
Estimation of partially known Gaussian graphical models with
score-based structural priors

Mart́ın Sevilla Antonio G. Marques Santiago Segarra
Rice University, USA King Juan Carlos University, Spain Rice University, USA

Abstract

We propose a novel algorithm for the sup-
port estimation of partially known Gaussian
graphical models that incorporates prior in-
formation about the underlying graph. In
contrast to classical approaches that provide
a point estimate based on a maximum like-
lihood or a maximum a posteriori criterion
using (simple) priors on the precision matrix,
we consider a prior on the graph and rely on
annealed Langevin diffusion to generate sam-
ples from the posterior distribution. Since
the Langevin sampler requires access to the
score function of the underlying graph prior,
we use graph neural networks to effectively
estimate the score from a graph dataset (ei-
ther available beforehand or generated from a
known distribution). Numerical experiments
demonstrate the benefits of our approach.

1 INTRODUCTION

Graphical models are useful probabilistic tools repre-
sented by graphs G = (V, E), where nodes V encode
random variables, and edges E encode information re-
garding the variables’ joint distribution. Markov ran-
dom fields (MRFs) – an important class of graphical
models – offer the attractive property that the absence
of an edge between two nodes means that the two asso-
ciated random variables are conditionally independent
given the rest (Bishop and Nasrabadi, 2006). When
the distribution is a multivariate Gaussian, the MRF
is said to be a Gaussian Markov random field (GMRF)
or Gaussian graphical model (GGM) (Rue and Held,
2005). GGMs have been used to model complex rela-
tionships in a wide variety of disciplines, with relevant

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

examples including gene interactions (Dobra et al.,
2004; Wang et al., 2020), spectrometric data (Codazzi
et al., 2022), metabolic association networks (Tan
et al., 2017), macroeconomic growth (Dobra et al.,
2010), and social networks (Li et al., 2020).

The success of GGMs in such a broad range of datasets
stems partly from their intuitive interpretability. To
be specific, let A∈{0,1}n×n be the adjacency matrix
of G, with n = |V|, and let x∈Rn be a random vector
such that x ∼ N (000,Σ). We then say that x is a GGM
with respect to G if and only if the precision matrix
Θ = Σ−1 and A have the same support (i.e., the same
zero pattern) (Rue and Held, 2005). As a result, the
graph associated with a GGM can be estimated from
the non-zero values of Θ.

Related work and limitations. The problem of es-
timating the precision matrix Θ (and, consequently,
its support) is classically known as covariance selec-
tion (Dempster, 1972). Specifically, given a set of k
observations x1, . . . ,xk, each of dimension n, the goal
is to recover the n × n matrix Θ and, in particular,
supp (Θ), which reveals the conditional independence
relationships in the GGM. Given that p(x | Θ) has a
closed-form expression for a GGM, a straightforward
approach is to find the maximum likelihood (ML) es-
timator for Θ, which is given by the inverse of the
sample covariance S (Casella and Berger, 2021). How-
ever, S−1 typically does not contain exact zero en-
tries. Hence, one common technique is thresholding
S−1 (Qiu and Liyanage, 2019), but this may yield un-
satisfactory results if the threshold is not adequately
chosen or if the number of observations k is limited.

More sophisticated techniques generally propose
penalties in optimization problems that use the log-
likelihood as cost function (Tsai et al., 2022; Williams,
2020). From a Bayesian standpoint, these penalties
can be considered prior distributions p(Θ). For any
penalty function P (Θ), there is an associated prior
distribution p(Θ) ∝ exp(−P (Θ)) such that the penal-

Estimation of partially known Gaussian graphical models with score-based structural priors

ized ML estimation boils down to

Θest = argmax
Θ⪰0

p(x1, . . . ,xk | Θ)p(Θ)

= argmax
Θ⪰0

log detΘ− tr (SΘ)− P (Θ), (1)

with the most popular penalty being P (Θ) =
λ
∑
i ̸=j |Θij |, which translates to a Laplace prior from

a Bayesian perspective. This penalty encourages spar-
sity in Θ and is convex, rendering (1) easy to optimize
using the graphical lasso (GL) algorithm (Banerjee
et al., 2008; Friedman et al., 2008). A similar approach
that allows to penalize each element in Θ by a differ-
ent value is the weighted graphical lasso (WGL), which
imposes a penalty of the form P (Θ) = ∥Λ ◦Θ∥1 =∑
ij Λij |Θij | (Li and Jackson, 2015; Zhuang et al.,

2022; Zuo et al., 2017). Non-convex regularizers were
also proposed in the literature (Williams, 2020). While
more involved, they all boil down to encouraging dif-
ferent forms of sparsity.

Albeit less numerous, works incorporating prior distri-
butions that do not involve sparsity also exist. In Zhou
et al. (2021), a base graph structure is used as a prior,
which could become too restrictive as it requires in-
formation from the specific graph whose support we
want to estimate. In Wang and Li (2012), a G-Wishart
prior distribution is used together with a Markov chain
Monte Carlo (MCMC) sampler to determine the un-
derlying GGM. A similar approach is taken in Fried-
man and Koller (2003), but using a standard Wishart
instead. Another framework is given in Hosseini and
Lee (2016), focusing on modularity. Even though these
approaches do not assume mere sparsity, they propose
pre-specified prior structures that may not apply to
the graph under study.

All techniques proposed so far for GGM estimation
impose limitations in the prior knowledge that can be
incorporated. Importantly, the imposed priors are too
simple (e.g., sparsity) or restrictive (e.g., G-Wishart),
and these are imposed on Θ while the natural approach
would be to impose the structural priors on the under-
lying adjacency matrix A.

Addressing these limitations. This paper proposes
a new approach that allows the introduction of ar-
bitrary prior information directly on A, based on a
dataset of adjacency matrices A (of potentially vary-
ing sizes) whose distribution we use as a prior p(A).
This is particularly useful for real-world applications
where we often have datasets of graphs instead of
a closed-form prior distribution p(A). For instance,
when learning brain networks, leveraging graphs from
other patients is feasible (and valuable) because they
often share similar structures. This idea also applies
to other areas like molecular datasets or social net-

works. Additionally, many random graphs do not have
a closed-form distribution, but generating samples to
create a synthetic A is relatively easy.

Furthermore, we allow edge-to-edge constraints (in a
WGL fashion) so that edges that are known to either
exist or be absent lead to values of 1 or 0 in A, respec-
tively. This is useful in cases where some pairs of vari-
ables are known to be conditionally independent, but
we want to estimate the rest of the graph. Examples
include gene expression data (Li and Jackson, 2015),
neurotoxicology tests (Grzebyk et al., 2004), social net-
works (Wu et al., 2019), or brain networks (Simpson
and Laurienti, 2015).

Our algorithm is based on Langevin dynamics, an
MCMC sampler (Robert and Casella, 1999; Roberts
and Tweedie, 1996). We directly sample from the pos-
terior by defining a stochastic dynamic process whose
stationary distribution matches the desired posterior
distribution. If the interest is in a point estimate, we
can readily use the samples to estimate, e.g., the pos-
terior mean of the missing values in A.

Contributions. Our three main contributions are:
1) We propose a novel GGM estimator based on sam-
pling from a posterior distribution rather than finding
the ML or MAP estimators and show that our estima-
tor is consistent.
2) We leverage annealed Langevin dynamics to imple-
ment such an estimator, which allows us to incorporate
an arbitrary prior distribution learned from data. We
allow the known graphs to be of different sizes, as is
the case in many practical applications.
3) Through numerical experiments, we show that in-
corporating arbitrary prior distributions outperforms
estimators that only consider sparsity as prior infor-
mation or are just based on the likelihood of the ob-
servations.

