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Abstract

Matching a source to a target probability mea-
sure is often solved by instantiating a linear
optimal transport (OT) problem, parameter-
ized by a ground cost function that quantifies
discrepancy between points. When these mea-
sures live in the same metric space, the ground
cost often defaults to its distance. When in-
stantiated across two different spaces, how-
ever, choosing that cost in the absence of
aligned data is a conundrum. As a result,
practitioners often resort to solving instead a
quadratic Gromow-Wasserstein (GW) prob-
lem. We exploit in this work a parallel be-
tween GW and cost-regularized OT, the regu-
larized minimization of a linear OT objective
parameterized by a ground cost. We use this
cost-regularized formulation to match mea-
sures across two different Euclidean spaces,
where the cost is evaluated between trans-
formed source points and target points. We
show that several quadratic OT problems fall
in this category, and consider enforcing struc-
ture in linear transform (e.g. sparsity), by in-
troducing structure-inducing regularizers. We
provide a proximal algorithm to extract such
transforms from unaligned data, and demon-
strate its applicability to single-cell spatial
transcriptomics/multiomics matching tasks.

1 INTRODUCTION

Optimal Transport (OT) is by now an established tool
in the machine learning playbook, one that plays a
key role when matching probability distributions. OT
has played a prominent role in generative modeling
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(Montavon et al., 2016; Genevay et al., 2018; Tong
et al., 2023; Neklyudov et al., 2023a; Lipman et al., 2022;
Neklyudov et al., 2023b), adversarial training (Sinha
et al., 2018; Wong et al., 2019), domain adaptation
(Courty et al., 2017), neuroscience (Janati et al., 2020),
or single-cell modeling (Schiebinger et al., 2019; Tong
et al., 2020; Bunne et al., 2023). However, OT is not
without drawbacks, and we target in this work an
important pain point that hinders the use of OT in
practical tasks: the challenges of choosing a ground
cost function to compare two measures, particularly
when they are supported on heterogeneous and high-
dimensional Euclidean spaces.

Choosing a cost or going quadratic? OT is most
often used to match probability distributions supported
on the same space, in which case the ground cost is
often picked to be an (exponentiated) distance on that
space. Yet, an increasing number of applications require
handling multimodality, i.e. comparing distributions
supported on heterogeneous spaces, as in multi-omics
singe-cell data matching (Demetci et al., 2022; Klein
et al., 2023a). For such problems, defining a ground
cost across two spaces (e.g. between vectors of differ-
ent dimensions), in the absence of other knowledge,
is understandably difficult. As a result, practitioners
often bypass this issue by resorting to the Gromov-
Wasserstein (GW) framework (Mémoli, 2011). GW
instead instantiates a quadratic problem in the space
of couplings that involves two within ground cost func-
tions, one for each space. However, solving the GW
problem is fraught with computational challenges: it
requires minimizing a concave quadratic function on
the space of couplings, an NP hard problem. Moreover,
some of the classic linear OT machinery, e.g. the ex-
istence of Monge maps, does not directly translate to
quadratic settings, as shown by Vayer (2020); Dumont
et al. (2022) who discussed their existence for a variety
of costs. This is a very active field of research, as shown
by recent contributions on the properties of entropic
GW (Zhang et al., 2022; Rioux et al., 2023); closed-form
formulas for Gaussians (Salmona et al., 2022; Le et al.,
2022), or scalable computational schemes (Scetbon
et al., 2022; Nekrashevich et al., 2023).
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High-dimensional issues. Another issue with OT
comes from the significant statistical challenges that
arise when dealing with high-dimensional problems
(Dudley, 1966; Weed and Bach, 2019; Genevay et al.,
2019). One way around this is performing offline di-
mensionality reduction, typically via PCA or VAEs, or
more elaborate schemes that carry out a joint estima-
tion of a projection and transport (Bonneel et al., 2015;
Niles-Weed and Rigollet, 2022; Paty and Cuturi, 2019;
Deshpande et al., 2019; Le et al., 2019). A recent line
of work proposes to leverage sparsity in displacements
(Cuturi et al., 2023; Klein et al., 2023b). These chal-
lenges only add up when dealing with heterogeneous
spaces and taking the quadratic route advocated in
GW. For example, the standard iterative algorithm to
solve the GW problem requires solving a linear OT
problem at each iteration (Peyré et al., 2016), and is
only able to handle dimensionality as a way to speed
up these routines (Scetbon et al., 2022)

Contributions. In this work, we target both issues in
the case where practitioners are faced with the task of
transporting points across two modalities, where each
lies in a high-dimensional space.

• We use a result by Paty and Cuturi (2020), who
showed that minimizing a concave function over cou-
plings can be expressed as the minimization of a
cost-regularized OT problem, to show that most com-
mon quadratic OT formulations can be unified under
that “cost-regularized OT” lens.

• We propose to leverage this fact to impose explicitly
structure on costs using a suitable convex regulariza-
tion. Focusing on dot-product costs parameterized
by a linear transform across spaces, we propose a sim-
ple alternated minimization algorithm, Prox-ROT,
to solve cost-regularized OT when the regularizer is
evaluated on such transforms. Prox-ROT is partic-
ularly efficient when the regularization function has
a closed-form proximity operator.

• We use this framework to introduce sparsifying norms
on such transforms and show this is equivalent to vari-
ants of GW which only depend on an adaptively se-
lected subset of dimensions: Using Prox-ROT with
such norms consists in iteratively performing a feature
selection step followed by an OT plan computation
step until convergence. This makes cost-regularized
OT particularly well-suited to high-dimensional prob-
lems, where linear OT and GW usually struggle.

• Building on Dumont et al. (2022), we show that
there exist Monge maps for the linear cost-regularized
OT problem. Extending the framework of entropic
Monge maps (Pooladian and Niles-Weed, 2021), we
derive entropic Monge maps across spaces, for linear
cost-regularized OT, and demonstrate that they con-

verge to the ground truth Monge maps under suitable
assumptions.

• We apply our methods to toy and real-world data.
We use sparsifying and low-rank regularizations to
solve high-dimensional mutliomics single-cell data in-
tegration tasks while improving over the best-known
OT baselines, and we take advantage of the cost-
regularized OT objective structure to use SGD to
solve a large-scale spatial transcriptomics problem.

The closest setting to ours appeared in Alvarez-Melis
et al. (2019), who proposed to use a constraint on
the spectrum of the linear transforms and showed the
equivalence between the Gromov-Wasserstein problem
and solving a linear OT problem with a dot product
cost using a Frobenius norm constraint on the linear
operator. The Prox-ROT algorithm in Section 3 using
the nuclear or the rank regularization results (up to
reparametrization) in a similar algorithm to the one
proposed in Alvarez-Melis et al. (2019). We take the
alternative regularization route and consider general
regularizations. Notably, we pay particular attention to
sparsifying norms acting directly on the entries of the
linear operator, and draw links with GW-like problems
on a subset of the dimensions.

Notations. In what follows, we consider (X , dX ) and
(Y, dY), two metric spaces, and (α, β) ∈ P(X )× P(Y),
two probability measures with compact supports. The
space of couplings Π(α, β) is defined as the probability
distributions on (X × Y) whose marginals are α and β
(Santambrogio, 2015):

Π(α, β) =
¶
γ ∈ P (X × Y) : (πx)♯ γ = α, (πy)♯ γ = β

©
,

where πx and πy are the projections of X × Y onto
X and Y respectively. We denote the linear OT cost
between α and β with cost c ∈ C(X × Y) as

Wc (α, β) ≜ min
π∈Π(α,β)

∫
X×Y

c(x, y) dπ(x, y),

which is a linear problem in π. When c = dpX and
X = Y, W1/p

c defines a distance between probability
measures for all p ≥ 1 (Villani, 2003).

