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Abstract

In this paper, our aim is to analyse the gen-
eralization capabilities of first-order methods
for statistical learning in multiple, different
yet related, scenarios including supervised
learning, transfer learning, robust learning
and federated learning. To do so, we pro-
vide sharp upper and lower bounds for the
minimax excess risk of strongly convex and
smooth statistical learning when the gradi-
ent is accessed through partial observations
given by a data-dependent oracle. This novel
class of oracles can query the gradient with
any given data distribution, and is thus well
suited to scenarios in which the training data
distribution does not match the target (or
test) distribution. In particular, our upper
and lower bounds are proportional to the
smallest mean square error achievable by gra-
dient estimators, thus allowing us to easily
derive multiple sharp bounds in the afore-
mentioned scenarios using the extensive lit-
erature on parameter estimation.

1 INTRODUCTION

In statistical learning, one is often interested in min-
imizing a population risk, also known as test loss, of
the form L(x) = Eξ∼D[ℓ(x, ξ)] for some loss function
ℓ and (unknown) test data distribution D. The ques-
tion that arises then is how small can the excess risk
L(x̂)− infx L(x) be, for x̂ computed using some given
restricted information?

In classical supervised learning settings, x̂ is typically
computed with n i.i.d. samples drawn from D and
usually corresponds to the minimizer of the empirical
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counterpart of L(x) computed with those samples. In
that setting, the excess risk can be controlled through
the concept of generalization error, which quantifies
the degree to which minimizing the empirical risk,
also known as the training loss, is similar to minimiz-
ing the test loss. Among the several approaches that
have been proposed to bound generalization errors,
the most prominent ones are based on the complexity
of the hypothesis class like the Vapnik-Chervonenkis
dimension (Vapnik, 2000; Vapnik and Chervonenkis,
2015; Blumer et al., 1989) or Rademacher complex-
ity (Bartlett and Mendelson, 2003; Bousquet et al.,
2004), algorithmic stability (Mukherjee et al., 2006;
Bousquet and Elisseeff, 2002), PAC-Bayesian bounds
(McAllester, 1998; Alquier, 2024), or more recently
information-theoretic generalization bounds (Xu and
Raginsky, 2017). Nowadays, it is commonly accepted
that, in this context, the generalization error alone is
not sufficient to control the excess risk. As the em-
pirical risk minimizer cannot always be computed in
an exact manner, the optimization error must also be
taken into account, measuring the algorithm’s ability
to properly minimize the empirical risk, and shedding
light on a generalization-optimization trade-off (Bot-
tou and Bousquet, 2007). Over the last few years, a
substantial amount of work have therefore been dedi-
cated in controlling these errors, notably through the
study of the generalization properties of optimization
algorithms (Lin et al., 2016; London, 2017; Zhou et al.,
2018; Amir et al., 2021; Neu et al., 2021), where ap-
proaches based on algorithmic stability have encoun-
tered a large success (Hardt et al., 2016; Kuzborskij
and Lampert, 2018; Bassily et al., 2020; Lei and Ying,
2020a,b; Schliserman and Koren, 2022).

Above approaches are however mostly tailored for
standard supervised learning and empirical risk mini-
mization. Hence, an additional analysis is required for
all the different variations and flavors of this problem,
such as transfer learning / domain adaptation (Ben-
David et al., 2006) in which the training distribution
differs from that of the testing distribution, or robust
learning in which a small portion of the training data
may be corrupted by an arbitrary noise. Note further
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that, while there exist a large panel of upper bounds on
the generalization error, the optimization error (Arje-
vani et al., 2023; Bubeck, 2015; Drori and Taylor, 2022)
or, more generally, the excess risk, the question of their
optimality with respect to some lower bounds is most
of the time lacking or specific to a particular algo-
rithm or class of data-distribution (Zhang et al., 2022;
Schliserman and Koren, 2023). For instance, Arjevani
et al. (2023) proved lower bounds for the non-convex
stochastic case, under an oracle framework that in-
spired our formalism; Devolder et al. (2013) considers
inexact oracles. However, Devolder et al. (2013)’s work
is quite different from ours, since their goal is to ana-
lyze different algorithms under a unified framework.

Contributions. In this work, we propose a unified
framework to analyse, among others, the aforemen-
tioned statistical learning problems in a more system-
atic manner. Our general framework goes beyond the
decomposition between generalization and optimiza-
tion error and analyzes instead directly the ability of
an optimization algorithm to minimize the population
risk given partial, and possibly biased, information.
Our contributions can be summarized as follows:

• We tackle the problem of controlling the test
loss L trough the lens of first-order optimization
methods with gradient oracles. Contrary to the
stochastic optimization setting (Agarwal et al.,
2012; Arjevani et al., 2023), we introduce the
novel notion of data-dependent oracle, more
adapted to the case where the gradients are com-
puted over a fixed data set, used possibly several
times during optimization.

• The data used by the oracle being arbitrary, we
show that our setting is rather generic and
contains supervised learning, transfer learning, ro-
bust learning, and federated learning.

• We provide upper and lower bounds for the
minimax excess risk of statistical learning prob-
lems and show that they are sharp for determin-
istic and for more classical i.i.d. oracles. Our
bounds shed light on a novel quantity called best
approximation error, generalizing conditional
expectations and conditional standard deviations.

• We show that our general bounds can be applied
to several learning settings, allowing to ob-
tain problem-specific excess risk bounds and re-
cover some known results of the literature. In
particular, we show that in the case of standard
supervised learning, mini-batch gradient descent
with increasing batch sizes and a warm start can
reach an excess risk that is optimal up to a mul-

tiplicative factor, thus motivating the use of this
optimization scheme in practical applications.

Outline of the paper. In Section 2 we introduce
our statistical learning setting, where we define data-
dependent oracles, the algorithms considered, as well
as our set of assumptions. We also introduce the afore-
mentioned quantity called best approximation error.
In Section 3, we derive upper and lower bounds for
the minimax excess risk of statistical learning with
any given data-dependant oracle and discuss their op-
timality. Finally, in Section 4 we apply our general
bounds to supervised learning, transfer learning, fed-
erated learning, robust learning and learning from a
fixed predetermined dataset.

Notations. In what follows, we denote as F(X ,Y)
(resp. M(X ,Y)) the space of functions (resp. measur-
able functions) from X to Y (both measurable spaces).
Let ∥x∥ =

√∑
i x

2
i be the canonical norm in Rd, and

ρ(A) the nuclear norm of the matrix A ∈ Rd×D. A
function f is B-Lipschitz if ∥f(x)−f(x′)∥ ≤ B∥x−x′∥
for all x, x′ ∈ X . A differentiable function f : Rd → R
is µ-strongly convex (where µ ≥ 0) if ∀x, y ∈ Rd, we

have f(x) − f(y) ≥ ⟨∇f(y), x − y⟩ + µ
2 ∥x− y∥

2
, and

convex if this holds for µ = 0. f is L-smooth if it is
differentiable and its gradient is L-Lipschitz. Finally,
for two functions a, b : Z → R+, we write a = Θ(b)
(resp. a = O(b)) if there exists c, C > 0 such that for
all z ∈ Z, cb(z) ≤ a(z) ≤ Cb(z) (resp. a(z) ≤ Cb(z)).

2 PROBLEM SETUP

We now provide precise definitions for statistical learn-
ing under data-dependent oracles, as well as the min-
imax estimation error used in our analysis.

2.1 Statistical learning

Consider the population risk minimization problem:

inf
x∈Rd

L(x) ≜ Eξ∼D [ℓ(x, ξ)] , (1)

where D is a probability distribution over the measur-
able space Ξ and ℓ : Rd×Ξ→ R is a loss function that
takes as input a model parameter x ∈ Rd and a data
point ξ ∈ Ξ. For simplicity, for any y ∈ Rd, we denote
as ∇ℓy : ξ 7→ ∇xℓ(y, ξ) the gradient of the loss w.r.t.
its first coordinate. Moreover, our analysis focuses on
strongly-convex and smooth objective functions whose
gradients belong to a given function class.

Definition 1 (function class). Let G ⊂ F(Ξ,Rd) be a
class of functions taking data points as input. We de-
note as Fsc(G,D, µ, L) the set of µ-strongly convex and
L-smooth objective functions L(x) = Eξ∼D [ℓ(x, ξ)]
such that ∀x ∈ Rd, ∇ℓx ∈ G.
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The function class G is used to encode the regularity
of the gradient of the loss with respect to input data,
for example (assuming Ξ = RD for the first two): 1)
affine functions: GAff = {ξ 7→ Aξ + b : A ∈ Rd×D, b ∈
Rd, ρ(A) ≤ B}, 2) Lipschitz functions: GLip = {g :
Ξ → Rd : ∀ξ, ξ′ ∈ Ξ, ∥g(ξ)− g(ξ′)∥ ≤ B∥ξ − ξ′∥}, and
3) bounded variations: GBnd = {g : Ξ → Rd : ∃cg ∈
Rd,∀ξ ∈ Ξ, ∥g(ξ)−cg∥ ≤ B}. Note that all these func-
tion spaces are invariant by translation by a constant,
a key property for our analysis (see Assumption 1).

Remark 1. All our results, lower and upper bounds,
also apply to the minimax excess risk of non-convex
smooth and µ-PL functions (see Appendix A).

Example 1 (Least squares regression). Let ℓ(x, ξ =
(M,v)) = 1

2x
⊤Mx − v⊤x for M ∈ Rd×d and v ∈ Rd,

leading to G = GAff where B is the diameter of the
space over which we optimize.

Example 2 (Regularized Lipschitz losses). Let
L(x) = λΩ(x) + ED[ℓ(x, ξ)], for some Lipschitz con-
tinuous and convex loss ℓ (in its first argument) and a
convex regularizer Ω, yielding G = GBnd.

