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Abstract

Real-world systems often involve some pool of
users choosing between a set of services. With
the increase in popularity of online learning al-
gorithms, these services can now self-optimize,
leveraging data collected on users to maximize
some reward such as service quality. On the flip-
side, users may strategically choose which ser-
vices to use in order to pursue their own reward
functions, in the process wielding power over
which services can see and use their data. Exten-
sive prior research has been conducted on the ef-
fects of strategic users in single-service settings,
with strategic behavior manifesting in the manip-
ulation of observable features to achieve a de-
sired classification; however, this can often be
costly or unattainable for users and fails to cap-
ture the full behavior of multi-service dynamic
systems. As such, we analyze a setting in which
strategic users choose among several available
services in order to pursue positive classifica-
tions, while services seek to minimize loss func-
tions on their observations. We focus our anal-
ysis on realizable settings, and show that naive
retraining can still lead to oscillation even if all
users are observed at different times; however, if
this retraining uses memory of past observations,
convergent behavior can be guaranteed for cer-
tain loss function classes. We provide results ob-
tained from synthetic and real-world data to em-
pirically validate our theoretical findings.

1 INTRODUCTION

Machine learning (ML) predictions are widely used in to-
day’s world, playing an intermediary role between indi-
viduals and services in numerous applications. In these
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settings, predictions rarely come from a single entity—
instead, multiple service providers collect data on users and
train proprietary models. While this is happening, individ-
uals concurrently choose among these services, making se-
lections according to their own incentives and proportion-
ately creating a downstream impact on the data available to
each service. In this broader deployment context, services
must deploy learning algorithms that can contend with on-
line data collection and shifting distributions.

An example of this can be found in digital credit services
offering small short-term loans to individuals who lack ac-
cess to conventional banking. This system consists of mul-
tiple services, operating largely independently and in an
uncoordinated manner. Services here generally approve or
deny loans using an automated system, and make initial
lending decisions on the basis of an applicant’s informa-
tion using ML models (Francis et al., 2017). These models
are trained on historical lending decisions and are updated
as each service collects more data. Among other possi-
ble factors, individual users in this system are incentivized
to select a provider who will approve their loan—selecting
among services in order to secure a positive classification.

A large body of work on strategic classification (Hardt
et al., 2016) studies a model of behavior in which individ-
uals modify their data to achieve positive classifications.
This body of work includes the design of decision rules
that are robust to anticipated strategic behavior, as well as
algorithms for finding such rules through repeated interac-
tions between decision-makers and individuals. However,
this model of data manipulation fails to capture a straight-
forward way in which individuals can express their prefer-
ences: simply choosing amongst alternative providers.

In this work, we formalize the problem of strategic usage,
where individuals vary their participation in various ser-
vices according to a strategic objective. We study a real-
izable binary classification setting where individuals seek a
positive prediction and services only obtain data from users
who select them. While the usage decision is relatively
straightforward, the differential access to data present in
this setting and the resulting multi-learner dynamics are
complex. We show that when services naively update their
models with retraining updates, strategic behavior by in-
dividuals can cause non-converging oscillations. Follow-
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ing this realization, we introduce a novel class of retrain-
ing updates that make use of memory, which when used
can guarantee the convergence of the learning dynamics to
an invariant set regardless of initialization. These invari-
ant sets furthermore exhibit favorable conditions: services
experience zero loss across users, correctly classifying all
users who choose to use them, and users whose true label
is negative will elect to leave the system entirely.

The paper is organized as follows. We begin in Section 2
by reviewing the body of related work on strategic classi-
fication and usage choices. Our first contribution is intro-
duced in Section 3, formalizing the strategic usage problem
setting and notation and expanding on user and service up-
dates with the novel addition of memory. In Section 4 we
present our second contribution, being a characterization
of the resulting learning dynamics. These results are illus-
trated in Section 5 with numerical simulations on real and
synthetic data, and in Section 6 we conclude with a discus-
sion of implications and directions for future work.