Notation. Scalars, vectors, and matrices are denoted
by lowercase (y), lowercase bold (y), and uppercase
bold (Y) letters, respectively. For a matrix Y, Yij
denotes its (i, j)-th entry. For a vector y, its i-th com-
ponent is represented by yi. I is the identity matrix of
appropriate dimensions. The operation ◦ denotes the
Hadamard product. We define the element-wise indi-
cator function as I {·}, and the support of a matrix
as supp (Y) = I {Y ̸= 0} (i.e., a binary-valued matrix
that is 0 in the (i, j) entries such that Yij = 0 and is 1
otherwise).

2 PROBLEM FORMULATION

We consider an unweighted and undirected graph G
with no self-loops that consists of n nodes and a par-
tially known set of edges. The edge information is

Mart́ın Sevilla, Antonio G. Marques, Santiago Segarra

encoded in the adjacency matrix A ∈ {0, 1}n×n. To
distinguish between the entries of A that are known
and the ones we aim to estimate, we define two sets of
indices O and U such that

O = {(i, j) : Aij is observed ∧ i < j} , and (2)

U = {(i, j) : Aij is unknown ∧ i < j} . (3)

Throughout this work, we refer to the known and un-
known fractions of the adjacency matrix as AO and
AU , respectively. The condition that i < j implies
that we do not take into account the diagonal (since
the graph has no self-loops), and we just consider the
upper-triangular part of A (since it is symmetric). In
case the set of edges is completely unknown, we can
estimate some of its entries with high confidence and
consider them known, as we show in Section 4.

Apart from the known fraction of the graph, we also
assume that k independent observations are avail-
able. We arrange them as columns in the matrix
X =

[
x1 . . . xk

]
∈ Rn×k. Each observation x fol-

lows a normal distribution N
(
000,Θ−1

0

)
, where Θ0 is

the true precision matrix. Since A0 = supp (Θ0), then
Θ0 is known to be 0 where AO

0 is 0 and is known to be
different from 0 where AO

0 is 1. We are also given a set
of adjacency matrices A drawn from the distribution
p(A), the same distribution from whichA0 was drawn.
In this setting, our problem is defined as follows:

Problem 1. Given the k observations X, a partially
known adjacency matrix AO

0 , and structural prior in-
formation given by a set of matrices A, find an esti-
mate of AU

0 .

A natural way to solve Problem 1 would be to com-
pute the MAP, forcing the entries of the estimate to
be equal to those of AO

0 for all positions (i, j) ∈ O.
Mathematically, this is given by

ÂMAP =argmax
A

p (X | A) p (A) (4)

subject to Aij = AO
0ij ∀(i, j) ∈ O.

There are two main issues when solving (4), which
we will describe in detail next. First, the likelihood
p (X | A) is not easy to calculate, since only the ex-
pression for p(X | Θ) is available, which is

p(X | Θ) =

√
detΘk

(2π)nk
exp

(
−k
2
tr (SΘ)

)
, (5)

where S = 1
kXX⊤ is the sample covariance. Hence,

computing p (X | A) requires integrating (5) over all
possible precision matrices such that supp (Θ) = A,
which is infeasible to do. Second, even if p(X | A)
were available, carrying out the maximization in (4)

would be intractable since the feasible set contains 2|U|

possible matrices.

Within the realm of point estimators, this work pro-
poses an alternative approach to Problem 1, under
which we estimate A0 as the posterior mean instead
of the posterior mode. That is, we aim to compute

E [A | X] =
∑

A s.t. Aij=AO
ij

A · p(A | X). (6)

Note that the estimation of A0 can be considered a
classification problem, where each edge is classified as
0 or 1. Hence, choosing a thresholded version of (6) as
an estimator offers the desirable property of minimiz-
ing the edge classification error rate. However, even
if we knew p(A | X), the summation in (6) requires
computing 2|U| terms. Our approach to bypass this is
to approximate (6) by taking the sample mean across
M samples:

E [A | X] ≃ 1

M

M∑
m=1

A(m). (7)

The samples A(m) should be drawn from the posterior

p(A | X) ∝ p(X | A)p(A), (8)

where we omitted conditioning on AO to avoid cum-
bersome notation. As already explained, computing
p(X | A) in (8) is, in general, infeasible. As a result,
rather than trying to obtain p(A | X), our approach is
to design an algorithm capable of sampling from (8) di-
rectly without explicitly computing the posterior. The
design of such an algorithm, which has value per se and
can be used to design other point estimators, is tackled
in Section 3.

3 LANGEVIN FOR SUPPORT
ESTIMATION

This section explains how to use annealed Langevin
dynamics to solve Problem 1. In Section 3.1, we pro-
pose a distribution: i) that approximates the actual
posterior (8) and ii) from which samples can be drawn
by leveraging Langevin dynamics. Based on this ap-
proximate posterior, we define an estimator of A0 and
show that it is consistent. Sections 3.2 and 3.3 explain
how annealed Langevin dynamics works and why it
provides a way to incorporate prior information in the
estimation A0 via the so-called score function. Then,
in Section 3.4, we study how to use the dataset A
as prior knowledge by training a graph neural net-
work (GNN) whose output is directly plugged into the
Langevin dynamics. Section 3.5 describes our final al-
gorithm, which combines and summarizes the results
of this section. An illustration of the overall procedure
is shown in Figure 1.

Estimation of partially known Gaussian graphical models with score-based structural priors

Langevin
sampler

GNN

Figure 1: Illustration of our final algorithm [cf. Algorithm 1]. The grey entries inAO
0 are what we aim to estimate

(i.e., AU). If no entries of A0 are known, some can be estimated by bootstrapping X, as shown in Section 4.
By combining the GGM observations X and the partially observed graph AO

0 , we compute the constrained ML
estimator Θ̂ by solving (9). This encodes information about the likelihood of A given X. To encode information
about the prior p(A), we process the dataset A with a GNN (Section 3.4). Then, we can draw M samples from

the (approximate) posterior using a Langevin sampler and build any estimator with them, such as Â in (11)
that approximates the posterior mean.

3.1 Proposed estimator

The first step of our algorithm consists of computing
the following estimator for Θ0,

Θ̂ =argmax
Θ⪰0

log detΘ− tr (SΘ)

s. to Θij = 0 ∀(i, j) : AO
0ij = 0, (9)

which corresponds to the positive definite matrix that
maximizes the likelihood while respecting the zero pat-
tern known to exist. The optimization problem in (9)
can be efficiently solved by using the WGL algorithm
mentioned in Section 1. The constraint is equivalent
to setting a penalty Λij to an arbitrarily large constant
for those entries where A is known to be 0, and setting
Λij = 0 otherwise.

Let LX (Θ) = p (X | Θ) denote the likelihood of the
precision matrix given the observed data. Then, based
on the estimator in (9), we approximate the posterior
p(A | X) in (8) as

p̂(A | X) ∝ LX

(
Θ̂ ◦ (A+ I)

)
p(A), (10)

where we recall that ◦ is the entry-wise product. Since
the entries of (A + I) are binary, the entry-wise mul-
tiplication can be understood as a mask that sets to
zero the entries of the precision that are not associ-
ated with an edge. Let us suppose now that we can

sample from (10) and let
{
A(m)

}M
m=1

denote the set
of M generated independent samples. Then, the set{
A(m)

}M
m=1

can be used to characterize the posterior.
We focus on the posterior sample mean estimator pre-
sented in (6)–(7). Then, the estimator for A0 that we

propose boils down to

Â = I

{(
1

M

M∑
m=1

A(m)

)
≥ τk

}
, (11)

where τk is a tunable threshold that should increase
with the sample size k.