2.2 Data-dependent oracles and first-order
optimization algorithms

Our objective is to minimize Eq. (1) using optimization
algorithms that access∇L via a data-dependent oracle,
in a setup similar to that of Arjevani et al. (2023).

Definition 2 (Data-dependent oracle). Let O,Z be
two measurable spaces and F(Ξ,Rd) a measurable
space of functions. A data-dependent oracle is a tuple
(O, Pz) where O : F(Ξ,Rd) × Z → O is a measurable
function and Pz is a probability distribution over Z.

At each iteration, optimization algorithms will only
be able to access the gradient of the objective func-
tion through the observation O(∇ℓx, z), where x ∈ Rd

is the current model parameter and z ∼ Pz is a ran-
dom seed drawn prior to the optimization. In other
words, an oracle provides a partial (and possibly ran-
dom) view of the gradient, for example by accessing
the gradient at i.i.d. sampled data points ξ′i ∼ D′

drawn according to a source data distribution D′ ̸= D.
In such a case, we have O = Rd×n, Z = Ξn, and
O(g, (ξ′1, . . . , ξ

′
n)) = (g(ξ′1), . . . , g(ξ′n)). Note that, con-

trary to the online setting of Arjevani et al. (2023), the
randomness is fixed prior to the optimization, and thus
each iteration of the optimization will have access to
the same data points ξ1, . . . , ξn. We now define more
precisely the class of algorithms that we will consider
in this analysis.

Definition 3 (Optimization algorithm). Let O,R be
two measurable spaces. An optimization algorithm is
a tuple A = ({q(t), s(t)}t≥0, Pr) where q(t) ∈ M(Ot ×

R,Rd) is a query function, s(t) ∈M(Ot ×R, {0, 1}) is
a stopping criterion, and Pr is a distribution over R.

For a given data-dependent oracle (O, Pz) and opti-
mization algorithm A = ({q(t), s(t)}t≥0, Pr), we con-
sider the following optimization protocol:

1. We first draw two random seeds: r ∼ Pr for the
algorithm, and z ∼ Pz for the oracle.

2. At each iteration t ≥ 0, we update the iterates:

x
(t)
A[O] = q(t)

(
m

(t)
A[O], r

)
s
(t)
A[O] = s(t)

(
m

(t)
A[O], r

) (2)

where m
(t)
A[O] = (O(∇ℓ

x
(0)

A[O]

, z), . . . ,O(∇ℓ
x
(t−1)

A[O]

, z)).

3. The algorithm stops and returns the current iter-

ate xA[O] = x
(t)
A[O] as soon as s

(t)
A[O] = 1.

In other words, at each iteration, the algorithm up-
dates the model parameter based on all past observa-
tions, and then decides to stop (and return the current
model parameter) or continue the optimization. If so,
the algorithm receives a new observation of the gradi-
ent for the current model parameter and proceeds to
the next iteration. Note that the algorithm may not
terminate, in which case we consider the loss as infi-
nite. Moreover, as discussed in Arjevani et al. (2023),
fixing the randomness to a single seed r instead of
drawing random seeds r(t) for each iteration does not
lose any generality. Finally, we denote as Arand the
class of all optimization algorithms as defined above
and, in order to prove lower bounds on the error of
optimization algorithms, we assume that the informa-
tion extracted by the oracle is invariant with respect
to translations in the following sense.

Assumption 1 (Translation invariance). There exists
a measurable function φ : G × Rd → O such that, for
any function g ∈ G and constant c ∈ Rd, g+ c ∈ G and
∀z ∈ Z, O(g + c, z) = φ(O(g, z), c).

Intuitively, Assumption 1 means that translations do
not add any information to the oracle, as the trans-
lated oracles O(g+ c, z) can be retrieved as a function
of the untranslated oracle O(g, z). This assumption is
verified in most settings of interest (see Section 4).

2.3 Minimax excess risk

We evaluate the difficulty of optimizing functions in
Fsc(G,D, µ, L) (abbreviated to Fsc below) with a given
oracle O via the minimax excess risk defined by

εsc(G,O,D, µ, L) = inf
A∈Arand

sup
L∈Fsc

E
[
L
(
xA[O]

)
− L∗] ,
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where L∗ = infx∈Rd L(x) is the minimum value of the
objective function. In other words, the minimax ex-
cess risk measures the best worst-case error that a first-
order optimization algorithm can achieve on the objec-
tive function L, despite only accessing to the gradients
via the oracle O. For simplicity, as the terms D, µ, L
will be fixed throughout the paper, we will from now
on omit them and only write εsc(G,O).

2.4 Minimax estimation error

Our upper and lower bounds on the minimax excess
risk will depend on the ability to create estimators of
the expectation over D of any function in G. This
notion, denoted as minimax estimation error, is de-
fined via best approximation errors, a novel notion that
extends conditional standard deviation to measurable
functions equipped with arbitrary semi-norms.

Definition 4 (Best approximation error). Let X and
Y be two measurable spaces, Z a measurable vector
space, and ∥ · ∥ν a (possibly infinite) semi-norm over
M(X ,Z). For f ∈ M(X ,Z) and h ∈ M(X ,Y) two
measurable functions, we denote as best approximation
error of f knowing h the quantity

σν(f |h) = inf
φ∈M(Y,Z)

∥f − φ ◦ h∥ν . (3)

In other words, σν(f |h) measures how well can f be
approximated using g, and is thus tightly connected to
estimation theory (see e.g. Polyanskiy and Wu, 2022).

Example 3 (Conditional standard deviation). When
X is a probability space and Y = Z = Rd, the measur-
able functions f, h ∈ M(X ,Rd) are random variables
and we recover that σ2(f |h) =

√
E [∥f − E [f |h] ∥2].

Example 4 (Deviations and barycenters). When h is
constant (e.g. Y = R and h(x) = 1), then σν(f |h) =
σν(f |1) = infc∈Z ∥f − c∥ν can encode multiple notions
of distance to the barycenter of the values {f(x)}x∈X ,
including the the median (ν = 1), mean (ν = 2) and
Chebyshev center (ν = +∞) (Amir, 1984).

In what follows, we will mainly use this quantity for
the semi-norms1 ∥f∥G,2 = supg∈G

√
E [∥f(g, z)∥2] and

∥f∥2,G =
√
E
[
supg∈G ∥f(g, z)∥2

]
. Let ED : g 7→

Eξ∼D [g(ξ)] be the expectation over the distribution
D. We denote as minimax estimation error the quan-
tity

σG,2 (ED|O) = inf
φ∈M(Y,Z)

∥ED − φ ◦ O∥G,2 . (4)

1The supremum in ∥f∥2,G is a lattice supremum, i.e.
the smallest measurable function that is almost everywhere
larger than all the considered functions, thus ensuring mea-
surability of supg∈G ∥f(g, z)∥2.

This quantity measures how well one can approximate
the expectation of any function in G over the target
distribution D using the oracle O as input. As we will
see below, this quantity is tightly connected to the
minimax excess risk.

3 EXCESS RISK BOUNDS OF
DATA-DEPENDENT ORACLES

We now detail our upper and lower bounds on the
minimax excess risk in various settings of interest.

3.1 General data-dependent oracles

We first provide a lower bound on the minimax excess
risk that provides a link between this quantity and the
minimax estimation error. The proofs of all proposi-
tions are available in the supplementary material.

Proposition 1. For any distribution D, function
class G and data-dependent oracle O verifying Assump-
tion 1, we have

εsc(G,O) ≥ σG,2 (ED|O)
2

2µ
. (5)

The proof of Proposition 1 relies on simple well-chosen
quadratic functions for which the observations of the
gradient through the iterations of the optimization al-
gorithm do not significantly change, and whose mini-
mization requires to find a good estimator of the ex-
pectation over D (i.e. a solution to Eq. (4)). Intu-
itively, Proposition 1 shows that optimizing functions
in Fsc(G,D, µ, L) is at least as difficult as estimating
their gradient. Moreover, the quantity σG,2 (ED|O)
can be lower bounded using any information theoretic
lower bound on the variance of estimators. In particu-
lar, we will use a slight variation of Le Cam’s two point
method (see, e.g., Section 31.1 in Polyanskiy and Wu,
2022) adapted to our setting.

Proposition 2. For any distribution D, function class
G and data-dependent oracle O, we have

σG,2 (ED|O)
2 ≥ sup

g,g′∈G

cg,g′

4
∥ED(g)− ED(g′)∥2 , (6)

where cg,g′ = 1−dLC(O(g, z),O(g′, z)) and dLC(p, q) is
Le Cam’s distance (see Appendix B).

In other words, if two functions g, g′ ∈ G are almost
indistinguishable using observations (i.e. Le Cam’s dis-
tance between their respective distributions is small),
then any estimator will necessarily return a similar
value on both. As a consequence, if their expectations
ED(g) and ED(g′) are distant, then the estimator will
have a large variance for at least one of the two func-
tions. We will use this result in Section 4 to derive
lower bounds in several learning setups.



Kevin Scaman, Mathieu Even, Batiste Le Bars, Laurent Massoulié

We now show that, if we replace ∥ ·∥G,2 by the (always
greater) norm ∥ · ∥2,G , the lower bound in Eq. (5) can
be achieved by a simple optimization algorithm.

Proposition 3. For any distribution D, function class
G and data-dependent oracle O, we have

εsc(G,O) ≤ σ2,G (ED|O)
2

2µ
. (7)

The proof of Proposition 3 relies on using the sim-
ple iterative algorithm xt+1 = xt − 1

Lφ(ot) where
ot = O(∇ℓxt

, z) and φ is a minimizer of Eq. (4). Note
that, if the oracle is O(g, z) = ED[g(ξ)], this amounts
to performing gradient descent. The variance of the
gradient noise is then bounded by σ2,G (ED|O)

2
by tak-

ing the supremum over all functions g ∈ G before the
expectation over z, thus avoiding issues related to the
correlation between xt and z. Of course, such a crude
upper bound is often suboptimal, as σ2,G (ED|O) allows
for the function g to be chosen adversarially for each
random observation z, and thus does not take advan-
tage of the independence between these two quantities.
However, we now show that two additional assump-
tions lead to sharper upper bounds: 1) deterministic
oracles and 2) i.i.d. oracles (see Section 3.3).