2 OT ACROSS SPACES AS A
CONCAVE MINIMIZATION
PROBLEM

While the classical OT objective is a linear function of
the coupling π, existing approaches to comparing proba-
bility distributions across spaces all require minimizing
a concave function over Π(α, β).
Problem 2.1. Let Q be a concave function over
Π(α, β). We define the concave minimization over
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couplings problem as

min
π∈Π(α,β)

Q(π). (QOT)

Remarkably, concave minimization problems over cou-
plings are closely linked to linear OT via convex duality.

Proposition 2.2 (Remark 2 in Paty and Cuturi
(2020)). Let Q be a proper usc concave function over
Π(α, β). Writing Q∗ for its convex conjugate, one has:

inf
π∈Π(α,β)

Q(π) = inf
π∈Π(α,β)
c∈C(X×Y)

∫
c(x, y) dπ + (−Q)∗(−c)

= inf
c∈C(X×Y)

Wc (α, β) + (−Q)∗(−c).

In other words, concave minimization problems over
couplings can be reformulated as the minimization over
cost functions of a linear OT problem plus a cost regu-
larization. Consequently, we can define the following
cost-regularized reformulation of Problem 2.1.
Problem 2.3. Let R be a convex function over
C (X × Y). We define the cost-regularized optimal
transport problem as

ROT(α, β) ≜ inf
c∈C(X×Y)

Wc (α, β) +R(c). (ROT)

Note that, trivially, ROT = QOT when R(c) =
(−Q)

∗
(−c). We show next how well-known OT for-

mulations used to compare probability distributions
across spaces can be reduced to either QOT or ROT.
We say that two minimization problems are equivalent,
or that one is an instance of the other, when they have
the same minimizers in Π(α, β).

2.1 Examples

Sturm’s distance. Sturm (2006) defined a distance
between metric measured spaces (MMS) that quantifies
how “isometric“ they are. Given two MMS (X , dX , α)
and (Y, dY , β), Sturm defined the squared distance:

min
π∈Π(α,β)

min
(Z,dZ)∈C
ϕ:X→Z
ψ:Y→Z

∫
X×Y

d2Z(ϕ(x), ψ(y)) dπ(x, y),

where ϕ : X → Z and ψ : Y → Z are constrained to
be isometries and (Z, dZ) is a metric space. As such,
Sturm’s distance is an instance of ROT with

R(c) =

ß
0 if ∃(Z, ϕ, ψ) : c(x, y) = d2Z(ϕ(x), ψ(y))
∞ otherwise.

Wasserstein Procrustes. A more tractable variant
of Sturm’s distance when X ,Y ⊂ Rd is the so-called

Wasserstein Procrustes problem (Zhang et al., 2017;
Grave et al., 2019). It is defined as

min
π∈Π(α,β)

min
C∈Od

∫
X×Y

∥Cx− y∥2 dπ(x, y). (1)

where Od is the orthogonal manifold. Wasserstein
Procrustes defines a distance between X and Y up to
a rotation. It is an instance of ROT with

R(c) =

ß
0 if ∃C ∈ Od : c(x, y) = ∥Cx− y∥2 .
∞ otherwise.

Remarkably, (1) is a weighted orthogonal Procrustes
problem, and can be cast as an instance of QOT.
Proposition 2.4. Let X ,Y ⊂ Rd. Then the Wasser-
stein Procrustes distance is an instance of the concave
minimization problem (QOT) with

Q(π) =

∫ ∥∥U(π)V(π)⊤x− y
∥∥2 dπ,

where U(π)Σ(π)V(π)⊤ is an SVD of
∫
X×Y yx

⊤ dπ.

Arbitrary Transformations. While Sturm considers
isometries and the Wasserstein Procrustes approach
uses rotations, any type of a transformation of α and/or
β could be used. For example, Cohen and Guibas (1999)
studied a large range of transformations, including lin-
ear ones and translations. Finally, learning generative
models with OT (Genevay et al., 2018; Salimans et al.,
2018) with learned features to define costs is another
instance of ROT.

The Gromov-Wasserstein distance. Given two
costs cX and cY , the Gromov-Wasserstein (GW) dis-
tance (Mémoli, 2011) is defined as

min
π∈Π(α,β)

∫
(X×Y)2

(cX (x, x′)− cY(y, y
′))

2
dπ dπ. (2)

Mémoli (2011) showed that when cX and cY are dis-
tances, (2) defines a distance between metric measured
spaces up to isometry. This problem is not concave
in general, but when cX and cY define a conditionally
negarive kernel, the function π 7→ ⟨Q(π), π⟩, where

Q ((x, y), (x′, y′)) := (cX (x, x′)− cY(y, y
′))

2
,

is a concave quadratic function of π (Dumont et al.,
2022, Proposition 1). In this case, (2) is an instance of
(QOT) with Q(π) = ⟨Q(π), π⟩.

Two common cases that fit this setting are the inner
product and the squared Euclidean distance. In this
case, it has been recently shown (Vayer, 2020) that
the concave minimization problem has a simple cost-
regularized equivalent.
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Proposition 2.5. Let X ⊂ Rdx and Y ⊂ Rdy . For all
M ∈ Rdy×dx , define cM(x, y) = −⟨Mx, y⟩.

• Let cX = ⟨·, ·⟩X and cY = ⟨·, ·⟩Y . The problems

min
π∈Π(α,β)

∫
(⟨x, x′⟩ − ⟨y, y′⟩)2 dπ dπ (GW-IP)

and min
π∈Π(α,β)

M∈Rdy×dx

∫
−⟨Mx, y⟩dπ +

1

2
∥M∥2F

(GW-IP-ROT)

are equivalent: GW-IP is an instance of ROT with

R(c) =

ß
1
2 ∥M∥2F if ∃M ∈ Rdy×dx : c = cM
∞ otherwise.

• Let cX = ∥· − ·∥2X and cY = ∥· − ·∥2Y . The problems

min
π∈Π(α,β)

∫
(∥x− x′∥2 − ∥y − y′∥2)2 dπ dπ (3)

and min
π∈Π(α,β)

M∈Rdy×dx

∫
−⟨Mx, y⟩ − ∥x∥2∥y∥2 dπ +

1

2
∥M∥2F

are equivalent. Hence, (3) is an instance of ROT with

R(c) =

ß
1
2 ∥M∥2F if ∃M : c = cM − ∥x∥2∥y∥2
∞ otherwise.

2.2 Leveraging cost-regularized OT

In this work, we aim to incorporate additional structure
to OT across spaces by leveraging the ROT formula-
tion. Inspired by GW, we will constrain our costs to be
linear and consider new regularization functions. We
will see that depending on the regularization function,
we can draw interesting links to GW-like problems by
writing the ROT problem in its equivalent QOT form.

