
Adaptive Quasi-Newton and Anderson Acceleration Framework with
Explicit Global (Accelerated) Convergence Rates

Damien Scieur
Samsung SAIL Montreal

Abstract

Despite the impressive numerical performance
of the quasi-Newton and Anderson/nonlinear
acceleration methods, their global conver-
gence rates have remained elusive for over 50
years. This study addresses this long-standing
issue by introducing a framework that de-
rives novel, adaptive quasi-Newton and non-
linear/Anderson acceleration schemes. Un-
der mild assumptions, the proposed iterative
methods exhibit explicit, non-asymptotic con-
vergence rates that blend those of the gradi-
ent descent and Cubic Regularized Newton’s
methods. The proposed approach also in-
cludes an accelerated version for convex func-
tions. Notably, these rates are achieved adap-
tively without prior knowledge of the func-
tion’s parameters. The framework presented
in this study is generic, and its special cases
include algorithms such as Newton’s method
with random subspaces, finite differences, or
lazy Hessian. Numerical experiments demon-
strated the efficiency of the proposed frame-
work, even compared to the l-BFGS algorithm
with Wolfe line-search. The code used in the
experiments is available on https://github.
com/windows7lover/QN_With_Guarantees.

1 Introduction

Consider the problem of determining the minimizer x⋆

of the unconstrained minimization problem

f⋆ def= f(x⋆) = min
x∈Rd

f(x),

where d is the problem dimension, and the function f
has a Lipschitz continuous Hessian.

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

Assumption 1. The function f(x) has a Lipschitz
continuous Hessian with constant L:

∀ y, z ∈ Rd, ∥∇2f(z)−∇2f(y)∥ ≤ L∥z − y∥. (1)

In this study, ∥.∥ stands for the maximal singular value
of a matrix and the ℓ2 norm for a vector. Numerous
twice-differentiable problems, such as logistic or least-
squares regression, satisfy Assumption 1.

The Lipschitz continuity of the Hessian is crucial when
analyzing second-order algorithms because it extends
the concept of smoothness to second-order. The ground-
breaking work by Nesterov et al. [61] revealed the re-
markable convergence rate of Newton’s method for
problems satisfying Assumption 1 when augmented
with cubic regularization. For instance, if the problem
is convex, the accelerated gradient descent typically
achieves O(1

t2), whereas accelerated second-order meth-
ods achieve O(1

t3). Recent advancements achieved even
faster convergence rates, up to O(1

t7/2) using hybrid
methods [57, 17], or the direct acceleration of second-
order methods [59, 34, 53].

However, second-order methods are not scalable, par-
ticularly for the high-dimensional problems common in
machine learning. The limitation is that exact second-
order methods require the solution of a linear system
involving the Hessian ∇2f . This has motivated al-
ternative approaches that balance the efficiency of
second-order methods with the scalability of first-order
methods, such as quasi-Newton methods or Ander-
son/nonlinear acceleration methods (which are equiv-
alent to quasi-Newton methods [29]). Due to space
limitation, the results of this study are presented under
the prism of quasi-Newton methods, but their links
with Anderson acceleration is explained extensively in
appendix D.

Quasi-Newton (qN) methods minimize differentiable
functions by iteratively updating an approximate Hes-
sian matrix using previous gradients, effectively bal-
ancing scalability and efficiency. This approach makes
them highly suitable for large-scale optimization prob-
lems across diverse fields. For instance, l-BFGS is a

https://github.com/windows7lover/QN_With_Guarantees
https://github.com/windows7lover/QN_With_Guarantees

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

widely used and effective optimization method for un-
constrained functions (e.g., fminunc from Matlab) and
is often considered state-of-the-art [1].

Despite the impressive performance of quasi-Newton
methods and nonlinear acceleration schemes, the fol-
lowing long-standing question has remained unan-
swered for over 50 years.

What are the nonasymptotic global convergence rates
of quasi-Newton and Anderson acceleration methods?

This question is challenging: Over the years, extensive
research has catapulted the popular l-BFGS algorithm
to an exceptionally high level of efficiency, as attested
by various studies (e.g., [56, 89, 58]). However, its theo-
retical convergence guarantees are notably lacking and
do not accurately reflect its actual numerical perfor-
mance. Therefore, additional numerical improvements
or obtaining fast rates without arming the numerical
convergence may be increasingly difficult or infeasible.

1.1 Contributions

Theoretical guarantees This study presents
generic updates that are novel quasi-Newton methods
or nonlinear acceleration schemes with cubic regular-
ization that meet the following requirements.

1. The assumptions for the theoretical analysis are
simple and verifiable (section 3.1).

2. The algorithm is suitable for large-scale problems,
as for a fixed memory budget N ≤ d, its per-
iteration cost is linear in the dimension.

3. The algorithm exhibits explicit, global, and
nonasymptotic convergence rates that inter-
polate between those of the first and second order
methods (section 3 and appendix C):

• Convergence on Nonconvex problems (Theo-
rem 5): mini≤t ∥∇f(xi)∥ ≤ O(t− 2

3 + t− 1
3),

• (Star-)convex problems (Theorems 6 and 7):
f(xt)− f⋆ ≤ O(t−2 + t−1),

• Accelerated rate on convex problems (Theo-
rem 8): f(xt)− f⋆ ≤ O(t−3 + t−2).

4. The algorithm is adaptive to the problem’s
constants (algorithms 4 and 7): both acceler-
ated and classical methods require only an initial
estimate of the Lipchitz constant (appendix F.1).

Novel Analysis To address these points, this study
explores a novel paradigm, rethinking from scratch the
framework underlying qN methods (section 2).

Numerical Efficiency The algorithm outperform
l-BFGS in many scenarios (section 4).

Practicability A particular focus have been put on
making the method simple, generic and adaptive, to
make it suitable for practical applications. The method
is simple to implement, and requires fewer hyperpa-
rameters than classical qN schemes.

Generic Framework The framework can be instan-
tiated as many kinds of previously known methods
(section 3.3.2), and recovers the cubic regularization of
Newton’s method in its most extreme case.

1.2 Limitations in Current qN Schemes

In most classical qN methods, a (Wolfe) line search
algorithm (often in addition to other techniques such
as secant equation filtering or re-scaling) is required
to ensure global convergence. Without such a line
search, the performance of qN methods is poor, even
in a simple quadratic case in two dimensions [64].

Nevertheless, some previous work already attempted to
determine rates for qN methods (or to derive new ones),
but often violates at least one of the previous points:
1) the analysis requires non-verifiable assumptions, 2)
the algorithm is not suitable for large-scale problems
as the per-iteration cost is at least O(d2), 3) the rates
are local or do not interpolate between first and second
order rates, 4) the algorithm depends on potentially
unknown parameters. See appendix B for a detailed
literature review.

Violates 1: For instance, the ARC method [18, 19] or
proximal qN methods [92, 68] show accelerated rates for
quasi-Newton under similar assumptions. However, the
authors state that the convergence rate is derived under
a nonverifiable assumption, and typically, their rates
do not rely on or exploit the accuracy of second-order
approximations.

Violates 2: By using online algorithms and the
Monteiro-Svaiter acceleration technique, [50] achieves
accelerated rates O(min{ 1

t2 , 1
t2.5 }) for qN methods, but

require the storage and inversion of a d × d matrix,
which does not scale well in high dimension, and does
not perform well compared to BFGS.

Violates 3: Recent research on quasi-Newton updates
has unveiled explicit and nonasymptotic rates of conver-
gence [65, 67, 66, 54, 55]. Nonetheless, these analyses
suffer from several significant drawbacks, as they are
local, full-memory (hence require storing a d×d matrix
and the per-iteration cost is O(d2)) and sometimes
require access to the Hessian matrix.

Violates 4: Kamzolov et al. [52] introduced an adap-
tive regularization technique combined with cubic reg-
ularization, but the method relies on the knowledge of
L in Assumption 1.

Damien Scieur

2 Rethinking Quasi-Newton Methods

The starting point is the cubic upper bound on the ob-
jective function f and the upper bound on the gradient
variation derived from Assumption 1 [61]:

∥∇f(y)−∇f(x)−∇2f(x)(y − x)∥ ≤ L
2 ∥y − x∥2, (2)

f(y) ≤ f(x) +∇f(x)(y − x)

+ 1
2(y − x)T∇2f(x)(y − x) + L

6 ∥y − x∥3, (3)

which holds for all x, y ∈ Rd. Minimizing (3) over y
yields the cubic regularization of Newton’s method [61].

The main steps in deriving this algorithm are as follows:
1) The minimization will be constrained to a subspace
of dimension N ≤ d, reducing the per-iteration compu-
tation cost. 2) The Hessian (in the subspace) will be
approximated using differences of gradients. 3) From
the previous points, an upper bound for the objective
function and the gradient norm will be constructed,
leading to a Type I and Type II method. 4) To ensure
convergence, the update of the subspace will be cho-
sen such that it spans the gradient (deterministic) or
spans a portion of the gradient in expectation (random
subspace).

2.1 First Ingredient: Subspace Minimization

Minimizing the upper bound (3) is expensive in high
dimensions because it requires an eigenvalue decompo-
sition of the Hessian ∇2f(x) [61]. Rather, let Dt be an
d×N matrix of directions (the construction of Dt is
described in section 2.4). By constraining the update
xt+1 − xt in the columns span of Dt, that is,

xt+1 = xt + Dtαt, (4)

where αt is a vector of N coefficients, the minimization
problem is simplified to

αt = arg min
α∈RN

f(xt) +∇f(xt)T Dtα

+ 1
2 (Dtα)T∇2f(xt)Dtα + L

6 ∥Dtα∥3.

Hence, the complexity of the eigenvalue decomposition
of DT

t ∇2f(x)Dt is now O(N2d + N3).

2.2 Second Ingredient: Multisecant
Approximation of the Hessian

Typically, quasi-Newton methods approximate the Hes-
sian using the properties of the secant equation:

∇2f(xi)(xi − xi−1) ≈ ∇f(xi)−∇f(xi−1).

Usually, those updates are performed recursively, that
is, by updating an approximation of the Hessian one
secant equation at a time.

This study approximates the Hessian using the secant
equations simultaneously by using a finite-difference
approximation between two sets of points Yt and Zt.

More formally, let the matrix of directions Dt and the
matrix of normalized gradient differences Gt be

Dt =
[

y
(t)
1 − z

(t)
1

∥y(t)
1 − z

(t)
1 ∥2

, . . . ,
y

(t)
N − z

(t)
N

∥y(t)
N − z

(t)
N ∥2

]
, (5)

Gt =
[

. . . ,
∇f(y(t)

i)−∇f(z(t)
i)

∥y(t)
i − z

(t)
i ∥2

, . . .

]
.

and let the matrices Yt, Zt be defined as:

Yt = [y(t)
1 , . . . , y

(t)
N], Zt = [z(t)

1 , . . . , z
(t)
N]. (6)

A naïve approach can be Yt = [xt−N , . . . , xt−1] and
Zt = [xt−N+1, . . . , xt] (this will not be the case in
this study; see section 2.4). Intuitively, the matrix
Gt is a finite-difference approximation of the Hessian
matrix product ∇2f(xt)Dt. More precisely, the next
theorem states a bound on the approximation error of
this product as a function of the error vector εt:

εt
def= [e(t)

1 , . . . , e
(t)
N], e

(t)
i

def= ∥y(t)
i − z

(t)
i ∥+ 2∥z(t)

i − xt∥
(7)

Theorem 1. Let the function f satisfy Assumption 1.
Let matrices Dt, Gt be defined as in (6) and vector ε
as in (7). Subsequently, for all w ∈ Rd and α ∈ RN∣∣wT (∇2f(xt)Dt −Gt)α

∣∣ ≤ L∥w∥
2 |α|T εt, (8)

∥wT (∇2f(xt)Dt −Gt)∥ ≤ L∥w∥
2 ∥εt∥. (9)

Proof sketch The detailed proof can be found in
appendix G. The main idea of the proof is as follows.
The superscript (t) has been removed for clarity. From
(2) with y = yi, z = zi, then Assumption 1,

∥∇f(yi)−∇f(zi)−∇2f(xt)(yi − zi)∥
∥yi − zi∥

≤ L

2 ∥yi − zi∥+ ∥∇2f(xt)−∇2f(zi)∥ ≤
L

2 ei.

The first term in ei bounds the error of (2), whereas the
second term originates from the distance between (2)
and the current point xt where the Hessian is estimated.
Subsequently, it suffices to combine the inequalities
with the coefficients αt to obtain Theorem 1.

2.3 Third Ingredient: Objective Function and
Gradient Norm Upper bounds

As the approximation error between ∇2f(xt)Dt and
Gt can be explicitly bounded, carefully replacing the
term ∇2f(xt)Dtαt in eqs. (2) and (3) with Gtαt, along
with an appropriate regularization, leads to Type I
and Type II bounds.

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

Algorithm 1 "Orthogonal forward estimate only"
Require: First-order oracle for f , step-size h, matrices

Dt−1, Gt−1, Yt−1, Zt−1, new point xt.
1: If # columns of Dt−1, Gt−1, Yt−1, Zt−1 is larger

than N , then remove their first column.
2: Compute gt = ∇f(xt), then compute dt = − d̃

∥d̃∥ ,
where d̃ = gt −Dt−1(DT

t−1gt).
3: Compute xt+ 1

2
= xt + hdt, the orthogonal forward

estimate.
4: Update Yt = [Yt−1, xt+ 1

2
], Zt = [Zt−1, xt],

Dt = [Dt−1, dt], Gt = (5), ε = (7) .
5: return ∇f(xt), Dt, Gt, Yt, Zt, εt.

Theorem 2. Let the function f satisfy Assumption 1.
Let xt+1 be defined as in (4); Dt, Gt be defined as in
(6) and εt be defined as in (7). Subsequently, ∀α ∈ RN ,

f(xt+1) ≤ f(xt) +∇f(xt)T Dtα + αT Htα
2 + L∥Dtα∥3

6 ,

(Type I bound)

∥∇f(xt+1)∥ ≤ ∥∇f(xt) + Gtα∥+ L
2

(
|α|T εt + ∥Dtα∥2

)
,

(Type II bound)

where Ht
def= (GT

t Dt + DT
t Gt + IL∥Dt∥∥εt∥)/2.

The proof can be found in appendix G. Minimizing
eqs. (Type I bound) and (Type II bound) leads to
algorithms 4 and 5, respectively, whose constant L
is replaced by a parameter M determined by a back-
tracking line search. Type I methods often refer to
algorithms that aim to minimize the function value
f(x), whereas type II methods minimize the gradient
norm ∥∇f(x)∥ [29, 95, 14].

Solving the sub-problems In algorithms 4 and 5,
the coefficients α are computed by solving a minimiza-
tion sub-problem in O(N3 + Nd), where in practice N
is smaller than d (see all the details in appendix E). In
algorithm 4, the subproblem can be formulated as a
convex problem in two variables, by using an eigenvalue
decomposition of the matrix H ∈ RN×N [61], while for
algorithm 5, the subproblem can be cast into a linear-
quadratic problem of O(N) variables and constraints
that can be solved efficiently with SDP solvers.

2.4 Fourth Ingredient: Direction Update Rule

One critical theoretical property in the analysis is the
alignment of the gradient ∇f(xt) with the directions
in Dt. This section presents updates that ensure good
theoretical properties of Dt (see summary in table 1).

Below are some assumptions for updating Yt, Zt, Dt,
which are called requirements. While not overly

Algorithm 2 "Orthogonal random dir." (example)
Require: First-order oracle for f , step-size h, memory

N , new point xt.
1: Generates N random orthonormal directions, for

example, [Dt,] = qr(Rand(d, N)).
2: Create Zt = [xt, . . . , xt], Yt = Zt + hDt, then up-

date Gt = (5), ε = [h, . . . , h] .
3: return ∇f(xt), Dt, Gt, Yt, Zt, εt.

restrictive, naïve methods, such as keeping only the
previous iterations, will not satisfy these requirements.

All convergence results rely on one of these conditions
on the projector onto span(Dt),

Pt
def= Dt(DT

t Dt)−1DT
t . (10)

1a. For all t, projector Pt of stochastic matrix Dt

satisfies E[Pt] = N
d I.

1b. For all t, Pt∇f(xt) = ∇f(xt).

The first condition guarantees that Dt partially
spans the gradient ∇f(xt) in expectation because
E[Pt∇f(xt)] = N

d ∇f(xt). The second condition re-
quires the possibility of moving toward the current
gradient when taking the step xt + Dtαt.

The norm of the relative error must be bounded.
2. For all t, (∥εt∥/∥Dt∥) ≤ δ.

The Requirement 2 is also nonrestrictive, as it simply
prevents the secant equations at yi − zi and zi − xi

from diverging significantly. Generally, δ satisfies the
(very) crude bound δ ≤ O(∥x0 − x⋆∥).

Finally, the condition number of the matrix D must
also be bounded. The following section provides explicit
updates for ensuring that this condition is satisfied.

3. For all t, the condition number κDt

def=√
∥DT

t Dt∥∥(DT
t Dt)−1∥ is bounded as κDt

≤ κ.

2.4.1 "Orthogonal Forward Estimate Only"
Update Rule (Recommended)

The "orthogonal forward estimate only" update main-
tains Dt orthonormal, that is, DT

t Dt = I for all t, while
ensuring that ∇f(xt) belongs to the span of columns
of Dt (see algorithm 1). These conditions are ensured
thanks to an intermediate iterate xt+ 1

2
which is used to

estimate ∇2f(xt)∇f(xt); this is called the orthogonal
forward estimate:

xt+ 1
2

=xt − hdt, dt=
∇f(xt)− D̃t−1(D̃T

t−1∇f(xt))
∥∇f(xt)− D̃t−1(D̃T

t−1∇f(xt))∥
,

Damien Scieur

Complexity # Grads κ δ
Forw. est. O(Nd) 2 1 O(R)
Random At least O(d) N + 1 1 O(h)
Pruning O(Nd + N2) 2 ? O(R)
Orthogonal. O(N2d) N + 1 1 O(h)

Table 1: Comparison between different updates rules:
"forward estimates only," "orthogonal random direc-
tions," pruning or orthogonalization. If the gradient
computation is costly or if N is large, the forward esti-
mate is probably the best method as it only requires
the computation of two new gradients, ∇f(xt) and
∇f(xt+ 1

2
). Otherwise, the orthogonalization or ran-

dom directions might be the methods of choice given
their small constants δ and κ.

where h > 0 is a small step size and D̃t−1 is simply
the matrix Dt−1 whose first column has been removed
if its number of columns equals N . This estimate is
a gradient descent step projected onto the orthogonal
space of span(D̃t−1), and is inexpensive because the
orthogonality of Dt is maintained over the iterations.

After computing the forward estimate, the matrices
Yt and Zt are updated as the moving history of the
previous forward iterates and previous iterates:
Yt = [xt−N+ 3

2
, . . . , xt+ 1

2
], Zt = [xt−N+1, . . . , xt].

Matrices Dt and Gt then follow (5). See algorithm 1
for a detailed implementation. This method has several
advantages; it ensures good theoretical performance,
particularly because κ = 1 (see Theorem 3), at the cost
of only one extra gradient evaluation.
Theorem 3. The “orthogonal forward estimate only”
update described in algorithm 1 satisfies Require-
ments 1b and 3 with κ = 1.

2.4.2 "Random Orthogonal Directions"

The "random orthogonal direction" update (see algo-
rithm 2) generates a batch of N random orthogonal
directions at each iteration, such that

E[DtD
T
t] = N

d
I.

Subsequently, it remains to update the matrices
Yt, Zt, Gt,

Zt = [xt, . . . , xt︸ ︷︷ ︸
N times

], Yt = Zt + hDt, Gt = (5).

For instance, Dt could be the Q matrix of a qr de-
composition of a random N × d matrix (complexity:
O(N2d)), or even simpler, an aggregation of random
canonical vectors (e.g., see [44], where the complexity
is O(Nd)). The major advantages of this approach are
that κ = 1 and δ =

√
N · h. However, N additional

gradient calls are required to computes Gt.

Algorithm 3 Generic iterative type I method
Require: First-order oracle f , initial iterate and

smoothness x0, M0, number of iterations T .
for t = 0, . . . , T − 1 do

Update Yt, Zt, Dt, Gt, and εt (see section 2.4).
xt+1, Mt+1 ← [Alg. 4](f, Gt, Dt, εt, xt,

Mt

2)
end for
return xT

2.4.3 Other Matrix Updates: Pruning or
Orthogonalization

It is possible to create other matrix updates, e.g., the
iterates only (stores the last forward estimate and pre-
vious iterates) or greedy (stores all previous forward
estimates and iterates) strategies, as detailed below:{

Yt = [xt+ 1
2
, xt, xt−1, . . . , xt−N+2],

Zt = [xt, xt−1, xt−2 . . . , xt−N+1]
(Iterates only){

Yt = [xt+ 1
2
, xt, xt− 1

2
, . . . , xt− N+2

2
],

Zt = [xt, xt− 1
2
, xt−1, . . . , xt− N+1

2
]

(Greedy)

where, this time, xt+ 1
2

def= xt − h∇f(xt), with h small.
However, the directions in Dt are not orthogonal, hence,
κ in Requirement 3 may be large [88, 72]. Nevertheless,
the condition number can be controlled via pruning or
orthogonalization.

Pruning. It is sufficient to verify the condition
number of Dt and then prune the columns of
Yt, Zt, Dt, and Gt until κDt

is sufficiently small, for
instance, until κDt

≤ 103. The advantage is that this
method requires only one extra gradient computation
∇f(xt+ 1

2
) to construct Gt.

Orthogonalization From the matrices Yt, Zt, the
matrix Dt is computed as Dt = qr(Zt − Yt). Subse-
quently, the rest of the procedure follows steps 2 and
3 from algorithm 2. It ensure the orthogonality of Dt,
but requires N extra gradients to evaluate Gt.

