 1)/2, (D − 1)/2) where uD = ⟨u, eD⟩ is the last coordinate of u, which is also the
height of the vector u in this case.

Proof. For any t ∈ [0, 1], the cumulative density function (CDF) of uD at t is given by

F (t) = P (uD ≤ t) = P (uD < t) = 1− P (uD ≥ t) = 1− 2
Acap

D (t)

AD

where Acap
D (t) is the surface area of the upper cap of the SD−1 cut by a horizontal hyperplane passing through

[0, 0, . . . , 0, t]⊤. According to Lemma 7 with the conversion t = cos(ϕ), we have

Acap
D (t) =

1

2
ADI1−t2

(
D − 1

2
,
1

2

)
if 0 ≤ t ≤ 1.
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We now differentiate F to get the probability density function f of uD. Let’s say with 0 ≤ t ≤ 1, we have

f(t) = F ′(t)

= −
(
I1−t2

(
D − 1

2
,
1

2

))′

= − 1

B

(
D − 1

2
,
1

2

) (∫ 1−t2

0

s
D−3

2 (1− s)−
1
2 ds

)′

= − 1

B

(
D − 1

2
,
1

2

) (1− t2)
D−3

2 t−1(−2t)

=
2

B

(
D − 1

2
,
1

2

) (1− t2)
D−3

2 .

Summarising, the probability density distribution of uD is given by

f(t) ∝ (1− t2)
D−3

2 for t ∈ [0, 1].

Let g be the probability density function of (uD + 1)/2, it follows that

g(s) ∝ f(2s− 1) ∝ (1− s)
D−3

2 s
D−3

2 for s ∈ [1/2, 1].

Therefore, (uD +1)/2 ∼ Beta[1/2,1]((D− 1)/2, (D− 1)/2), the truncated beta distribution with support [1/2, 1].

Lemma 9 (Bernstein inequality (Skorski, 2023)). Let X ∼ Beta(α, α) then it holds

P (X > 1/2 + ϵ) ≤ exp
(
−(4α+ 2)ϵ2

)
.

Lemma 10 (Bernstein inequality for truncated beta distribution). Let Z ∼ Beta[1/2,1](α, α) be the truncated
beta distribution whose support is [1/2, 1], then

P (Z > 1/2 + ϵ) ≤ 2 exp
(
−(4α+ 2)ϵ2

)
.

Proof. Let X ∼ Beta(α, α) and let fX , fZ be the probability distribution functions of X and Z, respectively. It
follows that

fZ(x) =

{
cfX(x) if x ∈ [1/2, 1]

0 otherwise

for some normalisation constant c > 0. Since
∫ 1

1/2
fZ(x)dx = 1 and since Beta(α, α) is symmetric, it follows that

c =
(∫ 1

1/2
fX(x)dx

)−1

= 2. For ϵ > 0, we have

P (Z > 1/2 + ϵ) =

∫ 1

ϵ+1/2

fZ(x)dx

= 2

∫ 1

1/2+ϵ

fX(x)dx

= 2P (X > 1/2 + ϵ)

≤ 2 exp
(
−(4α+ 2)ϵ2

)
where the last inequality uses Lemma 9.
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A.8 Proof of Theorem 8

Proof. Since K is assumed to be diagonal, {ϕ(xi)}ni=1 is an orthogonal sequence of the Hilbert space H. The
coordinates of the projection of ϕ(x∗) onto this basis are given by ⟨ϕ(x∗), ϕ(xi)⟩ = k(x∗,xi) for i ∈ [n]. By using
Bessel’s inequality, it holds

n∑
i=1

k(xi,x
∗)2 ≤ σ4

0 . (30)

On the other hand, from Theorem 1,

k(xi,x
∗) ≥ σ2

0 cos

(
∥x∗ − xi∥C

σ0

)
(31)

whenever ∥xi − x∗∥ ≤ πσ0.

Again, by diagonality of K, the posterior mean is given by

f̄(x∗) =
1

σ2
0 + σ2

n∑
i=1

yik(xi,x
∗).