Entropic regularization. A preferred way to com-
pute OT and GW distances in practice is adding an
entropic regularization to the linear OT term (Cuturi,
2013; Peyré et al., 2016). Given an ε > 0 we can follow
the same procedure and add a regularization to ROT.
The entropy-regularized ROT problem writes

min
c∈C(X×Y)

Wε
c (α, β) +R(c) (4)

where Wε
c (α, β) ≜ min

π∈Π(α,β)

∫
cdπ + εKL(π||α⊗ β),

with KL(π||α ⊗ β) =
∫
log
Ä

dπ
dα⊗β

ä
dπ. In this case,

the entropic version of QOT is simply

min
π∈Π(α,β)

Q(π) + εKL(π||α⊗ β). (5)

Fused ROT. In some cases, we may even have an inter-
space cost that can be used alongside the learned cost.
This is the case in the context of the fused Gromov-
Wasserstein cost (Vayer et al., 2020). Such a cost
c̃ : C(X ×Y) → R, which isn’t learned, can be naturally
integrated as (with η ≥ 0)

ROT c̃ε (α, β) = min
c∈C(X×Y)

Wε
c+ηc̃(α, β) +R(c). (6)

3 STRUCTURED OT ACROSS
SPACES

3.1 Linear cost-regularized OT

Let X ⊂ Rdx and Y ⊂ Rdy . From this point on, we
consider linear costs parameterized by a matrix M ∈
Rdy×dx : cM(x, y) = −⟨Mx, y⟩. In this case we can
write (4) as

min
π∈Π(α,β)

M∈Rdy×dx

∫
−⟨Mx, y⟩dπ +R(M) + εKL(π||α⊗ β),

(L-ROTε)

where we directly define R on Rdy×dx for brevity.

Proposition 3.1. The linear ROT problem
(L-ROTε) is equivalent to the QOT problem (5) with

Q(π) = −R∗
Å∫

X×Y
yx⊤ dπ(x, y)

ã
,

where R∗ is the convex conjugate of R.

Since for low values of ε, (L-ROTε) is a concave mini-
mization problem, solving it exactly is generally out of
reach. However, we can approximate it using a simple
alternated minimization procedure on the objective.
Initializing at a π0 ∈ Π(α, β), let

Mk+1 = argmin
M∈Rdy×dx

∫
−⟨Mx, y⟩dπk +R(M)

πk+1 = argmin
π∈Π(α,β)

−⟨Mk+1x, y⟩dπ + εKL(π||α⊗ β)
(7)

Proposition 3.2. Let X = {xi}mi=1 ⊂ Rdx , Y =
{yi}ni=1 ⊂ Rdy , α =

∑m
i=1 αiδxi

and β =
∑n
j=1 βjδyj .

Let ε > 0 and R be strongly convex. Then, any limit
point of (Mk, πk) defined in (7) is a stationary point
of the objective in (L-ROTε).

In practice, the π-step can be carried out efficiently
using Sinkhorn’s algorithm (Cuturi, 2013) with the cost
cMk

. The M-step is in general trickier since it might
involve a difficult optimization problem depending on
the regularization function R.
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3.2 Proximal ROT

We consider regularizations of the form
R(M) = 1

2 ∥M∥2F + λg(M). We aim to solve

min
π∈Π(α,β)

M∈Rdy×dx

−
∫
⟨Mx, y⟩dπ +

∥M∥2F
2

+ λg(M) (8)

+ εKL(π||α⊗ β),

where g : Rdy×dx → R. Note that when λ = 0, per Prop.
2.5, (8) is equivalent to (GW-IP). The minimization
with respect to M in (8) is a well-studied problem
in the optimization and machine learning literature
(Bauschke and Combettes, 2011).
Lemma 3.3. For any π, the solution of (8) in M is

M(π) ≜ proxλg

Å∫
X×Y

yx⊤ dπ

ã
,

where proxh(x) ≜ argminz∈Rd
1
2∥x− z∥2 + h(z).

The alternated minimization scheme (7) becomes:

Mk+1 = proxλg

Å∫
X×Y

yx⊤ dπk

ã
(Prox-ROT)

πk+1 = argmin
π∈Π(α,β)

−
∫
X×Y

⟨Mk+1x, y⟩dπk

+ εKL(πk||α⊗ β)

As a result, the M-step in Prox-ROT can be efficiently
implemented when the proximal operator of g can be
computed in closed form.

Statistical benefits of sparsity. Since OT famously
suffers from the curse of dimensionality – the sample
complexity for estimating OT maps is O(n−

1/d) (Niles-
Weed and Rigollet, 2022; Pooladian and Niles-Weed,
2021) – the main factor we consider in choosing the
regularization, beyond computational efficiency, is us-
ing inductive biases to reduce effective dimension of
the OT problem.

ℓ1 and ℓ1,2 regularizations. Among the choices of g
where the M-step can be implemented efficiently are
the ℓ1 and and ℓ1,2 regularizations, where ∥M∥1 =∑dx
i=1

∑dy
j=1 |Mij | and ∥M∥1,2 =

∑dx
i=1 ∥M:i∥2. Their

proximal operators are given by (Chierchia et al., 2023)

proxλ∥·∥1
(M)ij = sign(Mij) (|Mij | − λ)+

proxλ∥·∥1,2
(M):i =

Å
1− λ

max {∥M:i∥ , λ}

ã
M:i,

where (a)+ = max(a, 0) and A:i denotes the ith column
of A. Intuitively, the reason behind using ℓ1 regular-
ization is to select the features in the spaces (or point

clouds) X and Y that are the most helpful in aligning
those spaces. Similarly, using ℓ1,2 regularization, we
can discard features in one of the spaces alone.

This is best seen by examining the iterations of Prox-
ROT in each of these cases: For ℓ1, the prox operator
in the M iteration results in a matrix Mk+1 where
some entries Mk+1(i, j) can be set to 0, and as a result
the update of the OT plan πk+1 is oblivious to the
corresponding features xi and yj ; similarly, for ℓ1,2
iterations, the prox sets some columns of M:i to 0,
and as a result the update of the OT plan doesn’t
use the corresponding dimensions xi. In both cases,
Prox-ROT alternates between a feature selection step
and a linear OT step.

Rewriting (8) in its QOT form, we show that these reg-
ularizations result in problems that are closely related
to the inner-product GW problem (GW-IP).

Proposition 3.4. Consider Problem (8) with ε = 0.

• ℓ1,2-regularization: with g(M) = ∥M∥1,2, (8) with
ε = 0 is equivalent to QOT with

Q(π) =

∫
(X×Y)2

(
⟨xIπ , x′Iπ ⟩ − ⟨y, y′⟩

)2
dπ dπ − λ2

2
|Iπ|

−
∫
X
⟨xIπ , x′Iπ ⟩

2 dα+ λ
∑
i∈Iπ

∥∥∥∥∫
X×Y

xiy dπ(x, y)

∥∥∥∥ ,
where Iπ =

{
i :

∥∥∥∫X×Y xiy dπ
∥∥∥ > λ

}
. Moreover, with

(π⋆,M⋆) a solution to (8), (8) is equivalent to

min
π∈Π(α,β)

∫
(X×Y)2

(
⟨xIπ⋆ , x

′
Iπ⋆ ⟩ − ⟨y, y′⟩

)2
dπ⋆ dπ.

• ℓ1-regularization: With g(M) = ∥M∥1, (8) with
ε = 0 is equivalent to QOT with

Q(π) =

∫
(X×Y)2

∑
(i,j)∈Iπ

(
xix

′
i − yjy

′
j

)2
dπ dπ − λ2

2
|Iπ|

−
∑

(i,j)∈Iπ

Å∫
X×Y

x2i + y2j dα dβ − λ

∣∣∣∣∫
X×Y

yjxi dπ

∣∣∣∣ã ,
where Iπ =

¶
(i, j) :

∫
X×Y xiyj dπ > λ

©
. Moreover,

with (π⋆,M⋆) a solution to (8), (8) is equivalent to

min
π∈Π(α,β)

∫
(X×Y)2

∑
(i,j)∈Iπ⋆

(
xix

′
i − yjy

′
j

)2
dπ⋆ dπ.