3.2 Exact risk with deterministic oracles

Quite remarkably, the upper and lower bounds match
in the case of deterministic oracles, thus providing an
exact relationship between minimax excess risk and
minimax estimation error.

Corollary 1. If the observations are deterministic,
i.e. O(g, z) = Õ(g) is independent of z, then

εsc(G,O) =
σG(ED|Õ)2

2µ
, (8)

where ∥Õ∥G = supg∈G ∥Õ(g)∥.

In Section 4, we will use this result to compute the min-
imax excess risk in one scenario: learning from fixed
predetermined data-points (e.g. a grid).

3.3 Refined upper bounds with i.i.d. oracles

We now focus on the case where observations are of
the form:

On(g, z) =
(
O(g, z(1)), . . . ,O(g, z(n))

)
, (9)

where z = (z(1), . . . , z(n)) and the z(i) are i.i.d. random
variables. For example, if the random variables z(i) are
sampled from D and O(g, z) = g(z), this amounts to
classical supervised learning with n samples. We first
provide an upper bound on the minimax excess risk
using a simple mini-batch algorithm with warmup.

Algorithm 1 Minibatch GD with warmup

Input: iterations T , sizes (nt)t<T , functions (φk)k∈N∗

Output: current iterate x
m← 0, x← 0, o← O(∇ℓx, z(1))
Twu ← κ ln

(
∥φ1(o)∥2+∥ED−φ1◦O∥2

2,G
εµ

)
for t ∈ J0, Twu − 1K do
o← O(∇ℓx, z(1))
x← x− 1

Lφ1(o)
end for
for t ∈ J0, T − 1K do
oi ← O(∇ℓx, z(m+i)) for i ∈ J1, ntK
x← x− 1

Lφnt
(o1, . . . , ont

)
m← m+ nt

end for

Proposition 4. Let a > 0 and κ = L/µ. For any
distribution D, function class G and i.i.d. oracle On,

εsc(G,On) ≤ σG,2 (ED|Oñ)
2

2µ
+

∆̃

na
,

where ñ =
⌊

n−1
1+aκ logn

⌋
, and ∆̃ =

σ2,G(ED|O1)
2

2µ .

Similarly to Proposition 3, the proof of Proposition 4
relies on the use of an iterative algorithm akin to a
gradient descent variant, here mini-batch gradient de-
scent with a warm-up phase. The algorithm, described
in Alg. (1), requires functions φk for k ∈ N∗ minimiz-
ing Eq. (4) for the oracle Ok, and mini-batch sizes
nt = ñ. Note that, apart from the first sample used
during the warmup phase, samples are only used once.
This may seem suboptimal, as stability theory shows
that one can often reuse samples without a significant
cost. However, note that the stability of Alg. (1) de-
pends on the regularity of the functions φk, which is
not controlled in general. Moreover, Proposition 4
shows that, even with a simple mini-batch scheme
without replacement, one can already obtain match-
ing upper and lower bounds up to logarithmic factors,
as ñ = Ω(n/κ log n). In particular, for oracles of the
form of Eq. (9) for which σ2,G (ED|O1) < +∞ and
σG,2 (ED|On) = Θ(n−b), Proposition 4 implies that

εsc(G,On) = Θ̃(n−2b), where Θ̃ hides logarithmic fac-
tors (using Proposition 4 with a ≥ 2b). Finally, the
logarithmic factor can be removed when the minimax
estimation error is bounded by a quantity of the form
a+ b/n (see Section 4 for examples of such a bound).

Proposition 5. Let a, b > 0, n ≥ 3, and assume that
σG,2 (ED|On)

2 ≤ a+ b/n. Then, for any function class
G, distribution D and i.i.d. oracle On, we have

εsc(G,On) ≤ a

2µ
+

6κb

µn
+ ∆̃e−

n
6κ ,

where ∆̃ =
σ2,G(ED|O1)

2

2µ and κ = L/µ.
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This result is obtained with exponentially increasing
mini-batch sizes nt =

⌈
n(1− c)cT−t−1/2

⌉
where c =√

1− κ−1, and T = ⌊n/2⌋. This allows to have more
precision at the end of the optimization, when the error
is low and greater precision is required.

4 APPLICATIONS

In this section, we specify the general upper and lower
bounds obtained in the previous sections to several
statistical learning scenarios. The list of results ob-
tained for the Lipschitz and bounded variation func-
tion classes GLip and GBnd are reported in Table 1.

4.1 Supervised learning

We now consider the typical supervised learning setup,
in which the training samples are drawn i.i.d. accord-
ing to the target distribution, i.e.

OSL
n (g) = (g(ξ1), . . . , g(ξn)) ,

where ξi ∼ D are i.i.d. random variables. A clas-
sical approach when using this oracle consists in
minimizing the empirical loss, by computing x̂n ∈
argminx∈Rd

1
n

∑
i ℓ(x, ξi) using for instance a gradient

descent algorithm.

Applying Proposition 4 to the oracle OSL
n gives an up-

per bound involving σG,2(ED|OSL
ñ )2/2µ on the mini-

max excess risk (for ñ specified in Proposition 4, of

order Õ(n/κ)). This quantity is however hard to com-
pute in most cases, as σG,2(ED|OSL

ñ ) is a minimum over
all measurable functions φ ∈ M(O,Rd) (see Eq. (4)).
However, a simple upper bound can be obtained by us-
ing the average over the samples φ(g(ξ1), . . . , g(ξn)) =
1
n

∑
i g(ξi). The use of such a function leads to the

usual (mini-batch) gradient descent algorithm on the
empirical risk, and to the following proposition, which
shows that σ2,G(ED|OSL

n ) can be upper bounded by the
form specified in Proposition 5.

Proposition 6. For n ≥ 1, we have

σG,2(ED|OSL
n )2 ≤ ∥VD∥G

n
, (10)

where ∥VD∥G = supg∈G var(g(ξ)) and ξ ∼ D.

The quantity ∥VD∥G = supg∈G var(g(ξ1)) controls the
variation of the gradient of the loss over the data
distribution, and is easy to compute for simple func-
tion classes defined in Section 2.1: 1) Affine functions:
∥VD∥GAff

≤ B2 var(ξ) (with equality if Ξ = RD and
D ≤ d), 2) Lipschitz functions: ∥VD∥GLip

≤ B2 var(ξ)

(with equality if Ξ = RD and D ≤ d), and 3) Bounded
variation: ∥VD∥GBnd

≤ B2 (with equality if ∃A ⊂ Ξ
mesurable s.t. PD (A) = 1

2 ).

In particular, our results provide new excess risk
bounds for the set of smooth and strongly convex (or
PL, see Appendix A) functions whose gradient is Lip-
schitz w.r.t. x and w.r.t. input data (i.e. G = GLip), by
applying the bound ∥VD∥GLip

≤ B2 var(ξ) to Proposi-
tion 6 and Proposition 5.

We now explicit our bounds on a classical setting for
which we can compare our results: the bounded vari-
ation function class GBnd, in which the gradients are
contained in a ball, and includes regularized Lipschitz
losses (see Example 2).

Proposition 7. Assume that ∀c ∈ [0, 1], ∃A ⊂ Ξ mea-
surable s.t. PD (A) = c. Then, for n ≥ 3, we have

B2

8µn
≤ εsc(GBnd,O

SL
n ) ≤ 11κB2

µn
. (11)

The upper and lower bounds in Proposition 7 match up
to a multiplicative factor proportional to κ, thus pro-
viding a relatively tight approximation of the minimax
excess risk in this setting. Also, note that the assump-
tion w.r.t. the measure D in the previous proposition
is only necessary for the lower bound to hold, and is
automatically verified for continuous distributions.

Comparison with the literature. As mentioned
above, the bounded variation setup includes the widely
studied case of B-Lipschitz continuous loss functions.
This setting is handled by Sridharan et al. (2008);
Bartlett et al. (2005) and Bach (2021, Chapter 4.5.5)
for regularized risk minimization, and under additional
structural assumptions on ℓ. It is also treated by the
stability community, such as in Bousquet and Elisse-
eff (2002) for regularized objectives, or more generally
for µ-strongly convex functions in Hardt et al. (2016).
In all these works, the authors study the excess risk
L(x̂n)− infx∈Rd L(x), for x̂n function of OSL

n and cor-
responding to the empirical minimizer. They provide

bounds of the form O
(

B2

µn

)
, which, up to a multi-

plicative factor proportional to κ, is the same as ours
in Equation (11). Such multiplicative factor could be
avoided by considering an optimization algorithm that
uses the training samples several times, therefore min-
imizing effectively the empirical risk (see the discus-
sion below Proposition 4). Such analysis could how-
ever necessitate the introduction of a notion of stability
w.r.t. the optimization algorithm and is currently kept
for future work. Finally, note that our lower bound
demonstrates the optimality of the state-of-the-art up-

per bound in O
(

B2

µn

)
, a result which was not provided

by the aforementioned works.
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Table 1: Our upper and lower bounds on the minimax excess risk εsc(G,O) in several learning scenarios, and up
to multiplicative universal constants whose values are available in the appendix.