By denoting vi = k(xi,x
∗), f̄(x∗) has to be within the range the minimal value and maximal value of

1

σ2
0 + σ2

∑n
i=1 yivi given the constraints (30) and (31).

A.9 Proof of the baseline bias bound in Equation (12)

Proof. We use the setting and notation from Appendix A.3, and denote by y[n] the vector of the n first elements
of y. We first connect the posterior mean given D and the posterior mean given D′.

The posterior mean at x∗ conditioned on D is

f̄n+1(x
∗) =

(
k∗
a

)⊤

G−1
n+1

(
y[n]

yn+1

)
= k⊤

∗ G̃ny[n] + aν̃⊤
n+1y[n] + k⊤

∗ ν̃n+1yn+1 + ac̃n+1yn+1

= f̄n(x
∗) + r−1(yn+1 − ν⊤

n+1G
−1
n y[n])(a− k⊤

∗ G
−1
n νn+1),

By noting that r = σ2 + Vn(f(xn+1)), we derive

f̄n+1(x
∗) = f̄n(x

∗) + (yn+1 − f̄n(xn+1))
a− k⊤

∗ G
−1
n νn+1

Vn(f(xn+1)) + σ2
. (32)

If we choose the new point (xn+1, yn+1) := (x∗, f̂(x∗)) where f̂ is the given regressor, f̄n+1(x
∗) can be written

as (see Rasmussen and Williams (2006, Page 17))

f̄n+1(x
∗) = α1k(x

∗,x1) +α2k(x
∗,x2) + . . .+αnk(x

∗,xn) +αn+1k(x
∗,x∗), (33)

where

n∑
i=1

αik(xj ,xi) +αn+1k(xj ,x
∗) + σ2αj = yj

for every j ∈ [n], and

n∑
i=1

αik(x
∗,xi) + k(x∗,x∗)αn+1 + σ2αn+1 = f̂(x∗). (34)
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From (33) and (34) we deduce f̄n+1(x
∗) = f̂(x∗) − σ2αn+1. By using this relation and setting (xn+1, yn+1) :=

(x∗, f̂(x∗)) in (32) we derive

f̂(x∗)− σ2αn+1 = f̄n(x
∗) + (f̂(x∗)− f̄n(x

∗))
Vn(f(x

∗))

Vn(f(x∗)) + σ2
.

We then obtain the following

|f̂(x∗)− f̄n(x
∗)| = |αn+1|

(
Vn(f(x

∗)) + σ2
)
.

We can bound |αn+1| in the same way as in Lemma 5, leading to the following bound for the bias

|f̂(x∗)− f̄n(x
∗)| ≤

|f̂(x∗)|+
√

∥y∥2 + f̂(x∗)2

2σ2

(
Vn(f(x

∗)) + σ2
)
. (35)

A.10 Derivation of C

This section derives the matrix C for the RBF, rational quadratic, and Matern kernels used in the experiments.

Remark 1. For the RBF kernel k(p,q) = σ2
0 exp

(
− 1

2

∑p
j=1(pj − qj)

2/l2j
)
, we have Cij = σ2

0/l
2
i for i = j and

Cij = 0 for i ̸= j.

Proof. Let κ(d) = σ2
0 exp

(
−
∑p

j=1

d2
j

2l2j

)
. Then:

∂κ

∂di
(d) = −di

l2i
κ(d)

∂2κ

∂di∂dj
(d) =

di

l2i

dj

l2j
κ(d) (36)

∂2κ

∂d2i
(d) =

d2
i

l4i
κ(d)− 1

l2i
κ(d) (37)

From Lemma 2 we have: Cij = − ∂2κ

∂di∂dj
(0). The claim follows by substituting d = 0 to Eq. (36) and (37).

Remark 2. For the rational quadratic kernel k(p,q) = σ2
0

(
1 + ∥p− q∥2/(2αl2)

)−α
with α > 0, we have

Cij = σ2
0/l

2 for i = j and Cij = 0 for i ̸= j.