We aim to prove that (11) is a consistent estimator of
A0, a fundamental result in our study. Before delving
into such a proof, we establish two important interme-
diate results.

Lemma 1. Θ̂ as defined in (9) is a consistent esti-
mator (as k →∞) of the true precision matrix Θ0.

Proof. See Section A.1 in the Supplementary Material
(SM).

Lemma 2. The approximate posterior p̂(A | X)
in (10) converges in distribution to

p̂(A | X)
k→∞−−−−→ p(A)

C
δ (Θ0 ◦ (A+ I)−Θ0) , (12)

where C is a constant and δ(·) is the Dirac delta.

Proof. See Section A.2 in the SM.

We now leverage Lemmas 1 and 2 to show consistency
of Â.

Theorem 1. Â as defined in (11) is a consistent esti-
mator of the true adjacency matrix A0 when M →∞
and τk

k→∞−−−−→ 1.

Mart́ın Sevilla, Antonio G. Marques, Santiago Segarra

Proof. According to Lemma 2, the only matrices A
with a positive probability of being sampled as k →∞
are those that satisfy

Θ0 = Θ0 ◦ (A+ I). (13)

Let A(m) be the m-th sample drawn from (12). The
condition in (13) leads to

P
[
A

(m)
ij = 0 | Θ0ij ̸= 0

]
= 0 ∀m = 1, . . . ,M. (14)

Since the estimator Â from (11) is the mean of samples
that follow (14), for τk > 0 we have that

P
[
Âij = 0 | Θ0ij ̸= 0

]
= 0. (15)

On the other hand, false positives have a non-zero
probability of being sampled:

P
[
Âij = 1 | Θ0ij = 0

]
= P

[
M∑
m=1

A
(m)
ij

M
≥ τk

∣∣∣∣∣Θ0ij = 0

]
.

(16)
In the context of this proof, τk → 1. Additionally,

the summation in (16) can be at most 1, since A
(m)
ij ∈

{0, 1}. Thus,

P
[
Âij=1 |Θ0ij =0

]
k→∞−−−−→P

[
M∑
m=1

A
(m)
ij

M
= 1

∣∣∣∣∣Θ0ij =0

]
.

(17)
Another way of writing (17) is

P

[
M∑
m=1

A
(m)
ij

M
=1

∣∣∣∣∣Θ0ij= 0

]
=
(
P
[
A

(1)
ij =1 | Θ0ij =0

])M
,

(18)
as each sample is drawn independently from the rest.
Since A0 ∼ p(A), then from (12) it follows that

P
[
Â

(1)
ij = 0 | Θ0ij = 0

]
> 0. (19)

Namely, given that the true adjacency matrix A0 has
a prior distribution p(A), it would not be possible for
this matrix to have zero probability of being sampled
from (12). Combining (19) with (18), and then taking
the limit of (17) when M →∞ we get

P
[
Âij = 1 | Θ0ij = 0

] k→∞
M→∞−−−−→ 0. (20)

From (20) and (14) it follows that, if both M → ∞
and τk → 1, then (11) converges in probability to the
true adjacency matrix when k →∞.

In practical scenarios, infinite samples are never avail-
able, yet consistency is a desirable property for an esti-
mator. Furthermore, even though Theorem 1 requires

M → ∞, our experiments (Section 4) reveal that our
method outperforms classical methods for relatively
small values of M .

To compute Â as in (11) we need to be able to sample
from the posterior distribution in (10). To this end,
we utilize the stochastic diffusion process of Langevin
dynamics.

3.2 Langevin dynamics

The Langevin dynamics algorithm is an MCMC
method that allows us to draw samples from a dis-
tribution difficult to sample from directly (Robert and
Casella, 1999; Roberts and Tweedie, 1996). This sam-
pler’s great advantage is that it does not require an
expression for the target distribution but rather for
the gradient of its logarithm. Generically, to sample
from p(w) via Langevin, only ∇w log p(w) is needed.
This gradient receives the name of score function and
is of paramount relevance in the ensuing sections.

For a generic target distribution p(w), the Langevin
dynamics are given by

wt+1 = wt + ϵ∇w log p(wt) +
√
2ϵ zt, (21)

where t is an iteration index, ϵ is the step size and
zt ∼ N (0, I). In each iteration, wt tends to move in
the direction of the score function but is also affected
by white noise that prevents it from collapsing in local
maxima. Under some regularity conditions, wt con-
verges to be a sample from p(w) when ϵ → 0 and
t→∞ (Welling and Teh, 2011).

It should be noted that, in our case, we are trying
to sample a discrete random vector (i.e., a vectorized
unweighted adjacency matrix). Hence, the gradient
of the target log-density is not defined in our setting.
A noisy (continuous) version of the random vector is
used to circumvent this obstacle. This idea leads to
the annealed Langevin dynamics (Kawar et al., 2021;
Song and Ermon, 2019).

3.3 Annealed Langevin dynamics

To simplify the notation of what follows, we use A
and its half-vectorization a = vech (A) interchange-
ably. Consider a noisy version of a,

ã = a+ v, (22)

where v represents additive Gaussian noise. More pre-
cisely, let {σl}Ll=1 be a sequence of noise levels such
that σ1 > σ2 > · · · > σL > 0. Then, for each noise
level we define vl ∼ N (000, σ2

l I). In this setting, ã is
continuous, and the iterative procedure involving an-
nealed Langevin dynamics for our problem is given by

ãt+1 = ãt + αt∇ã log p(ãt | X) +
√
2αt zt, (23)

Estimation of partially known Gaussian graphical models with score-based structural priors

where αt = ϵ·σ2
l(t)/σ

2
L and l(t) is an increasing function

mapping time steps t to the annealing noise levels l.
Note that the noise present in ãt (i.e., the variance of
vl(t)) decreases with t, as given by the varying step
size αt.

The annealed version of the dynamics was initially in-
troduced to allow the algorithm to converge faster and
perform better (Song and Ermon, 2019). However, in
our case, it also offers the advantage of rendering the
problem differentiable. Consequently, the annealing
enables the computation of the score functions and
the use of Langevin dynamics to sample from an orig-
inally discrete distribution. If the noise levels {σl}Ll=1

and the step size ϵ are chosen adequately (Song and
Ermon, 2019), after a sufficiently large number of it-
erations, the sample ãt is arbitrarily close to an actual
sample from the discrete distribution p(a | X). If an
actual sample is needed, the noisy sample ãt must be
projected onto the set {0, 1}.
Now we need to compute the annealed score
∇ã log p(ã | X) to sample graphs using (23). To avoid
the use of cumbersome notation in what follows, from
now on, we drop the reference to ã in the gradients,
as we always take the derivatives with respect to that
vector. Using (10), we express the (approximate) an-
nealed posterior score as

∇ log p̂(Ã | X) = ∇ logLX(Θ̃) +∇ log p(Ã), (24)

where we have defined

Θ̃ = Θ̂ ◦ (Ã+ I). (25)

We next discuss each of the two terms in (24). Start-
ing with ∇ logLX(Θ̃), referred to as the annealed like-
lihood score, we compute it as [cf. (5)]

∇ logLX(Θ̃) =
k

2
∇ log det(Θ̃)− k

2
∇tr(SΘ̃), (26)

with the two gradients in (26) being straightforward to
compute (Petersen and Pedersen, 2012). Specifically,

let us define ∆Σ̃ = Θ̃
−1 − S and use Tij to denote a

matrix whose entries are all equal to zero except the
(i, j)-th and the (j, i)-th ones, which are one. Then,

∂ logLX(Θ̃)

∂Ãij
=
k

2
tr
[(

2∆Σ̃+∆Σ̃ ◦ I
)(

Θ̂ ◦Tij
)]
.