2 RELATED WORK

Strategic Classification Our work is inspired by the set-
ting of strategic classification, first proposed by Hardt et al.
(2016), in which strategic users manipulate their features in
order to receive a positive classification, and a learner or de-
cision maker is tasked with designing a classifier robust to
these manipulations. Many works in this setting study com-
plexities such as the distinction between gaming and im-
provement (Kleinberg and Raghavan, 2020), connections
to causal inference (Miller et al., 2020), and the social bur-
den (Milli et al., 2019). As this form of gaming is distinct
from the one we study, we do not attempt a comprehen-
sive review of this vast body of work; instead, we highlight
work that considers phenomena relevant to our usage set-
ting. One such phenomenon is decision-dependent access
to data, which in our setting arises due to user choices be-
tween services. Harris et al. (2023) studies an online vari-
ant of the strategic classification problem in the presence of
“apple tasting” or one-sided feedback, in which labels are
only collected for data points that are positively classified.
Chien et al. (2023) refer to this phenomenon as algorithmic
censoring and explore its implications. In contrast to these
works, in the strategic usage setting, both features and la-
bels are unavailable to services that a user does not select.
Another phenomenon of interest is repeated interaction be-
tween learning algorithms and strategic agents. Dong et al.
(2018) present algorithms for an online variant of strategic
classification in which data arrives sequentially, each point
responding to the currently deployed classifier. Zrnic et al.
(2021) study the dynamics of repeated interactions between
a decision-maker and a strategic population, and show con-
vergence to a unique equilibrium depending on their rela-
tive update frequencies. Interestingly, they show that re-
peated retraining is sufficient to counteract manipulations

when their update frequencies are high enough. Though
we study similar repeated retraining dynamics, our analy-
sis differs in that equilibria are not unique.

Endogeneous Distribution Shift The dynamics of re-
peated interactions between learning algorithms and en-
dogenously shifting populations have also been studied
more generally. Performative prediction, first introduced
by Perdomo et al. (2020), generalizes the setting of strate-
gic classification, modeling a single learner seeking to
maximize accuracy subject to an underlying decision-
dependent data distribution. They also study the conver-
gence of repeated retraining. Narang et al. (2022); Pil-
iouras and Yu (2022); Wood and Dall’Anese (2022) study a
multi-player scenario, where the data distribution depends
on the decisions of multiple learners. We also consider
decision-dependent distributions to model the varying us-
age of strategic individuals; however, the mechanics of the
dependence violate assumptions necessary to apply previ-
ous work in the performative setting, such as distribution
smoothness. In contrast the unique equilibrium of perfor-
mative prediction dynamics, our setting requires a careful
convergence analysis in terms of invariant sets rather than
single points. The framework of performative power intro-
duced by Hardt et al. (2022) studies the ability of services
to influence data distributions. Interestingly, they show that
in the presence of a choice between competing providers,
individuals have no incentive to perform costly manipula-
tions to their features.

Usage Choices A largely separate body of work has in-
vestigated the impacts of ML by studying user participa-
tion choices. Hashimoto et al. (2018); Zhang et al. (2019)
consider sub-populations choosing whether or not to use a
single ML model on the basis of accuracy or performance,
showing that retention dynamics can lead to the exacerba-
tion of disparate representation found in the population. Gi-
nart et al. (2021); Kwon et al. (2022); Dean et al. (2022)
consider users selecting among various services, also on
the basis of model accuracy. For such non-strategic usage,
these works characterize the convergence of a simple re-
peated retraining dynamic. We show that when usage deci-
sions are made strategically, naive repeated retraining may
fail to converge. Another line of work considers explicit
competition for market share between multiple providers,
where the market share is determined by users selecting
based on performance or accuracy (Gradwohl and Tennen-
holtz, 2022; Aridor et al., 2020; Jagadeesan et al., 2022;
Ben-Porat and Tennenholtz, 2017, 2019). While these
works investigate strategic behavior on the part of services,
our focus is on strategic behaviors by users. Our setting de-
parts from all works mentioned in this subsection in that we
model users who seek positive classifications, rather than
merely high accuracy.
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3 PROBLEM SETTING