SCENARIO LOWER BOUND UPPER BOUND

Supervised (GBnd) B2

µn
κB2

µn

Transfer (GBnd) B2

µ

(
dTV(D,D′)2 + 1

n

)
B2

µ

(
dTV(D,D′)2 + κ

n

)
Federated (GBnd) unknown infq∈Rm

B2

µ

(
dTV(D,Dq)2 +

∑m
i=1

κq2i
ni

)
Robust (GBnd) B2

µ

(
η2 + 1

n

)
B2

µ

(
η2 + κ

n

)
Robust (GLip) unknown B2

µ var(ξ)
(
η + κ

n

)
Fixed data (GBnd) B2

µ

(
1− PD

(
{ξ′i}iJ1,nK

))2 B2

µ

(
1− PD

(
{ξ′i}iJ1,nK

))2
Fixed data (GLip) B2

µ E [mini ∥ξ − ξi∥]2 B2

µ E [mini ∥ξ − ξi∥]2

4.2 Transfer learning

We now turn to the Transfer Learning (TL) oracle,
defined as

OTL
n (g) = (g(ξ′1), . . . , g(ξ′n)) ,

where ξ′i ∼ D′ are i.i.d. random variables and D′ ̸=
D. This oracle typically encompasses applications
in transfer learning such as domain adaptation (Ben-
David et al., 2006), where a task is learnt on a training
dataset D′ that differs from the test distribution D.

Proposition 8. We have

σG,2(ED|OTL
n )2 ≤ dG(D,D′)2 +

∥VD′∥G
n

, (12)

where dG(D,D′) = supg∈G ∥ED(g) − ED′(g)∥ is an in-
tegral probability metric (IPM).

The Integral Probability Metrics dG(D,D′) for the
function classes GBnd, GLip, and GAff defined in Sec-
tion 2.1 give respectively, the total variation distance,
the Wasserstein distance, and the distance between ex-
pectations ∥ED [ξ] − ED′ [ξ′] ∥ in RD. From Eq. (12),
note also that σG,2(ED|OTL

n )2 is of the form specified
in Proposition 5. Finally, the case GBnd also provides
a lower bound on the minimax estimation error.

Proposition 9. Assume that D ≪ D′ and ∀c ∈
[0, 1],∃q ∈ R s.t. PD′

(
dD
dD′ (ξ

′) ≥ q
)

= c. Then, the
minimax estimation error σGBnd,2(ED|OTL

n )2 is

Θ

(
B2

(
dTV

(
D,D′)2 +

1

n

))
, (13)

where dTV is the Total Variation distance (Ap-
pendix B). Using Proposition 5, we obtain upper and
lower bounds on the minimax excess risk that are
within a multiplicative factor proportional to κ (see
Table 1).

Comparison with the literature. Our bound can
be put into perspective with the generalization bounds
derived by the Domain Adaptation (DA) community.
For instance, Ben-David et al. (2006); Blitzer et al.
(2007) provide excess risk bounds for DA of the form
O
(√

dVC/n+dH(D,D′)
)

for algorithms learning from
n samples drawn from a training data distribution D′,
on a test distribution D, for a hypothesis class H of
VC dimension dVC. From Proposition 8, we can prove
(see Table 1), that in the bounded variation setting,
the minimax excess risk can be upper bounded by

εsc(GBnd,O
TL
n ) = O(B2

µ

(
dTV(D,D′)2 + κ

n

)
). At first

sight we could conclude that our bound is always bet-
ter than the first one since it exhibits a fast rate with
respect to n and since dVC is significantly larger (it can
be infinite) than the constants of our bound. How-
ever, these two bounds cannot directly be compared
as the setups are not perfectly matching. In partic-
ular, we are able to obtain a fast rate component in
O(1/n) thanks to the strong convexity assumption, a
setup which, to the best of our knowledge, was not
explicitly considered in previous analyses (see Redko
et al. (2020) for a survey on the theoretical guarantees
of DA). A more detailed discussion on the difference
between our distance on the gradient dG(D,D′) and
that of prior works on the function value dH(D,D′) is
available in Appendix C.

4.3 Federated learning

We now consider a setting in which m local agents are
willing to collaborate in order to minimize their shared
(or sometimes personal) excess risk, a setup known
as (Personalized) Federated Learning (FL) (Kairouz
et al., 2021). Let (Di)i∈J1,mK be a set of local distri-
butions, and let OFL

n (g, z) = (g(ξij))i∈J1,mK,j∈J1,niK for

ξij ∼ Di i.i.d. random variables (ni samples from agent
i). We have the following minimax excess risk up-
per bounds that extend previous results (Even et al.,
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2022; Ding and Wang, 2022), for the (P)FL oracle
and objective (where the objective distribution D is
D =

∑
i piDi for FL and D = D1 for PFL).

Proposition 10. We have

σG,2(ED|OFL
n )2 ≤ inf

q∈Rm
dG
(
D,Dq

)2
+

m∑
i=1

q2i ∥VDi
∥G

ni
,

where Dq =
∑m

i=1 qiDi.

Intuitively, this bound allows to trade bias on the tar-
get distribution (first term) with variance of the local
gradient (second term). Note that Dq may not be a
probability measure, as the weights qi are not neces-
sarily positive and summing to 1.

4.4 Robust learning

We now consider a setting in which a fraction η of
the data points may be arbitrarily corrupted (Klivans
et al., 2018). To simplify the analysis, we will assume
that these outliers are drawn according to an unknown
(potentially very bad) distribution Do. The oracle is
thus defined as

ORL
n (g, z) = (g(ξ′1), . . . , g(ξ′n)) , (14)

where ξ′i ∼ (1− η)D+ ηDo are i.i.d. random variables.
Note that this setting can be considered as a partic-
ular case of transfer learning. However, our objective
is to obtain bounds that do not depend on the outlier
distribution Do, and we thus focus on distant outliers
such that dTV

(
D,Do

)
= 1 (highest possible value for

the total variation). First, the bounded variation set-
ting is here very simple, as the ouliers cannot perturb
the estimation to a large degree. In such a case, apply-
ing Proposition 8 where D′ is the corrupted training
dataset gives the upper bound:

σGBnd,2(ED|ORL
n )2 = Θ

(
B2

(
η2 +

1

n

))
. (15)

In the more challenging (and realistic) case of Lips-
chitz gradients w.r.t. the data points, the outliers can
reach very large gradient values and thus completely
break the average. To avoid this issue, we can use the
robust mean estimation algorithm in Steinhardt et al.
(2018, Algorithm 1) as estimator of the gradient of the
population risk. This gives the following upper bound:

σGLip,2(ED|ORL
n )2 ≤ cB2 var(ξ)

(
η +

1

n

)
, (16)

where c is a universal constant, η ≤ 1/4 is the fraction
of outliers, n is the total number of samples and var(ξ)
is the variance of the true data distribution (without
the outliers).

4.5 Learning from fixed data-points

In supervised learning, the i.i.d. assumption on the
training dataset is key to obtain fast convergence w.r.t.
the number of samples. However, training data-points
are sometimes imposed and predetermined, for exam-
ple following a pattern such as once every day or year
for temporal data, or on a 2d grid for geophysical data
(e.g. weather forecasts). In such a case, the minimax
excess risk will depend on the distance between this
training data and the target distribution. We thus
consider the oracle defined as

OFD
n (g, z) = (g(ξ′1), . . . , g(ξ′n)) , (17)

where (ξ′1, . . . , ξ
′
n) are fixed prior to the optimization.

As the oracle is deterministic, Corollary 1 allows to
obtain the exact value of the minimax excess risk.

Proposition 11. We have

εsc(GBnd,O
FD
n ) =

2B2

µ

(
1− PD

(
{ξ′i}iJ1,nK

))2
(18)

and

εsc(GLip,O
FD
n ) =

B2

2µ
E
[
min
i
∥ξ − ξ′i∥

]2
. (19)

As GBnd does not assume any local regularity w.r.t.
data, knowing the value of the gradient on the data
points does not provide any information on the gra-
dient on the rest of the distribution. However, the
Lipschitz assumption allows for smaller minimax ex-
cess risk that tends to 0 as the number of samples n
tends to +∞.

5 CONCLUSION

In this paper, we introduced a novel unified frame-
work for the minimax excess risk control of a large
panel of statistical learning problems. We focused on
first-order optimization methods with data-dependent
gradient oracles and showed, thanks to the new no-
tion of best approximation error, that what matters
is the ability of the given gradient oracle to approxi-
mate the true gradient of the population risk. Thanks
to our general framework that encompasses numerous
applications, we showed that this notion leads to sharp
minimax excess risk bounds in most considered cases.

Our work focuses on specific regularity assumptions
and applications due to lack of space and for clarity of
exposition; we believe that our promising results and
framework extend to other classical regularity assump-
tion sets, and to other applications mentioned in our
paper, which we leave for future work.
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A Link with the Polyak- Lojasiewicz condition

Recall the definition of the Polyak- Lojasiewicz condition, which is weaker than strong convexity and can be
satisfied by non-convex functions.

Definition 5. (Polyak- Lojasiewicz) Let f : Rd → R be differentiable, and µ > 0. We say that f is µ-Polyak-
 Lojasiewicz (µ-PL for short) if it is bounded from below, and if for all x ∈ Rd

f(x)− inf f ≤ 1

2µ
∥∇f(x)∥2 . (20)

Importantly, µ-strongly convex functions are also µ-PL and we therefore have Fsc(G,D, µ, L) ⊂ Fpl(G,D, µ, L)
(abbreviated to Fpl below), the set of µ-PL and L-smooth objective functions L(x) = Eξ∼D [ℓ(x, ξ)] such that
∀x ∈ Rd, ∇ℓx ∈ G. As an immediat consequence, we also have the relation εsc(G,O) ≤ εpl(G,O) and all the lower
bounds presented for εsc(G,O) in the main paper are also immediately valid for εpl(G,O).

To make all our results valid for both set of functions Fsc and Fpl, all the upper bounds derived in the paper are
actually proved, in the following sections, for µ-PL objective functions.