The pruning strategy is more cost-effective than orthog-
onalization but sacrifices its control over the history
size. The orthogonalization technique resembles the
"random orthogonal directions" rule but potentially
offers more relevant directions than random ones.

2.5 Miscellaneous

Link with qN and Anderson acceleration The
algorithms 4 and 5 are strongly related to known quasi-
Newton methods and Anderson acceleration technique,
see appendix D.3.

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

Algorithm 4 Type I subroutine with backtracking
line-search
Require: First-order oracle for f , matrices G, D, vec-

tor ε, iterate x, initial smoothness M0.
1: Initialize M ← M0

2
2: do
3: M ← 2M and H ← GT D+DT G

2 +IN
M∥D∥∥ε∥

2
4: α⋆ ← min

α
f(x) +∇f(x)TDα + αTHα

2 + M∥Dα∥3

6
5: x+ ← x + Dα⋆

6: while

f(x+) ≥ f(x)+∇f(x)T Dα⋆ + [α⋆]T Hα⋆

2 + M∥Dα⋆∥3

6

7: return x+, M

Algorithm 5 Type II subroutine with backtracking
line-search

Same as algorithm 4, but minimize and check the
upper bound (Type II bound) instead of (Type I
bound) on lines 4 and 6.

Backtracking Line-Search The smoothness param-
eter is replaced by Mt, found by backtracking [61]. The
parameter M0 is estimated by finite-difference, see ap-
pendix F.1.

3 Convergence Rates for Iterative
Type I Methods

This section analyzes the convergence rates of the meth-
ods that use algorithm 4 as a subroutine; see algo-
rithm 3. An analysis of methods that use algorithm 5
is left for future work.

3.1 Assumptions

This section lists the important assumptions regarding
the function f . Subsequent results require a bound on
the radius of the sublevel set {x : f(x) ≤ f(x0)}.

Assumption 2. The radius of the sub-level set
{x : f(x) ≤ f(x0)} is bounded by R <∞.

Some results require f to be star convex or convex to
ensure convergence toward f(x⋆).

Assumption 3. The function f is star convex if, for
all x ∈ Rd and ∀τ ∈ [0, 1],

f((1− τ)x + τx⋆) ≤ (1− τ)f(x) + τf(x⋆).

Assumption 4. The function f is convex if, for all
y, z ∈ Rd, f(y) ≥ f(z) +∇f(z)(y − z).

3.2 Rates of Convergence

When f satisfies Assumption 1, algorithm 3 ensures a
consistent minimal decrease in function at every step.
Theorem 4. Let f satisfy Assumption 1. Subsequently,
at each iteration t ≥ 0, algorithm 3 starting at x0 with
M0 > 0 achieves

f(xt+1) ≤ f(xt)− Mt+1
12 ∥xt+1 − xt∥3, (11)

with Mt+1 < max
{

2L ; M0

2t

}
.

Moreover, the total function evaluation is bounded by
2t + log2

(
M0
L

)
.

Under some mild assumptions, algorithm 3 converges to
a critical point for nonconvex functions and converges
to an optimum when the function is star-convex.
Theorem 5. Let f satisfy Assumption 1 and assume
that f is bounded below by f⋆. Let Requirements 1b
to 3 hold, and Mt ≥Mmin. Subsequently, algorithm 3
starting at x0 with M0 > 0 achieves

min
i=1, ..., t

∥∇f(xi)∥ ≤max
{ 3L

t2/3

(
12f(x0)− f⋆

Mmin

)2/3
;(

C1

t1/3

)(
12f(x0)− f⋆

Mmin

)1/3 }
,

C1 = δL
(

κ+2κ2

2

)
+ maxi∈[0,t] ∥(I − Pi)∇2f(xi)Pi∥.

Theorem 6. Let f satisfy Assumptions 1 to 3. Let
Requirements 1b to 3 hold. Then, for t ≥ 1, algorithm 3
starting at x0 with M0 > 0 achieves

f(xt)− f⋆ ≤ 6 f(x0)− f⋆

t(t + 1)(t + 2)

+ 1
(t + 1)(t + 2)

L(3R)3

2 + 1
t + 2

C2(3R)2

4 ,

C2
def= δL κ+2κ2

2 + maxi∈[0,t] ∥∇2f(xi)− Pi∇2f(xi)Pi∥.

The next theorem shows that when random directions
(that satisfy Requirement 1a) are used, f(xt) also con-
verges in expectation to f(x⋆) when f is convex.
Theorem 7. Assume f satisfy Assumptions 1, 2 and 4.
Let Requirements 1a, 2 and 3 hold. Then in expectation
over the matrices Di and for t ≥ 1, algorithm 3 starting
at x0 with M0 > 0 achieves

EDt
[f(xt)− f⋆] ≤ 1

1 + 1
4
[

N
d t
]3 (f(x0)− f⋆)

+ 1[
N
d t
]2 L(3R)3

2 + 1[
N
d t
] C3(3R)2

2 ,

C3
def= δL κ+2κ2

2 + (d−N)
d maxi∈[0,t] ∥∇2f(xi)∥.

Damien Scieur

Accelerated method Due to space limitation, the
accelerated algorithm 3 is presented in appendix A,
see algorithms 6 and 7. Indeed, while the algorithm is
theoretically intriguing, it underperforms numerically,
likely because it trades-off its adaptivity for better
worst-case convergence rates.
Theorem 8. Assume f satisfies Assumptions 1, 2
and 4. Let Requirements 1b to 3 hold. Subsequently,
for t ≥ 1, the accelerated algorithm 7 starting at x0
with M0 > 0 achieves

f(xt)− f⋆ ≤C4
(3R)2

(t + 3)2 + 9 max {M0 ; 2L}
(

3R

t + 3

)3

+
λ̃(1)R2

2 + λ̃(2)R3

6
(t + 1)3 .

λ̃(1) = δ
2
(
Lκ + M1κ2)+ ∥∇2f(x0)− P0∇2f(x0)P0∥,

λ̃(2) = M1 + L,

C4 = 30κD

(
δ max{4L, M0}+ max

i≤t
∥(I − Pi)∇f(xi)Pi)∥

)

3.3 Interpretation, Comparison With
First-Order Methods and Special Cases

The rates presented in Theorems 5 to 8 combine the
rates of the cubic regularized Newton’s method and
gradient descent (or coordinate descent, as in Theo-
rem 7) for functions with Lipschitz-continuous Hessian.
As C1, C2, C3, and C4 decrease, the rates approach
those of second-order methods. For simplicity in this
section, those constants are denoted as C, and κ is
assumed to be equal to 1.

3.3.1 Interpretation and Comparison

The constant C quantifies the estimation error of
DT

t ∇2f(xt)Dt by Ht in (Type I bound) into two terms:

C ≤ O
(
δL + maxi≤t ∥(I − Pi)∇2f(xi)∥

)
.

The first term is the error caused by approximating
∇2f(x)Dt by Gt and the second is the subspace approx-
imation error of ∇2f(xt) in the span of the columns of
Dt. This approximation is more explicit in C3, where
increasing N reduces the constant to N = d.

The rate associated with the constant C is a perturbed
version of the rate of first order methods (appendix C):
if the function has Lipchitz-continuous gradients with
constant L (appendix C, (12)), in the worst case over
Pi, the constant C is bounded as C ≤ O(δL + L).
Hence, the rates of Theorems 5, 6 and 8 are perturbed
versions of the rates of gradient descent and accelerated
gradient descent, respectively, whereas Theorem 7 is

a perturbed version of the rate of coordinate descent.
The perturbation is not surprising, as this study did
not assume that f has a Lipchitz continuous gradient.

3.3.2 Special Cases

The framework presented in this study can be reduced
to some known methods, such as the cubic regulariza-
tion of Newton’s method. This section explores some
special/extreme cases of this study’s framework when
the update rule reads Yt = Zt + hDt for some Dt that
satisfy the requirements listed in section 2.4. Consider
the following three extreme cases.

a) The stepsize h tends to 0, hence yi → zi and

Gt → [. . . ,∇2f(z(t)
i)d(t)

i , . . .]i=1...N .

This requires a second-order oracle, but makes δ

smaller, that is, δ = O(∥xt − z
(t)
i ∥).

b) The forward estimates are all centered in xt, hence
Zt = [xt, . . . , xt]. Then, at each iteration t, com-
puting Gt requires N additional gradients, but
makes δ smaller, that is, δ = O(h).

c) The algorithm’s memory equals d (full memory
version), hence Pt = Id for all t. This raises the
complexity of each iteration to O(d3), but this
makes (I − Pt)∇f(xt) = 0.

The combinations of these special cases are summarized
in table 2.

4 Numerical Experiments

This section compares the methods generated by this
study’s framework to the l-BFGS algorithm from
minFunc [69], see fig. 1. Additional experiments are de-
scribed in appendix F. The tested methods were type-I
iterative algorithms (algorithm 3 using the techniques
from section 2.4). The step size of the forward estima-
tion was set to h = 10−9, and the condition number κDt

was maintained below κ = 109 using iterate-only and
greedy techniques. The accelerated algorithm 7 is used
only with the forward estimate-only technique. These
methods are evaluated on a logistic regression problem
on the Madelon UCI dataset [42]. The code used in
the experiments is available on https://github.com/
windows7lover/QN_With_Guarantees.

Regarding the number of iterations, the greedy orthog-
onalized version outperformed the others owing to the
orthogonality of the directions (resulting in a condition
number of one) and the meaningfulness of the previ-
ous gradients/iterates. However, in terms of gradient

https://github.com/windows7lover/QN_With_Guarantees
https://github.com/windows7lover/QN_With_Guarantees

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

Satisfies a) Satisfies b) Satisfies c)
Limited Memory QN with guarantees (this paper)
Quasi-Newton with Second Order Oracle [67, 66, 65] ✓
Subspace Newton with finite-difference (this paper) ✓
Full-Memory QN with guarantees (this paper, [50]) ✓
Random Subspace [26, 39, 44] ✓ ✓
Cubic Newton with finite-difference [40] ✓ ✓
Cubic Newton with Lazy Hessian [25] ✓ ✓
Cubic Newton [61, 59] ✓ ✓ ✓

Table 2: By considering the extreme cases a), b), and c) from section 3.3.2, the algorithm presented in this study
reduces to known methods, up to the Cubic regularization of Newton’s method in the most extreme setting.

oracle calls, the recommended method, orthogonal for-
ward estimate only, achieved the best performance by
balancing the cost per iteration (only two gradients
per iteration) and efficiency (small and orthogonal di-
rections, reducing theoretical constants). Surprisingly,
the accelerated method underperforms, likely owing to
its tightened theoretical analysis reducing its inherent
adaptivity.

5 Conclusion and Future work

This study introduces a generic framework for develop-
ing novel quasi-Newton and Anderson/nonlinear accel-
eration schemes that offer a global convergence rate in
various scenarios, including accelerated convergence on
convex functions, with minimal assumptions.

The proposed approach requires an additional gradient
step for the forward estimate, as discussed in Section 2.4.
However, this forward estimate is crucial for enabling
the algorithm’s adaptivity.

Studying the special case N = d (although unsuitable
for large-scale problems) could highlight super-linear
convergence rates in future research. Moreover, using
the average-case analysis framework from existing liter-
ature [63, 74, 27, 21, 62] can also improve the constants
in Theorems 5 and 6 to match those in Theorem 7.
Furthermore, exploring the convergence rates of the
type-2 method is also worthwhile.

Ultimately, the results presented in this study open new
avenues of research. It may also provide a potential
foundation for investigating additional properties of
existing quasi-Newton methods. This may even lead to
the discovery of convergence rates for adaptive cubic-
regularized BFGS variants.

Main limitation Despite its strong theoretical con-
vergence rates and its ability to recover cubic regular-
ization in the limit, the algorithm’s complexity rises
to O(d3) when N approaches d owing to the cubic
minimization subproblem. This contrasts with current

0 100 200 300 400 500

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Iterate Only

Forward Estimate Only

Greedy

Random subspace

Orthogonalized greedy

Accelerated Forward Only

lbfgs minfunc

0 100 200 300 400 500

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Iterate Only

Forward Estimate Only

Greedy

Random subspace

Orthogonalized greedy

Accelerated Forward Only

lbfgs minfunc

Figure 1: Comparison between the type-1 methods pro-
posed in this study and the optimized implementation
of l-BFGS from minFunc [69] with default parameters,
except for the memory size. All methods use a memory
size of N = 25.

full-memory qN methods, which have a complexity of
O(d2) but offer local superlinear convergence rates [65,
66, 67]. Solving the cubic regularized model is an ac-
tive research topic [16, 15, 51, 33, 48], and its study is
out of the scope of this paper. Nevertheless, it is very
likely that future researchs may reduce the complexity
to O(d2) by updating the solution of the subproblem
with low-rank perturbations, or by solving inexactly
the cubic subproblem like in [50].

Damien Scieur

References

[1] Hari Om Aggrawal and Jan Modersitzki. “Hes-
sian Initialization Strategies for ℓ-BFGS Solving
Non-linear Inverse Problems”. In: International
Conference on Scale Space and Variational Meth-
ods in Computer Vision. Springer. 2021, pp. 216–
228.

[2] Donald G Anderson. “Iterative procedures for
nonlinear integral equations”. In: Journal of the
ACM (JACM) 12.4 (1965), pp. 547–560.

[3] Kimon Antonakopoulos, Ali Kavis, and Volkan
Cevher. “Extra-Newton: A First Approach
to Noise-Adaptive Accelerated Second-Order
Methods”. In: arXiv preprint arXiv:2211.01832
(2022).

[4] Claude Brezinski. “Application de l’ε-algorithme
à la résolution des systèmes non linéaires”. In:
Comptes Rendus de l’Académie des Sciences de
Paris 271.A (1970), pp. 1174–1177.

[5] Claude Brezinski. “Sur un algorithme de résolu-
tion des systèmes non linéaires”. In: Comptes
Rendus de l’Académie des Sciences de Paris
272.A (1971), pp. 145–148.

[6] Claude Brezinski and Michela Redivo–Zaglia.
“The genesis and early developments of Aitken’s
process, Shanks’ transformation, the ε–algorithm,
and related fixed point methods”. In: Numerical
Algorithms 80.1 (2019), pp. 11–133.

[7] Claude Brezinski, Michela Redivo-Zaglia, and
Yousef Saad. “Shanks sequence transformations
and Anderson acceleration”. In: SIAM Review
60.3 (2018), pp. 646–669.

[8] Claude Brezinski and M Redivo Zaglia. Extrap-
olation methods: theory and practice. Elsevier,
1991.

[9] Claude Brezinski et al. “Shanks and Anderson-
type acceleration techniques for systems of non-
linear equations”. In: arXiv:2007.05716 (2020).

[10] Charles G Broyden. “The convergence of a class
of double-rank minimization algorithms: 2. The
new algorithm”. In: IMA journal of applied math-
ematics 6.3 (1970), pp. 222–231.

[11] Charles George Broyden. “The convergence of
a class of double-rank minimization algorithms
1. general considerations”. In: IMA Journal of
Applied Mathematics 6.1 (1970), pp. 76–90.

[12] Richard H Byrd and Jorge Nocedal. “A tool
for the analysis of quasi-Newton methods with
application to unconstrained minimization”. In:
SIAM Journal on Numerical Analysis 26.3 (1989),
pp. 727–739.

[13] Richard H Byrd, Jorge Nocedal, and Ya-Xiang
Yuan. “Global convergence of a class of quasi-
Newton methods on convex problems”. In: SIAM
Journal on Numerical Analysis 24.5 (1987),
pp. 1171–1190.

[14] Marco Canini and Peter Richtárik. “Direct nonlin-
ear acceleration”. In: Operational Research 2192
(2022), p. 4406.

[15] Yair Carmon and John Duchi. “Gradient descent
finds the cubic-regularized nonconvex Newton
step”. In: SIAM Journal on Optimization 29.3
(2019), pp. 2146–2178.

[16] Yair Carmon and John C Duchi. “Analysis of
krylov subspace solutions of regularized non-
convex quadratic problems”. In: Advances in Neu-
ral Information Processing Systems 31 (2018).

[17] Yair Carmon et al. “Recapp: Crafting a more
efficient catalyst for convex optimization”. In:
International Conference on Machine Learning.
PMLR. 2022, pp. 2658–2685.

[18] Coralia Cartis, Nicholas IM Gould, and Philippe
L Toint. “Adaptive cubic regularisation meth-
ods for unconstrained optimization. Part I: mo-
tivation, convergence and numerical results”.
In: Mathematical Programming 127.2 (2011),
pp. 245–295.

[19] Coralia Cartis, Nicholas IM Gould, and Philippe
L Toint. “Adaptive cubic regularisation methods
for unconstrained optimization. Part II: worst-
case function-and derivative-evaluation complex-
ity”. In: Mathematical programming 130.2 (2011),
pp. 295–319.

[20] Andrew R Conn, Nicholas IM Gould, and Ph L
Toint. “Convergence of quasi-Newton matrices
generated by the symmetric rank one update”.
In: Mathematical programming 50.1-3 (1991),
pp. 177–195.

[21] Leonardo Cunha et al. “Only tails matter:
Average-Case Universality and Robustness in the
Convex Regime”. In: 2022.

[22] Alexandre d’Aspremont, Damien Scieur, Adrien
Taylor, et al. “Acceleration methods”. In: Founda-
tions and Trends® in Optimization 5.1-2 (2021),
pp. 1–245.

[23] William C Davidon. “Variable metric method for
minimization”. In: SIAM Journal on Optimiza-
tion 1.1 (1991), pp. 1–17.

[24] Nikita Doikov, El Mahdi Chayti, and Mar-
tin Jaggi. “Second-order optimization with lazy
Hessians”. In: arXiv preprint arXiv:2212.00781
(2022).

https://openreview.net/pdf?id=VKtGrkUvCR
https://openreview.net/pdf?id=VKtGrkUvCR
https://openreview.net/pdf?id=VKtGrkUvCR

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

[25] Nikita Doikov, Martin Jaggi, et al. “Second-order
optimization with lazy Hessians”. In: Interna-
tional Conference on Machine Learning. PMLR.
2023, pp. 8138–8161.

[26] Nikita Doikov, Peter Richtárik, et al. “Random-
ized block cubic Newton method”. In: Interna-
tional Conference on Machine Learning. PMLR.
2018, pp. 1290–1298.

[27] Carles Domingo-Enrich, Fabian Pedregosa, and
Damien Scieur. “Average-case acceleration for
bilinear games and normal matrices”. In: arXiv
preprint arXiv:2010.02076 (2020).

[28] John R Engels and Hector J Martinez. “Local
and superlinear convergence for partially known
quasi-Newton methods”. In: SIAM Journal on
Optimization 1.1 (1991), pp. 42–56.

[29] Haw-Ren Fang and Yousef Saad. “Two classes of
multisecant methods for nonlinear acceleration”.
In: Numerical Linear Algebra with Applications
16.3 (2009), pp. 197–221.

[30] Roger Fletcher. “A new approach to variable
metric algorithms”. In: The computer journal
13.3 (1970), pp. 317–322.

[31] Roger Fletcher and Michael JD Powell. “A
rapidly convergent descent method for mini-
mization”. In: The computer journal 6.2 (1963),
pp. 163–168.

[32] William F Ford and Avram Sidi. “Recursive algo-
rithms for vector extrapolation methods”. In: Ap-
plied numerical mathematics 4.6 (1988), pp. 477–
489.

[33] Yihang Gao, Man-Chung Yue, and Michael Ng.
“Approximate Secular Equations for the Cubic
Regularization Subproblem”. In: Advances in
Neural Information Processing Systems 35 (2022),
pp. 14250–14260.

[34] Alexander Gasnikov et al. “Near optimal methods
for minimizing convex functions with lipschitz
p-th derivatives”. In: Conference on Learning
Theory. PMLR. 2019, pp. 1392–1393.

[35] Eckart Gekeler. “On the solution of systems of
equations by the epsilon algorithm of Wynn”.
In: Mathematics of Computation 26.118 (1972),
pp. 427–436.

[36] Saeed Ghadimi, Han Liu, and Tong Zhang.
“Second-order methods with cubic regularization
under inexact information”. In: arXiv preprint
arXiv:1710.05782 (2017).

[37] Hiva Ghanbari and Katya Scheinberg. “Proximal
quasi-Newton methods for regularized convex op-
timization with linear and accelerated sublinear
convergence rates”. In: Computational Optimiza-
tion and Applications 69 (2018), pp. 597–627.

[38] Donald Goldfarb. “A family of variable-metric
methods derived by variational means”. In: Math-
ematics of computation 24.109 (1970), pp. 23–26.

[39] Robert Gower et al. “Rsn: Randomized subspace
newton”. In: Advances in Neural Information
Processing Systems 32 (2019).

[40] Geovani Nunes Grapiglia, Max LN Gonçalves,
and GN Silva. “A cubic regularization of New-
ton’s method with finite difference Hessian ap-
proximations”. In: Numerical Algorithms (2022),
pp. 1–24.

[41] Andreas Griewank and Ph L Toint. “Local conver-
gence analysis for partitioned quasi-Newton up-
dates”. In: Numerische Mathematik 39.3 (1982),
pp. 429–448.

[42] Isabelle Guyon. “Design of experiments of the
NIPS 2003 variable selection benchmark”. In:
NIPS 2003 workshop on feature extraction and
feature selection. Vol. 253. 2003.

[43] Isabelle Guyon et al. “Design and analysis of
the causation and prediction challenge”. In: Cau-
sation and Prediction Challenge. PMLR. 2008,
pp. 1–33.

[44] Filip Hanzely et al. “Stochastic subspace cubic
Newton method”. In: International Conference
on Machine Learning. PMLR. 2020, pp. 4027–
4038.

[45] K Jbilou and H Sadok. “Vector extrapolation
methods. Applications and numerical compari-
son”. In: Journal of Computational and Applied
Mathematics 122.1-2 (2000), pp. 149–165.

[46] Khalide Jbilou and Hassane Sadok. “Analysis
of some vector extrapolation methods for solv-
ing systems of linear equations”. In: Numerische
Mathematik 70.1 (1995), pp. 73–89.