Nuclear and Rank regularizations. Two other
possible choices of regularizations are the nuclear norm
and rank regularizations. Let M = U⊤ΣV be an SVD
of M, where Σ contains the vector of singular vectors
in decreasing order σ = (σi)i∈[dx]

of M. The nuclear
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norm of M is defined as ∥M∥∗ = ∥σ∥1. The proximal
operator of ∥·∥∗ and rk (·) are respectively

proxλ∥·∥∗
(M) = U⊤proxλ∥·∥1

(σ)V

proxλrk (M) = U⊤proxλ∥·∥0
(σ)V,

where proxλ∥·∥0
(σ)i = σi1{σ2

i>2λ}. Consider a solu-
tion (M⋆, π⋆) of (8) with the nuclear norm. Then
M⋆ = proxλ∥·∥∗

(∫
yx⊤ dπ⋆

)
. Let λ be large enough

so that rk (M⋆) = r > 0. Denote by Ũ = U:,:r (resp.
Ṽ = σ̃ ⊙V:,:r) the restriction of U (resp. V) to its
first r lines (resp. columns multiplied elementwise
with σ̃, the restriction of σ to its first r elements).
Then, we can write the cost of the linearized problem
as cM⋆(x, y) = −⟨Ṽx, Ũy⟩. Ṽx, Ũy ∈ Rr, thus the
nuclear norm allows to similarly reduce the effective
dimension of the problem from potential large dx, dy
to a small r determined by the magnitude of the regu-
larization λ.

Note that since computing the SVD at each itera-
tion of Prox-ROT can be costly when dx and dy are
large, we suggest in extremely high-dimensional prob-
lems to directly parametrize M as a low-rank matrix
M = M⊤

2 M1, where r ≪ min(dx, dy), and use the
alternated minimization scheme (7). We write the cor-
responding iterations in the Appendix. Despite making
the problem non-convex in M, we see in our applica-
tions that the resulting method works well.

4 ENTROPIC MONGE MAPS FOR
ROT

Optimal transport (Monge, 1781) seeks a map
T : X → Y that minimizes the average displacement
cost c(x, T (x)) between two measures α and β, i.e.
finding an OT coupling of the form π⋆ = (id, T )♯ α.
Although such a (so-called) Monge map does not exist
for all costs, Brenier (1991) showed that in the case
where c(x, y) = 1

2∥x− y∥2, if α has a density, the opti-
mal map exists, is unique, and can be written as the
gradient of a convex function. A convenient approach
to approximate that Monge map can be found in en-
tropic regularization. Pooladian and Niles-Weed (2021)
showed that one can build a map Tε using entropy reg-
ularized transport (with regularization strength ε > 0)
such that Tε

ε→0−−−→ T . We show that there always
exists a Monge map for linear ROT, and propose a
formulation for an entropic map for this problem.

4.1 Monge maps for linear ROT

Dumont et al. (2022) recently showed that there exists
a Monge map for the GW-IP problem, which, as seen
in Prop. 2.5 is a special case of linear ROT. Here, we

extend their reasoning to show the existence of Monge
maps for the general linear ROT problem.

Proposition 4.1. Let α ∈ P(Rdx) and β ∈ P(Rdy)
with compact supports and dx ≥ dy. Assume that α≪
Ldx , the Lebesgue measure. Then there exists a map
T : X → Y such that π⋆ = (id, T )♯ α and (π⋆,M(π⋆))
is optimal for (L-ROTε) with ε = 0.

Proof. Let (M⋆, π⋆) be optimal for (L-ROTε) with
ε = 0. Then π⋆ is a solution to

min
π∈Π(α,β)

∫
X×Y

−⟨M⋆x, y⟩dπ(x, y),

and (Dumont et al., 2022, Theorem 4) showed that
for all M ∈ Rdy×dx , under the assumptions of
Prop. 4.1, there exists a Monge map for the cost
cM(x, y) = −⟨Mx, y⟩ between α and β.

Now that the existence of a Monge map has been
established, a natural question is whether, and how,
we can approximate it using entropy-regularization. In
the following sections, we define an entropic map for
L-ROTε and show its convergence to a Monge map
for this problem under suitable assumptions. Then,
we discuss its convergence for the sparse and low-rank
regularizations we considered in Section 3.2.

4.2 Entropic Monge maps for linear ROT

Definition 4.2 (Entropic map for L-ROTε). Let
(π⋆ε ,M

⋆
ε ) be a solution of L-ROTε. Let ε′ > 0. Define

Tε,ε′(x) =

∫
y exp ((gε,ε′(y) + ⟨M⋆

ε x, y⟩) /ε′)dβ(y)∫
exp ((gε,ε⋆(y) + ⟨M⋆

ε x, y⟩) /ε′)dβ(y)
.

(9)

Here, (fε,ε′ , gε,ε′) are Sinkhorn potentials for the inner
product cost between M⋆

ε ♯α and β with an ε′ entropic
regularization: They are a solution of the problem

max
(f,g)∈C(X)×C(Y )

∫
X

f(x)dM⋆
ε♯α(x) +

∫
Y

g(y)dβ(y)

−ε′
∫
X×Y

exp

Å
f(x) + g(y) + ⟨x, y⟩

ε′

ã
dM⋆

ε♯α⊗ β(x, y).

4.2.1 Computing the entropic map in practice

An important point in the theoretical definition of the
entropic map (9) is to use two different regularization
parameters ε, ε′ > 0. In practice (as we do in our ap-
plications), we can simplify the definition and use a
single ε. Given samples {xi}ni=1 ∼ α and {yi}ni=1 ∼ β:
• Find a primal solution (π⋆,M⋆

ε) and a dual so-
lution (f ,g) of the discrete L-ROTε problem with
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Figure 1: Illustration of the entropic map (10) for GW-IP
from a 3D to a 2D point cloud with ε ≈ 0.

α̂ =
∑n
i=1 αiδxi and β̂ =

∑m
j=1 βjδyj using (7).

• Define the entropic map as

Tε(x) =

∑n
j=1 yj exp ((gj + ⟨M⋆

εx, yj⟩) /ε)∑n
k=1 exp ((gk + ⟨M⋆

εx, yk⟩) /ε)
. (10)

Illustration. In Figure 1, we showcase the action of
the entropic map (10) when ε ≈ 0. We consider two
point clouds α and β on R3 and R2. The entropic map
implicitly acts in two steps: it first transforms the 3D
point cloud α into a 2D point cloud M♯α which is
aligned with β. It then maps the points from M♯α to
β using the inner-product entropic map.

4.2.2 Convergence theory

The case where M⋆ is full rank. Assume that
dx ≥ dy and consider the case where rk(M⋆) = dy.
Dumont et al. (2022) and Vayer (2020) showed that
if M⋆ is full rank, then a Monge map for GW-IP is
given by T = −∇f ◦M⋆, where f is a Kantorovitch
potential for Wε

⟨·,·⟩ (M♯α, β). The entropic map for
L-ROTε verifies an analog result.
Lemma 4.3. Let (fε,ε′ , gε,ε′) be Sinkhorn potentials
for Wε′

⟨·,·⟩(M
⋆
ε♯α, β). Then, we can rewrite (9) as

Tε,ε′ = −∇fε,ε′ ◦M⋆
ε

Using the previous lemma and results from Pooladian
and Niles-Weed (2021); Zhang et al. (2022), we have
the following convergence result.
Proposition 4.4. Let α, β ∈ P(X ) × P(Y) be two
measures with compact supports. Assume that they are
regular enough (namely that they verify assumptions
(A1-3) from Pooladian and Niles-Weed (2021)). Let
ε, ε′ > 0 and consider the map Tε,ε′ defined in (9).