B Le Cam’s distance between probability distributions

First, we recall the definition of two standard divergences between probability distributions. Let P,Q be two
probability distributions such that dP (dx) = p(x)dµ(x) and dQ(x) = q(x)dµ(x) for some common dominating
measure µ.

• f-divergences: Let f : R+ 7→ R∪{+∞} be a convex function such that f(1) = 0 and limt→0+ f(t) = f(0).
The f -divergence between P and Q is defined as

Df (P,Q) =

∫
f

(
p(x)

q(x)

)
q(x)dµ(x) . (21)

• Total variation: The total variation distance is defined as

dTV(P,Q) =
1

2

∫
|p(x)− q(x)|dµ(x) . (22)

• Kullback-Leibler: The Kullback-Leibler divergence is defined as

dKL(P,Q) =

∫
ln

(
p(x)

q(x)

)
p(x)dµ(x) . (23)

Note that both dTV and dKL are f -divergences with, respectively, f(t) = |t− 1|/2 and f(t) = t ln(t). Below, we
recall a useful property of f -divergences that is going to be used later.

Property 1. Df = Dh if and only if f(t) = h(t) + c(t− 1) for some constant c ∈ R.

We now provide a definition for Le Cam’s distance.

Definition 6. Let P,Q be two probability distributions such that dP (x) = p(x)µ(x) and dQ(x) = q(x)dµ(x)
for some common dominating measure µ. We denote as Le Cam’s distance between P and Q the quantity

dLC(P,Q) =
1

2

∫
(p(x)− q(x))2

p(x) + q(x)
dµ(x) . (24)

Another definition for dLC is the f -divergence obtained with the (convex) function f(t) = (1−t)2

2(1+t) , or equivalently

thanks to Property 1, with the function h(t) = f(t)− 1
2 (t− 1) = 1−t

1+t .

By definition, dLC is symmetric, and we have the following relationship between Le Cam’s distance and other
standard f -divergences, thanks again to Property 1.
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Lemma 1. For any P,Q, we have

dLC(P,Q) ≤ dTV(P,Q) and dLC(P,Q) ≤ dKL(P,Q) . (25)

Proof. A simple functional analysis gives 1−t
1+t + t−1

2 ≤
1
2 |t−1| for t ≥ 0, thus directly implying the first inequality.

For the second, we have 1−t
1+t ≤ − ln(t) + t−1

2 for t ≥ 0 and, as the f -divergence with f(t) = − ln(t) corresponds
to the reverse KL and dLC is symmetric, we have dLC(P,Q) = dLC(Q,P ) ≤ dKL(P,Q).

The link with the Kullback-Leibler divergence will be useful to derive proofs in the i.i.d. oracle regime. We now
provide a proof of Le Cam’s two point method adapted to our setting.

Proof of Proposition 2. Let g1, g2 ∈ G be two functions in the functions class. Then,

σG,2 (ED|O)
2

= infφ∈M(Y,Z) supg∈G Ez

[
∥ED(g)− φ ◦ O(g, z)∥2

]
≥ infφ∈M(Y,Z) supg∈{g1,g2} Ez

[
∥ED(g)− φ ◦ O(g, z)∥2

]
≥ infφ∈M(Y,Z) EG,z

[
∥ED(G)− φ ◦ O(G, z)∥2

]
,

(26)

where G = Bg1 + (1 − B)g2 and B ∼ B(1/2) is a Bernoulli random variable of parameter 1/2. The infimum
over measurable functions φ is now attained for the conditional expectation E [ED(G)|O(G, z)], and a simple
calculation gives

E [ED(G)|O(G, z)] = ED(g1)
p1(O(G, z))

p1(O(G, z)) + p2(O(G, z))
+ ED(g2)

p2(O(G, z))

p1(O(G, z)) + p2(O(G, z))
, (27)

where p1, p2 are the Radon-Nykodym densities of, respectively, O(g1, z) and O(g2, z) w.r.t. to a common domi-
nating measure µ. Combining the two previous equaitons, we get

σG,2 (ED|O)
2 ≥ EG,z

[
∥ED(G)− ED(g1) p1(O(G,z))+ED(g2) p2(O(G,z))

p1(O(G,z))+p2(O(G,z)) ∥2
]

= 1
2Ez

[
∥(ED(g1)− ED(g2)) p2(O(g1,z))

p1(O(g1,z))+p2(O(g1,z))
∥2 + ∥(ED(g1)− ED(g2)) p1(O(g2,z))

p1(O(g2,z))+p2(O(g2,z))
∥2
]

= ∥ED(g1)−ED(g2)∥2

2

(∫ p2(o)
2

(p1(o)+p2(o))2
p1(o)dµ(o) +

∫ p1(o)
2

(p1(o)+p2(o))2
p2(o)dµ(o)

)
= ∥ED(g1)−ED(g2)∥2

2

∫ p1(o)p2(o)
2+p2(o)p1(o)

2

(p1(o)+p2(o))2
dµ(o)

= ∥ED(g1)−ED(g2)∥2

2

∫ p1(o)p2(o)
p1(o)+p2(o)

dµ(o)

= ∥ED(g1)−ED(g2)∥2

4

(
1− 1

2

∫ (p1(o)−p2(o))
2

p1(o)+p2(o)
dµ(o)

)
= ∥ED(g1)−ED(g2)∥2

4

(
1− dLC(O(g1, z), O(g2, z))

)
(28)

C Comparison between distances on gradients and function values

We now discuss the differences between dH(D,D′) where H ⊃ {ξ 7→ ℓ(x, ξ) : x ∈ Rd} contains the values
of the loss, and dG(D,D′), where G ⊃ {ξ 7→ ∇xℓ(x, ξ) : x ∈ Rd} contains gradients of the loss. First,
note that discrepancies in loss value are usually used to control the generalisation error on the iterates, as

|E[ℓ(x
(t)
A[O], ξ)]−E[ℓ(x

(t)
A[O], ξ

′)]| ≤ dH(D,D′) as long as ξ 7→ ℓ(x
(t)
A[O], ξ) ∈ H. Unfortunately, these discrepancies are

infinite in our setting, as we now show: If H1 = {ξ 7→ ℓ(x, ξ) : x ∈ Rd and E[ℓ(·, ξ)] ∈ Fsc(G,D, µ, L)} is the set
of strongly-convex and smooth loss functions considered in this paper, then choosing ℓg(x, ξ) = µ

2 ∥x∥
2 + ⟨g(ξ), x⟩

gives
dH1(D,D′) ≥ sup

x∈Rd

|E[ℓg(x, ξ)− ℓg(x, ξ′)]| = sup
x∈Rd

|⟨E[g(ξ)]− E[g(ξ′)], x⟩| = +∞ , (29)

as soon as E[g(ξ)] ̸= E[g(ξ′)] (i.e. dG(D,D′) > 0). The discrepancy in function value is thus unsuited to the
strongly convex and smooth setting without additional assumptions on the domain of x or boundedness of the
loss. However, one could argue that the difference in loss is only necessary on the algorithm’s output xA[O]

(or equivalently the algorithm’s iterates x
(t)
A[O]) instead of the whole space. Unfortunately, this quantity is also
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infinite, as, ∀g ∈ G and ∀c ∈ Rd, the function ℓg,c(x, ξ) = µ
2 ∥x∥

2+⟨g(ξ), x−c⟩ is µ-strongly convex and µ-smooth,
and its gradient belongs to G (by translation invariance of G, see Assumption 1). Note that we have only added
a constant term w.r.t. x which is thus invisible to algorithms that rely on the gradient. Thus, the constant c
has no impact on the algorithm’s output xA[O], and, for H2 = {ξ 7→ ℓ(xA[O], ξ) : E[ℓ(·, ξ)] ∈ Fsc(G,D, µ, L)}, we
have, as soon as E[g(ξ)] ̸= E[g(ξ′)],

dH2
(D,D′) ≥ sup

c∈Rd

|E[ℓg,c(xxA[O], ξ)− ℓg,c(xA[O], ξ
′)]| = sup

c∈Rd

|⟨E[g(ξ)]− E[g(ξ′)], xA[O] − c⟩| = +∞ . (30)

The same result holds if one replaces xA[O] by arg minx E[ℓ(x, ξ′)], arg minx E[ℓ(x, ξ)], or any set independent of
c.

D Proofs of Section 3

D.1 Proof of our lower bound

We start by proving our first result (Proposition 1), the lower bound on the minimax excess risk that exhibits
σG,2 (ED|O) as limiting factor. This result is a direct consequence of the following lemma:

Lemma 2. Let ε > 0, G ⊂ F(Ξ,Rd) be a function space and O a data-dependent oracle verifying Assumption 1.
Then, for any optimization algorithm A ∈ Arand, there exists an objective function L ∈ Fsc(G,D, µ, L) such that

E
[
L(xA[O])− inf

x∈Rd
L(x)

]
≥ σG,2 (ED|O)

2

2µ
− ε .

Proof. For any g ∈ G, let

ℓg(x, ξ) =
µ

2
∥x∥2 + ⟨x, g(ξ)⟩ . (31)

First, note that ℓg is µ-strongly convex and µ-smooth w.r.t. x (and µ ≤ L), and ∇xℓ
g(x, ξ) = µx + g(ξ) ∈ G

by stability of G by translation. By Assumption 1, there exists a measurable function φ : G × Rd → O such

that O(∇ℓg
x
(t)

A[O]

, z) = φ(O(g, z), µx
(t)
A[O]), and we now show that the output of the algorithm xA[O] is a measurable

function of r and O(g, z).