[47] Khalide Jbilou and Hassane Sadok. “Some results
about vector extrapolation methods and related
fixed-point iterations”. In: Journal of Compu-
tational and Applied Mathematics 36.3 (1991),
pp. 385–398.

[48] Ru-Jun Jiang, Zhi-Shuo Zhou, and Zi-Rui Zhou.
“Cubic regularization methods with second-order
complexity guarantee based on a new subprob-
lem reformulation”. In: Journal of the Operations
Research Society of China 10.3 (2022), pp. 471–
506.

[49] Ruichen Jiang, Qiujiang Jin, and Aryan Mokhtari.
“Online Learning Guided Curvature Approxima-
tion: A Quasi-Newton Method with Global Non-
Asymptotic Superlinear Convergence”. In: arXiv
preprint arXiv:2302.08580 (2023).

Damien Scieur

[50] Ruichen Jiang and Aryan Mokhtari. “Accel-
erated Quasi-Newton Proximal Extragradient:
Faster Rate for Smooth Convex Optimization”.
In: arXiv preprint arXiv:2306.02212 (2023).

[51] Rujun Jiang, Man-Chung Yue, and Zhishuo Zhou.
“An accelerated first-order method with complex-
ity analysis for solving cubic regularization sub-
problems”. In: Computational Optimization and
Applications 79 (2021), pp. 471–506.

[52] Dmitry Kamzolov et al. “Accelerated Adaptive
Cubic Regularized Quasi-Newton Methods”. In:
arXiv preprint arXiv:2302.04987 (2023).

[53] Dmitry Kovalev and Alexander Gasnikov. “The
first optimal acceleration of high-order meth-
ods in smooth convex optimization”. In: arXiv
preprint arXiv:2205.09647 (2022).

[54] Dachao Lin, Haishan Ye, and Zhihua Zhang. “Ex-
plicit convergence rates of greedy and random
quasi-Newton methods”. In: Journal of Machine
Learning Research 23.162 (2022), pp. 1–40.

[55] Dachao Lin, Haishan Ye, and Zhihua Zhang.
“Greedy and random quasi-newton methods with
faster explicit superlinear convergence”. In: Ad-
vances in Neural Information Processing Systems
34 (2021), pp. 6646–6657.

[56] Dong C Liu and Jorge Nocedal. “On the lim-
ited memory BFGS method for large scale opti-
mization”. In: Mathematical programming 45.1-3
(1989), pp. 503–528.

[57] Renato DC Monteiro and Benar Fux Svaiter.
“An accelerated hybrid proximal extragradient
method for convex optimization and its implica-
tions to second-order methods”. In: SIAM Jour-
nal on Optimization 23.2 (2013), pp. 1092–1125.

[58] José Luis Morales. “A numerical study of limited
memory BFGS methods”. In: Applied Mathemat-
ics Letters 15.4 (2002), pp. 481–487.

[59] Yurii Nesterov. “Accelerating the cubic regular-
ization of Newton’s method on convex problems”.
In: Mathematical Programming 112.1 (2008),
pp. 159–181.

[60] Yurii Nesterov. Introductory lectures on convex
optimization. Springer, 2004.

[61] Yurii Nesterov and Boris T Polyak. “Cubic regu-
larization of Newton method and its global per-
formance”. In: Mathematical Programming 108.1
(2006), pp. 177–205.

[62] Courtney Paquette et al. “Halting Time is pre-
dictable for large models: A universality property
and average-case analysis”. In: Foundations of
Computational Mathematics (2022).

[63] Fabian Pedregosa and Damien Scieur. “Acceler-
ation through spectral density estimation”. In:
Proceedings of the 37th International Conference
on Machine Learning (ICML). 2020.

[64] MJD Powell. “How bad are the BFGS and
DFP methods when the objective function is
quadratic?” In: Mathematical Programming 34
(1986), pp. 34–47.

[65] Anton Rodomanov and Yurii Nesterov. “Greedy
quasi-Newton methods with explicit superlinear
convergence”. In: SIAM Journal on Optimization
31.1 (2021), pp. 785–811.

[66] Anton Rodomanov and Yurii Nesterov. “New
results on superlinear convergence of classical
quasi-Newton methods”. In: Journal of optimiza-
tion theory and applications 188 (2021), pp. 744–
769.

[67] Anton Rodomanov and Yurii Nesterov. “Rates
of superlinear convergence for classical quasi-
Newton methods”. In: Mathematical Program-
ming (2021), pp. 1–32.

[68] Katya Scheinberg and Xiaocheng Tang. “Practi-
cal inexact proximal quasi-Newton method with
global complexity analysis”. In: Mathematical
Programming 160 (2016), pp. 495–529.

[69] Mark Schmidt. “minFunc: unconstrained differ-
entiable multivariate optimization in Matlab”. In:
Software available at http://www. cs. ubc. ca/˜
schmidtm/Software/minFunc. htm (2005).

[70] Robert B Schnabel. Quasi-Newton Methods Us-
ing Multiple Secant Equations. Tech. rep. COL-
ORADO UNIV AT BOULDER DEPT OF COM-
PUTER SCIENCE, 1983.

[71] Damien Scieur. “Generalized framework for
nonlinear acceleration”. In: arXiv preprint
arXiv:1903.08764 (2019).

[72] Damien Scieur, Alexandre d’Aspremont, and
Francis Bach. “Regularized nonlinear accelera-
tion”. In: Advances in Neural Information Pro-
cessing Systems (NIPS). 2016.

[73] Damien Scieur, Alexandre d’Aspremont, and
Francis Bach. “Regularized nonlinear accelera-
tion”. In: Mathematical Programming (2020).

[74] Damien Scieur and Fabian Pedregosa. “Universal
Asymptotic Optimality of Polyak Momentum”.
In: Proceedings of the 37th International Confer-
ence on Machine Learning (ICML). 2020.

[75] Damien Scieur et al. “Generalization of Quasi-
Newton methods: application to robust symmet-
ric multisecant updates”. In: International Con-
ference on Artificial Intelligence and Statistics.
PMLR. 2021, pp. 550–558.

[76] Damien Scieur et al. “Online Regularized Nonlin-
ear Acceleration”. In: arXiv:1805.09639 (2018).

https://arxiv.org/pdf/2006.04299.pdf
https://arxiv.org/pdf/2006.04299.pdf
https://arxiv.org/pdf/2006.04299.pdf
https://arxiv.org/pdf/1606.04133.pdf
https://arxiv.org/pdf/1606.04133.pdf

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

[77] David F Shanno. “Conditioning of quasi-Newton
methods for function minimization”. In: Math-
ematics of computation 24.111 (1970), pp. 647–
656.

[78] Avram Sidi. “Convergence and stability prop-
erties of minimal polynomial and reduced rank
extrapolation algorithms”. In: SIAM Journal on
Numerical Analysis 23.1 (1986), pp. 197–209.

[79] Avram Sidi. “Efficient implementation of minimal
polynomial and reduced rank extrapolation meth-
ods”. In: Journal of Computational and Applied
Mathematics 36.3 (1991), pp. 305–337.

[80] Avram Sidi. “Extrapolation vs. projection meth-
ods for linear systems of equations”. In: Journal
of Computational and Applied Mathematics 22.1
(1988), pp. 71–88.

[81] Avram Sidi. “Minimal polynomial and reduced
rank extrapolation methods are related”. In:
Advances in Computational Mathematics 43.1
(2017), pp. 151–170.

[82] Avram Sidi. Vector extrapolation methods with
applications. SIAM, 2017.

[83] Avram Sidi. “Vector extrapolation methods with
applications to solution of large systems of equa-
tions and to PageRank computations”. In: Com-
puters & Mathematics with Applications 56.1
(2008), pp. 1–24.

[84] Avram Sidi and Jacob Bridger. “Convergence and
stability analyses for some vector extrapolation
methods in the presence of defective iteration ma-
trices”. In: Journal of Computational and Applied
Mathematics 22.1 (1988), pp. 35–61.

[85] Avram Sidi and Yair Shapira. “Upper bounds for
convergence rates of acceleration methods with
initial iterations”. In: Numerical Algorithms 18.2
(1998), pp. 113–132.

[86] Andrzej Stachurski. “Superlinear convergence of
Broyden’s bounded θ-class of methods”. In: Math-
ematical Programming 20.1 (1981), pp. 196–212.

[87] Alex Toth and CT Kelley. “Convergence analysis
for Anderson acceleration”. In: SIAM Journal on
Numerical Analysis 53.2 (2015), pp. 805–819.

[88] Evgenij E Tyrtyshnikov. “How bad are Han-
kel matrices?” In: Numerische Mathematik 67.2
(1994), pp. 261–269.

[89] Gerhard Venter. “Review of optimization tech-
niques”. In: (2010).

[90] Homer F Walker and Peng Ni. “Anderson acceler-
ation for fixed-point iterations”. In: SIAM Jour-
nal on Numerical Analysis 49.4 (2011), pp. 1715–
1735.

[91] Zhe Wang et al. “A Note on Inexact Condition for
Cubic Regularized Newton’s Method”. In: arXiv
preprint arXiv:1808.07384 (2018).

[92] Zengxin Wei et al. “The superlinear convergence
of a modified BFGS-type method for uncon-
strained optimization”. In: Computational op-
timization and applications 29 (2004), pp. 315–
332.

[93] Hiroshi Yabe, Hideho Ogasawara, and Masayuki
Yoshino. “Local and superlinear convergence of
quasi-Newton methods based on modified secant
conditions”. In: Journal of Computational and
Applied Mathematics 205.1 (2007), pp. 617–632.

[94] Hiroshi Yabe and Naokazu Yamaki. “Local
and superlinear convergence of structured quasi-
Newton methods for nonlinear optimization”. In:
Journal of the Operations Research Society of
Japan 39.4 (1996), pp. 541–557.

[95] Junzi Zhang, Brendan O’Donoghue, and Stephen
Boyd. “Globally convergent type-I Anderson ac-
celeration for nonsmooth fixed-point iterations”.
In: SIAM Journal on Optimization 30.4 (2020),
pp. 3170–3197.

Damien Scieur

Contents

1 Introduction 1

1.1 Contributions . 2

1.2 Limitations in Current qN Schemes . 2

2 Rethinking Quasi-Newton Methods 3

2.1 First Ingredient: Subspace Minimization . 3

2.2 Second Ingredient: Multisecant Approximation of the Hessian . 3

2.3 Third Ingredient: Objective Function and Gradient Norm Upper bounds 3

2.4 Fourth Ingredient: Direction Update Rule . 4

2.4.1 "Orthogonal Forward Estimate Only" Update Rule (Recommended) 4

2.4.2 "Random Orthogonal Directions" . 5

2.4.3 Other Matrix Updates: Pruning or Orthogonalization . 5

2.5 Miscellaneous . 5

3 Convergence Rates for Iterative Type I Methods 6

3.1 Assumptions . 6

3.2 Rates of Convergence . 6

3.3 Interpretation, Comparison With First-Order Methods and Special Cases 7

3.3.1 Interpretation and Comparison . 7

3.3.2 Special Cases . 7

4 Numerical Experiments 7

5 Conclusion and Future work 8

A Accelerated Algorithm 15

B Related work 17

B.1 Inexact, Subspace, and Stochastic Newton Methods . 17

B.2 Nonlinear and Anderson Acceleration . 17

B.3 Quasi-Newton Methods . 17

B.4 Close Related Work . 17

B.4.1 (Accelerated) Quasi-Newton with Secant Inexactness . 17

B.4.2 ARC: Adaptive Regularization algorithm using Cubics . 17

B.4.3 Proximal Quasi-Newton Methods . 18

B.4.4 Proximal Extragradient Quasi-Newton Methods with Online Estimation 18

C Known rates of convergence and Comparison 19

C.1 (Accelerated) Gradient Descent . 19

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

C.2 (Accelerated) Cubic Regularized Newton’s Method . 19

C.3 Relation Between Parameters . 19

C.4 Comparing rates of convergence . 20

D Link with quasi-Newton and Anderson/Nonlinear Acceleration 21

D.1 Anderson Acceleration and Nonlinear Acceleration . 21

D.2 Single-secant and Multisecant Quasi-Newton Methods . 22

D.2.1 The Ideas Behind Single-Secant and Multisecant Hessian Approximation 22

D.2.2 Davidon-Fletcher-Powell (DFP) Formula . 23

D.2.3 Multisecant Broyden Methods . 23

D.2.4 Link with Anderson Acceleration . 23

D.3 Links with Algorithms 4 and 5 . 24

E Solving the sub-problems 25

E.1 Solving the Type 1 Subproblem . 25

E.2 Solving the Type 2 Subproblem . 26

E.2.1 Fundamentals of SOCP . 26

E.2.2 SOCP Formulation of the Type 2 Subproblem . 27

F Additional Numerical Experiments 29

F.1 Initial Parameter for the Backtracking Line search . 29

F.2 Scalability w.r.t. Dimension and Memory . 30

F.3 Influence of h . 30

F.4 Impact of the memory parameter N . 31

F.5 Nonconvex optimization . 31

F.6 Comparison of Type 1 Methods on Convex Problems . 32

F.6.1 Square loss and cubic regularization . 32

F.6.2 Logistic regression . 33

F.7 Comparison of Type 2 Methods on Convex Problems . 34

F.7.1 Square loss and cubic regularization . 34

F.7.2 Logistic regression . 35

G Missing proofs 36

G.1 Technical Result: Hessian Approximation . 36

G.2 Technical Results: Cubic Subproblem . 37

G.3 Technical Results: Decrease Guarantees . 39

G.4 Technical Results: Accelerated Algorithm . 42

G.5 Missing proofs from Sections 2 and 3 . 49

Damien Scieur

Supplementary Materials

A Accelerated Algorithm

This section introduces algorithm 7, an accelerated variant of algorithm 3 for convex functions, designed using
the estimate sequence technique from [59]. It consists in iteratively building a function Φt(x), that reads

Φt(x) = 1∑t

i=0
bi

(∑t
i=0 bi (f(xi) +∇f(xi)(x− xi)) + λ

(1)
t

∥x−x0∥2

2 + λ
(2)
t

∥x−x0∥3

6

)
.

The parameters bi ≥ 0, λ
(1)
t , λ

(2
t and the iterates Xt are designed by theory to ensure the following properties,

Btf(xt) ≤ min
x

ϕt(x), ϕ(x) ≤ Btf(x) + λ̃(1) + λ
(1)
t

2 ∥x− x0∥2 + λ̃(2) + λ
(2)
t

6 ∥x− x0∥3,

where Bt =
∑t

i=0 bi and λ̃(1), λ̃(2) are constants determined by the theory.

Once the parameters are set, the accelerated algorithm operates as follow:

1. The accelerated algorithm combines linearly vt, the optimum of Φt, and the previous iterate xt.

2. It uses a slight modified version of algorithm 4, see algorithm 6.

3. There is a distinction between small and large step sizes, identifying which λ needs to be updated. The step
size is considered "large" if it resembles a cubic-Newton step.

Algorithm 6 Type-I subroutine with backtracking for the accelerated method
Require: First-order oracle f , matrices G, D, vector ε, iterate x, initial smoothness parameter M0

Initialize M ← M0
2 , ExitFlag← None

Define γM
def= κD

∥D∥

(
3
2∥ε∥+ 2 (∥I−P)G∥

M

)
do

M ← 2 ·M and Hγ ← GT D+DT G
2 + DT D MγM

2
α∗ ← arg minα f(x) +∇f(x)T Dα + 1

2 αT Hγα + M∥Dα∥3

6
x+ ← x + Dα

if 2
33/4

∥∇f(x+)∥3/2
√

M
≤ −∇f(x+)T Dα then

ExitFlag← LargeStep
end if
if ∥∇f(x+)∥2

M(γM +∥Dα∥) ≤ −∇f(x+)T Dα And ∥Dα∥ ≤ (
√

3− 1)γM then
ExitFlag← SmallStep

end if
while ExitFlag is None

return x+, α, M , γM , ExitFlag

Proposition 1. Let vt be the minimizer of

ϕt(v) = ℓ
(0)
t +

[
ℓ

(1)
t

]T

v + λ
(1)
t

2 ∥v − x0∥2 + λ
(2)
t

6 ∥v − x0∥3.

where λ
(1)
t ≥ 0, λ

(2)
t ≥ 0. Let rt = ∥vt − x0∥. Then,

rt = ∥vt − x0∥ =

0 if λ

(1)
t = λ

(2)
t = 0

∥ℓ
(1)
t ∥

λ
(1)
t

if λ
(1)
t > 0 and λ

(2)
t = 0

−λ
(1)
t +
√

[λ(1)
t]2+2λ

(2)
t ∥ℓk∥

λ
(2)
2

if λ
(2)
t > 0

vt = arg min Φt(x) = x0 − rt
ℓ

(1)
t

∥ℓ
(1)
t ∥

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

Algorithm 7 Adaptive Accelerated Type-I Iterative Algorithm
Require: First-order oracle f , initial iterate and smoothness x0, M0, number of iterations T .

λ
(1)
0 ← 0, λ

(2)
0 ← 0

Initialize G0, D0, ε0 (see section 2.4)
{x1, M1} ← [algorithm 4](f, G0, D0, ε0, x0, M0)
Initialize ℓ

(0)
0 = f(x1), ℓ

(1)
0 = 0

for t = 1, . . . , T − 1 do
Update Gt, Dt, εt (see section 2.4)
Set bt ← (t+1)(t+2)

2 , Bt ← t(t+1)(t+2)
6 , βt ← 3

t+3 .
Update ℓ

(0)
t ← ℓ

(0)
t−1 + bt−1[f(xt)−∇f(xt)T xt], ℓ

(1)
t ← ℓ

(1)
t−1 + bt−1∇f(xt)

do
ValidBound← True
Set vt ← arg minv ϕt(v) (See proposition 1).
Let yt ← 3

t+3 vt + t
t+3 xt

{xt+1, αt, Mt+1, γt, ExitFlag} ← [Alg.6](f, Gt, Dt, εt, yt,
Mt

2)

%% Check if the next ϕ is still a lower bound for Btf(xt+1)
Define ϕ+(x) = ϕt(x) + bt[f(xt+1 +∇f(xt+1)(x− xt+1)].
Set v+ ← arg minv ϕ+(v) (See proposition 1).

if Φ+(v+) ≤ Btf(xt+1) then %% Parameters adjustment if needed
ValidBound← False %% Unsuccessful iteration: ϕt+1(vt+1) ≥ f(xt+1).
if ExitFlag is LargeStep then

If λ
(2)
t = 0 then λ

(2)
t ← 4√

3
b3

t+1
B2

t

Mt+1. Else, λ
(2)
t ← 2λ

(2)
t .

else %% Exitflag is SmallStep

If λ
(1)
t = 0 then

b2
t+1
Bt

Mt+1 (γt + ∥Dtαt∥). Else, λ
(1)
t ← 2λ

(1)
t .

end if
else
{λ(1)

t+1, λ
(2)
t+1} ← {λ

(1)
t , λ

(2)
t } %% Successful iteration

end if
while ValidBound is False

end for
return xT

Damien Scieur

B Related work

B.1 Inexact, Subspace, and Stochastic Newton Methods

Instead of explicitly computing the Hessian matrix and the Newton step, inexact methods compute an approxima-
tion using sampling [3], inexact Hessian computation [36, 24], or random subspaces [26, 39, 44]. These approaches
substantially reduce per-iteration costs without significantly compromising the convergence rate. The convergence
speed in such cases often represents an interpolation between the rates observed in gradient descent methods and
(cubic) Newton’s method.

B.2 Nonlinear and Anderson Acceleration

Nonlinear acceleration techniques, including Anderson acceleration [2], have a long standing history [4, 5, 35].
Driven by their promising empirical performance, they recently gained interest in their convergence analysis [80,
32, 79, 47, 85, 83, 90, 87, 72, 81, 82, 7, 76, 9, 73]. In essence, Anderson acceleration is an optimization technique
that enhances convergence by extrapolating a sequence of iterates using a combination of previous gradients and
corresponding iterates. Comprehensive reviews and analyses of these techniques can be found in notable sources
such as [47, 8, 46, 45, 6, 22]. However, these methods do not generalize well outside quadratic minimization
and their convergence rate can only be guaranteed asymptotically when using a line-search or regularization
techniques [78, 84, 72].

B.3 Quasi-Newton Methods

Quasi-Newton schemes are renowned for their exceptional efficiency in continuous optimization. These methods
replace the exact Hessian matrix (or its inverse) in Newton’s step with an approximation updated iteratively
during the method’s execution. The most widely used algorithms in this category include DFP [23, 31] and
BFGS [77, 38, 30, 11, 10]. Most of the existing convergence results predominantly focus on the asymptotic
super-linear rate of convergence [86, 41, 13, 12, 20, 28, 94, 92, 93]. However, recent research on quasi-Newton
updates has unveiled explicit and non-asymptotic rates of convergence [65, 67, 66, 54, 55]. Nonetheless, these
analyses suffer from several significant drawbacks, such as assuming an infinite memory size and/or requiring
access to the Hessian matrix. These limitations fundamentally undermine the essence of quasi-Newton methods,
typically designed to be Hessian-free and maintain low per-iteration cost through their low memory requirement
and low-rank structure.

B.4 Close Related Work

B.4.1 (Accelerated) Quasi-Newton with Secant Inexactness

Recently, Kamzolov et al. [52] introduced an adaptive regularization technique combined with cubic regularization,
with global, explicit (accelerated) convergence rates for any quasi-Newton method. Based on the secant inexactness
inequality, the technique introduces a quadratic regularization whose parameter is found by a backtracking line
search. However, this algorithm relies on prior knowledge of the Lipschitz constant specified in Assumption 1.
Unfortunately, the paper does not provide an adaptive method to find jointly the Lipschitz constant as well,
as it is a priory too costly to know which parameter to update. This aspect makes the method impractical in
real-world scenarios.