Proof. Denote κ(d) = σ2
0

(
1 + ∥d∥2

2αl2

)−α

. Then:

∂κ

∂di
(d) = −di

l2
σ2
0

(
1 +

∥d∥2

2αl2

)−α−1

∂2κ

∂di∂dj
(d) =

di

l2
dj

l2
σ2
0

(
1 +

∥d∥2

2αl2

)−α−2

(38)

∂2κ

∂d2i
(d) =

di

l2
dj

l2
σ2
0

(
1 +

∥d∥2

2αl2

)−α−2

− σ2
0

l2

(
1 +

∥d∥2

2αl2

)−α−1

(39)

From Lemma 2 we have: Cij = − ∂2κ

∂di∂dj
(0). The claim follows by substituting d = 0 to Eq. (38) and (39).

Remark 3. For the Matern kernel k(p,q) = σ2
0

1
Γ(ν)2ν−1

(
√
2ν
l ∥p − q∥

)ν

Kν

(
√
2ν
l ∥p − q∥

)
with ν = 5/2, we

have Cij =
5
3σ

2
0/l

2 for i = j and Cij = 0 for i ̸= j
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Proof. For ν = 5/2, the kernel can be simplified to: κ(d) = σ2
0

(
1 +

√
5∥d∥
l + 5∥d∥2

3l2

)
exp

(
−

√
5∥d∥
l

)
. Then,

∂κ

∂di
(d) = σ2

0 exp

(
−
√
5∥d∥
l

)(
− 5

3l2
di −

5
√
5

3l3
∥d∥di

)
.

For i = j,

∂2κ

∂d2i
(d) = σ2

0 exp

(
−
√
5∥d∥
l

)(
25

3l4
d2
i −

5

3l2
− 5

√
5

3l3
∥d∥

)
,

so Cii = (5σ2
0)/(3l

2). For j ̸= i,

∂2κ

∂di∂dj
(d) =

25σ2
0

3l4
exp

(
−
√
5∥d∥
l

)
didj ,

it follows that Cij = 0 if i ̸= j.
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B EXPERIMENTAL RESULTS

B.1 Datasets

The real datasets used in the experiments are shown in Table 4. The datasets are available in the UCI repository
(Dua and Graff, 2017) or OpenML (Vanschoren et al., 2014). The molecular datasets qm9, aa, oe62 are available
in Zenodo by Stuke et al. (2019).

Table 4: Datasets used in the experiments. N : data size, Ntr: train data size, p: dimensions.

Dataset N Ntr p

aa 10000 3000 30
abalone 4177 1253 10
airfoil 1503 450 5
airquality 7355 2206 11
autompg 392 117 9
california 20640 6192 8
concrete 1030 309 8
cpu small 8192 2457 12
oe62 10000 3000 30
qm9 10000 3000 30
winequality 6497 1949 13
yearpredictionmsd 10000 3000 90

We briefly describe the datasets and how they were preprocessed. For all datasets, the covariates and the target
are scaled to zero mean and unit variance. The OpenML ID, when available, is in parentheses after the name.

• aa (Ropo et al., 2016) contains 64,710 amino acids and dipeptides described by 27,200-dimensional MBTR
features, as computed in Stuke et al. (2019); the target is the highest occupied molecular orbital (HOMO)
energy. We use a subset containing the 10,000 heaviest molecules and the first 30 PCA components of the
MBTR features.

• abalone (Warwick Nash, 1994) (183) contains physical measurements of abalone snails; the target is their
age.

• airfoil (Thomas Brooks, 1989) (43919) contains NACA airfoils in different experimental conditions, such
as wind tunnel speed and angle of attack; the target is the scaled sound pressure level.

• airquality (Vito, 2008) contains hourly measurements of various gas concentrations; the target is the CO
concentration. It is preprocessed as in Oikarinen et al. (2021).

• autompg (R. Quinlan, 1993) (196) contains cars described by attributes such as horsepower, origin and
model year; the target is fuel consumption. We removed missing values.

• california (Pedregosa et al., 2011) contains housing districts in California, described by attributes such
as median house age and population; the target is the median house value.

• concrete (I-Cheng Yeh, 1998) (4353) contains measurements on different types of concrete; the target is
the compressive strength.

• cpu small (562) contains computer systems activity measures; the target is the portion of time that CPUs
run in user mode.