(27)

We shift now to ∇ log p(Ã), the second term in (24),
which is referred to as the annealed prior score and is
more difficult to obtain. Note that computing p(Ã)
requires convolving p(A) with the distribution of the
noise [cf. (22)], which is infeasible not only because of
the computational burden of that task but also be-
cause we do not know p(A). The alternative that

we propose is to estimate the annealed prior score
∇ log p(Ã) just using samples from the prior p(A) (i.e.,
the available dataset A), as in Sevilla and Segarra
(2023). We model this estimate as a GNN, where
weights are trained on the dataset A, as we explain
in Section 3.4.

3.4 Learned annealed scores

Let gξ(ã, σ) be the output of the GNN we wish to
train, with ξ being its trainable parameters. Ideally,
the output for a given ã (with the associated noise level
σl of the current iteration) should be as close as pos-
sible to the actual score ∇ log p(ã). The loss function
to learn ξ should be designed to jointly minimize the
mean squared error across all noise levels. To achieve
this, we define the distance

D (ã | ξ, σl) = ∥gξ(ã, σl)−∇ log p(ã | a)∥22
=
∥∥gξ(ã, σl)− (a− ã)/σ2

l

∥∥2
2

(28)

and the associated loss function

J
(
ξ | {σl}Ll=1

)
=

1

2L

L∑
l=1

σ2
l E [D (ã | ξ, σl)] . (29)

Following the proof in Vincent (2011), it follows that
the output of a GNN trained with (29) correctly es-
timates ∇ log p(ã). It is worth pointing out that the
term (a − ã)/σ2

l is known during training: a is one
element of A and both ã and σl are the GNN inputs.

The architecture of the GNN must account for the fact
that the same graph can be represented by different
adjacency matrices, depending on the node labeling.
In this work, we leverage the EDP-GNN (Niu et al.,
2020), designed to perform score-matching on graphs
by proposing a permutation equivariant method to
model the score function of interest.

3.5 Final algorithm

Now we need to put all the pieces together: the
proposed (consistent) estimator Â (Section 3.1), the
Langevin dynamics to get the samples to compute that
estimator (Sections 3.2 and 3.3), and the GNN train-
ing to estimate the score needed to run the Langevin
dynamics (Section 3.4). The final scheme is described
in Algorithm 1. Notice that the score estimator gξ(·)
is an input. Namely, before performing any GGM es-
timation, a GNN has to be trained with the desired
dataset A in order to be able to compute gξ (ã, σ) ≃
∇ log p (ã) for the different noise levels σl.

The first step in Algorithm 1 is to compute Θ̂ as in (9).
We then draw samples from the approximate posterior
distribution p̂(A | X) by running the dynamics in (23).

Mart́ın Sevilla, Antonio G. Marques, Santiago Segarra

Algorithm 1 Annealed Langevin for GGM estimation

Require: X,AO
0 ,gξ(·), {σl}Ll=1,M, T, ϵ, τk

1: S← 1
kXX⊤

2: Compute Θ̂ as in (9)
3: S ← {} ▷ Set of generated samples
4: repeat
5: Initialize ÃU

0 ∼ N (0.5, 0.5I)
6: ÃO

0 ← AO
0 ▷ Fix the known values

7: for l← 1 to L do
8: αl ← ϵ · σ2

l /σ
2
L ▷ Change the noise level

9: for t← 1 to T do
10: Draw Zt ∼ N (000, I)
11: Compute ∇ logLX(Θ̃t) as in (27)
12: Compute gξ(Ãt−1, σl)

13: ∆t ← ∇ logLX(Θ̃t) + gξ(Ãt−1, σl)

14: ÃU
t ← ÃU

t−1 + αl∆
U
t +
√
2αlZt

15: ÃO
t ← ÃO

t−1

16: end for
17: Ã0 ← ÃT

18: end for
19: Ã← ÃT ▷ A sample from p(Ã | X)

20: A← I
{
Ã ≥ 0.5

}
▷ Project onto {0, 1}

21: S ← S⋃{A}
22: until S contains M samples
23: Store the sample mean of S in Amean

24: Â← I {Amean ≥ τk}
25: return Â

Recall that this is possible because a) we count on a
closed-form (approximate) expression for the annealed
likelihood (27), and b) we have found a way to estimate
the annealed prior score by training a GNN with A.
Notice that, in each step, we just update the values of
ÃU , leaving the known values in ÃO fixed.

After LT steps for each sample, the algorithm gen-
erates a continuous matrix Ã. As we work with un-
weighted graphs, it is necessary to make the predic-
tion binary-valued. Therefore, the algorithm draws

I
{
Ã ≥ 0.5

}
as a sample instead, representing an

element-wise projection onto the set {0, 1}. Following
this procedure, we drawM samples and then compute
their average. Lastly, we apply a threshold τk to the
approximate posterior mean to compute the consistent
estimator Â.

4 NUMERICAL RESULTS

We carry out simulations in different setups 1 to
demonstrate our scheme’s practical relevance and gain

1Source code is available at https://github.com/
Tenceto/langevin_ggm.

insight regarding how informative the prior knowledge
is when estimating A0.

In all the simulations, we first generate a fully-known
graph and then drop |U| random entries of a0, which
we then try to estimate. We generate M = 10 sam-
ples for each graph to compute (11). We compare our
method with: 2

• WGL (Li and Jackson, 2015). We penalize the in-
dices in U with a parameter λ, use an arbitrarily large
penalty where AO

0 is 0, and do not penalize the entries
where AO

0 is 1.
• Thresholding. We compute Θ̂ and threshold it.
• TIGER. The GGM estimation method in Liu and
Wang (2017) which does not require tuning.
• GraphSAGE. A link prediction method (not a
GGM estimation method like the others) based on
GNNs (Hamilton et al., 2017). We use the measure-
ments X as node features and AO

0 as the training set
while testing AU

0 .

All the thresholds (τk for our algorithm and those used
for the thresholding and GraphSAGE methods) and λ
for WGL are tuned using a training set. It is worth
pointing out that the information given by AO

0 cannot
be used within the TIGER algorithm, as it requires
fixing some entries of Θ.

Additionally, we use as a benchmark a variant of Al-
gorithm 1. We label it as “Langevin prior” (LPr),
since it consists of just using prior information (i.e.,
∆t = gξ(Ãt−1, σl) in line 13). In other words, we test
the algorithm when no observations are available, but
only A is. Our method is labeled as “Langevin poste-
rior” (LPost), using both the prior and likelihood score
functions.

We run simulations for three different kinds of graphs.
Two of them, grid graphs and Barabási–Albert
graphs (Barabási and Albert, 1999), are synthetic,
while the third one consists of ego-nets of Eastern Eu-
ropean users collected from the music streaming ser-
vice Deezer (Rozemberczki et al., 2020). Next, we re-
port and discuss the numerical results for all simulated
scenarios. We report the average F1 score over 10 dif-
ferent train/test splits over 100 graphs in each case.

Partially unknown grids. We consider grids of dif-
ferent heights and widths with few additional random
edges. Results are shown in Figure 2.