Then, we have that Tε,ε′
L2(α)−−−−→ Tε,0 as ε′ → 0, where

Tε,0 is a Monge map for W0
cM⋆

ε
(α, β), and cM⋆

ε
(x, y) =

−⟨M⋆
ε x, y⟩. Moreover, we have along a subsequence

that Tε,0
L2(α)−−−−→ T0,0 as ε → 0, where T0,0 is a Monge

map for L-ROTε. Hence, along a subsequence,

lim
ε→0

lim
ε′→0

Tε,ε′ = T0,0 in L2(α).

The case where M⋆ is not full rank. The case
where M⋆ is not full rank is more involved and with
limited use in practice, as the theory in Dumont et al.
(2022) requires solving an OT problem between condi-
tional probabilities, which are not accessible in practice.
In the appendix, we simulate problems where we explic-
itly constrain M⋆ to being rank-deficient. We test on
Gaussians (for which ground-truth OT maps are known
(Salmona et al., 2022)) and show that rank-defficiency
has no effect on the convergence of the entropic map.

Sparsifying transforms and entropic Monge
maps. As we saw in the previous section, we can show
the convergence of the entropic map for L-ROTε when
M⋆ is full rank. With sparsifying and low-rank norms,
it is unlikely that such a matrix is full rank. However,
when using ℓ1,2 regularization, our goal is to operate fea-
ture selection on X , so that we don’t actually care about
the dimensions on which the matrix M⋆

ε is 0 (which cor-
respond to features we want to discard). Thus we can
restrict our study to the existence of Monge maps be-
tween PI ♯α and β for the cost cM⋆

I
(x, y) = −⟨M⋆

Ix, y⟩,
where I = {i ∈ [dx] : ∥M;i∥ ≠ 0}, PI is the projection
operator on the dimensions I, and MI the restriction
of M to the columns indexed by I. Note, though, that
this matrix could still be rank-deficient.

Similarly, nuclear norm regularization inherently makes
M⋆ low-rank. As we saw earlier it results in a linear
OT problem with an inner product cost between Ũ♯α

and Ṽ♯β (i.e. W⟨·,·⟩(Ũ♯α, Ṽ♯β)). If we are interested
in low-dimensional representations of α and β, there
always exists a Monge map between Ũ♯α and Ṽ♯β, and
the entropic map converges to the Monge map since it
is associated with the inner-product cost on Rr, where
r = rk (M⋆) (Pooladian and Niles-Weed, 2021).

5 APPLICATIONS

In all of the applications below, we use our proximal ap-
proach to compute transforms, jointly with the entropic
map (10) to displace points from one space to the other
in and/or out of sample. That map’s ε regularization
is selected using cross-validation on the training set
using a grid in [5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5].

5.1 Multi-omics data Integration: Sparse and
Low-Rank Transforms

Sparse Transforms. We consider the scGM dataset
(Cheow et al., 2016) containing the gene expression
and DNA methylation modalities for human somatic
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Figure 2: Left: Convergence of Prox-ROT with different
sparsifying regularizations R on the scGM dataset. X-axis:
# updates of the OT plan. Y-axis: LTA (higher is better).
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M⋆
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Bottom left ℓ1(λ = 1.5) : 71%, right ℓ1(λ = 2) : 84%.

cells (Welch et al., 2017). The goal is to match the
177 samples of the dataset across modalities using an
entropic map from the gene expression (dx = 34) to
the DNA methylation domain (dy = 27). Performance
is measured in terms of Label Transfer Accuracy, a
common way to evaluate single-cell data integration
tasks (Demetci et al., 2022) (see Appendix). We com-
pare solving GW-IP using nested Sinkhorn iterations
(Peyré et al., 2016) to Prox-ROT with the ℓ1 and ℓ1,2
regularizations in (8). Adding a sparsity prior to the
map M results in a better performance (Figure 2). Us-
ing an ℓ1 or ℓ1,2 regularization also outperforms all the
methods in (Demetci et al., 2022, Figure 2).

Low-Rank Transforms. We consider the Neurips
2021 multimodal single-cell integration dataset (Lance
et al., 2022). We use the Site 1/Donor 1 stored in the
MOSCOT package (Klein et al., 2023a). Like scGM,
the task consists in mapping 6, 224 cells from the chro-
matin accessibility (dy = 8, 000) to the gene expression
domain (dx = 2, 000).

We consider random subsets of the data of sizes
25, 50, 100, 250, 500, 1000, 6224. On each subset, we
run Prox-ROT with rank constraint between 5 and 12.
We display for each subset the best-performing rank
on average in Figure 3 (that rank is always 11 or less).
Performance is measured in terms of FOSCTTM (frac-
tion of samples closer than the true match) depending
on the subset size. Compared to GW, low-rank Prox-
ROT handles settings where n≪ dy much better than
GW. Note that Prox-ROT-rk still has benefits in the
high n regime since the dimension of the OT problem
solved at each iteration is at most 12 vs. 2, 000 for
GW.

5.2 Spatial Transcriptomics: Stochastic Fused
GW-IP

An important benefit of the cost-regularized formula-
tion of GW-IP is that it lends itself ideally to stochas-
tic optimization. Indeed, let α =

∑m
i=1 αiδxi

and
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Figure 3: Average performance (FOSCTTM - lower is
better) across sampled subsets of GW vs. Prox-ROT de-
pending on the size of training data. Left: Training perfor-
mance on each subset size. Right: Evaluation on the full
dataset of the map computed using a subset.

β =
∑n
j=1 βjδyj be two discrtete distributions. Then,

using entropic regularization, we can rewrite GW-IP-
ROT using the dual formulation of linear OT as

min
M∈Rdy×dx

(f,g)∈Rm×Rn

m∑
i=1

fiαi +

n∑
j=1

gjβj +
1

8
∥M∥2F (11)

− ε
∑
i,j

exp

Å
fi + gj + ⟨Mxi, yj⟩+ ηc̃ (x̃i, ỹj)

ε

ã
αiβj .

where η > 0, and as in (6), we can use an additional
known inter-space cost c̃, which corresponds to using
Fused GW-IP. We can solve this problem using (epoch)
stochastic gradient descent ascent.

Alg. val ρ test ρ F1 macro F1 micro F1 weighted

LFGW 0.365 0.443 0.576 0.720 0.714
ULFGW 0.379 0.463 0.582 0.733 0.724

SFGW-IP 0.335 0.436 0.609 0.768 0.765

Table 1: Performance of different GW variants on a spatial
transciptomics task. Details for LFGW and ULFGW can be
found in Scetbon et al. (2023). SFGW-IP refers to solving
(11) via epoch SGDA.

We reproduce the experimental setting of Scetbon et al.
(2023). The goal is to align cells from two coronal sec-
tions of a mouse brain (Shi et al., 2023). The linear OT
term in the fused formulation comes from a 30d PCA
computed in gene expression space. We use validation
Pearson correlation for hyperparameter selection. We
show in Table 1 that the stochastic approach, while
having a lower per-iteration cost, is competitive with
all GW variants, and significantly exceeds them in F1
scores (see appendix for more details).