• oe62 (Stuke et al., 2020) contains 44,004 opto-electronically active molecules described by 13,200-
dimensional MBTR features; the target is the HOMO energy. We use a subset containing the 10,000
heaviest molecules and the first 30 PCA components of the MBTR features.
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• qm9 (Ramakrishnan et al., 2014) contains 133,814 small organic molecules described by 3000-dimensional
MBTR features; the target is the HOMO energy. We use a subset containing the 10,000 heaviest molecules
and the first 30 PCA components of the MBTR features.

• yearpredictionmsd (T. Bertin-Mahieux, 2011) (44027) contains songs described by audio features; the
target is the release year of the song. We use the first 10,000 rows.

• winequality (Paulo Cortez, 2009) (287) contains red and white wines described by attributes such as pH
and alcohol level; the target is wine quality.

B.2 Bound evaluation with synthetic data

Setup. We use Ntr = 50 training data points to fit the regressor f̂ and the bounds V̂ and B̂. The regressor
and the bounds are evaluated on Nte = 100 testing data points, for which we know the true targets y, posterior
variance V and bias B. The target y is sampled from a GP with a known kernel (RBF, RQ, Matern) that has
C = 1. The training data covariates are p-dimensional and sampled i.i.d. from N(0, 1/

√
p). The test data lie

along the axis of the first dimension from zero to π, to cover the domain of the sin∗ function.

Results. Table 5 shows the variance and the bias bound of Theorem 5 under various dimensions p, kernels,
noise levels σ2, and regressors (RF: random forest regressor, SVM: support vector regressor), extending Tables 1
and 2 (without their baselines). Figure 8 shows the same bounds along with their baseline bounds, described
in Tables 1 and 2. Notice that Table 5 and Figure 8 show absolute differences rather than relative ones, as in
Tables 1 and 2, to highlight the maximum difference for the variance, which is equal to σ2

0 = 1, and to avoid
division by zero bias when using a GP regressor (BGP = 0).

Table 5: Bound evaluation results, extending Tables 1 and 2 (without baseline bounds). p: dimension, σ2: noise
variance. In parentheses are 5% quantiles. Using C = 1, σ2

0 = 1. This table’s entries are also in Figure 8 as
black dots, along with baseline bounds.

# p Kernel σ2 V̂ − V B̂Thm. 5 − BGP B̂Thm. 5 − BRF B̂Thm. 5 − BSVM

1 1 RBF 0.1 0.1 (0.1) 4.3 (2.2) 4.0 (2.0) 3.8 (2.1)
2 1 RQ 0.1 0.1 (0.1) 4.0 (2.2) 3.7 (1.9) 4.0 (2.1)
3 1 Matern 0.1 0.1 (0.1) 4.0 (2.0) 3.8 (1.9) 3.8 (2.1)
4 1 RBF 1.0 0.4 (0.4) 5.6 (4.2) 5.0 (3.6) 5.5 (3.9)
5 1 RQ 1.0 0.4 (0.4) 5.4 (4.0) 5.0 (3.6) 5.3 (3.9)
6 1 Matern 1.0 0.4 (0.4) 5.4 (3.8) 4.9 (3.6) 5.4 (3.8)
7 2 RBF 0.1 0.1 (0.1) 5.9 (3.3) 5.7 (2.8) 5.4 (3.0)
8 2 RQ 0.1 0.1 (0.1) 5.3 (3.0) 5.6 (2.9) 5.4 (2.9)
9 2 Matern 0.1 0.1 (0.1) 5.7 (3.0) 5.6 (3.1) 5.8 (3.1)
10 2 RBF 1.0 0.4 (0.3) 6.7 (4.6) 6.0 (4.2) 6.1 (4.4)
11 2 RQ 1.0 0.4 (0.3) 6.6 (4.7) 6.2 (4.4) 6.2 (4.4)
12 2 Matern 1.0 0.4 (0.3) 6.6 (4.7) 6.1 (4.3) 6.1 (4.4)
13 10 RBF 0.1 0.3 (0.2) 11.5 (7.3) 11.5 (7.2) 11.5 (7.3)
14 10 RQ 0.1 0.3 (0.2) 11.3 (7.1) 11.0 (6.9) 11.7 (7.2)
15 10 Matern 0.1 0.3 (0.2) 11.2 (7.2) 11.4 (6.7) 10.8 (6.7)
16 10 RBF 1.0 0.4 (0.2) 9.1 (6.9) 8.8 (6.6) 8.9 (6.8)
17 10 RQ 1.0 0.4 (0.3) 9.0 (6.5) 8.5 (6.2) 8.6 (6.3)
18 10 Matern 1.0 0.4 (0.3) 8.9 (6.6) 8.7 (6.4) 8.9 (6.3)
19 20 RBF 0.1 0.4 (0.2) 13.3 (8.8) 13.1 (8.8) 13.1 (8.7)
20 20 RQ 0.1 0.4 (0.3) 13.1 (8.3) 12.9 (8.2) 12.8 (8.4)
21 20 Matern 0.1 0.4 (0.3) 13.6 (8.6) 13.1 (8.5) 13.1 (8.1)
22 20 RBF 1.0 0.4 (0.2) 9.7 (7.3) 9.4 (7.2) 9.8 (7.3)
23 20 RQ 1.0 0.4 (0.3) 9.7 (7.1) 9.5 (6.9) 9.7 (7.1)
24 20 Matern 1.0 0.5 (0.3) 9.7 (7.2) 9.3 (7.1) 9.5 (7.1)
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Figure 8: Bound evaluation results, extending Tables 1 and 2. Error bars span from 5% to 95% quantiles. The
vertical ordering corresponds to Table 5. The values of Table 5 are shown as black dots. Note: bias bound x-axis
is in (pseudo) log-scale.
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B.3 Real data