Lemma 3. For any optimization algorithm A of Definition 3, there exists a function ψA such that the ouptut
xA[O] of A applied to any objective function ℓg defined in Eq. (31) for g ∈ G is

µxA[O] = ψA(r,O(g, z)) . (32)

Proof. First, note that µx
(0)
A[O] = µq(0)(r) is a measurable function of r. By induction over t ≥ 0, there exists

measurable functions ψ
(t)
x,A : R × O → Rd such that µx

(t)
A[O] = ψ

(t)
x,A(r,O(g, z)) and ψ

(t)
s,A : R × O → {0, 1} such

that s
(t)
A[O] = ψ

(t)
s,A(r,O(g, z)). Without loss of generality, we assume that s

(t)
A[O] = 1 only once, as we can replace

s
(t)
A[O] on all iterations after the first 1 by 0. Thus, we have

µxA[O] = µ

+∞∑
t=0

s
(t)
A[O]x

(t)
A[O] =

+∞∑
t=0

ψ
(t)
s,A(r,O(g, z))ψ

(t)
x,A(r,O(g, z)) ,

that is a measurable function of r and O(g, z) as a limit of measurable functions.

Moreover, we have ∇Lg(x) = µx + E [g(ξ)], and infx∈Rd Lg(x) = −∥E [g(ξ)] ∥2/2µ. This gives Lg(xA[O]) −
infx∈Rd Lg(x) = ∥µxA[O] + E [g(ξ)] ∥2/2µ. Now,

sup
g∈G

E
[
Lg(xA[O])− inf

x∈Rd
Lg(x)

]
= sup

g∈G

E
[
∥ − ψA(r,O(g, z))− ED(g)∥2

]
2µ

≥σG,2 (ED|O)
2

2µ
,

where the last inequality follows from Jensen’s inequality on r and the definition of σG,2 (ED|O).
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D.2 General upper-bound and subsequent corollaries

Lemma 4. Let φ ∈M(O,Rd) and L ∈ Fpl(G,D, µ, L). Then, the iterates x0 = 0 and xt+1 = xt − 1
Lφ(ot) where

ot = O(∇ℓxt
, z) achieve an approximation error

E
[
L(xt)− inf

x∈Rd
L(x)

]
≤ ∆ρt +

∥ED − φ ◦ O∥22,G
2µ

,

where ρ = 1− µ/L and ∆ = L(x0)− infx∈Rd L(x).

Proof. First, recall that, for any x ∈ Rd, ∇ℓx ∈ G and Eξ∼D [∇xℓ(x, ξ)] = ED(∇ℓx). Thus,

E
[
∥∇L(xt)− φ(ot)∥2

]
= E

[
∥ED(∇ℓxt

)− φ ◦ O(∇ℓxt
, z)∥2

]
≤ E

[
supg∈G ∥ED(g)− φ ◦ O(g, z)∥2

]
= ∥ED − φ ◦ O∥22,G

Then, by smoothness, we have

L(xt+1)− L(xt) ≤ − 1
L ⟨∇L(xt), φ(ot)⟩+ 1

2L∥φ(ot)∥2
= − 1

2L∥∇L(xt)∥2 + 1
2L∥∇L(xt)− φ(ot)∥2

Moreover, as L is µ-PL, we have

∥∇L(xt)∥2 ≥ 2µ

(
L(xt)− inf

x∈Rd
L(x)

)
.

Combining the two previous equations and taking the expectation gives

E [L(xt+1)− L(xt)] ≤ −
1

κ
E
[
L(xt)− inf

x∈Rd
L(x)

]
+
∥ED − φ ◦ O∥22,G

2L
.

A simple recurrence gives

E
[
L(xt)− inf

x∈Rd
L(x)

]
≤
(

1− 1

κ

)t

E
[
L(x0)− inf

x∈Rd
L(x)

]
+
∥ED − φ ◦ O∥22,G

2µ
.

Proof of Proposition 3. We need to select a number of steps in Lemma 4 sufficient to reduce the first term
in ∆(1 − 1/κ)t to any given precision ε > 0. After the first iteration, we fix the number of iterations as

Tz = κ ln
(

∥φ(o0)∥2+∥ED−φ◦O∥2
2,G

εµ

)
. Note that this stopping time depends only on the observation o0 at the first

iteration, and can thus be computed after this iteration. Then, we have

E
[
L(xTz )− inf

x∈Rd
L(x)

]
≤ E

[(
1− 1

κ

)Tz

(L(x0)− inf
x∈Rd

L(x))

]

+ E

[
1

2L

Tz−1∑
t=0

(
1− 1

κ

)Tz−t−1

∥∇L(xt)− φ(ot)∥2
]

≤ εµE

[
L(x0)− infx∈Rd L(x)

∥φ(o0)∥2 + ∥ED − φ ◦ O∥22,G

]

+ E

[
1

2L

Tz−1∑
t=0

(
1− 1

κ

)Tz−t−1

sup
g∈G
∥ED(g)− φ ◦ O(g, z)∥2

]

≤ 2ε+
E
[
supg∈G ∥ED(g)− φ ◦ O(g, z)∥2

]
2µ

= 2ε+
∥ED − φ ◦ O∥22,G

2µ
,
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where the last inequality follows from the µ-PL condition and L(x0) − infx∈Rd L(x) ≤ ∥∇L(x0)∥2/2µ ≤
(2∥φ(o0)∥2 + 2∥ED(∇ℓx0)− φ ◦ O(∇ℓx0 , z)∥2)/2µ (see the beginning of the proof in Lemma 4), leading to

E

[
L(x0)− infx∈Rd L(x)

∥φ(o0)∥2 + ∥ED − φ ◦ O∥22,G

]
≤ 1

2µ
E

[
2∥φ(o0)∥2 + 2∥ED(∇ℓx0

)− φ ◦ O(∇ℓx0
, z)∥2

∥φ(o0)∥2 + ∥ED − φ ◦ O∥22,G

]

≤ 1

µ
E

[
1 +

supg∈G ∥ED(g)− φ ◦ O(g, z)∥2

∥ED − φ ◦ O∥22,G

]

=
2

µ
.

Finally, taking φ ∈M(O,Rd) such that ∥ED−φ◦O∥2,G ≤ σ2,G(ED|O) + ε and ε→ 0 gives the desired result.

Proof of Corollary 1. If O(g, z) = Õ(g) is independent of z, then σG,2 (ED|O) = σ2,G (ED|O) = σG(ED|Õ) as
all norms are equal, and Proposition 3 immediately gives the desired result.

E Proofs of Section 3.3

Recall that for the following proofs, the oracle is assumed to be of the form On (n i.i.d. observations).

Lemma 5. For any n ≥ 1, let φn be such that ∥ED − φn ◦ On∥2G,2 ≤ σG,2 (ED|On)
2

+ ε, and (n1, . . . , nT ) be
non-negative integers such that

∑
t<T nt ≤ n. Then, the iterates x0 = 0 and

xt+1 = xt −
1

L
φnt

(ot,1, . . . , ot,nt
) , (33)

where ot,k = O(∇ℓxt
, z(Nt+k)) is a (fresh) i.i.d. observation and Nt =

∑
i<t ni, achieve after T iterations an

approximation error

E [L(xT )− L∗] ≤ ∆ρT +

T−1∑
t=0

σ2
t ρ

T−t−1

2L
+

ε

2µ
, (34)

where σt = σG,2 (ED|Ont), L∗ = infx∈Rd L(x), ρ = 1− µ/L and ∆ = L(x0)− L∗.

Proof. As in Lemma 4, we have, using smoothness and the µ-PL condition:

L(xt+1)− L(xt) ≤ −
1

κ

(
L(xt)− inf

x∈Rd
L(x)

)
+

1

2L
∥∇L(xt)− φnt

(ot)∥2 .

where ot = O(∇ℓxt
, z(Nt+1)), . . . ,O(∇ℓxt

, z(Nt+nt)). Thus, by a simple recursion:

L(xT )− inf
x∈Rd

L(x) ≤ ∆

(
1− 1

κ

)T

+
1

2L

T−1∑
t=0

(
1− 1

κ

)T−t−1

∥∇L(xt)− φnt
(ot)∥2 .

To conclude, we take the expectation on both sides of the inequality: since φnt(ot) is independent from
(z(i))1≤i≤Nt and∇L(xt) only depends on (z(i))1≤i≤Nt , ∇L(xt) and φnt(ot) are independent and thus E∥∇L(xt)−
φnt

(ot)∥2 ≤ σG,2 (ED|Ont
)
2

+ ε, by definition of φnt
.

Proof of Proposition 4. We first start with a warm-up phase in which we only use the first observation
O(∇ℓxt

, z(1)) for a number of steps sufficient to reduce the first term in Lemma 4 in ∆(1 − 1/κ)t to any given
precision ε > 0. We then fix the number of iterations of this warm-up phase (after the first iteration) as

Tz = κ ln
(

∥φ(o0)∥2+∥ED−φ◦O1∥2
2,G

εµ

)
. This gives

E
[
L(xTz )− inf

x∈Rd
L(x)

]
≤ 2ε+

∥ED − φ ◦ O1∥22,G
2µ

≤ 2ε+
σ2,G(ED|O1)2 + ε

2µ
,
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for a function φ ∈M(O,Rd) such that ∥ED − φ ◦O1∥22,G ≤ σ2,G(ED|O1)2 + ε. Then, we apply Lemma 5 starting

at x′0 = xTz
with a number of steps T = ⌈aκ log n⌉ and a fixed mini-batch size of nt = N =

⌊
n−1

1+aκ logn

⌋
. This

ensure that
∑

t<T nt ≤ n− 1 and gives

E [L(xT+Tz )− infx∈Rd L(x)] ≤ ∆̃
(
1− 1

κ

)T
+

σG,2(ED|ON )2

2µ + ε
2µ

≤ ∆̃e−T/κ +
σG,2(ED|ON )2

2µ + ε
2µ

≤ ∆̃n−a +
σG,2(ED|ON )2

2µ + ε
2µ ,

(35)

where ∆̃ = E [L(xTz
)− infx∈Rd L(x)] ≤ 2ε+

σ2,G(ED|O1)
2+ε

2µ . Finally, letting ε tend to 0 concludes the proof.