We study the interactions between n ∈ N+ individuals,
which we refer to as users, and m ∈ N+ machine learning-
based services. Each user i ∈ {1, . . . , n} is represented
by features xi ∈ X , which encode the information about
user i that is available at decision time. For example, in
a digital credit example, this information may include data
about an applicant’s mobile phone usage, financial trans-
actions, location information, and social media use, among
other details (Francis et al., 2017). Also associated with
each user i is a label yi ∈ {+1,−1} indicating an outcome
of interest. We refer to +1 as a positive label, which is gen-
erally seen as desirable, and −1 as a negative label, which
is generally seen as undesirable. Unlike the features, the la-
bel is not visible at decision time. In the simplified digital
credit example, the label corresponds to whether an indi-
vidual has the financial resources to repay a loan on time;
however, users need not correspond directly to human in-
dividuals. For example, in simulation experiments, we use
the Banknote Authentication dataset (Lohweg, 2013). In
this setting, a user corresponds to a banknote, the features
are defined by a processed image of the banknote, and the
label is whether or not the banknote is authentic.

Users interact with services. Each service j ∈ {1, . . . ,m}
selects a classifier hj : X → {+1,−1} from some model
class H. This classifier predicts the unseen label of a user,
given their features. As with labels, a positive prediction
of +1 is seen as desirable, while a negative prediction of
−1 is seen as undesirable. In the digital credit example,
a prediction determines whether a credit service offers a
loan to an individual. In the banknote example, a prediction
determines whether the financial transaction is accepted.

We study the realizable setting, meaning that we assume
there exists a classifier h ∈ H that perfectly classifies
all users simultaneously, yi = h(xi) for i = 1, . . . ,m.
This assumption, formally stated in Assumption 3, is con-
sistent with modern machine learning practice: expressive
high-parameter model classes and high-dimensional data
allow for state-of-the-art dataset interpolation (Zhang et al.,
2017). Several works in strategic classification also use this
setting (Nair et al., 2022; Ghalme et al., 2021).

Example 1. For a given feature transformation φ : X →
Rd, the linear model class is defined as

H =
{
h(x) =

{
+1 θ⊤φ(x) > 0

−1 θ⊤φ(x) ≤ 0
s.t. θ ∈ Rd

}
.

Unlike in a classical supervised machine learning setting,
or even in the usual strategic classification setting (Hardt
et al., 2016; Zrnic et al., 2021), we do not assume that ser-
vices have immediate access to data about the users. In-
stead, the data observed by services depends on the strate-
gic choices of the users. The following sections describe
the user behavior and the learning updates of the services.

3.1 Strategic Users

Strategic users seek positive classifications, as these corre-
spond to desirable outcomes. This desire is independent of
the user’s true label. Unlike prior work on strategic classi-
fication, in our setting, users cannot manipulate their data,
but can select between different services and vary their
level of usage. Thus, the features xi and label yi of each
user i are fixed. Instead, users strategically adjust their us-
age, denoted by Aij ∈ R+ for user i and service j. Each
user i selects m usage values Ai1, . . . , Aim. These values
are non-negative and real-valued, meaning that the user can
modulate the total amount of usage. For example, in the
digital credit setting, usage could correspond to the num-
ber or amount of loans.

One component of the strategic user objective is the utility
from positive classification. This utility u : X × H → R
depends on the user features and the classifier. We make
the following assumptions about the utility:

Assumption 1 (User utility). For any h1, h2 ∈ H and x ∈
X such that h1(x) = −1 and h2(x) = 1, u(h1, x) ≤ 0 <
u(h2, x).

This assumption states the intuition that users seek positive
classification. Furthermore, we allow the utility to depend
on the classifier h, not merely the individual classification
h(x). This allows users to be sensitive to other qualities of
the classifier, such as the margin, i.e. the distance from a
negative classification. We illustrate this in the following
example:

Example 2. For a linear model class where classifiers are
represented by their weights θ, the 0-1 utility is given by
u(x, θ) = 1{θ⊤φ(x) > 0}. This models users who care
only about whether their classification is positive. The lin-
ear utility is given by u(x, θ) = θ⊤φ(x). This models users
who care about their margin.