Setup for bound evaluation with real data. The data are split randomly 30–70 into train-test 100 times.
The reported values are the median over test points and repeated splits. The regressor hyperparameters are the
defaults in sklearn 1.2.1. The bound parameters are σ2

0 = 1 and σ2 = MSEtest.

Setup for drift experiment. The data are split 30-30-40 into train-validation-test sets. The split is made
to induce drift, meaning high errors on the test set, as follows. A random forest is trained on the whole data,
which is then split using the variable with the highest impurity-based feature importance, i.e., the variable with
the largest mean impurity decrease (which is variance reduction for regression) over all splits involving that
variable. Figure 9 plots, for this split, the squared error against the bound U = V̂ + B̂2

Thm.6. The error threshold
for drift is shown with a vertical line and is equal to the 80% quantile of the errors on the validation set. The
regressor hyperparameters are selected by grid search with 5-fold cross-validation RMSE as a score. The bound
parameters are σ2

0 = 1 and σ2 = MSECV of the regressor.

Estimating C. For the real data experiments, we don’t have prior knowledge about C, so it is estimated from
the training data as a diagonal matrix using the regressor f̂ ’s gradient, approximated with finite-differences and
averaged over Ntr training data points:

Cjj ≈
1

Ntr

Ntr∑
i=1

(
f̂(xi + ejh)− f̂(xi)

h

)2

(40)

where ej denotes the unit vector of the j:th axis, h = 10−6 for f̂ = SVM and h = 10−2 for f̂ = random forest.
This estimate assumes: (i) the regressor gradient is close to the true function’s gradient around the training
points, (ii) the regressor gradient approximation has low error, (iii) the data are translation invariant, so that
averaging over data points is equivalent to averaging over prior samples, (iv) the data contain enough gradient
information in all directions, i.e., there are enough pairwise distances that align with all axes.

B.4 Scaling

Table 6 shows the numerical values of the scaling experiment of Figure 6.
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Figure 9: Squared error vs. the bound U for real datasets. Black crosses are train points, blue circles are
validation points, red x’s are test points. The vertical line denotes the error threshold for drift (80% quantile of
validation errors).
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Table 6: Numerical values of scaling results in seconds (average ± standard deviation over 100 runs) from
Figure 6.