Conclusion. We have leveraged a cost-regularized OT
perspective on GW problems to propose new meth-
ods for OT across spaces that can induce structure
(e.g. sparsity) on the transformation from one space
to another. Our injection of sparsity into the trans-
form M is unrelated to the sparsity observed naturally
for couplings when solving the original OT problem,
from LP duality or from other regularizations, as in
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e.g.(Blondel et al., 2018; Liu et al., 2022), nor is it
related to that obtained for same-space Monge dis-
placements by the MBO estimator (Cuturi et al., 2023).
Our use of low-rank constraints for transform M is also
unrelated to the low rank constraint on couplings intro-
duced by (Scetbon et al., 2021, 2022). The ability to
add structural assumptions on across-space transforms
opens up new perspectives to use transport across high-
dimensional modalities. We also showed the existence
of Monge maps for our formulation, and demonstrated
their applicability with entropic maps. We used a prox-
imal alternated minimization algorithm together with
structure-inducing regularizations, demonstrating ap-
plicability to single-cell multiomics data matching and
spatial transcriptomics tasks.
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A APPENDIX FOR SECTION 2

A.1 Proof of Proposition 2.4

Recall that the Wasserstein Procrustes problem (1) is

min
π∈Π(α,β)

min
C∈Od

∫
X×Y

∥Cx− y∥2 dπ(x, y). (12)

As noticed in e.g. Eq. 11 in Zhang et al. (2017), this formulation is an extension of the orthogonal Procrustes
problem. Given two matrices A,B ∈ Rd×d The orthogonal Procrustes problem aims to solve

min
C∈Od

∥CA−B∥F .

The solution of this problem is C⋆ = UV⊤, where BA⊤ = UΣV⊤. One can follow a similar procedure to show that
a solution to the inner problem in (12) is given by C⊤ = U(π)V(π)⊤, where

∫
yx⊤ dπ(x, y) = U(π)Σ(π)V(π)⊤

is an SVD. Replacing with this solution in the inner problem gives the desired QOT formulation:

min
π∈Π(α,β)

∫
X×Y

∥∥U(π)V(π)⊤x− y
∥∥2 dπ(x, y).

B APPENDIX FOR SECTION 3

B.1 Proof of Proposition 3.1

Starting from L-ROTε, we have

min
π∈Π(α,β)

M∈Rdy×dx

∫
−⟨Mx, y⟩dπ +R(M) + εKL(π||α⊗ β),

= min
π∈Π(α,β)

εKL(π||α⊗ β) + min
M∈Rdy×dx

∫
−⟨Mx, y⟩dπ +R(M)

min
π∈Π(α,β)

εKL(π||α⊗ β) + min
M∈Rdy×dx

−⟨M,

∫
yx⊤ dπ⟩F +R(M)

= min
π∈Π(α,β)

εKL(π||α⊗ β)− max
M∈Rdy×dx

−⟨M,

∫
yx⊤ dπ⟩F +R(M)

= min
π∈Π(α,β)

εKL(π||α⊗ β)−R∗
Å∫

X×Y
yx⊤ dπ(x, y)

ã
,

which is the desired result.
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B.2 Proof of Proposition 3.2

Consider L-ROTε:

min
π∈Π(α,β)

M∈Rdy×dx

∫
−⟨Mx, y⟩dπ +R(M) + εKL(π||α⊗ β).

Under the assumption of Proposition 3.2, the minimizer over π is unique for any fixed M, and the minimizer over
M is unique for any fixed π. Thus, we can directly apply (Bertsekas, 1997, Prop. 2.7.1 and Ex. 2.7.1) to conclude.

B.3 Proof of Lemma 3.3

For any π ∈ Π(α, β),

M(π) ≜ argmin
M

−
∫
X×Y

⟨Mx, y⟩dπ +
∥M∥2F

2
+ λg(M)

= argmin
M

−⟨M,

∫
X×Y

yx⊤ dπ⟩F +
∥M∥2F

2
+ λg(M)

= argmin
M

1

2

∥∥∥∥M−
∫
X×Y

yx⊤ dπ

∥∥∥∥2
F

+ λg(M)

= proxλg

Å∫
X×Y

yx⊤dπ

ã
,

where in the third line we introduced an additional term 1
2

∥∥∥∫X×Y yx
⊤dπ

∥∥∥2
F

which doesn’t depend on M .

B.4 Proof of Proposition 3.4

Recall the cost-regularized OT problem with ε = 0

argmin
π∈Π(α,β)

M∈Rdy×dx

−
∫

⟨Mx, y⟩dπ +
∥M∥2F

2
+ λg(M). (13)

Denote by h : Π(α, β)× Rdy×dx → R and H : Π(α, β) → R:

h(π,M) = −
∫
X×Y

⟨Mx, y⟩dπ +
∥M∥2F

2
+ λg(M) and H(π) = min

M∈Rdy×dx
h(π,M).

As shown in Lemma 3.3, given π, the solution of 13 is

M(π) ≜ proxλg

Å∫
X×Y

yx⊤dπ

ã
,

Proposition 3.4 follows by evaluating the objective (13) in the solution M(π) using the corresponding proximal
operator for each regularization.

ℓ1-regularization. Consider the case where g(M) = ∥M∥1. Recall that for M ∈ Rdy×dx and all i, j ∈ [dx]× [dy],

proxλ∥·∥1
(M)ij = sign(Mij) (|Mij | − λ)+ .

Thus, for M(π),

proxλ∥·∥1
(M(π))ij = sign

Å∫
X×Y

xiyjdπ

ãÅ∫
X×Y

xiyjdπ − λ

ã
+

. (14)
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Define Iπ ≜
¶
(i, j) ∈ [dx]× [dy] :

∫
X×Y xiyjdπ(x, y) > λ

©
. Plugging (16) in (13) gives, after reducing,

argmin
π∈Π(α,β)

∑
(i,j)∈Iπ

∫
X×Y

∫
X×Y

−xiyjx′iy′j dπ(x, y) dπ(x′, y′) + λ
∑

(i,j)∈Iπ

∣∣∣∣∫
X×Y

xiyj dπ

∣∣∣∣− λ2

2
|Iπ| (15)

=

∫
(X×Y)2

∑
(i,j)∈Iπ

(
xix

′
i − yjy

′
j

)2
dπ dπ −

∑
(i,j)∈Iπ

Å∫
X
x2i dα+

∫
Y
y2j dβ − λ

∣∣∣∣∫
X×Y

yjxidπ(x, y)

∣∣∣∣ã− λ2

2
|Iπ|.

Let (π⋆,M(π⋆)) be a solution to (8). Then

π ∈ argmin
π∈Π(α,β)

H(π) ⇐⇒ π ∈ argmin
π∈Π(α,β)

h(π,M(π⋆)).

Hence, using the same calculations as in (15), (13) is equivalent to

min
π∈Π(α,β)

∫
(X×Y)2

∑
(i,j)∈Iπ⋆

(
xix

′
i − yjy

′
j

)2
dπ⋆ dπ −

∑
(i,j)∈I⋆π

Å∫
X
x2i dα+

∫
Y
y2j dβ − λ

∣∣∣∣∫
X×Y

yjxidπ
⋆(x, y)

∣∣∣∣ã .
Thus, ignoring the terms that don’t depend on π, (13) is equivalent to

min
π∈Π(α,β)

∫
(X×Y)2

∑
(i,j)∈Iπ⋆

(
xix

′
i − yjy

′
j

)2
dπ⋆ dπ,

which is the desired result.

ℓ1,2-regularization. We proceed similarly. Recall that for M ∈ Rdy×dx and all i ∈ [dx],

proxλ∥·∥1,2
(M):i =

Å
1− λ

max {∥M:i∥ , λ}

ã
M:i, (16)

i.e.

M:i =

® Ä
1− λ

M:i

ä
M:i if ∥M:i∥ > λ

0 otherwise.