As k increases, the performance of the predictors that
use X increases, except for GraphSAGE. Recall that
the presence of an edge between two nodes does not

2Additional details on hyperparameter choices, proper-
ties of datasets, and computation of the reported metrics
can be found in Section B of the SM.

https://github.com/Tenceto/langevin_ggm
https://github.com/Tenceto/langevin_ggm

Estimation of partially known Gaussian graphical models with score-based structural priors

imply a direct correlation between the variables, but
rather conditional dependence given the rest of the
graph. Considering that this relationship is not cap-
tured by local neighborhoods, which is how Graph-
SAGE aggregates node data, this method is expected
to not benefit from including more observations.

For both sizes of |U| and for the four different ratios
k/|U|, LPost outperforms all the other approaches.
However, it is worth pointing out that the gap is much
more prominent in Figure 2a when |U| is smaller. LPr’s
predictions also present a higher F1 score in that case.
This behavior leads to thinking that the information
provided by A decreases as |U| (and, thus, the dimen-
sions of the space from which the Langevin process is
sampling) increases. A complementary experiment on
the performance dependence on |A| for a different type
of graph is presented in Section C.1 of the SM.

When |U| is small, the prior probability mass is con-
centrated among fewer possible graphs. Intuitively, in
this case, Langevin generally samples either the same
graph or similar ones throughout the differentM sam-
ples. Thus, the sample mean yields a satisfactory es-
timate. When |U| is large, the probability mass is
spread across many adjacency matrices in the high-
dimensional space of p(Ã). This leads to Langevin
converging to diverse graphs each time we sample, re-
ducing the usefulness of the sample mean as an estima-
tor. An additional experiment illustrating the perfor-
mance dependence on |U| is presented in Section C.2
of the SM.

Partially unknown Barabási–Albert graphs.
Now we consider the dual Barabási–Albert preferen-
tial attachment model (Moshiri, 2018). All graphs in
A are such that n ∈ {47, 49, 51, 53}, while we used
graphs with n ∈ {46, 48, 50, 52} nodes to test the algo-
rithm. This allows us to verify whether the EDP-GNN
correctly generalizes the score estimation. The results
are shown in Figure 3a.

Once again, LPost yields better results than the other
algorithms, mainly when k is small. As more obser-
vations are available, all of the methods (except for
LPr and GraphSAGE) have approximately the same
performance – the information provided by A becomes
negligible compared to that offered by X.

The F1 score achieved by LPr is relatively poor due
to the large randomness in the graphs. Namely, it is
always worse than the one obtained using WGL. On
the contrary, when the underlying graph presents more
structure (for instance, the grid graphs in Figure 2a),
LPr was shown to outperform WGL for some values
of k/|U|. We can conclude that some priors offer more
predictive power than others: the more substantial the
structure of the graphs, the more useful p(A) becomes.

0.15 0.35 0.85 2.0

k/|U|

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
1

S
co

re

LPost

LPr

WGL

Threshold

TIGER

GraphSAGE

(a)

0.15 0.35 0.85 2.0

k/|U|

0.2

0.3

0.4

0.5

0.6

F
1

S
co

re

LPost

LPr

WGL

Threshold

TIGER

GraphSAGE

(b)

Figure 2: F1 score of several methods using grid graphs
with 40 ≤ n ≤ 50 where (a) 10% and (b) 20% of the
values in a are unknown.

Partially unknown ego-nets. Now, we consider the
graphs in the Deezer dataset with n ≤ 25. The results
are shown in Figure 3b.

Once again, our method exhibits a higher edge pre-
diction performance than the rest. The behavior is
similar to the one observed in the previous setups: the
accuracy of all GGM-based methods increases with k.
GraphSAGE slightly outperforms LPost in this sce-
nario for the smallest values of k. Ego-nets are strongly
local-based, and GraphSAGE is expected to outper-
form the rest of the approaches when the information
provided by the observations is negligible.

Ego-nets, like grids, present a strong structure, render-
ing the prior highly predictive. Even though half of the
graph is unknown, the F1 score of LPr is the highest
among all the experiments (cf. Figures 2 and 3a).

Fully unknown ego-nets. We consider the same
dataset as in the last experiment, but now all the en-
tries in A (except for those in the diagonal, which are
0) are assumed unknown so that |O| = 0. As shown
in Figure 2, the prior offers less predictive power as

Mart́ın Sevilla, Antonio G. Marques, Santiago Segarra

0.15 0.35 0.85 2.0

k/|U|

0.1

0.2

0.3

0.4

0.5

0.6

F
1

S
co

re

LPost

LPr

WGL

Threshold

TIGER

GraphSAGE

(a)

0.15 0.35 0.85 2.0

k/|U|

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
1

S
co

re

LPost

LPr

WGL

Threshold

TIGER

GraphSAGE

(b)

Figure 3: F1 score of several methods using
(a) Barabási-Albert graphs with |U| = 0.1 dim(a), and
(b) ego-nets with |U| = 0.5 dim(a).

|U| increases (see Section C.2 for another experiment
investigating this behavior). Thus, when the entire
graph is to be estimated, we propose fixing some of
the entries in A with a graphical version of the ran-
dom lasso (Wang et al., 2011).

To that end, we first compute the GL solution B times
(we use B = 50 in these experiments), where a differ-
ent bootstrap sample X(b) is used for each iteration to

obtain Θ̂
(b)

boot. Then, the average

Âboot =
1

B

B∑
b=1

I
{
Θ̂

(b)

boot ̸= 0
}

(30)

can be interpreted as the probability of each Aij to be
1. Thus, for some probability margin pm, we assume
known some entries Aij such that

AO
ij =

{
0 if Âbootij < 0.5− pm
1 if Âbootij > 0.5 + pm

, (31)

leaving as unknown all entries (i, j) such that 0.5 −
pm ≤ Âbootij ≤ 0.5 + pm. As pm increases, the confi-
dence of the estimated fixed values is higher, and |O|
becomes smaller.

1.8 3.2 5.6 10.0

k/n

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

F
1

S
co

re

LPost

BGL

GL

LPost (0.45)

LPost (0.3)

Figure 4: F1 score comparison when estimating ego-
nets with no known values in A. The values in paren-
theses correspond to the pm used to fix values from
Âboot prior to using our method LPost.

The results for two different values of pm are shown in
Figure 4, where we also compare with GL and its boot-
strapped counterpart (BGL). The latter is computed
as in (30) and then thresholded. We observe that a
naive implementation of our method falls behind when
|O| = 0, an expected behavior as analyzed in the ex-
periments with grid graphs. However, by leveraging
the bootstrapping procedure to fix some entries in A
we outperform GL and BGL, indicating that the prior
distribution significantly contributes to the prediction
accuracy.

Overall, our numerical experiments show that i) our
approach leads to better graph estimation results than
the classical alternatives considered and ii) the benefits
of our approach are more significant when the number
of observations is small and the graph presents marked
structural features.

5 CONCLUSIONS

We proposed a GGM estimation algorithm based on
annealed Langevin dynamics that allows us to leverage
graph structural priors beyond sparsity. Our approach
exploits a set of known graphs to extract the prior dis-
tribution. We designed an algorithm that, by combin-
ing annealed Langevin dynamics with a GNN-based
annealed prior score estimator, was able to draw sam-
ples from the posterior distribution of interest, namely
the distribution of the unknown edges given the known
ones, the structural prior, and the GMRF observa-
tions. Finally, we proposed a consistent point esti-
mate for the graph that underlies the GGM based on
the sample posterior mean. Through numerical ex-
periments, we showed our method outperforms classi-
cal ones, especially in cases with few observations and
highly structured graphs.