B.4.2 ARC: Adaptive Regularization algorithm using Cubics

In [18, 19] is proposed a generic framework for inexact cubic regularized Newton’s steps,

xt+1 = min
x

f(xt) +∇f(xt)(x− xt) + 1
2(x− xt)Ht(x− xt) + Mt

6 ∥x− xt∥3,

where Ht is assumed to be an approximation of the Hessian ∇2f(xt). However, the theoretical analysis presents
numerous problems, in particular, the assumption that the norm of the current step bounds the approximation

∥∇2f(xt)−Ht∥ ≤ C∥xt+1 − xt∥,

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

for some constant C. Follow up works, such as [91], relaxed this assumption into

∥∇2f(xt)−Ht∥ ≤ C∥xt − xt−1∥,

which is much weaker since it can be verified while computing the step xt+1. Nevertheless, those are assumptions
on the matrix Ht, but those works do not explicitly construct such a matrix. Even worse - the assumption might
not be met in practice, especially if Ht is a subspace estimation of the matrix ∇2f(xt).

B.4.3 Proximal Quasi-Newton Methods

The work of [68, 37] combined qN methods with proximal schemes and provided sublinear and accelerated
convergence rates. However, the rates in [68] are based on a technical assumption [68, Assumption 2], for
which the authors commented that "Exploring different conditions on the Hessian approximations that ensure
Assumption 2 is a subject of a separate study", and acknowledge in their conclusion that "Our framework does not
rely on or exploit the accuracy of second-order information, and hence we do not obtain fast local convergence
rates."

In a follow-up work, [37] proposed accelerated convergence rates under similar assumptions. However, the
authors acknowledge the following: "In our numerical results, we construct Hk via L-BFGS and ignore condition
σk+1Hk+1 ⪯ σkHk, since enforcing it in this case causes a very rapid decrease in σ. It is unclear, however, if a
practical version of Algorithm 5, based on L-BFGS Hessian approximation, can be derived, which may explain
why the accelerated version of our algorithm does not represent any significant advantage." In addition, their
theoretical convergence results are based on an upper bound on the sequence σk, which current qN schemes
cannot ensure.

B.4.4 Proximal Extragradient Quasi-Newton Methods with Online Estimation

Based on the technique in [49], [50] developed a novel quasi-Newton method with the global accelerated rate of
convergence of O(min{ 1

t2 ;
√

d log t

t2.5 }). The main ideas are as follows: the authors used the framework of inexact
proximal method from [57], used an online algorithm to estimate the Hessian, and then solved a linear system
involving this approximation using conjugate gradients.

The paper focuses on a different regime than this study: [50] explicitly show that it is possible to break the O(1
t2)

barrier for first order methods using full memory qN methods but this implies storing a full d× d matrix, and
using it in a linear system, leading to per-iteration complexities of at least O(d2).

From a practical point of view, the algorithm requires numerous hyperparameters such as α1, α2, β,. . ., whose
impact on the efficiency is rather unclear. Moreover, numerically, the algorithm improves over Nesterov’s
acceleration but is slower than l-BFGS on toy experiments.

Damien Scieur

C Known rates of convergence and Comparison

C.1 (Accelerated) Gradient Descent

This section study the rate of gradient decent when function is smooth (i.e., has Lipschitz continuous gradients):

f(y) ≤ f(x) +∇f(x)(y − x) + L2 ∥y − x∥2, (12)

Note that the class of functions considered in this paper is not the class of smooth functions. However, if the
function satisfies Assumption 1, the Lipchits constant can be bounded as

L ≤ ∥∇2f(x)∥+ LR for all x ∈ {x : f(x) ≤ f(x0)}. (13)

The rates of plain gradient descent and its accelerated version read [60] (after replacing L)

min
0≤i≤t

∥∇f(xi)∥ ≤
√

[∥∇2f(x)∥+ LR] (f(x0)− f⋆)
t + 1 , (plain, non-convex) (14)

f(xt)− f(x⋆) ≤
[
∥∇2f(x)∥+ LR

] 2
t + 4R2, (plain, convex) (15)

f(xt)− f(x⋆) ≤
[
∥∇2f(x)∥+ LR

] 4
(t + 2)2 R2. (accelerated) (16)

C.2 (Accelerated) Cubic Regularized Newton’s Method

When the function has a Lipschitz-continuous Hessian, the cubic regularized Newton method and its accelerated
version converge with the following rates [61, 59, 44]:

min
0≤i≤t

∥∇f(xi)∥ ≤
16L

9

(
3(f(x0)− f⋆)

2tMmin

)2/3
, (plain, non-convex) (17)

f(xt)− f(x⋆) ≤ 9L
R3

(t + 4)2 , (plain, convex) (18)

E[f(xt)]− f(x⋆) ≤
(

d−N

N

)
L(3R)2

2t
+
(

d

N

)2
L(3R)3

3t2 + O

(
1
t3

)
, (Random Subspace, convex) (19)

f(xt)− f(x⋆) ≤ L
14R3

t(t + 1)(t + 2) . (accelerated) (20)

C.3 Relation Between Parameters

Given that this paper does not make the assumption of Lipchitz-continuous gradients, it becomes necessary to
establish connections between various quantities to facilitate the comparison of rates. To streamline the notation,
all numeric constants are substituted with the big O notation, and the subsequent equations are derived for the
"orthogonal forward estimate only" update rule, hence ∥D∥ = 1 and κ = 1.

Relation between δ and R. The constant δ represents the upper bound on the relative error (see Require-
ment 2):

∀t, ∥εt∥
∥Dt∥

≤ δ.

For a fixed memory, and assuming h small, since ε is the norm between iterates, δ is upper-bounded as

δ ≤ O(R). (21)

Relation between the different Ci and L The C1, C2, and C4 in Theorems 5, 6 and 8 quantifies the
estimation error of DT

t ∇2f(xt)Dt by Ht in (Type I bound) into two terms:

Ci ≤ O
(
δL + maxi≤t ∥(I − Pi)∇2f(xi)∥

)
.

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

The first term is the error caused by approximating ∇2f(x)Dt by Gt, and the second is the subspace approximation
error of ∇2f(xt) in the span of the columns of Dt.

Intuitively, the constants Ci can be seen as an approximation of an upper bound on L in a neighborhood of size
δ. This is similar to (13) but the norm of the Hessian is taken in a subspace, hence the Ci’s are smaller. Indeed,
using (21), in the worst case, if all iterates satisfies ∥xi − x⋆∥ < R,

Ci = O(RL + maxi≤t ∥(I − Pi)∇2f(xi)∥). (22)

Other updates Note that eqs. (21) and (22) are valid only for the "orthogonal forward estimate only" update
rule. If the random orthogonal forward estimate, or the orthogonalization of the "greedy" or "iterates only" update
rules were used, the results would have been

δ = O(h), Ci = O(hL + maxi≤t ∥(I − Pi)∇2f(xi)∥),

where h is small. However, the comparison with gradient descent or Newton’s method wouldn’t have been fair as
the orthogonalization update rules requires N additional gradient calls.

C.4 Comparing rates of convergence

Non convex The rate from Theorem 5 reads

min
i=1, ..., t

∥∇f(xi)∥ ≤max
{ 3L

t2/3

(
12f(x0)− f⋆

Mmin

)2/3
;
(

C1

t1/3

)(
12f(x0)− f⋆

Mmin

)1/3 }
,

where C1 = 3δL
2 + maxi∈[0,t] ∥(I − Pi)∇2f(xi)Pi∥. In the case where C1 is small, the rate matches exactly (17).

In the other case, using the approximation from (22),

min
i=1, ..., t

∥∇f(xi)∥ ≤
(

O(RL + maxi≤t ∥(I − Pi)∇2f(xi)∥)
t1/3

)(
12f(x0)− f⋆

Mmin

)1/3

which differs significantly from (14), as the rate is O(1√
t
). However, this might be an artifact of the theoretical

analysis, since the function was not assumed to be smooth.

Star convex After using the approximation from (22), the rate from Theorem 6 reads

f(xt)− f⋆ ≤ O

(
f(x0)− f⋆

t3

)
+ O

(
LR3

t2

)
+ O

(
[RL + maxi≤t ∥(I − Pi)∇2f(xi)∥]R2

t

)
(23)

The term in t−2 is exactly the one from (18), while the term is t−1 has the same dependency in R3 compared to
(15). However, ∥(I − P)∇2f(xi)∥ could be much smaller than ∥∇2f(x)∥.

Convex with random coordinates or random subspace The rate from Theorem 7 reads

EDt [f(xt)− f⋆] ≤ 1
1 + 1

4
[

N
d t
]3 (f(x0)− f⋆) + 1[

N
d t
]2 L(3R)3

2 + 1[
N
d t
] [O(δL) + (d−N)

d max
i∈[0,t]

∥∇2f(xi)∥](3R)2

2 .

The rate is similar to (19), up to an additional O(δL/t) term. This extra term comes from the estimation of the
Hessian with finite difference, while the method presented in [44] uses exact Hessian-vector products.

Convex, accelerated rates After using the approximation from (22), and ignoring the terms λ̃(1), λ̃(2) for
clarity, the rate from Theorem 8 reads

f(xt)− f⋆ ≤ [RL + max
i=0...t

∥(I − Pi)∇f(xi)∥]
(3R)2

(t + 3)2 + 9 max {M0 ; 2L}
(

3R

t + 3

)3

The rate is exactly a combination of (20) and (16), but the constant ascociated to the 1/t2 rate is smaller in
practice: (21) is a conservative bound and ∥(I − Pi)∇2f(x)∥ ≤ ∥∇2f(x)∥.

Damien Scieur

D Link with quasi-Newton and Anderson/Nonlinear Acceleration

This section presents the fundamentals of Anderson/nonlinear acceleration (appendix D.1), quasi-Newton schemes
(appendix D.2), and their relationship with the method proposed in this paper (appendix D.3).

D.1 Anderson Acceleration and Nonlinear Acceleration

Anderson acceleration, also known as nonlinear acceleration, is a powerful technique that enhances the convergence
speed of fixed point iterations and optimization algorithms. Initially developed for solving linear systems, Anderson
acceleration has gained popularity due to its effectiveness in accelerating iterative methods, including the ones
in optimization. The method leverages previous iterations to construct an improved estimate of the objective
function’s minimizer.

The Anderson acceleration algorithm employs the following approximation to compute weights:

∇f

(
N∑

i=0
βixi

)
≈

N∑
i=0

βi∇f(xi),
N∑

i=0
βi = 1.

When the function f is quadratic, this approximation becomes an equality. The underlying idea is as follows:
since the optimum satisfies ∇f(x⋆) = 0,

N∑
i=0

βi∇f(xi) ≈ 0 ⇒ ∇f

(
N∑

i=0
βixi

)
≈ 0 ⇒

N∑
i=0

βixi ≈ x⋆.

The Anderson acceleration steps are thus given by

xt+1 =
N∑

i=0
β⋆

i xt−i+1, β⋆ = arg min
β

∥
N∑

i=0
βi∇f(xt−i+1)∥2

Over the past decades, the ideas behind Anderson acceleration have been refined. For example, the constraint
can be eliminated by considering the step xt+1 − xt instead:

xt+1 − xt =
(

N∑
i=0

βixt−i+1

)
− xt

=
N∑

i=0
β̃ixt−i+1.

The vector β̃i has the property that its sum equals zero. Hence, it can be rewritten as

xt+1 − xt =
N∑

i=1
αi(xt−i+1 − xt−i)

α = arg min
α

∥∥∥∥∥∇f(xt) +
N∑

i=1
αi(∇f(xt−i+1)−∇f(xt−i))

∥∥∥∥∥
where α ∈ RN has no constraint. By writing di = xt−i+1 − xt−i, gi = ∇f(xt−i+1) − ∇f(xt−i), and D =
[dt, . . . , dt−N+1], G = [gt, . . . , gt−N+1], the step becomes

xt+1 − xt = Dtα, α = arg min
α

∥∇f(xt) + Gtα∥.

However, this version of Anderson acceleration is non-convergent because there is no contribution from ∇f(xt) in
the step xt+1 − xt. The most popular solution to this problem is introducing a mixing parameter that combines
gradient steps, resulting in the following expression:

xt+1 = xt − h∇f(xt) + (D − hG)α, α = arg min
α

∥∇f(xt) + Gα∥. (AA Type II)

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

Following a similar idea, recent works have introduced a type I variant of the algorithm [29, 90, 95, 14] that
minimizes the function value instead of the gradient norm:

xt+1 = xt − h∇f(xt) + (D − hG)α, α = arg min f(xt) +∇f(xt)Dtα + 1
2αT DT

t Gtα, (AA Type I)

By incorporating regularization [72, 14], globalization techniques [95], or performing a line search on the parameter
h, the algorithm converges towards x⋆.

D.2 Single-secant and Multisecant Quasi-Newton Methods

Quasi-Newton methods, such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, approximate the Hessian
matrix to solve unconstrained optimization problems efficiently. These methods avoid the expensive computation
of the exact Hessian by using iterative updates based on previous iterates and gradients of the objective function.

This section focuses on other commonly used quasi-Newton methods: the Davidon-Fletcher-Powell (DFP) and
Broyden type-1 and type-2 updates.

D.2.1 The Ideas Behind Single-Secant and Multisecant Hessian Approximation

In quasi-Newton methods, the Hessian approximation is updated using the secant equation, which relates the
gradients and Hessian at two different points. For a twice continuously differentiable function, the secant equation
is given by:

∇f(y)−∇f(x) = ∇2f(ξ)(y − x),
where ξ is a point on the line segment connecting x and y. This equation serves as the basis for updating the
Hessian approximation.

Based on this remarkable identity, quasi-Newton methods update an approximation of the Hessian Bt or its
inverse Ht such that the approximation satisfies

∇f(xt)−∇f(xt−1) = Bt(xt − xt−1), Ht (∇f(xt)−∇f(xt−1)) = xt − xt−1.

What distinguishes the different updates is how to fix the remaining degrees of freedom. For instance, the simple
SR-1 method updates Ht such that

min
H
∥H −Ht−1∥F : H = HT , H (∇f(xt)−∇f(xt−1)) = xt − xt−1. (24)

Those methods are called single-secant as they update Ht only one secant equation at a time. Hence, in general,
Ht only satisfies the latest secant equation.

Multisecant updates, on the other hand, approximate the Hessian using a batch of secant equations. By introducing
matrices Dt = [xt−N+1 − xt−N , . . . , xt − xt−1] and Gt = [∇f(xt−N+1)−∇f(xt−N), . . . ,∇f(xt)−∇f(xt−1)], the
multisecant updates satisfy

Gt = BtDt, or HtGt = Dt.

Unfortunately, when imposing symmetry, it is impossible to satisfy multiple secants at a time [70]. However,it is
possible to enforce symmetry while approximating the secant equation in a least square sense [71, 75].

When symmetry is not imposed, the solution for Bt and Ht can be obtained as:

Bt = Gt[Dt]† + B0(I −DtD
†
t), Ht = Dt[Gt]† + H0(I −GtG

†
t), (25)

where B0 and H0 are the initial approximations, and [A]† denotes the pseudo-inverse of matrix A. Different
choices of pseudo-inverse lead to different methods.

The inversion of Bt can be computed using the Woodbury matrix identity, which provides an efficient way to
compute the inverse. The update for B−1

t is given by:

B−1
t = B−1

0

(
I −Gt

(
D†

t B−1
0 Gt

)−1
D†

t B−1
0

)
+ Dt

(
D†

t B−1
0 Gt

)−1
D†

t B−1
0 .

Damien Scieur

This update is equivalent to the update for Ht, given that

B−1
0 = H0, and G†

t =
(

D†
t B−1

0 Gt

)−1
D†

t B−1
0 . (26)

In summary, quasi-Newton methods update the Hessian approximation using the secant equation. Single-secant
methods update the approximation using the secant equation one by one, while multisecant methods use a batch
of secant equations. The choice of updating strategy and pseudo-inverse affects the behavior of the method.

D.2.2 Davidon-Fletcher-Powell (DFP) Formula

The DFP formula is a Quasi-Newton update rule used to iteratively refine an approximation of the inverse Hessian
matrix. It is defined as follows:

Ht = Ht−1 + dtd
T
t

dT
t gt
− Ht−1gtg

T
t Ht−1

gT
t Ht−1gt

, (27)

In the above equation, gt = ∇f(xt)−∇f(xt−1) represents the difference in gradients, and dt = xt − xt−1 denotes
the difference in parameter values. The DFP formula updates the matrix Ht using a rank-two matrix such that it
remains symmetric and positive definite.

D.2.3 Multisecant Broyden Methods

The multisecant Broyden methods utilize the update equation from (25), where A† is chosen as the Moore-Penrose
pseudo-inverse of A, given by A† = (AT A)−1A. In this equation, B0 and H0 are scaled identity matrices. After
simplification, the two types of updates can be expressed as follows:

B−1
t = Dt

(
D†

t Gt

)−1
D†

t + B−1
0

(
I −Gt

(
D†

t Gt

)−1
D†

t

)
, (28)

Ht = Dt(GT
t Gt)−1GT

t + H0

(
I −Gt

(
GT

t Gt

)−1
GT

t

)
. (29)

Both updates are quite similar, differing mainly in the choice of the pseudo-inverse of the matrix G.

D.2.4 Link with Anderson Acceleration

The connection between quasi-Newton methods and Anderson Acceleration is strong, as, for instance, Broyden
methods and Anderson acceleration are equivalent. To illustrate this, let’s closely examine the update of α in
(AA Type I):

xt+1 = xt − h∇f(xt) + (Dt − hGt)α, α = arg min f(xt) +∇f(xt)Dtα + 1
2αT DT

t Gtα

⇔xt+1 = xt − h∇f(xt) + (Dt − hGt)α, α : DT
t ∇f(xt) + DT

t Gtα = 0
⇔xt+1 = xt − h∇f(xt) + (Dt − hGt)α, α : α = −(DT

t Gt)−1DT
t ∇f(xt)

⇔xt+1 = xt − h∇f(xt)− (Dt − hGt)(DT
t Gt)−1DT

t ∇f(xt).
⇔xt+1 = xt −

(
Dt(DT

t Gt)−1DT
t + h

(
I −Gt(DT

t Gt)−1DT
t

))
∇f(xt)

The above step is precisely the quasi-Newton step xt+1 = xt−B−1
t ∇f(xt), where B−1

t corresponds to the Broyden
update given by Equation 28, with B−1

0 = hI. A similar reasoning can be applied to Equation 29.

When considering the single-secant updates, following the same reasoning as in Section 3 leads to the same
conclusion for the SR-1 and DFP updates.

This result is expected since the approximations Ht or B−1
t satisfy the single or multisecant equation:

HtGt = Dt.

This indicates that the matrix Ht maps vectors from the span of previous gradients to the span of previous
directions. This observation justifies the construction in (4).

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

D.3 Links with Algorithms 4 and 5

Both Algorithms 4 and 5 can be viewed as quasi-Newton and Anderson/nonlinear acceleration schemes. The
update formulas are

min
α

f(xt) +∇f(xt)T Dtα + αT Htα

2 + M∥Dtα∥3

6 , Ht
def= GT

t Dt + DT
t Gt + IM∥Dt∥∥εt∥

2 . (Type I)

min
α
∥∇f(xt) + Gtα∥+ M

2

(N∑
i=1
|αi|[εt]i + ∥Dtα∥2

)
, (Type II)

The resemblance with Anderson/nonlinear acceleration is strong, as the objective function is similar. If the
function is quadratic, L = 0 and therefore M can also be set to 0; hence, the coefficients α are exactly the type I
and type II Anderson steps eqs. (AA Type I) and (AA Type II).

The same idea holds when compared to quasi-Newton methods. In both cases, the optimal solution α⋆ can be
written implicitly:

α⋆ = −
(

Ht + MDT
t Dt∥Dtα

⋆∥
6

)−1

DT
t ∇f(xt), (Type I - solution)

α⋆ = −
(
GT

t Gt + M̃DT
t Dt

)−1
(

GT
t ∇f(x) + M̃∥εt∥

2 ∂(|α⋆|)
)

, (Type II - solution)

where M̃
def= ∥∇f(xt) + Gtα∥M and ∂(|α⋆|) is a subgradient of |α∗|. The step then reads

xt+1 = xt + Dα⋆ (Generic step)

xt+1 = xt −Dt

(
Ht + MDT

t Dt∥Dtα
⋆∥

6

)−1

DT
t ∇f(xt), (Type I - step)

xt+1 = xt −Dt

(
GT

t Gt + M̃DT
t Dt

)−1
(

GT
t ∇f(x) + M̃∥εt∥

2 ∂(|α⋆|)
)

, (Type II - step)

Type I is a quasi-Newton step with a symmetrization of GT D and a regularization. In contrast, the type II
step can be seen as a quasi-Newton method with a regularization on G†, with a correction term on the gradient.
Therefore the Hessian approximation reads

B−1
t = Dt

(
Ht + MDT

t Dt∥Dtα
⋆∥

6

)−1

DT , Ht = Dt

(
GT

t Gt + M̃DT
t Dt

)−1
GT

t .

Again, when the objective function is quadratic, L = 0 and therefore M = 0. Moreover, when f is quadratic, the
matrix multiplication DT G satisfies DT G + GT D = 2DT G as DT G becomes symmetric. Hence,

xt+1 = xt −Dt

(
DT

t Gt

)−1
DT

t ∇f(xt), (Type I - quadratic)

xt+1 = xt −Dt

(
GT

t Gt

)−1
GT

t ∇f(xt), (Type II quadratic)

The steps are exactly the type I and type II multisecant Broyden methods from eqs. (28) and (29), with the only
difference that there is no initialization H0 or B0.

Damien Scieur

E Solving the sub-problems

Solving the Type 1 Subproblem The Type 1 subproblem is a well-studied problem that involves minimizing
a specific objective function. A method proposed by [61] has proven to be efficient for solving this problem. The
method utilizes eigenvalue decomposition on a matrix to find the optimal solution. In this paper, the matrix
involved in this problem is relatively small, therefore eigenvalue decomposition is not a concern even for large-scale
problems. The subproblem aims to determine the norm of the solution, and this can be achieved through solving
one nonlinear equation using bisection or secant method.