The benefit that a user i receives from a service j depends
on both utility and usage: Aiju(xi, hj).

The second component of the user objective depends only
on their total usage:

∑m
j=1 Aij . In particular, higher total

usage corresponds to a lower overall objective value. This
models an opportunity cost or a penalty for large usages on
a per-user basis. In the digital credit example, individuals
are disincentivized from applying for loans too often.

Putting these components together, the overall strategic ob-
jective for a user i is to maximize

m∑
j=1

Aiju(xi, hj)−
1

q

( m∑
j=1

Aij

)q

(1)

where the power q > 1 sets the opportunity cost to in-
crease superlinearly, so the marginal utility of usage is non-
increasing. To understand this objective, consider the best
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response of a user i for fixed services h1, . . . , hm. If no ser-
vice offers a positive classification, then by Assumption 1,
no utility will be positive, and thus the best response will be
zero usage. If there is a service j offering uniquely max-
imum utility u(xi, hj) > 0, then the best response is to
ignore any other service, i.e., Aik = 0 for all k ̸= j. The
best response usage will be Aij = u(hj , xi)

1
1−q , thus de-

pending on the maximal utility in addition to the power q.

If several services offer equal and maximal utility to the
user, then the best response is not unique. It includes any
configuration of usage distributed over these equivalent ser-
vices, with fixed total usage. In other words, users consider
only the services offering them a sufficiently positive clas-
sification, and their usage magnitude is determined by the
magnitude of the utility.

We note that implicit in this behavior is that users have
full knowledge of service classifiers. This is a common
assumption in strategic classification literature and can be
motivated through openly released classifiers or hearsay. In
the imperfect knowledge setting, we add that services ob-
serve users that they classify as negative, making the game
easier for the services.

3.2 Learning Updates for Services

Services deploy classifiers trained on data that they have
observed. We take the number of services to be much
smaller than the number of users m ≪ n. To each ser-
vice, the large and fluid user pool is represented as a distri-
bution over features and labels. The distribution observed
by a service depends on the usages so that the weight on
data point (xi, yi) for service j is proportional to the usage
Aij . Importantly, this means that when the usage is zero,
the service has no information about the datapoint. Users
who never choose to use a particular service are essentially
invisible to the service.

We model the process of training a classifier by expected
loss minimization. The loss ℓ : H×X ×Y → R quantifies
the error of a given classifier on a given data point. We
make the following assumption about the loss function.

Assumption 2 (Loss-utility relationship). For all h ∈ H,
the loss is non-negative, −yℓ(h, x, y) strictly monotoni-
cally increases with u(x, h), and there exists v > 0 such
that u(x, h) = 0 =⇒ ℓ(h, x, y) = v.

For a positive user (y = +1), this assumption gives a neg-
ative relationship between classification utility and the ser-
vice’s quantification of error: high utility corresponds to
low error, so the goals of users and services are aligned. For
a negative user (y = −1), it is a positive relationship: high
utility corresponds to high error, so the user is at odds with
the service. The requirement of the existence of a v > 0
meanwhile implies that zero loss gives a user the same sign
utility as their label.

Example 3. For a linear model class where classifiers are
represented by their weights θ, the 0-1 loss is ℓ(θ, x, y) =
1{θ⊤φ(x) · y > 0}, which corresponds to the 0-1 utility.
The hinge loss is defined as ℓ(θ, x, y) = max{1−θ⊤φ(x) ·
y, 0}, which corresponds to the linear utility.

Recall that as discussed above, realizability means that the
model class H includes a perfect classifier. We now for-
malize this intuition in terms of the loss function.

Assumption 3 (Realizability). There exists a classifier h ∈
H such that ℓ(h, xi, yi) = 0 for all i = 1, . . . n.