Estimation of partially known Gaussian graphical models with score-based structural priors

Acknowledgments

This research was sponsored by the Army Research
Office under Grant Number W911NF-17-S-0002; the
Spanish (MCIN/AEI/10.13039/501100011033) Grants
PID2019-105032GB-I00 and PID2022-136887NB-I00;
the Autonomous Community of Madrid within the EL-
LIS Unit Madrid framework; and the Fulbright U.S.
Student Program, in turn sponsored by the U.S. De-
partment of State and the U.S.–Argentina Fulbright
Commission. The views and conclusions contained in
this document are those of the authors and should not
be interpreted as representing the official policies, ei-
ther expressed or implied, of the Army Research Of-
fice, the U.S. Army, the Fulbright Program, the U.S.–
Argentina Fulbright Commission, or the U.S. Govern-
ment. The U.S. Government is authorized to repro-
duce and distribute reprints for Government purposes,
notwithstanding any copyright notation herein.

References

Banerjee, O., El Ghaoui, L., and d’Aspremont, A.
(2008). Model selection through sparse maximum
likelihood estimation for multivariate Gaussian or
binary data. The Journal of Machine Learning Re-
search, 9:485–516.

Barabási, A.-L. and Albert, R. (1999). Emer-
gence of scaling in random networks. Science,
286(5439):509–512.

Bishop, C. M. and Nasrabadi, N. M. (2006). Pattern
Recognition and Machine Learning. Springer.

Casella, G. and Berger, R. L. (2021). Statistical Infer-
ence. Cengage Learning.

Codazzi, L., Colombi, A., Gianella, M., Argiento, R.,
Paci, L., and Pini, A. (2022). Gaussian graphical
modeling for spectrometric data analysis. Compu-
tational Statistics & Data Analysis, 174:107416.

Dempster, A. P. (1972). Covariance selection. Biomet-
rics, pages 157–175.

Dobra, A., Eicher, T. S., and Lenkoski, A. (2010).
Modeling uncertainty in macroeconomic growth de-
terminants using Gaussian graphical models. Statis-
tical Methodology, 7(3):292–306.

Dobra, A., Hans, C., Jones, B., Nevins, J. R., Yao,
G., and West, M. (2004). Sparse graphical mod-
els for exploring gene expression data. Journal of
Multivariate Analysis, 90(1):196–212.

Friedman, J., Hastie, T., and Tibshirani, R. (2008).
Sparse inverse covariance estimation with the graph-
ical lasso. Biostatistics, 9(3):432–441.

Friedman, N. and Koller, D. (2003). Being Bayesian
about network structure. A Bayesian approach to

structure discovery in Bayesian networks. Machine
learning, 50:95–125.

Grzebyk, M., Wild, P., and Chouanière, D. (2004). On
identification of multi-factor models with correlated
residuals. Biometrika, 91(1):141–151.

Hamilton, W., Ying, Z., and Leskovec, J. (2017). In-
ductive representation learning on large graphs. Ad-
vances in Neural Information Processing systems,
30.

Hosseini, M. J. and Lee, S.-I. (2016). Learning sparse
Gaussian graphical models with overlapping blocks.
Advances in neural information processing systems,
29.

Hunter, D. R. and Handcock, M. S. (2006). Inference
in curved exponential family models for networks.
Journal of Computational and Graphical Statistics,
15(3):565–583.

Kawar, B., Vaksman, G., and Elad, M. (2021). SNIPS:
Solving noisy inverse problems stochastically. Ad-
vances in Neural Information Processing Systems,
34:21757–21769.

Li, T., Qian, C., Levina, E., and Zhu, J. (2020). High-
dimensional Gaussian graphical models on network-
linked data. The Journal of Machine Learning Re-
search, 21(1):2851–2895.

Li, Y. and Jackson, S. (2015). Gene network recon-
struction by integration of biological prior knowl-
edge. G3-Genes Genomes Genetics, 5:1075–1079.

Liu, H. and Wang, L. (2017). TIGER: A tuning-
insensitive approach for optimally estimating Gaus-
sian graphical models. Electronic Journal of Statis-
tics, 11(1):241 – 294.

Moshiri, N. (2018). The dual-Barabási-Albert model.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and
Ermon, S. (2020). Permutation invariant graph gen-
eration via score-based generative modeling. In In-
ternational Conference on Artificial Intelligence and
Statistics, pages 4474–4484. PMLR.

Petersen, K. B. and Pedersen, M. S. (2012). The ma-
trix cookbook. Version 20121115.

Qiu, Y. and Liyanage, J. S. (2019). Threshold selection
for covariance estimation. Biometrics, 75(3):895–
905.

Ravikumar, P., Wainwright, M. J., Raskutti, G.,
and Yu, B. (2011). High-dimensional covari-
ance estimation by minimizing l1-penalized log-
determinant divergence. Electronic Journal of
Statistics, 5(none):935 – 980.

Robert, C. and Casella, G. (1999). Monte Carlo Sta-
tistical Method. Springer.

Mart́ın Sevilla, Antonio G. Marques, Santiago Segarra

Roberts, G. O. and Tweedie, R. L. (1996). Exponen-
tial convergence of Langevin distributions and their
discrete approximations. Bernoulli, 2:341–363.

Rozemberczki, B., Kiss, O., and Sarkar, R. (2020).
Karate Club: An API Oriented Open-source Python
Framework for Unsupervised Learning on Graphs.
In ACM International Conference on Informa-
tion and Knowledge Management, page 3125–3132.
ACM.

Rue, H. and Held, L. (2005). Gaussian Markov Ran-
dom Fields: Theory and Applications. CRC press.

Sevilla, M. and Segarra, S. (2023). Bayesian topology
inference on partially known networks from input-
output pairs.

Simpson, S. L. and Laurienti, P. J. (2015). A
two-part mixed-effects modeling framework for an-
alyzing whole-brain network data. NeuroImage,
113:310–319.

Snijders, T. A. B., Pattison, P. E., Robins, G. L.,
and Handcock, M. S. (2006). New specifications
for exponential random graph models. Sociological
Methodology, 36(1):99–153.

Song, Y. and Ermon, S. (2019). Generative modeling
by estimating gradients of the data distribution. Ad-
vances in Neural Information Processing Systems,
32.

Sundaram, R. K. (1996). A first course in optimization
theory. Cambridge University Press.

Tan, L. S. L., Jasra, A., Iorio, M. D., and Ebbels, T.
M. D. (2017). Bayesian inference for multiple Gaus-
sian graphical models with application to metabolic
association networks. The Annals of Applied Statis-
tics, 11(4):2222–2251.

Tsai, K., Koyejo, O., and Kolar, M. (2022). Joint
Gaussian graphical model estimation: A survey.
Wiley Interdisciplinary Reviews: Computational
Statistics, 14(6):e1582.

Vincent, P. (2011). A connection between score match-
ing and denoising autoencoders. Neural Computa-
tion, 23(7):1661–1674.

Wang, H. and Li, S. Z. (2012). Efficient Gaussian
graphical model determination under G-Wishart
distributions. Electronic Journal of Statistics,
6:168–198.

Wang, S., Nan, B., Rosset, S., and Zhu, J. (2011). Ran-
dom lasso. The annals of applied statistics, 5(1):468.

Wang, Y., Segarra, S., and Uhler, C. (2020). High-
dimensional joint estimation of multiple directed
Gaussian graphical models. Electronic Journal of
Statistics, 14(1):2439 – 2483.

Welling, M. and Teh, Y. W. (2011). Bayesian learning
via stochastic gradient Langevin dynamics. In Intl.
Conf. on Machine Learning, page 681–688.

Williams, D. R. (2020). Beyond lasso: A survey of non-
convex regularization in Gaussian graphical models.

Wu, Q., Zhang, Z., Waltz, J., Ma, T., Milton, D., and
Chen, S. (2019). Predicting latent links from incom-
plete network data using exponential random graph
model with outcome misclassification. bioRxiv.