Solving the Type 2 Subproblem The Type 2 subproblem can be formulated as a Second-Order Cone Program
(SOCP). The objective function of this subproblem consists of three terms: a norm term, a sum of absolute values
term, and a quadratic term. The norm term can be transformed using singular value decomposition, and the sum
of absolute values term can be expressed as with linear constraints. The quadratic term can be simplified using a
rotated quadratic cone. By utilizing these techniques, the Type 2 subproblem can be effectively solved using
existing SOCP solvers.

E.1 Solving the Type 1 Subproblem

The Type 1 subproblem can be expressed as follows:

min
α
∇f(x)Dα + 1

2αT Hα + M

6 ∥Dα∥3,

where H is symmetric but not necessarily positive definite. This problem has been well-studied, and [61] proposed
an efficient method to solve it using eigenvalue decomposition on the matrix H. Although eigenvalue decomposition
may be challenging for large-scale problems, it is not a concern here since H ∈ RN×N , with a relatively small N
(e.g., N = 25 in the experiments).

In essence, the subproblem involves determining the norm of the solution r = ∥α∥. This can be accomplished
through a simple bisection on the following system of nonlinear equations:

(
H + MDT Dr

2 I

)
α = −Dt∇f(x), ∥α∥ = r, r ≥ −λmin(H). (30)

Interestingly, this problem is equivalent to the following formulation, as shown in Proposition 2:

(
Λ + Mr

2 I

)
α̃ = −V T (DT D)−1/2Dt∇f(x), ∥α∥ = r, r ≥ −λmin(H), α̃ = V T (DT D)1/2α, (31)

which involves the eigenvalue decomposition (DT D)−1/2H(DT D)−1/2 = V ΛV T .
Proposition 2. Problems (30) and (31) are equivalent.

Proof. The first step is to split DT D = (DT D)1/2(DT D)1/2 and then employ an eigenvalue decomposition on
(DT D)−1/2H(DT D)−1/2 = V ΛV T (where V is orthonormal due to the symmetry of the matrix):(

H + MDT Dr

2 I

)
α = −Dt∇f(x)

⇔(DT D)1/2
(

(DT D)−1/2H(DT D)−1/2 + Mr

2 I

)
(DT D)1/2α = −Dt∇f(x)

⇔(DT D)1/2V

(
Λ + Mr

2 I

)
V T (DT D)1/2α = −Dt∇f(x)

⇔
(

Λ + Mr

2 I

)
V T (DT D)1/2α = −V T (DT D)−1/2Dt∇f(x)

⇔
(

Λ + Mr

2 I

)
α̃ = −V T (DT D)−1/2Dt∇f(x).

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

Once the eigenvalue decomposition is performed, the subproblem (31) becomes relatively simple since it involves
solving a diagonal system of equations for a fixed value of r. The main objective is to find an interval [rmin, rmax]
that encompasses the optimal value r = ∥α∥. Once this interval is identified, a straightforward bisection or secant
method can be employed to obtain the optimal solution.

Finding initial bounds Starting with rmin = max{0,−λmin(H)} and rmax = max{2rmin, 1},

do rmax ← 2rmax while ∥α̃∥ ≥ rmax.

where α̃ = −
(
Λ + Mrmax

2 I
)−1

V T (DT D)−1/2Dt∇f(x). Increasing rmax increases the regularization, hence reduces
the norm of α̃.

Finding α After r⋆ has been found such that |r⋆ − ∥α̃∥| is sufficiently small, the best α is simply

α = (DT D)−1/2V α̃ = −(DT D)−1/2V

(
Λ + Mr⋆

2 I

)−1
V T (DT D)−1/2Dt∇f(x).

In the case where the diagonal matrix is not invertible, which happens when r⋆ = rmin, it suffices to use the
pseudo-inverse instead.

Note that DT D is an N ×N matrix, where N is small, therefore, computing its inverse is inexpensive. Moreover,
when D is orthogonal, DT D = I, therefore there is no need to invert it. In addition, (Λ + Mr⋆

2 I)−1 can be
computed in O(N) complexity since the matrix is diagonal.

E.2 Solving the Type 2 Subproblem

The Type 2 subproblem is given by:

min
α
∥∇f(x) + Gα∥︸ ︷︷ ︸

(a)

+L

2

(N∑
i=1
|αi|εi︸ ︷︷ ︸

(b)

+ ∥Dα∥2︸ ︷︷ ︸
(c)

)
. (32)

Although it may not be immediately apparent, this subproblem can be formulated as a Second-Order Cone
Program (SOCP) with O(N) variables and constraints.

E.2.1 Fundamentals of SOCP

SOCP solvers handle the following conic problems:

min
x,ti,ωi

c0x +
∑

i

ci[ti; ωi] subject to

A0x +
k∑

i=1
Ai[ti; ωi] = b (SOCP Standard Matrix Form)

x ≥ 0
(ti, ωi) ∈ Ki ⇔ ti ≥ ∥ωi∥, t ≥ 0.

Here, k represents the number of cones, and the cone K refers to the second-order cone, also known as the Lorenz
cone.

A useful transformation is the rotated quadratic cone, defined as follows:

Damien Scieur

[a, b, c] ∈ Kq ⇔ 2ab ≥ ∥c∥2.

The rotated quadratic cone can be reformulated as a second-order cone using a linear transformation:

if

a
b
c

 =

 1√
2

1√
2 0

1√
2 − 1√

2 0
0 0 IK

 t
ω(0)

ω

 then (t, [ω(0); ω]) ∈ K ⇔ [a, b, c] ∈ Kq.

Thanks to this transformation, the rotated quadratic cone can be included in SOCP solvers.

E.2.2 SOCP Formulation of the Type 2 Subproblem

The SOCP of (32) is composed of the three terms a, b, and c.

Term (a) Let UGΣGV T
G be the singular value decomposition of G. Write PG = UGUT

G as the projector onto
the columns of G. Then,

∥∇f(x) + Rα∥ = ∥PG∇f(x) + PGGα + (I − PG)∇f(x)∥

=
√
∥PG∇f(x) + Rα∥2 + ∥(I − PG)∇f(x)∥2

=
√∥∥UG

(
UT

G∇f(x) + ΣGV T
G α
)∥∥2 + ∥(I − PG)∇f(x)∥2

=
√∥∥UT

G∇f(x) + ΣGV T
G α
∥∥2 + ∥(I − PG)∇f(x)∥2

Let the vector ω1 =
[
UT

G∇f(x) + ΣGV α; ∥(I − PG)∇f(x)∥
]
. Hence,

∥∇f(x) + Gα∥ = min
t1, α, ω1

t1 : (t1, ω1) ∈ KL, ω1 =
[
UT

G∇f(x) + ΣGV α; ∥(I − PG)∇f(x)∥
]

.

Term (b) This term is standard in linear programming. Let α = α+ − α−, with α+, α− ≥ 0,

N∑
i=1
|αi|εi =

N∑
i=1

(α+ + α−)εi.

Term (c) Let UDΣDV T
D be the singular value decomposition of D. Using the rotated cone, the constraint can

be written as

2t3b ≥ ∥UDΣDVDα∥2 = ∥ΣDVDα∥2, b = 1
2 .

Using the transformation into a Lorenz cone, this is equivalent to

1 0 0
0 1 0
0 0 ΣDV T

D

t3
b
α

 =

 1√
2

1√
2 0

1√
2 − 1√

2 0
0 0 Ik

 t2

ω
(0)
2

ω2

 , b = 1
2 , (t2, [ω(0)

2 , ω2]) ∈ K.

Simplification. Note that, since b = 1
2 , the value can be immediately replaced. Same idea with t3: the constraint

is written as

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

t3 = t2 + ω
(0)
2√

2
, t3 ≥ 0.

Since, by construction, t2 ≥ ω
(0)
2 and t2 ≥ 0, t3 always satisfies the condition, which means both t3 and its

constraint can be removed. The constraints thus simplify into

[1
2
0

]
+
[

0
ΣDV T

D

] [
α
]

=
[1√

2 − 1√
2 0

0 0 Ik

] t2

ω
(0)
2

ω2

 , (t2, [ω(0)
2 , ω2]) ∈ K.

Final formulation Gathering all terms, the final SOCP formulation reads

minimize t1 + L

2
(
(α+ + α−)T ε + t2

)
subject to ω1 =

[
UT

G∇f(x) + ΣGV T
G α ; ∥(I − PG)∇f(x)∥

]
,

α+, α− ≥ 0
α = α+ − α−

[
01×N − 1√

2
1√
2 0

ΣDV T
D 0N×1 0N×1 −IN

]
α
t2

ω
(0)
2

ω2

 =

 0
− 1

2
0N×1

(t1, ω1) ∈ K, (t2, [ω(0)

2 ; ω2]) ∈ KL, t2 ≥ 0.

Standard matrix formulation The SOCP can be written under the standard matrix form (SOCP Standard
Matrix Form). Let the variables

α+, α− ≥ 0, (t1, ω1) ∈ K1, (t2, [ω(0)
2 ω2]) ∈ K2,

where t1, t2, and ω
(0)
2 are scalars, ω2, α+, and α− are vectors of size N , and ω1 is a vector of size N + 1. The

SOCP matrices read

c0 =
[

LεT

2
LεT

2

]
c1 =

[
1 01×N+1

]
c2 =

[
L

2
√

2
L

2
√

2 01×N

]
A0 =

−ΣGV T
G ΣGV T

G

02×N 02×N

ΣDV T
D −ΣDV T

D

A1 =

[
0N+1×1 IN+1×N+1
0N+1×1 0N+1×N+1

]

A2 =

0N+1×1 0N+1×1 0N+1×N

− 1√
2

1√
2 01×N

0N×1 0N×1 −IN×N

b =

[
∇f(x)T UG ∥(I − PR)∇f(x)∥ − 1

2 0N×1
]T

.

This completes the SOCP formulation of the type 2 subproblem.

Damien Scieur

F Additional Numerical Experiments

This section presents additional numerical experiments.

Methods The methods compared are the type 1 and type 2 steps with the following strategies: Iterate only,
Forward estimate only, Greedy (refer to section 2.4), and the accelerated type 1 method with the strategy forward
estimate only. The batch methods are not included as they perform poorly regarding the number of Oracle calls.
The baseline is the l-BFGS method from minFunc [69].

Method parameters In all experiments, the memory of the methods is set to N = 25 and the h for the
forward estimates is set to h = 10−9. The parameters of the l-BFGS are left untouched except for the memory.
The initial point is x0 = ∇f(0d).

Functions The minimized problems are square loss with cubic regularization, logistic loss with small quadratic
regularization, and the generalized Rosenbrock function. The regularization parameter of the square loss is set to
1e− 3 times the norm of the Hessian, and the regularization of the logistic loss is set to 1e− 10 times the square
norm of the feature matrix.

Dataset The datasets for the square and the logistic loss are Madelon [42], Sido0 [43], and Marti2 [43] datasets.

Post-processing The dataset matrix is normalized by its norm, then a vector of ones is concatenated to the
data matrix.

F.1 Initial Parameter for the Backtracking Line search

The backtracking line search was used in all experiments. The estimation of the initial value M0 (see (33)) is
based on the following observation. Since the function satisfies Assumption 1,

∥∇f(y)−∇f(x)−∇2f(x)(y − x))∥ ≤ L

2 ∥y − x∥2,

for some x, y. Hence, the parameter L can be estimated as

L ≈ 2∥∇f(y)−∇f(x)−∇2f(x)(y − x))∥
∥y − x∥2 .

Now, define

sh
def= h∇f(x0),

for some small h and τ > 1, and let x = x0 and y = x0 + sτh. Indeed, if h is small, then

τ [∇f(x0 + sh)−∇f(x0)] ≈ τ∇2f(x)sh = ∇2f(x)sτh.

Therefore,

∥∇f(x0 + sτh)−∇f(x0)− τ [∇f(x0 + sh)−∇f(x0)] ∥ ≈ ∥∇f(x0 + sτh)−∇f(x0)−∇2f(x)sτh∥,

and hence, the Lipchitz constant can be estimated as

M0 = 2
∥sτh∥2 ∥∇f(x0 + sτh)−∇f(x0)− τ [∇f(x0 + sh)−∇f(x0)] ∥. (33)

In the experiments, h is the same as the algorithm, and τ = 10. Various choices of τ, h have been tested without
significantly impacting the numerical convergence.

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

F.2 Scalability w.r.t. Dimension and Memory

10
2

10
3

10
4

10
5

log(dimension)

10
-1

10
0

10
1

10
2

lo
g

(
ti
m

e
 (

s
.)

)

0 100 200 300 400 500

N

0

50

100

150

200

250

300

ti
m

e
 (

s
.)

Figure 2: Scaling of the Type 1 method with the "orthogonal forward estimates only" updates rules w.r.t. N
and d to minimize a random logistic regression function. As predicted by the theory, the scaling is linear in the
dimension and quadratic w.r.t. N . The proposed method is suitable for large-scale problems, as it can quickly
solve problems with d ≈ 106.

Gradient Forward Est. l-BFGS

0.1

0.2

0.3

0.4

Gradient Forward Est. l-BFGS

0.05

0.1

0.15

0.2

0.25

0.3

Gradient Forward Est. l-BFGS

0.05

0.1

0.15

0.2

0.25

0.3

Figure 3: Distribution of the per-iteration time for three methods. The memory parameter of l-BFGS and the
type I method is set to (left to right) N = 5, 25, 100. The time required by the l-BFGS algorithm increases
slightly when N grows, and the per-iteration computation time is approximately two times faster than the type I
method. Surprisingly, the total computation time of the type-1 method remains constant for different N because
the condition in the backtracking line search is more often satisfied. Note that the ×2 factor between l-BFGS and
the type 1 method is expected since the type 1 method requires at least 2 gradient calls.

F.3 Influence of h

0 50 100 150 200 250
10

-10

10
-5

10
0

0 50 100 150 200 250
10

-10

10
-5

10
0

Figure 4: Influence of the step size h to compute the forward estimate x+ 1
2

in the "orthogonal forward estimates
only" updates rules on the Madelon dataset to minimize a (left) quadratic and (right) a logistic loss. The range of
acceptable h is rather large. For instance, this range is [10−9, 10−1] when minimizing the logistic loss.

Damien Scieur

F.4 Impact of the memory parameter N

0 50 100 150 200 250
10

-15

10
-10

10
-5

10
0

0 0.5 1 1.5 2 2.5
10

-15

10
-10

10
-5

10
0

Figure 5: Impact of the memory size N on the convergence rate of the type 1 method with the "Orthogonal
forward estimate" update rule to minimize a logistic loss on the Madelon dataset. Left: number of iterations versus
suboptimality, right: time versus suboptimality. Overall, it is always better to increase the memory parameter in
terms of the number of iterations, but there is an effect of diminishing returns.

F.5 Nonconvex optimization

0 1000 2000 3000 4000 5000

10
-10

10
-5

10
0

10
5

Gradient Descent

Iterate Only

Forward Estimate Only

Greedy

Accelerated Forward Only

lbfgs minfunc

0 1000 2000 3000 4000 5000

10
-10

10
-5

10
0

10
5

Gradient Descent

Iterate Only

Forward Estimate Only

Greedy

Accelerated Forward Only

lbfgs minfunc

0 2 4 6 8

10
-10

10
-5

10
0

10
5

Figure 6: Comparison of type 1 methods on the Generalized Rosenbrock function in R100.

0 1000 2000 3000 4000 5000

10
-10

10
-5

10
0

10
5

0 1000 2000 3000 4000 5000

10
-10

10
-5

10
0

10
5

Figure 7: Comparison of type 2 methods on the Generalized Rosenbrock function in R100

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

F.6 Comparison of Type 1 Methods on Convex Problems

F.6.1 Square loss and cubic regularization

0 10 20 30 40 50

10
-10

10
-5

10
0

Gradient Descent

Iterate Only

Forward Estimate Only

Greedy

Accelerated Forward Only

lbfgs minfunc

0 10 20 30 40 50

10
-10

10
-5

10
0

Gradient Descent

Iterate Only

Forward Estimate Only

Greedy

Accelerated Forward Only

lbfgs minfunc

0 0.05 0.1 0.15

10
-10

10
0

Figure 8: Comparison of type 1 methods: Square loss and cubic regularization on Madelon dataset

0 50 100 150 200 250

10
-10

10
-5

10
0

10
5

10
10

Gradient Descent

Iterate Only

Forward Estimate Only

Greedy

Accelerated Forward Only

lbfgs minfunc

0 50 100 150 200 250

10
-10

10
-5

10
0

10
5

10
10

Gradient Descent

Iterate Only

Forward Estimate Only

Greedy

Accelerated Forward Only

lbfgs minfunc

0 0.5 1 1.5 2 2.5 3

10
0

10
10

Figure 9: Comparison of type 1 methods: Square loss and cubic regularization on sido0 dataset

0 200 400 600 800 1000

10
-10

10
-5

10
0

Gradient Descent

Iterate Only

Forward Estimate Only

Greedy

Accelerated Forward Only

lbfgs minfunc

0 200 400 600 800 1000

10
-10

10
-5

10
0

Gradient Descent

Iterate Only

Forward Estimate Only

Greedy

Accelerated Forward Only

lbfgs minfunc

0 2 4 6 8

10
-10

10
-5

10
0

Figure 10: Comparison of type 1 methods: Square loss and cubic regularization on marti2 dataset

Damien Scieur

F.6.2 Logistic regression

0 100 200 300 400 500

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Gradient Descent

Iterate Only

Forward Estimate Only

Greedy

Accelerated Forward Only

lbfgs minfunc

0 100 200 300 400 500

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Gradient Descent

Iterate Only

Forward Estimate Only

Greedy

Accelerated Forward Only

lbfgs minfunc

0.5 1 1.5 2

10
-10

10
-5

10
0

Figure 11: Comparison of type 1 methods: Logistic loss and cubic regularization on Madelon dataset

0 100 200 300 400 500

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Gradient Descent

Iterate Only

Forward Estimate Only

Greedy

Accelerated Forward Only

lbfgs minfunc

0 100 200 300 400 500

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Gradient Descent

Iterate Only

Forward Estimate Only

Greedy

Accelerated Forward Only

lbfgs minfunc

20 40 60 80 100 120 140

10
-10

10
-5

10
0

Figure 12: Comparison of type 1 methods: Logistic loss and cubic regularization on sido0 dataset

0 1000 2000 3000 4000 5000 6000 7000

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Gradient Descent

Iterate Only

Forward Estimate Only

Greedy

Accelerated Forward Only

lbfgs minfunc

0 1000 2000 3000 4000 5000 6000 7000

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Gradient Descent

Iterate Only

Forward Estimate Only

Greedy

Accelerated Forward Only

lbfgs minfunc

20 40 60 80 100 120 140

10
-10

10
-5

10
0

Figure 13: Comparison of type 1 methods: Logistic loss and cubic regularization on marti2 dataset

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

F.7 Comparison of Type 2 Methods on Convex Problems

The type-2 method was not the focus of this study. Its prototypical implementation is rather slow, hence, the
time VS suboptimality graph are not showed.

F.7.1 Square loss and cubic regularization

0 20 40 60 80

10
-10

10
-5

10
0

0 20 40 60 80

10
-10

10
-5

10
0

Figure 14: Comparison of type 2 methods: Square loss and cubic regularization on Madelon dataset

0 10 20 30 40 50

10
-10

10
-5

10
0

0 10 20 30 40 50

10
-10

10
-5

10
0

Figure 15: Comparison of type 2 methods: Square loss and cubic regularization on sido0 dataset

0 50 100 150 200 250

10
-10

10
-5

10
0

0 50 100 150 200 250

10
-10

10
-5

10
0

Figure 16: Comparison of type 2 methods: Square loss and cubic regularization on marti2 dataset

Damien Scieur

F.7.2 Logistic regression

0 100 200 300 400 500

10
-10

10
-5

10
0

0 100 200 300 400 500

10
-10

10
-5

10
0

Figure 17: Comparison of type 2 methods: Logistic loss and cubic regularization on Madelon dataset

0 100 200 300 400 500

10
-10

10
-5

10
0

0 100 200 300 400 500

10
-10

10
-5

10
0

Figure 18: Comparison of type 2 methods: Logistic loss and cubic regularization on sido0 dataset

0 2000 4000 6000

10
-10

10
-5

10
0

0 2000 4000 6000

10
-10

10
-5

10
0

Figure 19: Comparison of type 2 methods: Logistic loss and cubic regularization on marti2 dataset

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

G Missing proofs

In this section, when not needed, the subscript t has been removed for clarity. The following definitions simplify
the notations:

D† = (DT D)−1DT , (34)
DT

† = D(DT D)−1, (35)
κD = ∥D†∥∥D∥, (36)

Note that the pseudo inverse D† exists under Requirement 3. Note that

D†D = I, DD† = PD = P.

G.1 Technical Result: Hessian Approximation

This section presents technical results related to the approximation of the Hessian ∇2f(x). To simplify notations,
let the matrices H0 and H̃0 be

H0 = DT R + RT D

2 , H̃0 = DT
† H0D† =

PGD† + DT
† GT P

2 . (37)

Intuitively, H̃0 is the Hessian approximation, while H0 is the approximation of the quadratic form DT∇2f(x)D.
Proposition 3 (Subspace Hessian Approximation Error). Assume D satisfies Requirement 1b. Then, the
following holds: ∥∥(H̃0 − P∇2f(x)P

)
Dα
∥∥ ≤ L

2 ∥D†∥∥ε∥∥Dα∥

Proof. Since DT D† = DT
† DT = P , D†D = I, PD = D, ∥P∥ = 1, and using (37),∥∥∥∥∥
[

PGD† + DT
† GT P

2 − P∇2f(x)P
]

Dα

∥∥∥∥∥
≤ 1

2
(∥∥(PGD† − P∇2f(x)P)Dα

∥∥+
∥∥(DT

† GT P − P∇2f(x)P)Dα
∥∥)

≤ 1
2

(∥∥Gα−∇2f(x)Dα
∥∥+ ∥D†∥

∥∥(GT −DT∇2f(x))Dα
∥∥)

Using inequality (8) for the first term and (9) for second gives∥∥∥∥∥
[

PGD† + DT
† GT P

2 − P∇2f(x)P
]

Dα

∥∥∥∥∥ ≤ 1
2

(
L

2 |α|
T ε + ∥D†∥

L∥Dα∥
2 ∥ε∥

)

Because |α|T ε ≤ ∥α∥∥ε∥ ≤ ∥D†∥∥Dα∥∥ε∥,∥∥∥∥∥
[

PGD† + DT
† GT P

2 − P∇2f(x)P
]

Dα

∥∥∥∥∥ ≤ L

2 ∥D†∥∥ε∥∥Dα∥.