N D Bound Matern RBF RQ

100 1 0.0084 ± 0.023 0.017 ± 0.017 0.031 ± 0.048 0.021 ± 0.021
100 2 0.014 ± 0.014 0.0028 ± 0.00047 0.0022 ± 0.00031 0.0021 ± 0.00034
100 5 0.0014 ± 0.0015 0.0027 ± 0.00054 0.0021 ± 0.00036 0.002 ± 0.00037
100 15 0.00076 ± 0.00026 0.0028 ± 0.00046 0.0023 ± 0.00048 0.002 ± 0.00036
100 25 0.00099 ± 0.00073 0.0028 ± 0.00045 0.0024 ± 0.00045 0.0021 ± 0.00037
500 1 0.0082 ± 0.0012 0.037 ± 0.0058 0.031 ± 0.011 0.023 ± 0.0055
500 2 0.0065 ± 0.00069 0.037 ± 0.0046 0.026 ± 0.0025 0.026 ± 0.005
500 5 0.0075 ± 0.00085 0.036 ± 0.0051 0.025 ± 0.0022 0.024 ± 0.0045
500 15 0.0096 ± 0.00083 0.038 ± 0.0043 0.03 ± 0.0024 0.027 ± 0.0039
500 25 0.01 ± 0.0012 0.042 ± 0.0048 0.032 ± 0.0026 0.029 ± 0.0044

1000 1 0.032 ± 0.0081 0.17 ± 0.02 0.12 ± 0.012 0.11 ± 0.014
1000 2 0.034 ± 0.0083 0.16 ± 0.02 0.12 ± 0.011 0.11 ± 0.014
1000 5 0.039 ± 0.0078 0.17 ± 0.021 0.12 ± 0.011 0.11 ± 0.014
1000 15 0.046 ± 0.0072 0.18 ± 0.023 0.14 ± 0.012 0.12 ± 0.015
1000 25 0.048 ± 0.0075 0.19 ± 0.024 0.15 ± 0.014 0.13 ± 0.016
2500 1 0.21 ± 0.041 1.4 ± 0.17 1.2 ± 0.1 1.1 ± 0.13
2500 2 0.22 ± 0.04 1.5 ± 0.18 1.2 ± 0.1 1.1 ± 0.11
2500 5 0.23 ± 0.035 1.5 ± 0.18 1.2 ± 0.1 1.1 ± 0.13
2500 15 0.28 ± 0.034 1.5 ± 0.18 1.3 ± 0.086 1.2 ± 0.13
2500 25 0.3 ± 0.049 1.6 ± 0.18 1.3 ± 0.078 1.2 ± 0.14
5000 1 0.78 ± 0.17 8.2 ± 1 6.8 ± 0.49 6.8 ± 0.58
5000 2 0.74 ± 0.14 8.3 ± 0.99 6.8 ± 0.53 6.9 ± 0.6
5000 5 0.83 ± 0.15 8.2 ± 0.95 6.8 ± 0.48 6.9 ± 0.62
5000 15 1 ± 0.13 8.4 ± 0.95 7.1 ± 0.53 7.1 ± 0.6
5000 25 1.1 ± 0.16 8.6 ± 0.96 7.2 ± 0.54 7.3 ± 0.63
7500 1 1.7 ± 0.31 24 ± 2.6 20 ± 1.5 21 ± 1.8
7500 2 1.7 ± 0.29 24 ± 2.6 20 ± 1.4 21 ± 1.7
7500 5 1.8 ± 0.27 24 ± 2.6 20 ± 1.4 21 ± 1.7
7500 15 2.3 ± 0.31 24 ± 2.6 21 ± 1.5 22 ± 1.8
7500 25 2.3 ± 0.36 25 ± 2.6 21 ± 1.4 22 ± 1.8
10000 1 2.9 ± 0.5 53 ± 5.6 45 ± 3.1 47 ± 3.6
10000 2 3 ± 0.47 53 ± 5.6 45 ± 3.1 47 ± 3.6
10000 5 3.2 ± 0.46 53 ± 5.7 45 ± 3.1 47 ± 3.6
10000 15 4 ± 0.54 53 ± 5.5 47 ± 3 48 ± 3.6
10000 25 4 ± 0.58 54 ± 5.3 47 ± 3.1 49 ± 3.7