Proof of Proposition 5. Similarly to the proof of Proposition 4, we start with a warm-up phase of Tz =

κ ln
(

∥φ(o0)∥2+∥ED−φ◦O1∥2
2,G

εµ

)
steps using only the first observation O(∇ℓxt

, z(1)). This gives, for a function

φ ∈M(O,Rd) such that ∥ED − φ ◦ O1∥22,G ≤ σ2,G(ED|O1)2 + ε, an approximation error

E
[
L(xTz

)− inf
x∈Rd

L(x)

]
≤ 2ε+

∥ED − φ ◦ O1∥22,G
2µ

≤ 2ε+
σ2,G(ED|O1)2 + ε

2µ
.

We then apply Lemma 5 starting at x′0 = xTz
with a number of steps T = ⌊(n− 1)/2⌋ and an increasing mini-

batch of size nt =
⌈
(n− 1)(1− c)cT−t−1/2

⌉
where c =

√
1− κ−1. This ensures that

∑
t<T nt ≤

∑
t<T (1 + (n−

1)(1− c)cT−t−1/2) ≤ T + (n−1)(1−c)
2(1−c) ≤ n−1

2 + n−1
2 = n− 1. Thus, applying Lemma 5 gives

E [L(xT )− infx∈Rd L(x)] ≤ ∆̃c2T + 1
2L

∑T−1
t=0 c2(T−t−1)

(
a+ b

nt

)
+ ε

2µ

≤ ∆̃e−T/κ + 1
2L

∑T−1
t=0

2bcT−t−1

(n−1)(1−c) + a+ε
2µ

≤ ∆̃e−
n−2
2κ + b

(n−1)L(1−c)2 + a+ε
2µ ,

(36)

where ∆̃ = E [L(xTz )− infx∈Rd L(x)] ≤ 2ε +
σ2,G(ED|O1)

2+ε
2µ . We conclude by noting that L(1 − c)2 = µκ(1 −√

1− κ−1)2 ≥ µκ(2κ)−2 = µ/4κ and, if n ≥ 3, we have n− 2 ≥ n/3 and n− 1 ≥ 2n/3.

F Proofs of Section 4

F.1 Empirical risk minimization

Proof of Proposition 6. Let φ(g1, . . . , gn) = 1
n

∑
i gi be the average over the n data points, then we directly

have ∥ED −φ ◦OSL
n ∥2G,2 = supg∈G E

[
∥ 1n
∑

i(g(ξi)− Eξ∼D [g(ξ)])∥2
]

= supg∈G var(g(ξ1))/n as the data samples ξi
are i.i.d. random variables.

We next prove the upper bounds on ∥VD∥G = supg∈G var(g(ξ1)) provided after Proposition 6 in the main text.

Proof of the upper bounds on ∥VD∥G. We begin with affine functions. Let (g : ξ 7→ Aξ + b) ∈ GAff. We have

var(g(ξ)) = var(Aξ) = E
[
∥A(ξ − Eξ)∥2

]
≤ B2E [∥ξ − Eξ∥]2 = B2 var(ξ), since ρ(A) ≤ B. By taking a supremum

over g ∈ GAff, we have the desired result. The equality is obtained by taking any rank D projection for A, in the
case D ≤ d.

For Lipschitz functions: let g ∈ GLip. We have var(g(ξ)) = E
[
∥g(ξ)− Eg(ξ)∥2

]
= 1

2E
[
∥g(ξ)− g(ξ′)∥2

]
, where

ξ′ ∼ D is independent from ξ. Thus, using the Lipschitzness of g, var(g(ξ)) ≤ B2 1
2E
[
∥ξ − ξ′∥2

]
= B2 var(ξ),

and we take the supremum over g.

For functions with bounded variations: let g ∈ GBnd. There exists c ∈ Rd such that for all ξ, ∥g(ξ)− c∥ ≤ B.

Using var(g(ξ)) = E
[
∥g(ξ)− E [g(ξ)]∥2

]
≤ E

[
∥g(ξ)− c∥2

]
≤ B2, we have var(g(ξ)) ≤ B2, and we take the

supremum over g. For the equality, we take g such that g(ξ) = (B, 0, . . . , 0) for ξ ∈ A and g(ξ) = (−B, 0, . . . , 0)
for ξ /∈ A.
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We finally specify our SL results for GBnd with the example or regularized SL.

Lemma 6. Assume that ∀p ∈ [0, 1], ∃A ⊂ Ξ measurable s.t. PD (A) = p. Then, for n ≥ 1, we have

B

1 +
√
n
≤ σGBnd,2(ED|OSL

n ) ≤ B√
n
. (37)

Moreover, the average φ(x) = 1
n

∑
i xi is asymptotically optimal, as ∥ED − φ ◦ OSL

n ∥2GBnd,2
= B2/n.

Proof. First, the upper bound is a direct application of Proposition 6 for GBnd, and is achieved for the average
φ(x) = 1

n

∑
i xi. To prove the lower bound, we replace the supremum over all functions in GBnd by functions of

the form g : Ξ→ {−Bv,Bv} where ∥v∥ = 1.

σGBnd,2(ED|OSL
n )2 ≥ inf

φ∈M(O,Rd)
sup

g∈F(Ξ,{−Bv,Bv})
E
[
∥ED(g)− φ(g(ξ1), . . . , g(ξn))∥2

]
≥ B2 inf

φ∈M(O,Rd)
sup

p∈[0,1]

E
[
(2p− 1− φ(G1, . . . , Gn))

2
]
,

where Gi = 1{g(ξi) = Bv} are i.i.d. Bernoulli random variables of parameter p = P (g(ξ1) = Bv). We now
replace the probability p by a random variable P ∼ Beta(a, b) for a, b > 0, which gives

σGBnd,2(ED|OSL
n )2 ≥ B2 inf

φ∈M(O,Rd)
E
[
(2P − 1− φ(G1, . . . , Gn))

2
]

= 4B2 inf
φ∈M(O,Rd)

E
[
(P − φ(G1, . . . , Gn))

2
]

= 4B2 E
[
(P − E [P | G1, . . . , Gn])

2
]

= 4B2 E
[
(P − E [P | K])

2
]
,

where K =
∑

iGi is a Binomial distribution of parameters n and p, as the Bernoulli r.v. are identically
distributed. A simple calculation gives that P |K ∼ Beta(K + a, n − K + b), which allows us to compute the

quantities E
[
P 2
]

= ab
(a+b)2(1+a+b) + a2

(a+b)2 and E [P | K] = K+a
n+a+b . We thus obtain

σGBnd,2(ED|OSL
n )2 ≥ 4B2

(
E
[
P 2
]
− E

[
E [P | K]

2
])

= 4B2

(
ab

(a+ b)2(1 + a+ b)
+

a2

(a+ b)2
− E

[(
K + a

n+ a+ b

)2
])

=
4B2ab

(a+ b)(1 + a+ b)(n+ a+ b)
,

where the last equality is obtained using E
[
(K + a)2

]
= var(K) + (E [K] + a)2 = nab(n+a+b)

(a+b)2(1+a+b) +
(

a(n+a+b)
a+b

)2
.

Finally, choosing a = b =
√
n/2 gives the desired result.

Proof of Proposition 7. Noticing that σG,2 (ED|On)
2 ≤ B2/n and σ2,G (ED|O1)

2 ≤ 4B2, we can use Proposi-
tion 5 with a = 0 in order to obtain

εsc(GBnd,O
SL
n ) ≤ 6κB2

µn
+

2B2

µ
e−

n
6κ .

The right handside of Proposition 7 is obtained by using e−
n
6κ ≤ 6κ

ne and 6 + 12/e = 10.41... ≤ 11. The left
handside of the desired inequality is then proved using the lower bound of Lemma 6 together with the general
lower bound of Lemma 2.



Kevin Scaman, Mathieu Even, Batiste Le Bars, Laurent Massoulié

F.2 Transfer learning

Proof of Proposition 8. Let φ(g1, . . . , gn) = 1
n

∑
i gi be the average over the n data points, then we directly

have, for ξ ∼ D,

∥ED − φ ◦ OTL
n ∥2G,2 = supg∈G E

[
∥E [g(ξ)]− 1

n

∑
i g(ξ′i)∥2

]
= supg∈G ∥E [g(ξ)]− E [g(ξ′1)] ∥2 +

var(g(ξ′1))
n

≤ supg∈G ∥E [g(ξ)]− E [g(ξ′1)] ∥2 + supg∈G
var(g(ξ′1))

n

= dG(D,D′)2 + ∥VD′∥G
n .

(38)

Proof of Proposition 9. By assumption, ∀ε ∈ (0, 1],∃qε ∈ R s.t. PD′
(

dD
dD′ (ξ

′) ≥ qε
)

= (1 + ε)/2. We apply

Proposition 2 to OTN
n with g(ξ) = −g′(ξ) = B

(
21
{

dD
dD′ (ξ) ≥ qε

}
− 1
)
e1 where e1 = (1, 0, . . . )⊤ is the first basis

vector. First, note that g, g′ ∈ GBnd, which gives

σG,2 (ED|O)
2 ≥

(
1− dLC(OTL

n (g, z),OTL
n (−g, z))

)
∥ED(g)∥2 , (39)

where dLC(p, q) is Le Cam’s distance (see Appendix B). By definition,

∥ED(g)∥2 = B2ED
[
21
{

dD
dD′ (ξ

′) ≥ qε
}
− 1
]2

= B2ED′
[(

21
{

dD
dD′ (ξ

′) ≥ qε
}
− 1
)

dD
dD′ (ξ

′)
]2

= B2
(
ED′

[(
21
{

dD
dD′ (ξ

′) ≥ qε
}
− 1
) (

dD
dD′ (ξ

′)− qε
)]

+ qεε
)2

= B2
(
ED′

[∣∣ dD
dD′ (ξ

′)− qε
∣∣]+ qεε

)2
.