Let A ∈ Rdy×dx and Ã = proxλ∥·∥1,2
(A). Let I ≜ {∥A:i∥ > λ}. Then,

−⟨A, Ã⟩F +

∥∥∥Ã∥∥∥
2

+ λ
∥∥∥Ã∥∥∥

1,2

= λ
∑
i∈I

∥A:i∥ − λ2 +
∑
i∈I

∑
j

Ç
−A2

ij

Å
1− λ

∥A:i∥

ã
+

1

2

Å
1− λ

∥A:i∥

ã2
A2
ij

å
= λ

∑
i∈I

∥A:i∥ − λ2|I| − 1

2

∑
i∈I

∑
j

(
∥A:i∥ − λ2

) A2
ij

∥A:i∥

= λ
∑
i∈I

∥A:i∥ − λ2|I| − 1

2

∑
i∈I

Ä
∥A:i∥2 − λ2

ä
= −1

2

∑
i∈I

∥A:i∥2 + λ
∑
i∈I

∥A:i∥ −
λ2

2
|I|

Thus, using A = M(π) and Iπ ≜
{
i ∈ [dx] :

∥∥∥∫Y×Y xiy dπ
∥∥∥ > λ

}
, (13) is equivalent to

min
π∈Π(α,β)

∫
(X×Y)2

(
⟨xIπ , x′Iπ ⟩ − ⟨y, y′⟩

)2
dπ dπ −

∫
X
⟨xIπ , x′Iπ ⟩

2 dα+
∑
i∈Iπ

∥∥∥∥∫
X×Y

xiydπ(x, y)

∥∥∥∥− λ2

2
|Iπ|.
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Proceding as we did for ℓ1 regularization, let (π⋆,M(π⋆)) be a solution to (8). Then (13) is equivalent to

min
π∈Π(α,β)

∫
(X×Y)2

∫
X×Y

(
⟨xIπ⋆ , x

′
Iπ⋆ ⟩ − ⟨y, y′⟩

)2
dπ⋆ dπ −

∫
X
⟨xIπ⋆ , x

′
Iπ⋆ ⟩2 dα+ λ

∑
i∈Iπ⋆

∥∥∥∥∫
X×Y

xiydπ
⋆

∥∥∥∥− λ2

2
|Iπ⋆ |

Thus, ignoring the terms that don’t depend on π, (13) is equivalent to

min
π∈Π(α,β)

∫
X×Y

(
⟨xIπ⋆ , x

′
Iπ⋆ ⟩ − ⟨y, y′⟩

)2
dπ⋆ dπ,

which is the desired result.

C APPENDIX FOR SECTION 4

C.1 Proof for 4.1

Before moving to the proof of Proposition 4.1, we first clarify a point concerning the existence and convergence of
entropic maps for the inner-product linear OT.

The results of Pooladian and Niles-Weed (2021), which define an entropic map and prove its convergence to the
Monge map, are dedicated to the linear OT problem with the squared euclidean cost with X = Y ⊂ Rd:

argmin
π∈Π(α,β)

∫
X×Y

1

2
∥x− y∥2dπ(x, y).

In our case, an intermediary result that we will need is the convergence of the entropic map for the inner-product
cost c(x, y) = −⟨x, y⟩. However, by developing the square, one can see that the two problems are equivalent:

argmin
π∈Π(α,β)

∫
X×Y

1

2
∥x− y∥2dπ(x, y)

= argmin
π∈Π(α,β)

∫
X×Y

1

2
∥x∥2 dπ(x, y)−

∫
X×Y

⟨x, y⟩dπ(x, y) + 1

2
∥y∥2 dπ(x, y)

= argmin
π∈Π(α,β)

∫
X

1

2
∥x∥2 dα(x)−

∫
X×Y

⟨x, y⟩dπ(x, y) + 1

2

∫
Y
∥y∥2 dβ(y)

= argmin
π∈Π(α,β)

−
∫
X×Y

⟨x, y⟩dπ(x, y).

Thus, squared euclidean linear OT and inner-product OT have the same OT plan, i.e. (since the OT plans for
the squared euclidean cost are induced by Monge maps) the same Monge maps. Hence, the results of Pooladian
and Niles-Weed (2021) directly extend to the inner-product cost. An additional, easy to verify fact, is the form of
the Monge maps for the inner-product cost.
Lemma C.1. Let f be a Kantorovitch potential for the inner product cost between two measures µ and ν with
compact supports in Rd. Then the Monge map for the inner-product cost (or equivalently for the squared euclidean
cost) can be written as

T (x) = −∇f(x).

Proof. One can show that if f is a Kantorovitch potential for the inner product cost, then f̃ : x 7→ f(x) + ∥x∥2

2
is a Kantorovitch potential for the squared Euclidean cost. And we know from Brenier (1991) that given any
Kantorovitch potential f̄ for the squared euclidean cost, the unique (since Kantorovitch potentials are equal up
to a constant) Monge map can be written as T (x) = x−∇f̄(x). Thus, given a Kantorovitch potential f for the
IP cost, we can write the Monge map for the inner product cost (or for squared euclidean costs since they have
the same Monge map) as T (x) = x−∇(f(x) + ∥x∥2

2 ) = −∇f(x).

For completeness, we rewrite the entropic map of Definition 4.2.

Tε,ε′(x) =

∫
y exp ((gε,ε′(y) + ⟨M⋆

εx, y⟩) /ε)dβ(y)∫
exp ((gε,ε⋆(y) + ⟨M⋆

εx, y⟩) /ε)dβ(y)
.
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Proposition C.2. Let (fε,ε′ , gε,ε′) be Sinkhorn potentials for the inner product cost between M⋆
ε♯α and β with

an ε′ entropic regularization. Then,

Tε,ε′ = −∇fε,ε′ ◦M⋆
ε

Proof. Using optimality conditions for the ε′-entropy regularized OT problem, we have that for all ỹ ∈ Y,

fε,ε′(ỹ) = −ε log
Å∫

exp ((gε,ε′(y) + ⟨ỹ, y⟩) /ε)dβ(y)
ã

Differentiating w.r.t. ỹ gives

∇fε,ε′(ỹ) = −
∫
y exp ((gε,ε′(y) + ⟨ỹ, y⟩) /ε)dβ(y)∫
exp ((gε,ε⋆(y) + ⟨ỹ, y⟩) /ε)dβ(y)

.

Hence for all x ∈ X , evaluating at ỹ = M⋆
εx

∇fε,ε′(M⋆
εx) = −

∫
y exp ((gε,ε′(y) + ⟨M⋆

εx, y⟩) /ε)dβ(y)∫
exp ((gε,ε⋆(y) + ⟨M⋆

εx, y⟩) /ε)dβ(y)
= −Tε,ε′(x).

That is, Tε,ε′ = −∇fε,ε′ ◦M⋆
ε.

Finally, before moving on to the proof, recall the following result from Vayer (2020), also appearing in (Dumont
et al., 2022, Proposition 6).
Proposition C.3 (Theorem 4.2.3 in Vayer (2020), Informal.). Finding a Monge map for the inner-product
GW problem reduces to finding a Monge map between α and β for the cost cM(x, y) = −⟨M⋆x, y⟩, where
M⋆ =

∫
yx⊤ dπ⋆, and π⋆ is a solution to the inner-product GW problem. Such a map is given by

T = −∇f ◦M⋆,

where f is a Kantorovitch potential for W0,⟨·,·⟩ (M♯α, β).

Proof of Proposition 4.4. Assume that dx ≥ dy and consider the case where rk(M∗) = dy.