Zhou, J., Hoen, A., Mcritchie, S., Pathmasiri, W.,
Viles, W., Nguyen, Q., Madan, J., Dade, E., Kara-
gas, M., and Gui, J. (2021). Information enhanced
model selection for Gaussian graphical model with
application to metabolomic data. Biostatistics, 23.

Zhuang, Y., Xing, F., Ghosh, D., Banaei-Kashani,
F., Bowler, R. P., and Kechris, K. (2022). An
augmented high-dimensional graphical lasso method
to incorporate prior biological knowledge for global
network learning. Frontiers in Genetics, page 2405.

Zuo, Y., Cui, Y., Yu, G., Li, R., and Ressom, H.
(2017). Incorporating prior biological knowledge for
network-based differential gene expression analysis
using differentially weighted graphical lasso. BMC
Bioinformatics, 18.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes. Additional analysis is provided in the
SM. In particular, for a complexity analysis
please refer to Section B.3.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes.

(b) Complete proofs of all theoretical results.
Yes. Proofs to the auxiliary lemmas are pro-
vided in the SM (Section A).

(c) Clear explanations of any assumptions. Yes.

3. For all figures and tables that present empirical
results, check if you include:

Estimation of partially known Gaussian graphical models with score-based structural priors

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). Yes. Please refer to the source code
if needed.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes.
Please refer to Sections B.1 and B of the SM
for more information.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes. Additional informa-
tion can be found in Section B of the SM.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Yes. See Section B.3 in the
SM.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator if your work uses ex-
isting assets. Yes.

(b) The license information of the assets, if ap-
plicable. Yes. Publication of our source code
is available in GitHub under an MIT License.

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. Yes.

(d) Information about consent from data
providers/curators. Not Applicable.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. Not Appli-
cable

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. Not Applicable

Mart́ın Sevilla, Antonio G. Marques, Santiago Segarra

Estimation of partially known Gaussian graphical models with
score-based structural priors
Supplementary Materials

A PROOFS OF LEMMAS

A.1 Proof of Lemma 1

Let Sn+ = {V ∈ Rn×n | V ⪰ 0} be the set of all positive semidefinite matrices. Then, we define a function
h : Sn+ → Sn+ such that

h(V) = argmax
Θ⪰0

f(Θ;V)

s. to Θij = 0 ∀(i, j) : AO
ij = 0, (32)

where f : Sn+ → R is f(Θ;V) = log detΘ − tr (VΘ). It immediately follows that the estimator in (9) of the
main paper satisfies

Θ̂ = h(S), (33)

with S = 1
kXX⊤ being the sample covariance matrix. The estimator Θ̂ is consistent if h(S) approaches Θ0 as

k increases. Hence, this is what we want to prove next.

First, we compute h
(
Θ−1

0

)
. To this end, we first check what matrix maximizes f without considering the

constraint in (32). The maximizer is unique since f is continuous and strictly concave in Sn+ (Ravikumar et al.,
2011). Taking the gradient of f with respect to Θ yields

∂f(Θ;V)

∂Θ
= 2Θ−1 −Θ−1 ◦ I− 2V −V ◦ I = 000 ⇐⇒ Θ = V−1. (34)

Hence, f(Θ;Θ−1
0) is maximized when Θ = Θ0. Furthermore, Θ0 satisfies the constraint in (32). As a result, it

holds that
h
(
Θ−1

0

)
= Θ0. (35)

Notice that the mapping h is continuous. This can be proven through the maximum theorem (Sundaram, 1996).
Let C = {V ∈ Rn×n | Vij = 0 ∀(i, j) : AO

ij = 0} be the set of constrained matrices we are interested in. Any
linear combination of matrices in C is still in C; thus, C is a convex set. Therefore, since Sn+ is convex as well,
the intersection I = C ∩ Sn+ (which is the set over which f is maximized in (32) to compute h) is convex too.

The function f is continuous and strictly concave in I, since I ⊆ Sn+. Hence, by the maximum theorem
under convexity (Sundaram, 1996), the argmax mapping of f(Θ;V) within I is a continuous function of V.
Consequently, h is a continuous mapping.

Consider that by the law of large numbers,

S =
1

k

k∑
i=1

xix
⊤
i

k→∞−−−−→ E
[
xx⊤] = Θ−1

0 . (36)

Consequently, by the continuous mapping theorem (which can be applied because h is continuous), consider-
ing (36), (33) and (35), we conclude that

Θ̂ = h(S)
k→∞−−−−→ h

(
Θ−1

0

)
= Θ0. (37)

Estimation of partially known Gaussian graphical models with score-based structural priors

A.2 Proof of Lemma 2

To study how p̂(A | X) behaves as k → ∞, we first analyze the likelihood function LX (Θ). Using Bayes’
theorem, we get

p(Θ | X) ∝ LX (Θ) p(Θ). (38)

By the Bernstein–von Mises theorem, we know that p(Θ | X)
k→∞−−−−→ δ(Θ −Θ0), where δ(·) is the Dirac delta.

Combining this with (38) it follows that

LX (Θ)
k→∞−−−−→ 0 ∀Θ ̸= Θ0. (39)

The result in (39) holds for any prior p(Θ) since the prior can be considered a constant with respect to k.

Given (39) and the consistency of Θ̂ in Lemma 1, we conclude that [cf. (10) in the main paper]

p̂(A | X)
k→∞−−−−→ p(A)

C
δ (Θ0 ◦ (A+ I)−Θ0) , (40)

where C is a normalization constant.

B EXPERIMENTAL DETAILS

B.1 Hyperparameters

Regarding the Langevin sampler, in all the experiments, we use L = 10 noise levels, evenly spaced between
σ1 = 0.5 and σL = 0.03, and T = 300 steps per level. We set the step size at ϵ = 10−6.

To tune the regularization parameter λ for the graphical lasso, we fit a function of the form λ(k) = a log(k)2 +
b log(k) + c using a training set and then evaluate that function at inference time for the given value of k. We
selected this specific functional form as it showed a very satisfactory fit for all of our cases. An example is shown
in Figure 5.

10−3 10−2 10−1

λ

0.4

0.5

0.6

0.7

0.8

F
1

S
co

re

k = 25

k = 56

k = 128

k = 291

k = 661

k = 1500

102 103

k

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

O
p

ti
m

al
λ

Data

Fitted curve

Figure 5: Fitting of λ(k) = a log(k)2 + b log(k) + c for the ego-nets dataset with |U| = 0.5 dim(a). The orange
curve on the right is the one used at inference time.

The thresholds used to obtain a binary-valued estimate of A0 when using GraphSAGE, the thresholding of Θ̂
and our method (in this last case, the threshold is τk) are set using the same procedure. Given R simulations
(in all of our experiments, R = 100), we take R/2 of those continuous-valued matrices and find the threshold
within some grid T that works the best for each method. Then, with those tuned values, we threshold the other
R/2 matrices left and only evaluate performance over them. All the plots shown in Section 4 from the original

Mart́ın Sevilla, Antonio G. Marques, Santiago Segarra

Algorithm 2 Metric computation

Require: {aUr , ãUr }Rr=1, T , S
1: J ← 0
2: for s← 1 to S do ▷ Repeat the process with S different splits
3: Store R/2 randomly chosen tuples (aUr , ã

U
r) into Atrain

4: Store the other R/2 tuples in Atest

5: for τ ∈ T do ▷ Get the best threshold in the grid
6: Compute metric(aUr , I

{
ãUr ≥ τ

}
) for each tuple in Atrain

7: If the average train metric is the best so far, store the current threshold in τ⋆

8: end for
9: Compute metric(aUr , I

{
ãUr ≥ τ⋆

}
) for each tuple in Atest

10: Store the average of the test metrics in Js
11: J ← J + Js
12: end for
13: return J

S ▷ Return the mean across splits

paper, as well as in this document, correspond to averages following this procedure S times (i.e., across S = 10
different train/test splits in our case), each with its threshold. Algorithm 2 provides a more precise description
of our method.