Example 4. For the linear model class and either the 0-1
loss or the hinge loss, the realizability assumption is sat-
isfied as long as the features {φ(x1), . . . , φ(xn)} are lin-
early separable with a strictly positive margin.

This assumption is equivalent to ensuring that there exists
a classifier that achieves zero expected loss on the entire
population of users. For a given user distribution D, the
expected loss of a classifier h is Ex,y∼D[ℓ(h, x, y)]. When
this distribution is defined for a service j based on usages
A1j , . . . , Anj , it can be simplified1 to∑n

i=1
Aij∑n

k=1 Akj
ℓ(h, xi, yi) . (2)

Therefore, when user distributions are defined by usages,
the expected loss depends on the usages as well.

Many works on strategic classification considering the
setting where users manipulate their features consider a
principle-agent game between a single service and multiple
users (Hardt et al., 2016). These works focus on showing
the existence of a desirable equilibrium, where desirability
is defined as correct classifications with respect to true user
labels. In our setting, the realizability assumption implies
that such good outcomes are possible. However, because
we do not model omniscient services—they observe data
depending on strategic usage—arriving at such an equilib-
rium through interactions requires a nontrivial analysis of
dynamical and transient behavior.

3.3 Interaction Dynamics

We study the dynamics of repeated interactions between
users and services, taking a cue from other lines of work on
strategic classification (Zrnic et al., 2021), endogenous dis-
tribution shift (Perdomo et al., 2020), and usage dynamics
(Dean et al., 2022). In these dynamics, users act according
to their strategic objective, while services update their clas-
sifiers by retraining. We thus index classifiers and usage by
time, and denote the state of the dynamics as

Ht = (ht
1, . . . h

t
m), At ∈ Rn×m

1If
∑n

k=1 Akj = 0 for some service, we adopt the convention
that for all users i, the fraction Aij/(

∑n
k=1 Akj) = 0.
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We consider user best response dynamics, so at time t, user
i selects a usage to maximize (1) given models Ht. We
allow users to employ any tie-breaking scheme (even a non-
deterministic one) when there is not a unique maximizing
model. Consider the following joint update:

At ∈ argmax
A∈Rn×m

+

n∑
i=1

 m∑
j=1

Aiju(xi, h
t
j)−

1

q

[ m∑
j=1

Aij

]q (3)

We consider this joint update for simplicity of exposition,
noting that it is equivalent to any order of independent user
updates, due to the separability of the objective.

We consider services that repeatedly retrain their classi-
fiers. The most naive retraining approach minimizes the
immediate expected loss (2) given usages observed At, i.e.
over the current user distribution. Such an approach has
been studied in the traditional strategic classification set-
ting (Zrnic et al., 2021; Perdomo et al., 2020), where it has
been shown to converge to desirable equilibria. As we will
see in Section 4.1, this memoryless retraining is a poor fit
for the strategic usage setting.

We therefore consider retraining updates which minimize
the weighted sum of prior expected losses; that is, the up-
date to models Ht+1 considers the expected loss (2) in-
duced by At, At−1, . . . . By the linearity of expectation,
this is equivalent to minimizing the expected loss over a
distribution with memory. Thus, rather than depending on
current usage At, classifiers are selected according to an
average loss depending on some memory M t ∈ Rn×m

+ . We
define memory as follows, using a discount factor p ≥ 0:

M t =
At

1 + p
+

pM t−1

1 + p
(4)

By convention, M0 = 0. The memoryless case is p = 0,
where the loss depends only on the current timestep. For
p > 0, prior observations are retained, but with discounted
weight, so that timesteps further in the past contribute less.
As p increases, the memory is “stronger”: prior timesteps
have more influence on the loss.

Therefore, the retraining dynamics are defined by a service
j selecting a classifier to minimize the expected loss de-
fined by the memory Mt. The simultaneous joint update
for services is

Ht+1 ∈ argmin
H∈Hm

m∑
j=1

n∑
i=1

M t
ij∑n

k=1 M
t
kj

ℓ(hj , xi, yi) . (5)

Due to the separability of the objective over services, this
joint update is equivalent to any order of independent ser-
vice updates. We thus consider the simultaneous update for
simplicity of exposition.