Using Lemma C.1, we now that the Monge map for W0
⟨·,·⟩

Ä
M⋆

ε♯α, β
ä

is Tε,0(x) = −∇fε,0(x), where fε,0 is a

Kantorovitch potential for W0
⟨·,·⟩

Ä
M⋆

ε♯α, β
ä
. Since fε,ε′ is a Sinkhorn potential for Wε′

⟨·,·⟩

Ä
M⋆

ε♯α, β
ä
, we can

apply (Pooladian and Niles-Weed, 2021, Corollary 1) (here with the inner product cost rather than the squared
euclidean cost), with P = Mε♯α and Q = β. We have that∫

Y
∥∇fε,ε′(y)−∇fε,0(y)∥2 dMε♯α(y) ≤ ε′

2
I0(Mε♯α, β) + ε′

(ᾱ+1)/2
,

Hence, ∫
X
∥∇fε,ε′(Mεx)−∇fε,0(Mεx)∥2dα(x) ≤ ε′

2
I0(Mε♯α, β) + ε′

(ᾱ+1)/2
,

that is, using Lemma C.1 and Proposition C.2,∫
X
∥Tε,ε′(x)− Tε,0(x)∥2 dα(x) ≤ ε′

2
I0(Mε♯α, β) + ε′

(ᾱ+1)/2
.

And since I0(α′
ε, β

′
ε) <∞ and doesn’t depend on ε′ Chizat et al. (2020), we have that for any ε > 0, Tε,ε′

L2(α)−−−−→ Tε,0
as ε′ → 0.

Now for the second statement. Zhang et al. (2022) showed that π∗
ε ⇀ε π

∗
0 along a subsequence. Hence,

Mε :=
∫
yx⊤ dπ⋆ε ⇀ε M :=

∫
yx⊤dπ⋆(x, y), which implies that Mε♯α ⇀M♯α along a subsequence.

Since ∇fε,0 is a Monge map between Mε♯α and β, and ∇f0,0 is a Monge map between M♯α and β, it follows from

the proof of (De Philippis, 2013, Theorem 4.2) that Tε, 0
L2(α)−−−−→
ε

T0,0. Indeed, it is shown that this implies that
∇fε,0 converges locally uniformly to ∇f0,0, which in turn implies that ∇fε,0 converges uniformly to ∇f0,0 since

X is compact. Thus, since Mε → M and X is compact, we have Tε,0
u−→
ε
T0,0, and consequently Tε,0

L2(α)−−−−→
ε

T0,0

along a subsequence, which gives the desired result.
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C.2 Using rank constraints in extremely high-dimensional problems

As we suggested at the end of Section 3, using the proximal operators of the nuclear norm or of the rank can be
infeasible in extremely high dimension because they involve computing the SVD of a high-dimensional matrix
in the M-step of Prox-ROT. Thus, in such cases, we suggest to choose a rank r ≪ dy and use the following
regulariztion:

R(c) =

®
1
2

∥∥M⊤
2 M1

∥∥2
F

if ∃ (M1,M2) ∈ Rdx×r × Rdy×r : ∀(x, y), c(x, y) = ⟨M1x,M2y⟩
∞ otherwise.

In other words, we directly parametrize the matrix M in L-ROTε as a low-rank matrix: M = M⊤
2 M1. In this

case, L-ROTε rewrites:

min
π∈Π(α,β)

(M1,M2)∈Rr×dx×Rr×dy

∫
−⟨M1x,M2y⟩dπ +

1

2

∥∥M⊤
2 M1

∥∥2
F
+ εKL(π||α⊗ β). (L-ROTε)

To solve this problem, we use alternated minimization (a.k.a. block coordinate descent) on each of the variables.
Notably, we never have to compute the product M⊤

2 M1. Fixing π and considering the first-order conditions on
(M1,M2) gives (

M2M
⊤
2

)
M1 = M2

∫
yx⊤ dπ(x, y)(

M1M
⊤
1

)
M2 = M1

∫
xy⊤ dπ(x, y).

Thus, assuming that
(
M2M

⊤
2

)
and

(
M1M

⊤
1

)
are invertible,

M1 =
(
M2M

⊤
2

)−1
∫

(M2y)x
⊤ dπ(x, y)

M2 =
(
M1M

⊤
1

)−1
∫

(M1x) y
⊤ dπ(x, y).

So in practice, given πk, we successively update

Mk+1
1 =

(
Mk

2M
k
2

⊤)† ∫ (
Mk

2y
)
x⊤ dπk(x, y)

Mk+1
2 =

(
Mk+1

1 Mk+1
1

⊤)† ∫ Ä
Mk+1

1 x
ä
y⊤ dπk(x, y), (17)

where (A)
† denotes the Moore pseudoinverse of A. We can see that here all the operations are linear in dx and dy.

Moreover, as we choose a can choose a small rank r ≪ dy, the O(r3) dependency of computing the pseudoinverse
can be much smaller than O(dy).

Application of the updates (17). We test the updates of (17) in place of the proximal rank operator we used
in Section 5. These updates result in very similar performance in practice (Figure 5). We display Figure 3 here
again for the convenience of the reader.
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Figure 4: Copy of Figure 3.
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Figure 5: Reproduction of Figure 4 but with the updates (17) instead of Prox-ROT.

D APPENDIX FOR SECTION 5

D.1 Illustration of the action of the entropic map in the case where M⋆ is not full-rank

One condition that we need for the convergence of the entropic map in Proposition 4.4 is that the matrix M⋆

(where (π⋆,M⋆) is a solution of L-ROTε) is full-rank. In Section 5, we showed through an experiment (see Figure
3) that even when the matrix M⋆ is explicitely constrained to being low-rank, the entropic map still results in
good performance.

Here, we show through a more controlled experiment that indeed the fact that M⋆ is not full rank doesn’t result
in a divergent entropic map (as measured by the performance of the map when ε ≈ 0).

To do so, we simulate two point clouds coming from two Gaussian distributions, one in 20D and the other in 10D.
We then use rank regularizations and take λ = 12.5, which is equivalent to constraining the matrix M to being of
at most of rank 5. The reason we use Gaussians is that we know ground truth OT map between them (Salmona
et al., 2022).

Figure 6: Illustration of the action of the entropic map when M⋆
ε is low-rank.
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D.2 Details on the evaluation metrics for sparse and low-rank transforms applications

For our sparse transforms experiment on the scGM dataset (Section 5.1), we measured the performance of the
algorithms using Label Transfer Accuracy, as done in Demetci et al. (2022). Label Transfer Accuracy uses a k-NN
classifier fitted on the data in the anchor domain (the one where we map using the entropic map, for us the data
in the lower-dimensional data methylation domain {yi}Ni=1). Then the score is given as the test accuracy of the
classifier on the mapped {Tε(xi)}Ni=1.

For our low-rank transforms experiment on the Neurips 2021 multimodal single-cell integration dataset (Lance
et al., 2022), we measured the performance of the algorithms using the Fraction of Samples Closer than the True
Match (FOSCTTM) as done in the MOSCOT package (Klein et al., 2023a). The score computes the distances
between each mapped sample {Tε(xi)}Ni=1 and the data {yi}Ni=1 and, given ground truth correspondences between
data in X and data in Y, computes the FOSCTTM score as the average proportion of yi’s closer to Tε(xi) than
its true corresponding datapoint in {yi}Ni=1.

D.3 Details on the spatial transcriptomics experiment

As done in Scetbon et al. (2023), to determine the best hyperparameters for the experiment, we ran a grid
search and picked the best hyperparameters combination using performance on 10 validation genes and use
pearson correlation as a validation metric. The hyperparameters we considered in our grid search are the entropic
regularization ε and the fused cost parameter η (6). We used a single minibatch size of 1000 and a single number
of ascent steps in (f, g) of 1000. For the SGD step in M, we use stochastic line search (Vaswani et al., 2019).
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