(40)

Moreover, we have ED′
[∣∣ dD

dD′ (ξ
′)− qε

∣∣] ≥ 2dTV(D,D′) − |qε − 1| and ED′
[∣∣ dD

dD′ (ξ
′)− qε

∣∣] ≥ |qε − 1|. As a

consequence, we have ED′
[∣∣ dD

dD′ (ξ
′)− qε

∣∣] ≥ dTV(D,D′) and ED′
[∣∣ dD

dD′ (ξ
′)− qε

∣∣]+qεε ≥ |qε−1|+qεε ≥ ε, which
gives

∥ED(g)∥2 ≥ B2 max {dTV(D,D′), ε}2 ≥ B2

2

(
dTV(D,D′)2 + ε2

)
. (41)

Finally, we conclude by noting that, as g only takes two values (−Be1 and Be1), we have that, if N = |{i ∈
J1, nK | g(ξ′i) = Be1}| and ε ≤ 1/2, then

dLC(OTL
n (g, z),OTL

n (−g, z)) ≤ dKL(OTL
n (g, z),OTL

n (−g, z))

= (2E [N ]− n) ln
(

1+ε
1−ε

)
= nε ln

(
1+ε
1−ε

)
≤ 2 ln(3)nε2 ,

(42)

and taking ε = 1/(2
√
n) gives the desired result

σG,2 (ED|O)
2 ≥ (2− ln(3))B2

16

(
dTV(D,D′)2 +

1

n

)
. (43)

F.3 (Personalized) Federated Learning

We now prove the following upper bound:

σG,2(ED|OFL
n )2 ≤ inf

q∈Rm
dG

(
D,
∑
i

qiDi

)2

+

m∑
i=1

q2i
∥VDi∥G
ni

.
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Proof of Proposition 10. We start by upper bounding using the function φ((gij)i∈J1,mK,j∈J1,niK) =∑m
i=1

∑ni

j=1
qi
ni
gij , leading to

σG,2(ED|OFL
n )2 ≤ sup

g∈G
E


∥∥∥∥∥∥ED(g)−

m∑
i=1

ni∑
j=1

qi
ni
g(ξij)

∥∥∥∥∥∥
2


= sup
g∈G

E


∥∥∥∥∥∥ED(g)− E

 m∑
i=1

ni∑
j=1

qi
ni
g(ξij)

∥∥∥∥∥∥
2
+ var

 m∑
i=1

ni∑
j=1

qi
ni
g(ξij)


= sup

g∈G
E

∥∥∥∥∥ED(g)−
m∑
i=1

qiEDi(g)

∥∥∥∥∥
2
+

m∑
i=1

q2i
ni

var
(
g(ξi1)

)

≤ dG

(
D,
∑
i

qiDi

)2

+
∑
i

q2i
ni
∥VDi

∥G .

We conclude by taking the infimum over (qi).

F.4 Robust Learning

We now prove the two results of the robust learning section. First, the upper and lower bound for GBnd,

σGBnd,2(ED|ORL
n )2 = Θ

(
B2

(
η2 +

1

n

))
, (44)

is obtained by applying Proposition 9 to D′ = (1− η)D + ηDo, and noting that,

dTV(D,D′) =
1

2
sup

f∈F(Ξ,[−1,1])

ED(f)− ED′(f) =
η

2
sup

f∈F(Ξ,[−1,1])

ED(f)− EDo
(f) = η , (45)

as ED′(f) = (1− η)ED(f) + ηEDo
(f) and, by assumption, dTV(D,Do) = 1. The second result, for GLip,

σGLip,2(ED|ORL
n )2 ≤ cB2 var(ξ)

(
η +

1

n

)
, (46)

is proved as follows: let φ be the robust mean estimator of Steinhardt et al. (2018, Algorithm 1). First, note
that, for a set of data points (ξ1, . . . , ξm), we have, with λmax(M) denoting the largest singular value of the
symmetric matrix M ,

λmax

(
1
m

∑m
i=1(g(ξi)− ḡm)(g(ξi)− ḡm)⊤

)
= maxx : ∥x∥≤1

1
m

∑m
i=1(x⊤(g(ξi)− ḡm))2

≤ 1
m

∑m
i=1 ∥g(ξi)− ḡm∥2

≤ B2

m

∑m
i=1 ∥ξi − ξ̄m∥2 ,

(47)

where ḡm and ξ̄m are, respectively, the averages of g(ξi) and ξi over all data points. Thus, assuming with-
out loss of generality that we place all the outliers at the end of the sequence (ξ1, . . . , ξn), we can use

σ2
0 = B2

(1−η)n

∑(1−η)n
i=1 ∥ξi − ξ̄(1−η)n∥2 in Proposition 16 of Steinhardt et al. (2018), and get that, if η ≤ 1/4,

the robust mean estimator always returns a value φ ◦ ORL
n (g, z) such that

∥ḡ(1−η)n − φ ◦ ORL
n (g, z)∥2 ≤ c2B2

(1− η)n

(1−η)n∑
i=1

∥ξi − ξ̄(1−η)n∥2η (48)

where c = 40 is a universal constant. Finally, we take the expectation over the samples (i.e. z) and have

∥ED − φ ◦ ORL
n ∥2GLip

≤ 2 supg∈GLip
E
[
∥ED(g)− ḡ(1−η)n∥2 + ∥ḡ(1−η)n − φ ◦ ORL

n (g, z)∥2
]

≤ 2B2 var(ξ)
(1−η)n + 2c2B2

(1−η)n

∑(1−η)n
i=1 E

[
∥ξi − ξ̄(1−η)n∥2

]
η .

(49)

We conclude by showing that E
[
∥ξi − ξ̄(1−η)n∥2

]
= (1− 1

n ) var(ξ) ≤ var(ξ) and 1
1−η ≤ 4/3, giving Eq. (46) with

the constant c = 3200.
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F.5 Learning with fixed data points

We now provide a proof of the upper and lower bounds for the minimax excess risk under the fixed data learning
scenario.

Proof of Proposition 11. First, as OFD
n is deterministic, Corollary 1 immediately gives that

εsc(GBnd,O
FD
n ) =

σ2,GBnd
(ED|OFD

n )2

2µ
and εsc(GLip,O

FD
n ) =

σ2,GLip
(ED|OFD

n )2

2µ
. (50)

We thus only need to show that σ2,GBnd
(ED|OFD

n ) = 2B
(
1− PD

(
{ξ′i}iJ1,nK

))
and σ2,GLip

(ED|OFD
n ) =

BE [mini ∥ξ − ξ′i∥] to conclude.

Case GBnd: First, let us assume that all ξi are distinct, as we can otherwise remove the duplicates without any
loss of generality. Then, consider the estimator φ(g1, . . . , gn) =

∑n
i=1 PD ({ξ′i}) gi + (1− PD

(
{ξ′i}iJ1,nK

)
) 1
n

∑
i gi,

which can be used here as the ξ′i are fixed data points and D is known. Thus, using φ, we have

σ2,GBnd
(ED|OFD

n ) ≤ supg∈GBnd
∥ED(g)− φ(g(ξ′1), . . . , g(ξ′n))∥

= supg∈GBnd
∥E
[
1{ξ /∈ {ξ′i}i∈J1,nK}(g(ξ)− 1

n

∑
i g(ξ′i))

]
∥

≤ supg∈GBnd
E
[
1{ξ /∈ {ξ′i}i∈J1,nK}∥g(ξ)− 1

n

∑
i g(ξ′i)∥

]
≤ 2B

(
1− PD

(
{ξ′i}iJ1,nK

))
.

(51)

The lower bound is obtained using Proposition 2 with g(ξ) = −g′(ξ) = 1{ξ /∈ {ξ′i}i∈J1,nK}2Be1, where e1 is the
first basis vector. This gives OFD

n (g, z) = OFD
n (g′, z) = (0, . . . , 0), and thus dTV(OFD

n (g, z),OFD
n (g′, z)) = 0 and

σ2,GBnd
(ED|OFD

n ) ≥ ∥ED(g)∥ = 2B
(
1− PD

(
{ξ′i}iJ1,nK

))
, (52)

which concludes the proof.

Case GLip: Again, we assume, without loss of generality, that all ξi are distinct. For the upper bound, we use
the estimator φ(g1, . . . , gn) =

∑n
i=1 PD

(
argminj ∥ξ − ξ′j∥ = i

)
gi, which gives

σ2,GLip
(ED|OFD

n ) ≤ supg∈GLip
∥ED(g)− φ(g(ξ′1), . . . , g(ξ′n))∥

= supg∈GLip
∥E
[∑n

i=1 1{argminj ∥ξ − ξ′j∥ = i}(g(ξ)− g(ξ′i))
]
∥

≤ supg∈GLip
E
[∑n

i=1 1{argminj ∥ξ − ξ′j∥ = i}∥g(ξ)− g(ξ′i)∥
]

≤ B E
[∑n

i=1 1{argminj ∥ξ − ξ′j∥ = i}∥ξ − ξ′i∥
]

= B E [mini ∥ξ − ξ′i∥] .

(53)

For the lower bound, we apply Proposition 2 with g(ξ) = −g(ξ) = Bmini ∥ξ − ξ′i∥e1, which is B-Lipschitz by
construction. As OFD

n (g, z) = OFD
n (g′, z) = (0, . . . , 0), we have dTV(OFD

n (g, z),OFD
n (g′, z)) = 0 and

σ2,GLip
(ED|OFD

n ) ≥ ∥ED(g)∥ = B E
[
min
i
∥ξ − ξ′i∥

]
, (54)

which concludes the proof.