We allow classifiers to employ many types of tie-breaking
schemes when there is not a uniquely optimal classifier;
however, we introduce a requirement of sticky tie-breaking.

Definition 1. Let there be an update schema where some
f t+1 is selected to minimize an expected loss as given by
f t+1 ∈ argminf∈F Lt(f). The update is called sticky
when if for a given f t, Lt−1(f t) = Lt(f t), then it holds
that f t+1 = f t.

For example, when there is a norm defined on F , the
minimum-norm update rule is

f t+1 = argmin
f∈F

∥f∥F s.t. f ∈ argmin
g∈F

Lt(g).

This update rule satisfies the stickiness property. This re-
quirement is grounded in real-world settings as changing
classifiers could often be costly or undesirable, and so when
no explicit advantage is derived from replacing a model, it
might be more advantageous to retain the old model rather
than approve and release a new one.

We consider alternating updates between services and
users, where the memory evolves according to (4).
Assumption 4. Given state (Ht, At) at time t, the classi-
fier update to Ht+1 is sticky and satisfies (5), and the usage
update to At+1 satisfies (3).

This means that first the services update Ht → Ht+1

based on current usage At, and then the users best-respond
At → At+1 based on the updated services Ht+1. We re-
mark that our analysis techniques could extend to a round-
robin of updates involving varied sequences of service and
user updates. We include a further discussion in the ap-
pendix and focus on the joint updates here for simplicity of
exposition and notation.

4 THEORETICAL RESULTS

In this section, we formally introduce our theoretical results
concerning the dynamics and convergence of the interac-
tion defined by Assumption 4. We will show that under
mild assumptions when the memory is non-zero, the sys-
tem will reach a desirable point within a finite number of
steps. Here, we define desirability from the perspective of
accurate classification.
Definition 2. A state (H,A) is zero-loss if all services j
satisfy: 1) Aijℓ(hj , xi, yi) = 0 for all i and 2) u(xi, hj) ≤
0 for all i with yi = −1.

Zero-loss states are desirable from many perspectives. The
first condition means that all users with nonzero usage have
minimal loss. This means that all services make accurate
classifications on the populations they observe. For posi-
tive users, it means maximal utility and correctly positive
classifications. The second condition means that negative
users will receive zero utility and will thus choose not to
engage in any service.

Beyond desirability from the perspective of utility and loss,
zero-loss points play an important role in understanding the
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Figure 1: Five datapoint example described in the proof of
Proposition 1. Negative points are represented by − and
positive points by +, where boldface indicates two over-
lapping points. The dashed and solid lines represent the
oscillating classifiers, with the dotted line representing a
zero-loss classifier.

convergence of the interaction dynamics. In Section 4.2,
we show that for memory parameter p > 0, when a state is
zero-loss, so are all future states. Thus the zero-loss prop-
erty defines a set which is invariant under the service re-
training and user best response updates. In Section 4.3, we
further show that the dynamics will reach a zero-loss state
in finite time.

All results are presented under Assumptions 1, 2 3, and 4.

4.1 Importance of Memory

While naive repeated retraining can be a successful strategy
for strategic classification problems in the context of data
manipulation (Zrnic et al., 2021), in this section we show
that it can catastrophically fail.

Proposition 1. In the memoryless p = 0 setting, there exist
settings in which the state (H,A) never converges.

We prove this result by providing an example that leads to
oscillations. We construct a dataset and an initial configu-
ration satisfying all assumptions and show that classifiers
and usages will fluctuate indefinitely. The dataset is illus-
trated in Figure 1.

Proof Sketch. We consider a setting of five users and two
classifiers, illustrated in Figure 1 and described in detail
in Section 5.1. We show that for p = 0, there are initial
conditions that lead to perpendicular oscillating classifiers
(dashed and solid in the figure) rather than zero-loss (for
example, dotted).