Proposition 4. [Out-of-subspace Error Estimation] Let the function f satisfy Assumption 1. Let the matrices
D, G be defined as in (6) and vector ε as in (7). Then, for all α ∈ RN ,

∥(I − P)∇2f(x)Dα∥
∥Dα∥

≤ (∥(I − P)G∥+ L∥ε∥) κD

∥D∥
.

Damien Scieur

Proof. Indeed, using (9),

∥(I − P)∇2f(x)Dα∥ = ∥(I − P)(G−G +∇2f(x)D)α∥
≤ ∥(I − P)(∇2f(x)D −G)α∥+ ∥(I − P)Gα∥
≤ ∥(∇2f(x)D −G)α∥+ ∥(I − P)Gα∥
≤ ∥∇2f(x)D −G∥∥α∥+ ∥(I − P)Gα∥

≤
(

L∥ε∥
2 ∥α∥+ ∥(I − P)Gα∥

)

Hence,

∥(I − P)∇2f(x)Dα∥
∥Dα∥

≤

(
L∥ε∥

2 ∥α∥+ ∥(I − P)Gα∥
)

∥Dα∥
.

Moreover,

∥(I − P)∇2f(x)Dα∥
∥Dα∥

≤
(

L∥ε∥
2 + ∥(I − P)G∥

)
∥α∥.

≤
(

L∥ε∥
2 + ∥(I − P)G∥

)
∥α∥
∥Dα∥

≤ max
α

(
L∥ε∥

2 + ∥(I − P)G∥
)
∥α∥
∥Dα∥

=
(

L∥ε∥
2 + ∥(I − P)G∥

)
σ−1

min(D).

The desired result follows from the fact that κD = ∥D∥
σmin(D) .

G.2 Technical Results: Cubic Subproblem

This section presents results on the properties of the solution of the cubic subproblem

α⋆ def= arg min
α

∇f(x)T (Dα) + 1
2(Dα)T H̃Γ(Dα) + M

6 ∥Dα∥3, x+ = x + Dα⋆ (38)

where H̃Γ ∈ Rd×d is a rank N matrix such that

H̃ = DT
† HγD†, ⇔ H = DT H̃ΓD, Hγ = RT D + DT R + Γ

2 , (39)

and Γ is a N ×N matrix. For instance, setting Γ = M∥ε∥∥D∥I gives the H in algorithm 4.
Proposition 5. The first-order and second-order conditions of the subproblem (38) read

DT∇f(x) + HΓα + M

2 DT Dα∥Dα∥ = 0, (40)

HΓ + M

2 DT D∥Dα∥ ⪰ 0. (41)

Proof. See [59], equation (3.3), and [61], equation (2.7).

Proposition 6. Let f satisfies Assumption 1 and B ∈ Rd×d be any matrix. Assume the matrix D satisfies
Requirement 1b, and α satisfies the first-order condition (40). Let H̃Γ be defined in (39). Then,

∥∇f(x) + BDα−∇f(x+)∥ = ∥(H̃Γ −B + M∥Dα∥
2)Dα +∇f(x+)∥ (42)

≤ L

2 ∥Dα∥2 + ∥[B −∇2f(x)]Dα∥. (43)

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

Then, the following equation follows from the optimality condition multiplied by D(DT D)−1, writing P = DD† =
DT

† DT , assuming P∇f(x) = ∇f(x),

∇f(x) + (H̃Γ + M∥Dα∥
2)Dα = 0.

Replacing ∇f(x) gives

∥∇f(x) + BDα−∇f(x+)∥ = ∥ − (H̃Γ + M∥Dα∥
2)Dα + BDα−∇f(x+)∥,

which is the desired result.

Proof. The inequality follows directly from (2),

∥∇f(x) + BDα−∇f(x+)∥ ≤ ∥∇f(x) +∇2f(x)Dα−∇f(x+)∥+ ∥BDα−∇2f(x)Dα∥

≤ L

2 ∥Dα∥2 + ∥[B −∇2f(x)]Dα∥.

Proposition 7. Assume D satisfies Requirement 1b. Let H̃ be defined in (39). Then, for all Γ̃, if

B = H̃Γ −
1
2D†Γ̃DT

†

in proposition 6, the following holds:∥∥∥∥(1
2D†Γ̃DT

† + M∥Dα∥
2

)
Dα +∇f(x+)

∥∥∥∥ ≤ L

2 ∥Dα∥2 + ∥[B −∇2f(x)]Dα∥, (44)

where

∥[B −∇2f(x)]Dα∥ ≤ ∥Dα∥
(

L

2 ∥D†∥∥ε∥+ ∥(I − P)∇2f(x)Dα∥
∥Dα∥

+ 1
2
∥∥D†(Γ− Γ̃)D†

∥∥)
Proof. From proposition 6,

∥(H̃Γ −B + M∥Dα∥
2)Dα +∇f(x+)∥ ≤ L

2 ∥Dα∥2 + ∥[B −∇2f(x)]Dα∥.

Replacing B in the left-hand-side gives

∥(H̃Γ −B + M∥Dα∥
2)Dα +∇f(x+)∥ = ∥(

D†ΓDT
†

2 + M∥Dα∥
2)Dα +∇f(x+)∥

Since
∇2f(x)Dα = P∇2f(x)PDα + (I − P)∇2f(x)PDα,

where P = D(DT D)−1DT , and because PD = D, the inequality becomes

∥[B −∇2f(x)]Dα∥ =∥
[
H̃Γ −

1
2D†Γ̃DT

† −∇2f(x)
]

Dα∥ (45)

=∥[P + (I − P)]
[
H̃Γ −

1
2D†Γ̃DT

† −∇2f(x)
]

PDα∥ (46)

≤
∥∥(H̃0 − P∇2f(x)P

)
Dα
∥∥ (47)

+
(

1
2
∥∥DT

† (Γ− Γ̃)D†
∥∥+

∥∥(I − P)∇2f(x)Dα)
∥∥

∥Dα∥

)
∥Dα∥ (48)

Damien Scieur

Corollary 1 (Bound depending on Γ̃). In proposition 7,

• if Γ̃ = 0 and Γ = M∥D∥∥ε∥I,∥∥∥∥M∥Dα∥
2 Dα +∇f(x+)

∥∥∥∥ ≤ L

2 ∥Dα∥2 + ∥Dα∥
(
∥ε∥
∥D∥

(
L + MκD

2

)
κD + ∥(I − P)∇2f(x)P∥

)
(49)

• if Γ̃ = Γ,∥∥∥∥(1
2D†ΓDT

† + M∥Dα∥
2

)
Dα +∇f(x+)

∥∥∥∥ ≤ L

2 ∥Dα∥2 + ∥Dα∥
(

L

2
∥ε∥
∥D∥

κD + ∥(I − P)∇2f(x)Dα∥
∥Dα∥

)
(50)

• If Γ̃ = D(M∥Dα∥)DT and Γ = M∥D∥∥ε∥I,

∥∇f(x+)∥ ≤ L + M

2 ∥Dα∥2 + ∥Dα∥
(
∥ε∥
∥D∥

(
L + MκD

2

)
κD + ∥(I − P)∇2f(x)P∥

)
(51)

G.3 Technical Results: Decrease Guarantees

This section presents two technical results on the minimal decrease of the function f .
Proposition 8. Let Assumption 1 and Requirements 1b to 3 hold. Then, ∀y ∈ Rd, algorithm 4 ensures

f(x+) ≤ f(y) + M + L

6 ∥y − x∥3 + ∥y − x∥2

2

(
∥∇2f(x)− P∇2f(x)P∥+ δ

Lκ + Mκ2

2

)

Proof. The output of algorithm 4 ensures that

f(x+) ≤ min
α

f(x) +∇f(x)T Dα + 1
2(Dα)T∇2f(x)Dα + 1

2αT
(
H −DT∇2f(x)D

)
α + M

6 ∥Dα∥3

However, by the definition of H (Type I bound),

1
2αT

(
H −DT∇2f(x)D

)
α

≤1
2

(
αT

(
GT D + DT G

2 −DT∇2f(x)D
)

α + ∥α∥2 M∥D∥∥ε∥
2

)
≤1

2

(
αT

(
GT D + DT G

2 −DT∇2f(x)D
)

α + ∥D†∥2∥Dα∥M∥D∥∥ε∥
2

)
=1

2

(
(Dα)T

(
G−∇2f(x)D

)
α + ∥D†∥2∥Dα∥M∥D∥∥ε∥

2

)
.

The last equality comes from the fact that

αT
(
DT G

)
α = αT

(
DT G + GT D

2 + DT G−GT D

2

)
α = αT

(
DT G + GT D

2

)
α.

Now, using (8) with w = Dα gives

1
2αT

(
H −DT∇2f(x)D

)
α ≤ L∥Dα∥

4

N∑
i=1
|αi|εi + ∥D†∥2∥Dα∥M∥D∥∥ε∥

4 .

Finally, since
N∑

i=1
|αi|εi ≤ ∥α∥∥ε∥ ≤ ∥D†∥∥Dα∥∥ε∥,

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

the inequality becomes

1
2αT

(
H −DT∇2f(x)D

)
α ≤ ∥Dα∥2

4
(
L∥D†∥∥ε∥+ M∥D†∥2∥D∥∥ε∥

)
= ∥Dα∥2

4
∥ε∥
∥D∥

(
LκD + Mκ2

D

)
.

All together,

f(x+)

≤min
α

f(x) +∇f(x)T Dα + 1
2(Dα)T∇2f(x)Dα + 1

2αT
(
H −DT∇2f(x)D

)
α + M

6 ∥Dα∥3

≤min
α

f(x) +∇f(x)T Dα + 1
2(Dα)T∇2f(x)Dα + ∥Dα∥2

4
∥ε∥
∥D∥

(
LκD + Mκ2

D

)
+ M

6 ∥Dα∥3

Now, by Requirement 3, for all y, one can find α such that

Dα = P (y − x) = DD†(y − x).

Indeed, multiplying both sides by D† gives
α = D†(y − x).

Therefore, the minimum can be written as a function of y instead of α,

f(x+) ≤ min
y∈Rd

f(x) +∇f(x)T P (y − x) + 1
2(P (y − x))T∇2f(x)P (y − x)

+ ∥P (y − x)∥2

4
∥ε∥
∥D∥

(
LκD + Mκ2

D

)
+ M

6 ∥P (y − x)∥3. (52)

Since P∇f(x) = ∇f(x) by Requirement 1b, and using the crude bound ∥P (y − x)∥ ≤ ∥y − x∥,

f(x+) ≤ min
y∈Rd

f(x) +∇f(x)T (y − x) + 1
2(y − x)T∇2f(x)(y − x)

+ 1
2(y − x)

[
∇2f(x)− P∇2f(x)P

]
(y − x)

+ ∥y − x∥2

4
∥ε∥
∥D∥

(
LκD + Mκ2

D

)
+ M

6 ∥y − x∥3.

Using the lower bound (3),

f(x) +∇f(x)T (y − x) + 1
2(y − x)T∇2f(x)(y − x)− L

6 ∥y − x∥3 ≤ f(y),

the crude bound (y − x)
[
∇2f(x)− P∇2f(x)P

]
(y − x) ≤ ∥∇2f(x)− P∇2f(x)P∥∥y − x∥2, and Requirements 2

and 3 lead to the desired result,

f(x+) ≤ f(y) + M + L

6 ∥y − x∥3 + ∥y − x∥2

2

(
∥∇2f(x)− P∇2f(x)P∥+ δ

Lκ + Mκ2

2

)

Proposition 9. Let Assumption 1 and Requirements 1a, 2 and 3 hold. Then, ∀y ∈ Rd, algorithm 4 ensures

Ef(x+) ≤
(

1− N

d

)
f(x) + N

d
f(y) + N

d

(M + L)
6 ∥y − x∥3

+ N

d

∥y − x∥2

2

(
δ

Lκ + Mκ2

2 + (d−N)
d

∥∇2f(x)∥
)

Damien Scieur

Proof. The proof is the same as for proposition 8, until equation (52),

f(x+) ≤ min
y∈Rd

f(x) +∇f(x)T P (y − x) + 1
2(P (y − x))T∇2f(x)P (y − x)

+ ∥P (y − x)∥2

4
∥ε∥
∥D∥

(
LκD + Mκ2

D

)
+ M

6 ∥P (y − x)∥3.

With Requirement 1a, the following relations hold (see [44, lemma 5.7])

E[∥P (y − x)∥2] = (y − x)TE[P](y − x) = N

d
∥y − x∥2, (53)

E[∥P (y − x)∥3] ≤ E[∥P (y − x)∥2]∥y − x∥ = N

d
∥y − x∥2, (54)

E[(y − x)T P∇2f(x)P (y − x)] ≤ N2

d2 (y − x)∇2f(x)(y − x) + N(d−N)
d2 ∥∇2f(x)∥∥y − x∥2 (55)

Hence, removing the minimum and taking the expectation of (52) gives

Ef(x+) ≤f(x) + N

d
∇f(x)T (y − x)

+ 1
2

(
N2

d2 (y − x)∇2f(x)(y − x) + N(d−N)
d2 ∥∇2f(x)∥∥y − x∥2

)
+ N

d

∥y − x∥2

4
∥ε∥
∥D∥

(
LκD + Mκ2

D

)
+ N

d

M

6 ∥y − x∥3.

Using the lower bound from (3)

1
2(y − x)∇2f(x)(y − x) ≤ f(y) + L

6 ∥y − x∥3 − f(x)−∇f(x)(y − x)

in the inequality over the expectation gives

Ef(x+) ≤f(x) + N

d
∇f(x)T (y − x)

+ N2

d2

(
f(y) + L

6 ∥y − x∥3 − f(x)−∇f(x)(y − x)
)

+ 1
2

N(d−N)
d2 ∥∇2f(x)∥∥y − x∥2

+ N

d

∥y − x∥2

4
∥ε∥
∥D∥

(
LκD + Mκ2

D

)
+ N

d

M

6 ∥y − x∥3.

After simplification,

Ef(x+) ≤
(

1− N2

d2

)
f(x) + N2

d2 f(y) + N

d

(
1− N

d

)
∇f(x)T (y − x)

+ 1
2

N(d−N)
d2 ∥∇2f(x)∥∥y − x∥2

+ N

d

∥y − x∥2

4
∥ε∥
∥D∥

(
LκD + Mκ2

D

)
+
(

N2L

6d2 + NM

6d

)
∥y − x∥3.

To simplify the expression, since N ≤ d,(
N2L

6d2 + NM

6d

)
∥y − x∥3 ≤ N(M + L)

6d
∥y − x∥3.

Finally, since the function is convex,

N

d

(
1− N

d

)
∇f(x)T (y − x) ≤ N

d

(
1− N

d

)
(f(y)− f(x)).

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

From this last relation, Requirement 2 and Requirement 3 comes the desired result,

Ef(x+) ≤
(

1− N

d

)
f(x) + N

d
f(y) + N(M + L)

6d
∥y − x∥3

+ ∥y − x∥2

2

(
N

d
δ

Lκ + Mκ2

2 + N(d−N)
d2 ∥∇2f(x)∥

)

G.4 Technical Results: Accelerated Algorithm

Notations The following functions define the estimate sequence,

ℓt(x) =
t∑

i=2
bi−1 (f(xi) +∇f(xi)(x− xi)) , (56)

ϕt(x) = f(x1) + ℓt(x) + λ
(1)
t

2 ∥x− x0∥2 + λ
(2)
t

6 ∥x− x0∥3 (57)

Φt(x) = ϕt(x)
Bt

, (58)

where λ
(1,2)
t are non-negative and increasing, and the sequences bt, Bt are

Bt = t(t + 1)(t + 2)
6 =

t∑
i=1

bi, (59)

bt = (t + 1)(t + 2)
2 = Bt+1 −Bt. (60)

(61)

Moreover, the following quantities will be important later,

vt = arg min
x

ϕt(x) = arg min
x

Φt(x), (62)

βt = bt

Bt+1
, (63)

yt = (1− βt)xt + βtvt. (64)

Lemma 1. From [59, Lemma 4]. The Bregman divergence of the function ∥x∥i satisfies, for i ≥ 2,

∥x∥i − ∥y∥i −∇(∥y∥i)(x− y) ≥ 1
2i−2 ∥x− y∥i.

Proposition 10. The function ϕt is lower-bounded by

ϕt ≥ ϕt(vt)︸ ︷︷ ︸
=ϕ⋆

t

+λ
(1)
t

2 ∥x− vt∥2 + λ
(2)
t

12 ∥x− vt∥3 (65)

where vt = arg minx ϕt(x).

Proof. The first order condition on ϕt reads,

ℓ′
t +∇

(
λ

(1)
t

2 ∥vt − x0∥2 + λ
(2)
t

6 ∥vt − x0∥3

)
= 0.

Multiplying both sides by (x− vt) gives

ℓ′
t(x− vt) +∇

(
λ

(1)
t

2 ∥vt − x0∥2 + λ
(2)
t

6 ∥vt − x0∥3

)
(x− vt) = 0.

Damien Scieur

Note that, since ℓt is an affine function, ℓ′
t(x− vt) = ℓt(x)− ℓt(vt). Hence,

ℓt(x)− ℓt(vt) +∇
(

λ
(1)
t

2 ∥vt − x0∥2 + λ
(2)
t

6 ∥vt − x0∥3

)
(x− vt) = 0.

Finally, adding λ
(1)
t

2 ∥x− x0∥2 + λ
(2)
t

6 ∥x− x0∥3 on both sides and after reorganizing the terms,

ϕt(x) = ℓt(vt) + λ
(1)
t

2 ∥x− x0∥2 + λ
(2)
t

6 ∥x− x0∥3 −∇
(

λ
(1)
t

2 ∥vt − x0∥2 + λ
(2)
t

6 ∥vt − x0∥3
)

(x− vt). (66)

From lemma 1 with x = x− x0, y = vt − x0, and after reorganizing the terms,

∥x− x0∥i −∇(∥vt − x0∥i)(x− vt) ≥
1

2i−2 ∥x− vt∥i + ∥vt − x0∥i.

Therefore, using the previous inequality with i = 2 and i = 3, (66) becomes

ϕt(x) ≥ ℓt(vt) + λ
(1)
t

2 ∥vt − x0∥2 + λ
(2)
t

6 ∥vt − x0∥3 + λ
(2)
t

2 ∥vt − x∥2 + λ
(3)
t

12 ∥vt − x∥3

By definition of ϕ⋆
t = ϕt(vt),

ϕt(x) ≥ ϕ⋆
t + λ

(1)
t

2 ∥vt − x∥2 + λ
(2)
t

12 ∥vt − x∥3.

Proposition 11. Let

γ = κD

∥D∥

(
3
2∥ε∥+ 2∥(I − P)G∥

M

)
.

Then, under the assumptions of proposition 4 the condition

∥f(x+)∥2

M (γ + ∥Dα∥) ≤ −∇f(x)T Dα

is guaranteed as long as M ≥ 2L.

Proof. The starting point is (50) combined with proposition 4:∥∥∥∥(1
2D†ΓDT

† + M∥Dα∥
2

)
Dα +∇f(x+)

∥∥∥∥ ≤ L

2 ∥Dα∥2 + ∥Dα∥
(

L

2
∥ε∥
∥D∥

κD + ∥(I − P)∇2f(x)Dα∥
∥Dα∥

)
≤ L

2 ∥Dα∥2 + ∥Dα∥
(

L

2
∥ε∥
∥D∥

κD + (∥(I − P)G∥+ L∥ε∥) κD

∥D∥

)
≤ L

2 ∥Dα∥2 + ∥Dα∥
(

3L

2
∥ε∥
∥D∥

κD + |(I − P)G∥ κD

∥D∥

)
To simplify, let Γ = MDγDT . Hence,∥∥∥∥M

(
∥Dα∥+ γ

2

)
Dα +∇f(x+)

∥∥∥∥ ≤ L

2 ∥Dα∥2 + ∥Dα∥
(

3L

2
∥ε∥
∥D∥

κD + ∥(I − P)G∥ κD

∥D∥

)
Elevating to the square this inequality gives(

M

(
γ + ∥Dα∥

2

))2
∥Dα∥2 + ∥∇f(x+)∥2 + 2

(
M

(
γ + ∥Dα∥

2

))
∇f(x+)T Dα

≤ ∥Dα∥2
(

L

2 ∥Dα∥+ L

2
∥ε∥
∥D∥

κD + ∥(I − P)∇2f(x)Dα∥
∥Dα∥

)2

.

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

The desired result holds if the following condition is satisfied,(
M

(
γ + ∥Dα∥

2

))2
∥Dα∥2 ≥ ∥Dα∥2

(
L

2 ∥Dα∥+ 3L

2
∥ε∥
∥D∥

κD + ∥(I − P)G∥κD

∥D∥

)2
.

After simplification of the squares,

M
γ + ∥Dα∥

2 ≥ L

2 ∥Dα∥+ 3L

2
∥ε∥
∥D∥

κD + ∥(I − P)G∥κD

∥D∥
.