B.2 Datasets’ details

For the grids, we generated graphs with 40≤n≤50. Additionally, to introduce randomness into the graphs, we
uniformly added between 2 and 5 edges at random to the edge set E . We trained a GNN with |A| = 5000 graphs
generated with the described procedure.

In the case of the dual Barabási–Albert model, the generation is initialized with an empty graph with max(n1, n2)
nodes. Then, the remaining n − max(n1, n2) vertices are added iteratively. For each new node, n1 edges are
added with probability π, and n2 edges are added with probability 1−π. Edges are added following a preferential
attachment criterion. In our case, we set n1 = 2, n2 = 4 and π = 0.5. We simulated |A| = 1000 graphs in this
setting.

Regarding the ego-nets, we used |A| = 2926 of the graphs available in the whole dataset (i.e., only those such
that n ≤ 25) to train the EDP-GNN, leaving 100 graphs for testing.

B.3 Implementation details

All experiments shown in the main paper and in this document and the training of the EDP-GNNs were run
on an NVIDIA DGX A100 system. Our code is provided as part of the supplementary material and not in a
GitHub repository for the sake of anonymity. The code corresponding to the EDP-GNN implementation was
taken from the original repository of Niu et al. (2020) under a GPL-3.0 license.

Regarding the computational complexity, the key steps to consider from Algorithm 1 are those in lines 2, 11,
and 12. The computation time of Θ̂ is O(n3) for dense problems, but much less in sparse ones (Friedman et al.,
2008), and even less if some of the entries are fixed as is the case of (9). However, here, we consider the worst-case

scenario. After computing Θ̂, we evaluate (27), which requires to compute the inverse of Θ̃, leading to a time
complexity of O(n3) as well. Feed-forwarding the GNN consists of just matrix and vector multiplications that
scale as O(n2). Therefore, the dominating steps are the first two. The step in 11 is repeated L · T times per
sample, and since the sampling of each Ai is completely parallelizable, the total complexity of Algorithm 1 is
O(L · T · n3), considering that typically LT ≫ 1.

C ADDITIONAL EXPERIMENTS

This section provides more experiments to gain additional insights into our method.

Estimation of partially known Gaussian graphical models with score-based structural priors

C.1 Performance dependence on |A|

We want to analyze how the predictive power of the prior learned by the EDP-GNN changes when different
dataset sizes |A| are used for training. To this end, we use a different family of graphs, known as exponential
random graph models (ERGMs), which has a closed-form distribution (up to a normalization constant) that relies
on a set of network statistics and parameters (Hunter and Handcock, 2006; Snijders et al., 2006). Namely, for a

vector of r statistics ψ(A) =
[
ψ1(A) ψ2(A) · · · ψr(A)

]⊤
and a set of parameters β ∈ Rr, the distribution

of A is given by

p(A) =
1

Cψ(β)
exp

(
β⊤ψ(A)

)
. (41)

The statistics can be, e.g., the number of triangles in the graph, the number of d-stars, or the number of edges,
among many others. In the simulations, we consider an ERGM distribution with statistics

ψ(A) =
[
AKSγ(A) 1

2

∑
ij Aij

]⊤
. (42)

The first one corresponds to the alternated d-stars statistic (Hunter and Handcock, 2006), defined as

AKSγ(A) =

p−1∑
d=2

(−1)dSd(A)

γd−2
, (43)

with Sd(·) being the number of d-stars in the given graph and γ a constant. In our simulations, we set γ = 0.3.

The second statistic corresponds to the number of edges |E|. We use β =
[
0.7 −2

]⊤
as coefficients. The graphs

we generate have n = 50 nodes, and we remove |U| = 30 values from A0. We drop zeros and ones with equal
probability so that we can use accuracy instead of F1 score for this experiment. We generated |A| = 1000
graphs from this distribution to train the EDP-GNN and, to evaluate the impact the dataset size |A| has on the
estimation performance, we compare the edge prediction accuracy when fewer training samples are used. The
reported accuracies correspond to the average over 25 runs, following the procedure described in Section B.1.

25 100 350 1300
k

0.5

0.6

0.7

0.8

0.9

E
d

ge
p

re
d

ic
ti

on
ac

cu
ra

cy LPost (1000)

LPost (500)

LPost (300)

LPost (250)

GLasso

Threshold

TIGER

GraphSAGE

Figure 6: Prediction accuracy of several methods using ERGM graphs with |U| = 30. The comparison includes
five versions of Algorithm 1, each considering a prior that was learned with datasets A of different sizes (the
value of |A| is indicated in the legend), as well as three benchmarks available in the literature.

Figure 6 shows that the accuracy improves drastically as |A| increases, as expected. However, this enhancement
seems to saturate as the dataset size approaches |A| = 1000. All the other GGM estimation methods perform
similarly, logically presenting a higher prediction accuracy as k increases. Notably, whenever |A| ≥ 300, all other
methods underperform our algorithm.

GraphSAGE performs poorly – it predicts 0 or 1 uniformly at random. Additionally, the incorporation of
additional observations does not increase its accuracy. As discussed in detail in the main paper, this behavior is

Mart́ın Sevilla, Antonio G. Marques, Santiago Segarra

expected and associated with GraphSAGE aggregating data using local neighborhoods, which is not a good fit
for the setup at hand.

C.2 Performance dependence on |U|

In order to understand how |U| impacts the estimation performance, we run an additional experiment that
complements the results presented in Section 4 when using grid graphs with different |U|. We use the test set
of the ego-nets and fix k = 100, varying the percentage of unknown values in a. We run the simulations using
three versions of Algorithm 1:

• Posterior (LPost). Our original approach, implementing all the steps in Algorithm 1.

• Prior (LPr). This simplified version of Algorithm 1 only exploits prior information. This corresponds to
running Algorithm 1 where in line 11 we set ∇ logLX(Θ̃t) = 0.

• Likelihood (LL). This simplified version of Algorithm 1 omits the learned prior and uses only the observa-
tionsX. More specifically, this entails to run a version of Algorithm 1 where in line 13 we set g(Ãt−1, σl) = 0.

We use the AUC score instead of F1 in this experiment to assess the prediction performance. This allows us to
avoid the tuning of τk, which is unnecessary for this analysis since we are comparing three versions of Algorithm 1
that return continuous predictions if no thresholding is applied. Results are shown in Figure 7.

The main observations are: i) the information provided by A decreases as |U| increases, and ii) LPost consistently
outperforms LPr and LL. Both are expected results that were observed in previous experiments. Analyzing more
specific details, we note that the performance of LPr drops rapidly as |U| increases, while that of LPost decays
more slowly. The same is true for LL, whose AUC levels are stable and decay slowly. Finally, it is worth noticing
that when a large portion of the graph is unknown, LPost approaches LL since the information provided by |A|
becomes less valuable.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
|U|/dim(a)

0.5

0.6

0.7

0.8

0.9

A
U

C
S

co
re

LPost

LPr

LL

Figure 7: AUC score achieved by different versions Algorithm 1 when using an ego-net prior and k = 100
observations. The horizontal axis represents different values of |U|. For this experiment we skip the thresholding
implemented in line 24 of Algorithm 1.