In contrast to memoryless updates, when p > 0, ser-
vices accumulate knowledge about data distribution over
timesteps. We will show that in our setting, nonzero mem-
ory is enough to guarantee convergence to a zero-loss state.
Towards that goal, we first make precise the ability of a
service to accumulate knowledge.

Lemma 2. For every user service pair i, j such that M t
ij >

0, ℓ(ht+1
j , xi, yi) = 0. Therefore, when p > 0, if At

ij > 0

for any timestep t, then for all further timesteps τ > t it
must hold that ℓ(hτ

j , xi, yi) = 0.

The proof of this result, and the missing proofs of all re-
maining results, are presented in the appendix.

4.2 Characterizing Invariance

So far, we have established that, in order to avoid oscilla-
tions, services must have memory p > 0 when retraining
their classifiers. Now, we turn to questions of convergence.
However, unlike many related works, we do not study a set-
ting that necessarily admits fixed points, much less unique
fixed points. This occurs because we allow arbitrary user
best response updates and assume realizability. This means
that it is plausible for users to vary their usage among sev-
eral different services indefinitely, so long as those users
are positive and the services classify them correctly. As
a result, some care is required to define the appropriate
notion of “convergence.” Instead of arguing about fixed
points, we turn our attention to an invariant set defined by
the zero-loss property. The following proposition formal-
izes the idea of invariance for zero-loss points.
Proposition 3. If a state (Ht, At) is zero-loss at time t,
then all future states are zero-loss for all times τ ≥ t.

The proof of this proposition follows from the sticky as-
sumption and users being unable to impart loss on the ser-
vices without engaging in suboptimal actions. We further
establish that the sticky assumption is necessary for classi-
fier tie-breaking in order to guarantee this invariance.
Proposition 4. Without sticky tie-breaking (Assumption 4),
regardless of the value of p, the existence of a zero-loss
equilibrium (Ht, At) at a timestep t does not guarantee
the existence of zero-loss equilibria for further timesteps
τ > t.

Proof Sketch. We consider a setting where a service is ini-
tialized with a model only giving positive usage to positive
points, with other negative points never seen. This may be
observed to be a zero-loss state. At the next timestep, or
some future one, the service may feasibly re-sample a new
model that gives positive usage to the negative points as
they were never observed, resulting in a new state where
the zero-loss conditions are violated.

4.3 Convergence

Finally, we turn to convergence: regardless of the initial
state of classifiers and users, we show that the interaction
dynamics will lead to a zero-loss point within finite time.

Over the course of interactions between services and users,
the services collect data. Each time a new user selects a ser-
vice, the service may respond by updating its classifier—
in particular, a change must occur if the new user is in-
correctly classified. Towards ensuring convergence to a
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zero-loss point, we hope to show that this process termi-
nates. The following lemma presents a sufficient condition
for reaching a zero-loss point in terms of the usage update.
Lemma 5. For any timestep t if there exists no values
M t−1

i,j = 0 such that At
i,j > 0, then (Ht, At) is zero-loss.

The proof of this follows from extending Lemma 2 to the
following timestep.

With this lemma in hand, we are ready to prove the main
result, which shows that services and users will converge to
a zero-loss equilibrium in finitely many steps.
Theorem 6. Given nonzero memory p > 0, there is a finite
time t ∈ N after which for all τ > t, (Hτ , Aτ ) is zero-loss.

Proof Sketch. We first argue that there are only finitely
many timesteps in which the condition in Lemma 5 can oc-
cur. Therefore, the system must reach a zero-loss point, and
by Proposition 3, the classifiers and usages must continue
to be zero-loss.

5 EXPERIMENTS

We illustrate our results with experiments of simulated
strategic usage behavior. We first consider a synthetic data
setting similar to that found in the proof of Proposition 1
to illustrate the importance of memory. We then perform
experiments on real data in the setting of the Banknote Au-
thentication task (Lohweg, 2013) and the realistic synthetic
data of the Bank Account Fraud task (Jesus et al., 2022).
These experiments showcase the importance of memory
and illustrate the complex and initialization-dependent dy-
namical behaviors that strategic usage dynamics can in-
duce.