Replacing γ by its value gives

M
∥Dα∥+ κD

∥D∥

(
3
2∥ε∥+ 2 ∥(I−P)G∥

M

)
2 ≥ L

2 ∥Dα∥+ 3L

2
∥ε∥
∥D∥

κD + ∥(I − P)G∥κD

∥D∥
.

The condition is simplified into

(M − L)∥Dα∥
2 + (M − 2L)3

2
∥ε∥κD

∥D∥
≥ 0.

This condition is implied by M ≥ 2L.

Proposition 12. Under the same assumptions as proposition 7, if M ≥ 2L, and if

γ = κD

∥D∥

(
3
2∥ε∥+ 2∥(I − P)G∥

M

)
≤ (
√

3− 1)∥Dα∥
4 ,

then
2

33/4
∥∇f(x+)∥3/2
√

M
≤ −∇f(x+)T Dα.

Proof. The starting point is (50),∥∥∥∥M
∥Dα∥

2 Dα +∇f(x+)
∥∥∥∥ ≤ L

2 ∥Dα∥2 + ∥Dα∥

(
L

2
κD∥ε∥
∥D∥

+ Mγ

2 +
∥∥(I − P)∇2f(x)Dα

∥∥
∥Dα∥

)

Therefore, to obtain ∥∥∥∥M
∥Dα∥

2 Dα +∇f(x+)
∥∥∥∥ ≤M

(
∥Dα∥

4 + γ

)
∥Dα∥,

The following is sufficient,

M

(
∥Dα∥

4 + γ

)
∥Dα∥ ≥ L

2 ∥Dα∥2 + ∥Dα∥

(
L

2
κD∥ε∥
∥D∥

+ Mγ

2 +
∥∥(I − P)∇2f(x)Dα

∥∥
∥Dα∥

)
.

Using proposition 4, the condition can be strengthened into

M

2

(
∥Dα∥+ γ

2

)
∥Dα∥

≥ L

2 ∥Dα∥2 + ∥Dα∥
(

L

2
κD∥ε∥
∥D∥

+ Mγ

2 + (∥(I − P)G∥+ L∥ε∥) κD

∥D∥

)
= L

2 ∥Dα∥2 + ∥Dα∥
(

3L

2
κD∥ε∥
∥D∥

+ Mγ

2 + ∥(I − P)G∥ κD

∥D∥

)
Defining

γ

2 =
(

3
4

κD∥ε∥
∥D∥

+
∥(I − P)G∥ κD

∥D∥

M

)

Damien Scieur

simplifies the condition into

M

(
∥Dα∥

4 + γ

)
∥Dα∥ ≥ L

2 ∥Dα∥2 + ∥Dα∥

(
Mγ +

3(L− M
2)

2
κD∥ε∥
∥D∥

)
which is satisfied when M > 2L. Now, assume that

γ ≤ (
√

3− 1)∥Dα∥
4 .

Then, ∥∥∥∥M
∥Dα∥

2 Dα +∇f(x+)
∥∥∥∥ ≤ √3M∥Dα∥2

4 .

Elevating both sides to the square gives

∥∇f(x+)∥2 + 3M2∥Dα∥4

16 ≤ −M∥Dα∥∇f(x+)T Dα

Writing r = ∥Dα∥,
∥∇f(x+)∥2

Mr
+ 3Mr3

16 ≤ −∇f(x+)T Dα.

Using
c1

r
+ c2r3 ≥ 4c

1/4
2

(c1

3

)3/4
,

the inequality becomes

−∇f(x+)T Dα ≥ M1/4

2
∥∇f(x+)∥3/2

M3/4
4

33/4

= 2
33/4
∥∇f(x+)∥3/2
√

M
.

Proposition 13 (Termination of algorithm 6). Let f satisfies Assumption 1. Assume that Requirements 1b to 3
holds. Then, once M ≥ 2L, algorithm 6 terminates with ExitFlag equals to either SmallStep or LargeStep.
Moreover, if M0 ≤ L, then the algorithm terminates with M ≤ 4L. Moreover, if the algorithm terminates with
ExitFlag equals to SmallStep, then

∥Dα∥ ≤ 4γM√
3− 1

, γM = κD

∥D∥

(
3
2∥ε∥+ 2∥(I − P)G∥

M

)
.

Proof. Let
γM = κD

∥D∥

(
3
2∥ε∥+ 2∥(I − P)G∥

M

)
.

Assume that M ≥ 2L. If γM ≤ (
√

3−1)∥Dα∥
4 , then, by proposition 12, the following condition is satisfied:

2
33/4
∥∇f(x+)∥3/2
√

M
≤ −∇f(x+)T Dα.

In this case the algorithm terminates with ExitFlag = LargeStep. In any case, by proposition 11, the following
conditions is always satisfied when M ≥ 2L:

∥f(x+)∥2

M (γ + ∥Dα∥) ≤ −∇f(x)T Dα.

Then, if γM ≥ (
√

3−1)∥Dα∥
4 , the algorithm terminates with ExitFlag = SmallStep (otherwise the algorithm

would have been terminated with ExitFlag = LargeStep).

Since the algorithm doubles M until one of the two condition is satisfied, in the worst case, M = 4L.

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

Proposition 14. If λ
(1)
t and λ

(2)
t satisfy

λ
(1)
t ≥

b2
t+1
Bt

Mt+1 (γt + ∥Dtαt∥) , λ
(2)
t ≥ 4√

3
b3

t+1
B2

t

Mt+1,

where γt = κDt

∥Dt∥

(
3
2∥εt∥+ 2 ∥(I−Pt)Gt∥

Mt+1

)
. Then, the function ϕ satisfies

Btf(xt) ≤ ϕt(x), ϕt(x) ≤ Btf(x) + λ
(1)
t + λ̃(1)

2 ∥x− x0∥2 + λ
(2)
t + λ̃(2)

6 ∥x− x0∥3,

where
λ̃(1) = ∥∇f(x0)− P0∇f(x0)P0∥+ δ

(
Lκ + M1κ2

2

)
, λ̃(2) = M1 + L.

Proof. The result is proven by recursion. At t = 1, the condition Btf(xt) ≤ ϕt(x) is obviously satisfied since

f(x1) ≤ min
v

ϕ1(v) = f(x1).

On the other hand, by proposition 8,

f(x1) ≤ min
x

f(x) + λ̃(2)

6 ∥x− x0∥3 + λ̃(1)

2 ∥x− x0∥2

≤ f(x) + λ̃(2)

6 ∥x− x0∥3 + λ̃(1)

2 ∥x− x0∥2.

Therefore, the second condition holds by definition of ϕ,

ϕt = f(x1) + λ
(1)
t

2 ∥x− x0∥2 + λ
(2)
t

6 ∥x− x0∥3

≤ λ
(1)
1 + λ̃(1)

2 ∥x− x0∥2 + λ
(2)
1 + λ̃(2)

6 ∥x− x0∥3.

Now, assume t > 1, and Btf(xt) ≤ ϕt(x). Hence,

min
x

ϕt+1(x)

= min
x

ℓt(x) + bt [f(xt+1) +∇f(xt+1)(x− xt+1)] +
λ

(1)
t+1
2 ∥x− x0∥2 +

λ
(2)
t+1
6 ∥x− x0∥3

= min
x

ϕt(x) + bt [f(xt+1) +∇f(xt+1)(x− xt+1)]

+
λ

(1)
t+1 − λ

(1)
t

2 ∥x− x0∥2 +
λ

(2)
t+1 − λ

(2)
t

6 ∥x− x0∥3

≥min
x

ϕt(x) + bt [f(xt+1) +∇f(xt+1)(x− xt+1)]

(65)
≥ min

x
ϕ⋆

t + λ
(1)
t

2 ∥x− vt∥2 + λ
(2)
t

12 ∥x− vt∥3 + bt [f(xt+1) +∇f(xt+1)(x− xt+1)]

≥min
x

Btf(xt) + λ
(1)
t

2 ∥x− vt∥2 + λ
(2)
t

12 ∥x− vt∥3 + bt [f(xt+1) +∇f(xt+1)(x− xt+1)]
A.4
≥ min

x
Btf(xt+1) +∇f(xt+1)(xt − xt+1) + bt [f(xt+1) +∇f(xt+1)(x− xt+1)]

+ λ
(1)
t

2 ∥x− vt∥2 + λ
(2)
t

12 ∥x− vt∥3

= min
x

Bt+1f(xt+1) +∇f(xt+1)(Btxt + btx−Bt+1xt+1) + λ
(1)
t

2 ∥x− vt∥2 + λ
(2)
t

12 ∥x− vt∥3

(64)= min
x

Bt+1f(xt+1) + Bt+1∇f(xt+1)(yt − xt+1)

+ bt∇f(xt+1)(x− vt) + λ
(1)
t

2 ∥x− vt∥2 + λ
(2)
t

12 ∥x− vt∥3

Damien Scieur

The inequality is satisfied if either

(a) 0 ≤ Bt+1∇f(xt+1)(yt − xt+1) + bt∇f(xt+1)(x− vt) + λ
(2)
t

12 ∥x− vt∥3, or

(b) 0 ≤ Bt+1∇f(xt+1)(yt − xt+1) + bt∇f(xt+1)(x− vt) + λ
(1)
t

2 ∥x− vt∥2.

It remains now to find sufficient condition such that one of the previous inequalities hold.

Define xt+1 to be the output of algorithm 6 starting from yt, hence yt−xt+1 = −Dtαt. The algorithm guarantees
that

(a) −∇f(xt+1)T Dtαt ≥
2

33/4
∥∇f(xt+1)∥3/2√

Mt+1
and or (67)

(b) −∇f(xt+1)T Dtαt ≥
∥f(xt+1)∥2

Mt+1 (γt + ∥Dtαt∥)
(68)

Combining the expressions (a) and (b) leads to the following sufficient conditions:

0 ≤ Bt+1
2

33/4
∥∇f(xt+1)∥3/2√

Mt+1
+ bt∇f(xt+1)(x− vt) + λ

(2)
t

12 ∥x− vt∥3, (69)

0 ≤ Bt+1
∥f(xt+1)∥2

Mt+1 (γt + ∥Dtαt∥)
+ bt∇f(xt+1)(x− vt) + λ

(1)
t

2 ∥x− vt∥2. (70)

Case 1: equation (69). Starting from the first order condition of the minimum of (69) over x,

bt∇f(xt+1) + λ
(2)
t

4 ∥x− vt∥(x− vt) = 0. (71)

Multiplying (71) by (x− vt) gives

bt∇f(xt+1)(x− vt) = −λ
(2)
t

4 ∥x− vt∥3

Hence, when x satisfies (71),

bt∇f(xt+1)(x− vt) + λ
(2)
t

12 ∥x− vt∥3 = −λ
(2)
t

6 ∥x− vt∥3. (72)

Going back to (71), after isolating x− vt,

(x− vt) = − 4bt

λ
(2)
t

∇f(xt+1) 1
∥x− vt∥

Therefore, after taking the norm and changing the power,

∥x− vt∥3 =
(

4bt

λ
(2)
t

∥∇f(xt+1)∥
)3/2

,

⇔ λ
(2)
t

6 ∥x− vt∥3 = λ
(2)
t

6

(
4bt

λ
(2)
t

∥∇f(xt+1)∥
)3/2

= 4

3
√

λ
(2)
t

(bt∥∇f(xt+1)∥)3/2
.

After using (72) and injecting the minimal value makes the condition (69) stronger:

0 ≤ Bt+1
2

33/4
∥∇f(xt+1)∥3/2√

Mt+1
− 4

3
√

λ
(2)
t

(bt∥∇f(xt+1)∥)3/2
.

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

Hence, if λ
(2)
t satisfies

Bt+1
2

33/4
√

Mt+1
≥ 4

3
√

λ
(2)
t

b
(3/2)
t ⇔ λ

(2)
t ≥ 4√

3
b3

t

B2
t+1

Mt+1, (73)

then (69) is satisfied.

Case 2: equation (70). Starting from the first order condition of the minimum of (70) over x,

bt+1∇f(xt+1) + λ
(1)
t (x− vt). (74)

Hence,

(x− vt) = −bt∇f(xt+1)
λ

(1)
t

.

Injecting the value back in (70) gives

Bt+1
∥f(xt+1)∥2

M (γt + ∥Dtαt∥)
− b2

t

∥∇f(xt+1)∥2

λ
(1)
t

+ 1
2b2

t

∥∇f(xt+1)∥2

λ
(1)
t

.

Therefore, if the following condition holds,

Bt+1

2Mt+1 (γt + ∥Dtαt∥)
≥ b2

t

λ
(1)
t

⇔ λ
(1)
t ≥ b2

t

2Bt+1
Mt+1 (γt + ∥Dtαt∥) ,

then (70) is satisfied.

Proposition 15. Let f satisfies Assumption 1. Then, under Requirements 1b to 3, λ
(1)
t and λ

(2)
t in algorithm 7

are bounded by

λ
(1)
t ≤ 30 ·

b2
t+1
Bt

κD

(
δ max{4L, M0}+ max

i=0...t
∥(I − Pi)∇f(xi)Pi)∥

)
(75)

λ
(2)
t ≤ L

2 δ + max
i=0...t

∥(I − Pi)∇f(xi)Pi)∥. (76)

Proof. Since algorithm 7 doubles λ
(1)
t , λ

(2)
t until ϕ⋆

t ≥ f(xt+1), then by proposition 14, both λ
(1)
t , λ

(2)
t achieves at

most

λ
(1)
t ≤ 2 ·

b2
t+1
Bt

Mt+1 (γt + ∥Dtαt∥) , λ
(2)
t ≤ 2 · 4√

3
b3

t+1
B2

t

Mt+1.

There are three cases to distinguish:

1. The algorithm finishes with ExitFlag = LargeStep,

2. The algorithm finishes with ExitFlag = SmallStep.

Case 1. In this case, λ
(2)
t+1 may be updated. By proposition proposition 13, Mt ≤ 4L (unless M0 ≥ 4L). Hence,

λ
(2)
t is bounded by

λ
(2)
t ≤ 2 · 4√

3
b3

t+1
B2

t

max{M0, 4L} ≤ 5
b3

t+1
B2

t

max{M0, 4L}.

Damien Scieur

Case 2. In this case, λ
(1)
t+1 may be updated. By proposition 13, and by Requirements 2 and 3,

Mt+1 (γt + ∥Dtαt∥) ≤
√

3 + 1√
3− 1

Mt+1γt

=
√

3 + 1√
3− 1

κDt

∥Dt∥

(
3
2∥εt∥Mt+1 + 2∥(I − Pt)Gt∥

)
,

≤
√

3 + 1√
3− 1

(
3
2δκD max{4L, M0}+ 2κD

∥(I − Pt)Gt∥
∥Dt∥

)
.

In addition, by Theorem 1 and Requirement 2,

∥(I − Pt)Gt∥
∥Dt∥

≤ ∥(I − Pt)(Gt −∇f(xt)Dt)∥+ ∥(I − Pt)∇f(xt)Dt)∥
∥Dt∥

≤
L
2 ∥εt∥+ ∥(I − Pt)∇f(xt)Dt)∥

∥Dt∥
,

=
L
2 ∥εt∥+ ∥(I − Pt)∇f(xt)PtDt)∥

∥Dt∥
,

≤ L

2 δ + max
i=0...t

∥(I − Pi)∇f(xi)Pi)∥.

Hence,

Mt+1 (γt + ∥Dtαt∥)

≤
√

3 + 1√
3− 1

(
3
2δκD max{4L, M0}+ 2κD

(
L

2 δ + max
i=0...t

∥(I − Pi)∇f(xi)Pi)∥
))

,

≤
√

3 + 1√
3− 1

(
7
4δκD max{4L, M0}+ 2κD max

i=0...t
∥(I − Pi)∇f(xi)Pi)∥

)
.

≤ 7.5κD

(
δ max{4L, M0}+ max

i=0...t
∥(I − Pi)∇f(xi)Pi)∥

)
.

Therefore,

λ
(1)
t ≤ 2 ·

b2
t+1
Bt

Mt+1 (γt + ∥Dtαt∥)

≤ 30 ·
b2

t+1
Bt

κD

(
δ max{4L, M0}+ max

i=0...t
∥(I − Pi)∇f(xi)Pi)∥

)

G.5 Missing proofs from Sections 2 and 3

Theorem 1. Let the function f satisfy Assumption 1. Let matrices Dt, Gt be defined as in (6) and vector ε as
in (7). Subsequently, for all w ∈ Rd and α ∈ RN∣∣wT (∇2f(xt)Dt −Gt)α

∣∣ ≤ L∥w∥
2 |α|T εt, (8)

∥wT (∇2f(xt)Dt −Gt)∥ ≤ L∥w∥
2 ∥εt∥. (9)

Proof. Using Cauchy-Schwartz with (2) gives that, for all v,

vT
(
∇f(y)−∇f(z)−∇2f(z)(y − z)

)
≤ L∥v∥

2 ∥y − z∥2.

Let v = vi, y = yi, and z = zi. By the definition of Y, Z, D, G in (6),

vT
i

(
gi −∇2f(zi)di

)
≤ L∥vi∥

2 ∥di∥2.

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

Introducing ∇2f(x) gives

vT
i

(
gi −∇2f(zi)di

)
= vT

i

(
gi −∇2f(x)di

)
+ vT

i (∇2f(zi)−∇2f(x))di.

Since the Hessian is L-Lipchitz-continuous Assumption 1, (∇2f(zi)−∇2f(x))di ≤ L∥di∥∥zi − x∥. Therefore, by
the definition of εi,

vT
i

(
gi −∇2f(x)di

)
≤ L∥vi∥εi

2 . (77)

Let vi = sign(αi)w. Summing all inequalities multiplied by |αi| gives the first desired result:

wT
(
G−∇2f(x)D

)
α ≤

L∥w∥
∑N

i=1 εi|αi|
2 .

The second result is rather straightforward, since (77) with vi = w gives

wT
(
gi −∇2f(x)di

)
≤ L∥w∥εi

2 .

Therefore, √√√√ N∑
i=1

(wT (gi −∇2f(x)di))2 ≤ ∥w∥

√√√√ N∑
i=1
∥gi −∇2f(x)di∥2 ≤ ∥w∥

√√√√ N∑
i=1

Lε2
i ≤

L∥w∥∥ε∥
2 .

Theorem 2. Let the function f satisfy Assumption 1. Let xt+1 be defined as in (4); Dt, Gt be defined as in (6)
and εt be defined as in (7). Subsequently, ∀α ∈ RN ,

f(xt+1) ≤ f(xt) +∇f(xt)T Dtα + αT Htα
2 + L∥Dtα∥3

6 , (Type I bound)

∥∇f(xt+1)∥ ≤ ∥∇f(xt) + Gtα∥+ L
2

(
|α|T εt + ∥Dtα∥2

)
, (Type II bound)

where Ht
def= (GT

t Dt + DT
t Gt + IL∥Dt∥∥εt∥)/2.

Proof. The inequality (Type II bound) is a direct consequence of (2) (with y = x+, z = x) combined with (9),

∥∇f(x+)−∇f(x)−∇2f(x)Dα∥ ≤ L

2 ∥Dα∥2

⇔ wT
(
∇f(x+)−∇f(x)−∇2f(x)Dα

)
≤ L∥w∥

2 ∥Dα∥2

⇔ wT∇f(x+) ≤ L∥w∥
2 ∥Dα∥2 + wT

(
∇f(x) +∇2f(x)Dα

)
⇔ wT∇f(x+)

(8)
≤ L∥w∥

2

(
∥Dα∥2 +

N∑
i=1
|αi|εi

)
+ wT (∇f(x) + Gα)

⇔ wT∇f(x+) ≤ ∥w∥
(

L

2

(
∥Dα∥2 +

N∑
i=1
|αi|εi

)
+ ∥∇f(x) + Gα∥

)

Setting w = ∇f(x+) gives (Type II bound).

The inequality (Type I bound) instead comes from (3) combined with (9). Indeed,

f(x+) ≤ f(x) +∇f(x)Dα + 1
2(Dα)T∇2f(x)(Dα) + L

6 ∥Dα∥3

(9)
≤ f(x) +∇f(x)Dα + 1

2

(
(Dα)T Gα + L∥Dα∥

2

N∑
i=1
|αi|εi

)
+ L

6 ∥Dα∥3

Damien Scieur

It remains to use the followings bounds:

N∑
i=1
|αi|εi = αT (sign(α)⊙ ε) ≤ ∥α∥∥ε∥,

∥Dα∥ ≤ ∥D∥∥α∥.

All together,

f(x+) ≤ f(x) +∇f(x)Dα + 1
2(Dα)T Gα + L

4 ∥α∥
2∥D∥∥ε∥+ L

6 ∥Dα∥3

Finally, since (Dα)T Gα is a quadratic form, only the symmetric counterpart of DT G counts. That means,
(Dα)T Gα = αT DT G+GT D

2 α. Hence, writing H = DT G+GT D
2 + I L

2 ∥D∥∥ε∥ gives the desired result,

f(x+) ≤ f(x) +∇f(x)Dα + αT Hα

2 + L

6 ∥Dα∥3.

Theorem 3. The “orthogonal forward estimate only” update described in algorithm 1 satisfies Requirements 1b
and 3 with κ = 1.

Proof. The proof is done by recursion.

Since D1 is simply a vector of norm one, DT
1 D1 = 1. Moreover, D1 = ∇f(x0)

∥∇f(x0)∥ . Hence, is obviously span ∇f(x0).

Assume that Dt−1 is orthogonal. Then, potentially removing one column does not affect its orthogonality.
Therefore, D̃t−1 is orthogonal. Now, consider the vector

v =
(I − D̃t−1(D̃T

t−1D̃t−1)−1D̃T
t−1)∇f(xt)

∥(I − D̃t−1(D̃T
t−1D̃t−1)−1D̃T

t−1)∇f(xt)∥

=
(I − D̃t−1D̃T

t−1)∇f(xt)
∥(I − D̃t−1D̃T

t−1)∇f(xt)∥
,

where the second equality is obtained using the orthogonality of D̃t−1. This corresponds to a normalized orthogonal
projection of the vector ∇f(xt) onto the orthogonal columns span of D̃t−1. Since

D̃t−1(I − D̃t−1D̃T
t−1)∇f(xt) = 0,

the matrix Dt = [D̃t−1v] is orthogonal:

DT
t Dt =

[
I 0
0 1

]
.

Finally, the matrix Dt indeed spans ∇f(xt), since Pt∇f(xt) = ∇f(xt):

Pt∇f(x) = DtD
T
t ∇f(xt) = D̃t−1D̃T

t−1∇f(xt) + vvT∇f(xt)

= D̃t−1D̃T
t−1∇f(xt) +

(I − D̃t−1D̃T
t−1)∇f(xt)∇f(xt)T (I − D̃t−1D̃T

t−1)
∥(I − D̃t−1D̃T

t−1)∇f(xt)∥2
∇f(xt)

= D̃t−1D̃T
t−1∇f(xt) + (I − D̃t−1D̃T

t−1)∇f(xt)
∇f(xt)T (I − D̃t−1D̃T

t−1)2∇f(xt)
∥(I − D̃t−1D̃T

t−1)∇f(xt)∥2

= D̃t−1D̃T
t−1∇f(xt) + (I − D̃t−1D̃T

t−1)∇f(xt)
= ∇f(xt).

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

Theorem 4. Let f satisfy Assumption 1. Subsequently, at each iteration t ≥ 0, algorithm 3 starting at x0 with
M0 > 0 achieves

f(xt+1) ≤ f(xt)− Mt+1
12 ∥xt+1 − xt∥3, (11)

with Mt+1 < max
{

2L ; M0

2t

}
.

Moreover, the total function evaluation is bounded by 2t + log2
(

M0
L

)
.

Proof. Using (40), at each iteration, after the while loop, the first-order condition of the subroutine algorithm 4
reads

DT
t ∇f(xt) + Htαt+1 + Mt+1

2 DT
t Dtαt+1∥Dtαt+1∥ = 0. (78)

The subscript t is dropped for clarity. After multiplying by α,

∇f(xt)T Dα + αT Hα + M

2 ∥Dα∥3 = 0.

In addition, multiplying both times by α the second-order condition (41) gives

αT Hα ≥ −M

2 ∥Dα∥3.

which gives, after replacing it in (78),

∇f(xt)T Dα ≤ −M

2 ∥Dα∥3 + M

2 ∥Dα∥3 = 0. (79)

Injecting eqs. (78) and (79) into the while condition of algorithm 4 gives the desired result:

f(x+) ≤ f(x) +∇f(x)T Dα + 1
2αT Hα + M∥Dα∥3

6 , (80)

= f(x)− 1
2∇f(x)T Dα− M∥Dα∥3

12

≤ f(x)− M∥Dα∥3

12 .

Where (80) is guaranteed if M > L. Therefore, in the worst case, M < 2L. Finally, after t iterations, the number
of total gradient calls is bounded by 2t + log2

(
M0
L

)
as shown in [61].

Theorem 5. Let f satisfy Assumption 1 and assume that f is bounded below by f⋆. Let Requirements 1b to 3
hold, and Mt ≥Mmin. Subsequently, algorithm 3 starting at x0 with M0 > 0 achieves

min
i=1, ..., t

∥∇f(xi)∥ ≤max
{ 3L

t2/3

(
12f(x0)− f⋆

Mmin

)2/3
;(

C1

t1/3

)(
12f(x0)− f⋆

Mmin

)1/3 }
,

C1 = δL
(

κ+2κ2

2

)
+ maxi∈[0,t] ∥(I − Pi)∇2f(xi)Pi∥.

Proof. The starting inequality is (51):

∥∇f(x+)∥ ≤ L + M

2 ∥Dα∥2 + ∥Dα∥
(
∥ε∥
∥D∥

(
L + MκD

2

)
κD + ∥(I − P)∇2f(x)P∥

)
.

The result is obtained by decomposing the inequality using a maximum,

∥∇f(x+)∥

≤ max
{

(L + M)∥Dα∥2 ; 2∥Dα∥
(
∥ε∥
∥D∥

(
L + MκD

2

)
κD + ∥(I − P)∇2f(x)P∥

)}
.

Damien Scieur

In the first case,

∥Dα∥ ≥
√
∥∇f(x+)∥

L + M
, (81)

while in the second case,

∥Dα∥ ≥ ∥∇f(x+)∥
∥ε∥
∥D∥

(
L+MκD

2
)

κD + ∥(I − P)∇2f(x)P∥
.

Let Ct be defined as

Ct = ∥εt∥
∥Dt∥

(
L + Mt+1κDt

2

)
κDt

+ ∥(I − Pt)∇2f(xt)Pt∥.

Then, using Requirements 2 and 3, and since M < 2L by Theorem 4,

Ct ≤ C = δL

(
1 + 2κ

2

)
κ + max

t
∥(I − Pt)∇2f(xt)Pt∥

Therefore,

∥Dα∥ ≥ ∥∇f(x+)∥
C

. (82)

At each iteration t, combining eqs. (81) and (82) into Theorem 4 gives

f(xt)− f(xt+1) ≥ Mt+1

12 ∥xt+1 − xt︸ ︷︷ ︸
=Dtαt

∥3 ≥ Mt+1

12 min
{(
∥∇f(x+)∥
L + Mt+1

)3/2
;
(
∥∇f(x+)∥

C

)3
}

Therefore,

f(x0)− f⋆ ≥ f(x0)− f(xt)

=
t−1∑
i=0

f(xi)− f(xi+1)

≥
t−1∑
i=0

(
Mi+1

12 ∥xi+1 − xi∥3
)

≥
t−1∑
i=0

min
t

Mi+1

12

{(
∥∇f(xi+1)∥
L + Mi+1

)3/2
;
(
∥∇f(xi+1)∥

C

)3
}

≥ t min
i∈[0,t−1]

Mi+1

12 min
{(
∥∇f(xi+1)∥
L + Mi+1

)3/2
;
(
∥∇f(xi+1)∥

C

)3
}

≥ t
Mmin

12 min
{

min
i∈[1,t]

(
∥∇f(xi)∥

3L

)3/2
; min

i∈[1,t]

(
∥∇f(xi)∥

C

)3
}

After analyzing separately each case of the minimum, either min
i∈[1,t]

∥∇f(xi)∥

3L

3/2

≤ 12f(x0)− f⋆

tMmin
or

 min
i∈[1,t]

∥∇f(xt+1)∥

C

3

≤ 12f(x0)− f⋆

tMmin
.

It remains to simplify to obtain the desired result,

min
i=1...t

∥∇f(xi)∥ ≤ max
{

3L

t2/3

(
12f(x0)− f⋆

Mmin

)2/3
;
(

C

t1/3

)(
12f(x0)− f⋆

Mmin

)1/3
}

.

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

Theorem 6. Let f satisfy Assumptions 1 to 3. Let Requirements 1b to 3 hold. Then, for t ≥ 1, algorithm 3
starting at x0 with M0 > 0 achieves

f(xt)− f⋆ ≤ 6 f(x0)− f⋆

t(t + 1)(t + 2)

+ 1
(t + 1)(t + 2)

L(3R)3

2 + 1
t + 2

C2(3R)2

4 ,

C2
def= δL κ+2κ2

2 + maxi∈[0,t] ∥∇2f(xi)− Pi∇2f(xi)Pi∥.

Proof. Starting from the inequality in proposition 8,

f(xt+1) ≤ f(y) + Mt+1 + L

6 ∥y − xt∥3 + ∥y − xt∥2

2 C
(t)
2 ,

where
C

(t)
2 = ∥∇2f(xt)− Pt∇2f(xt)Pt∥+ δ

Lκ + Mt+1κ2

2 ,

and setting y = (1− βt)xt + βtx
⋆ and f(x⋆) = f⋆ gives

f(xt+1)− f⋆ ≤ f((1− βt)xt + βtx
⋆)− f⋆ + Mt+1 + L

6 β3
t ∥xt − x⋆∥3 + β2

t ∥xt − x⋆∥2

2 C
(t)
2 .

Because the function is star-convex,

f(xt+1)− f⋆ ≤ (1− βt)(f(xt)− f⋆) + Mt+1 + L

6 β3
t ∥xt − x⋆∥3 + β2

t ∥xt − x⋆∥2

2 C
(t)
2 .

Since algorithm 4 ensure a decrease in the function value, the iterate xt satisfies

xt ∈ {x : f(x ≤ f(x0))},

and therefore, ∥xt− x⋆∥ ≤ R by Assumption 2. In addition, M < 2L by Theorem 4. The inequality now becomes

(f(xt+1)− f⋆) ≤ (1− βt)(f(xt)− f⋆) + β3
t

LR3

2 + β2
t

R2C
(t)
2

2 . (83)

Finally, since M < 2L, the scalar Ct
2 is bounded over time by C2:

C
(t)
2 ≤ C2

def= δL
κ + 2κ2

2 + max
t
∥∇2f(xt)− Pt∇2f(xt)Pt∥.

Now, let

• Bt = t(t+1)(t+2)
6 ,

• bt : Bt = Bt−1 + bt, hence bt = t(t+1)
2 , and

• βt = bt+1
Bt+1

.

Therefore, for t ≥ 1,

1 = Bt

Bt
= Bt−1

Bt
+ bt

Bt
= Bt−1

Bt
+ βt−1 ⇒ 1− βt−1 = Bt−1

Bt
.

Injecting those relations in (83) gives

(f(xt+1)− f⋆) ≤ Bt

Bt+1
(f(xt)− f⋆) +

(
bt+1

Bt+1

)3
LR3

2 +
(

bt+1

Bt+1

)2
R2C2

2 ,

Damien Scieur

hence the recursion

Bt+1(f(xt+1)− f⋆) ≤ Bt(f(xt)− f⋆) +
b3

t+1
B2

t+1

LR3

2 +
b2

t+1
Bt+1

R2C2

2

≤ B0(f(xt)− f⋆) +
t∑

i=0

b3
i+1

B2
i+1

LR3

2 +
t∑

i=0

b2
i+1

Bi+1

R2C2

2 .

(f(xt+1)− f⋆) ≤ B0

Bt+1
(f(xt)− f⋆) +

∑t
i=0

b3
i+1

B2
i+1

Bt+1

LR3

2 +
∑t

i=0
b2

i+1
Bi+1

Bt+1

R2C2

2 .

Therefore, the rate reads By the definition of bt and Bt,

b3
i+1

B2
i+1

= 36
8

(i + 1)3(i + 2)3

(i + 1)2(i + 2)2(i + 3)2 = 9
2

(i + 1)(i + 2)
(i + 3)2 ≤ 9

2 ,

b2
i+1

Bi+1
= 6

4
(i + 1)2(i + 2)2

(i + 1)(i + 2)(i + 3) = 3
2

(i + 2)
(i + 3)(i + 1) ≤ 3

2(i + 1).

Hence, ∑t
i=0

b3
i+1

B2
i+1

Bt+1
≤

9
2 (t + 1)

(t+1)(t+2)(t+3)
6

≤ 27
(t + 2)(t + 3) ,

∑t
i=0

b2
i+1

Bi+1

Bt+1
≤
∑t

i=0
3
2 (i + 1)

(t+1)(t+2)(t+3)
6

=
3
4 (t + 2)(t + 1)
(t+1)(t+2)(t+3)

6

= 9
2(t + 3) .

Shifting from t + 1 tp t gives the desired result,

(f(xt)− f⋆) ≤ 6 f(xt)− f⋆

t(t + 1)(t + 2) + 1
(t + 1)(t + 2)

L(3R)3

2 + 1
t + 2

C2(3R)2

4 .

Theorem 7. Assume f satisfy Assumptions 1, 2 and 4. Let Requirements 1a, 2 and 3 hold. Then in expectation
over the matrices Di and for t ≥ 1, algorithm 3 starting at x0 with M0 > 0 achieves

EDt
[f(xt)− f⋆] ≤ 1

1 + 1
4
[

N
d t
]3 (f(x0)− f⋆)

+ 1[
N
d t
]2 L(3R)3

2 + 1[
N
d t
] C3(3R)2

2 ,

C3
def= δL κ+2κ2

2 + (d−N)
d maxi∈[0,t] ∥∇2f(xi)∥.

Proof. The proof technique is similar to [44]. Starting from proposition 9 with x = xt,

Ef(xt+1) ≤
(

1− N

d

)
f(xt) + N

d
f(y) + N

d

(Mt+1 + L)
6 ∥y − xt∥3

+ N

d

∥y − xt∥2

2

(
δ

Lκ + Mt+1κ2

2 + (d−N)
d

∥∇2f(xt)∥
)

,

where the expectation is taken with D0, . . . , Dt−1 fixed. Using the inequality Mt+1 ≤ 2L gives

Ef(xt+1) ≤
(

1− N

d

)
f(xt) + N

d

(
f(y) + ∥y − xt∥2

2 C3 + L

2 ∥y − xt∥3
)

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

where
C3

def=
(

δL
κ + 2κ2

2 + (d−N)
d

max
i∈[0,t]

∥∇2f(xi)∥
)

.

Let y = βtx
⋆ + (1− βt)xt, βt ∈ [0, 1]. After using Assumption 4 and Assumption 2,

Ef(xt+1) ≤
(

1− N

d

)
f(xt) + N

d

(
f
(

βtx
⋆ + (1− βt)xt

)
+ β2

t

C3R2

2 + β3
t

LR3

2

)
≤
(

1− N

d

)
f(xt) + N

d

(
βtf(x⋆) + (1− βt)f(xt) + β2

t

C3R2

2 + β3
t

LR3

2

)
=
(

1− N

d

)
f(xt) + N

d

(
βtf(x⋆) + (1− βt)f(xt) + β2

t

C3R2

2 + β3
t

LR3

2

)
,

=
(

1− βt
N

d

)
f(xt) + N

d

(
βtf(x⋆) + β2

t

C3R2

2 + β3
t

LR3

2

)
.

Hence, the recursion

(Ef(xt+1)− f⋆) ≤
(

1− βt
N

d

)
(f(xt)− f⋆) + N

d

(
β2

t

C3R2

2 + β3
t

LR3

2

)
.

Now, define

bt = t2,

Bt = B0 +
t∑

i=0
bi, B0 = 4

3

(
d

N

)3

βt = d

N

bt+1

Bt+1
⇒ 1− N

d
βt = Bt

Bt+1
.

Replacing those relations in the recursion gives

Bt+1 (Ef(xt+1)− f⋆)

≤Bt(f(xt)− f⋆) + N

dBt+1

((
d

N

bt+1

Bt+1

)2
C3R2

2 +
(

d

N

bt+1

Bt+1

)3
LR3

2

)

=Bt(f(xt)− f⋆) + d

N

b2
t+1

Bt+1

C3R2

2 + d2

N2
b3

t+1
B2

t+1

LR3

2

Expanding the inequality gives

Bt+1 (Ef(xt+1)− f⋆) ≤ B0(f(x0)− f⋆) + d

N

t+1∑
t=0

b2
i+1

Bi+1

C3R2

2 + d2

N2

t+1∑
t=0

b3
i+1

B2
i+1

LR3

2

Since

Bt = B0 +
t∑

i=1
≥ B0 +

∫ t

0
x2dx = B0 + t3

3
t∑

i=0

b2
t

Bt
≤

t∑
i=0

i4

B0 + i3/3 ≤ 3t2,

t∑
i=0

b3
t

B2
t

≤
t∑

i=0

i6

(B0 + i3/3)2 ≤ 9t,

the bound becomes

Bt+1 (Ef(xt+1)− f⋆) ≤ B0(f(x0)− f⋆) + d

N
3t2 C3R2

2 + d2

N2 9t
LR3

2

Damien Scieur

Dividing both sides by Bt+1 gives

Ef(xt+1)− f⋆ ≤ B0

B0 + (t+1)3

3

(f(x0)− f⋆) + d

N

3(t + 1)2

B0 + (t+1)3

3

C3R2

2 + d2

N2
9(t + 1)

B0 + (t+1)3

3

LR3

2 .

After the following simplifications,

B0

B0 + (t + 1)3/3 = 1
1 + (t+1)3

3B0

= 1
1 + 1

4
(

N
d (t + 1)

)3 ,

3(t + 1)2

B0 + (t + 1)3/3 = 3
B0

(t + 1)3

1 + (t+1)3

3B0

1
t + 1 ≤

3
B0

3B0
1

t + 1 = 9
t + 1 ,

9(t + 1)
B0 + (t+1)3

3

= 9
B0

(t + 1)3

(t+1)3

3B0

1
(t + 1)2 ≤

9
B0

3B0
1

(t + 1)2 = 27
(t + 1)2 ,

the inequality finally becomes (after shifting from t + 1 to t),

Ef(xt)− f⋆ ≤ 1
1 + 1

4
[

N
d t
]3 (f(x0)− f⋆) + 1[

N
d t
]2 L(3R)3

2 + 1[
N
d t
] C3(3R)2

2 .

Theorem 8. Assume f satisfies Assumptions 1, 2 and 4. Let Requirements 1b to 3 hold. Subsequently, for t ≥ 1,
the accelerated algorithm 7 starting at x0 with M0 > 0 achieves

f(xt)− f⋆ ≤C4
(3R)2

(t + 3)2 + 9 max {M0 ; 2L}
(

3R

t + 3

)3

+
λ̃(1)R2

2 + λ̃(2)R3

6
(t + 1)3 .

λ̃(1) = δ
2
(
Lκ + M1κ2)+ ∥∇2f(x0)− P0∇2f(x0)P0∥,

λ̃(2) = M1 + L,

C4 = 30κD

(
δ max{4L, M0}+ max

i≤t
∥(I − Pi)∇f(xi)Pi)∥

)
Proof. By construction of ϕt(x), from proposition 14 and Assumption 2,

Btf(xt) ≤ min
x

ϕt(x) (84)

≤ ϕt(x⋆) (85)

≤ Btf(x⋆) + λ
(1)
t + λ̃(1)

2 ∥x⋆ − x0∥2 + λ
(2)
t + λ̃(2)

6 ∥x⋆ − x0∥3 (86)

≤ Btf(x⋆) + λ
(1)
t + λ̃(1)

2 R2 + λ
(2)
t + λ̃(2)

6 R3 (87)

⇒ f(xt)− f⋆ ≤ λ
(1)
t + λ̃(1)

2Bt
R2 + λ

(2)
t + λ̃(2)

6Bt
R3. (88)

By proposition 15, the following bounds holds:

λ
(1)
t ≤ 30 ·

b2
t+1
Bt

κD

(
δ max{4L, M0}+ max

i=0...t
∥(I − Pi)∇f(xi)Pi)∥

)
,

λ
(2)
t ≤ 5

b3
t+1
B2

t

max{M0, 4L}.

Adaptive Quasi-Newton and Anderson Acceleration with Global Convergence Rates

Since bt+1
Bt

= 3
(t+3) ,

b3
t+1
B3

t

= 33

(t + 3)3 ,
b2

t+1
B2

t

= 32

(t + 3)2 . (89)

Therefore,

f(xt)− f⋆ ≤30 · κD

(
δ max{4L, M0}+ max

i=0...t
∥(I − Pi)∇f(xi)Pi)∥

) (3R)2

(t + 3)2

+ 5 max{M0, 4L}
(

3R

t + 3

)3

+
λ̃(1)R2

2 + λ̃(2)R3

6
(t + 1)3 .

	Introduction
	Contributions
	Limitations in Current qN Schemes

	Rethinking Quasi-Newton Methods
	First Ingredient: Subspace Minimization
	Second Ingredient: Multisecant Approximation of the Hessian
	Third Ingredient: Objective Function and Gradient Norm Upper bounds
	Fourth Ingredient: Direction Update Rule
	"Orthogonal Forward Estimate Only" Update Rule (Recommended)
	"Random Orthogonal Directions"
	Other Matrix Updates: Pruning or Orthogonalization

	Miscellaneous

	Convergence Rates for Iterative Type I Methods
	Assumptions
	Rates of Convergence
	Interpretation, Comparison With First-Order Methods and Special Cases
	Interpretation and Comparison
	Special Cases

	Numerical Experiments
	Conclusion and Future work
	Accelerated Algorithm
	Related work
	Inexact, Subspace, and Stochastic Newton Methods
	Nonlinear and Anderson Acceleration
	Quasi-Newton Methods
	Close Related Work
	(Accelerated) Quasi-Newton with Secant Inexactness
	ARC: Adaptive Regularization algorithm using Cubics
	Proximal Quasi-Newton Methods
	Proximal Extragradient Quasi-Newton Methods with Online Estimation

	Known rates of convergence and Comparison
	(Accelerated) Gradient Descent
	(Accelerated) Cubic Regularized Newton's Method
	Relation Between Parameters
	Comparing rates of convergence

	Link with quasi-Newton and Anderson/Nonlinear Acceleration
	Anderson Acceleration and Nonlinear Acceleration
	Single-secant and Multisecant Quasi-Newton Methods
	The Ideas Behind Single-Secant and Multisecant Hessian Approximation
	Davidon-Fletcher-Powell (DFP) Formula
	Multisecant Broyden Methods
	Link with Anderson Acceleration

	Links with Algorithms 4 and 5

	Solving the sub-problems
	Solving the Type 1 Subproblem
	Solving the Type 2 Subproblem
	Fundamentals of SOCP
	SOCP Formulation of the Type 2 Subproblem

	Additional Numerical Experiments
	Initial Parameter for the Backtracking Line search
	Scalability w.r.t. Dimension and Memory
	Influence of h
	Impact of the memory parameter N
	Nonconvex optimization
	Comparison of Type 1 Methods on Convex Problems
	Square loss and cubic regularization
	Logistic regression

	Comparison of Type 2 Methods on Convex Problems
	Square loss and cubic regularization
	Logistic regression

	Missing proofs
	Technical Result: Hessian Approximation
	Technical Results: Cubic Subproblem
	Technical Results: Decrease Guarantees
	Technical Results: Accelerated Algorithm
	Missing proofs from Sections 2 and 3