5.1 Five Points Dataset

We begin with a synthetic example with only five points to
illustrate oscillation in non-memory cases, with features:

{(1, 1), (1, 1), (−1, 1), (1,−1), (−1,−1)}

and labels {1, 1,−1,−1,−1} respectively. This dataset is
clearly separable by linear classifiers with φ(x) = [x, 1]
and d = 3 (Example 1). We consider users acting strate-
gically according to the linear utility defined in Example 2
with services updating according to the hinge loss defined
in Example 3. We consider m = 2 services with initial
models θ = [1, 0, 0] and θ = [0, 1, 0]; the dividing hyper-
planes are perpendicular to one another, both giving pos-
itive classifications to the coincident positive points, but
while model 0 gives positive classification to (1,−1) the
other gives positive classification to (−1, 1). It may be ob-
served that this setting is identical to that of the proof of
Proposition 1 and is illustrated in Figure 1. Note that the
fifth user is a negative point who will never choose to use
either classifier, and thus will not be seen by them.

For tie-breaking, services choose models by minimizing
the norm of θ (subject to achieving zero loss), while users
split usage equally between models that assign equal util-
ity to them. We run two experiments with this synthetic
dataset: one being memoryless with p = 0 and the other
using p = 0.5. This demonstrates how the memoryless set-
ting may lead to oscillations while the inclusion of memory
ensures convergence.

Results are presented in Figure 2, which plots the loss and
usage of each service. In the p = 0 case, there is clear
oscillation in the usages—the users at (1,−1) and (−1, 1)
alternate between the two models. In contrast, for p = 0.5,
the usages converge after the second epoch. Perhaps more
illuminatingly the loss drops to zero: this indicates that the
services have converged to a zero-loss point (Defintion 2)
and no longer change between updates, unlike in the p = 0
case where classifiers swap directions each timestep. It
must also be noted that the usages of the negative users
specifically converge to 0 in the p > 0 case. Since the ser-
vices correctly learn to assign negative classifications to the
negative users, even the unseen users at (−1,−1), there is
no incentive for nonzero usage from negative users. Dif-
fering values for p > 0 were tested; however, results were
similar; relevant figures are present in the appendix.

5.2 Banknote Authentication

We instantiate a semi-synthetic simulation with real-world
data coming from the Banknote Authentication dataset
(Lohweg, 2013). This dataset involves a binary classifi-
cation problem to detect whether a banknote is genuine or
forged. Banks are modeled as services and update their
forgery-detection classifiers in order to reject forged ban-
knotes while accepting genuine ones. Meanwhile, users are
individuals who seek, for practical purposes, banks that al-
low them to cash in their notes. At the same time, banks up-
date their forgery detection models to keep up with trends
in the forgery industry. We remark that our strategic usage
setting corresponds to the short-term dynamics of banks
becoming aware of forged bank notes that are in circula-
tion, while the classical feature manipulation setting corre-
sponds to innovations in forgery techniques.

Features are derived from images of banknote-like speci-
mens; specifically, they are extracted using a wavelet trans-
form tool, resulting in X = R4. Each sample additionally
comes with a binary label. We apply the following prepro-
cessing: we normalize the mean and variance of the fea-
tures, and we transform the labels {+1,−1}.

We simulate services using scikit-learn support vector clas-
sification (SVC) (Pedregosa et al., 2011) with a radial ba-
sis function (RBF) kernel using radius γ = 1 and regu-
larization parameter C = 1010. This setting corresponds
to linear models (Example 1) with an infinite dimensional
feature function φ trained with hinge loss (Example 3).
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Figure 2: 5-Points dataset; the top three graphs give the p = 0 case while the bottom three give p = 0.5. Service loss is
calculated after the user update but before the service update, and usages are displayed for each of the five points with the
middle graphs giving the usages for model j = 0 and the right graphs giving the usages for model j = 1.

The large value of C corresponds to a small regularization
weight, which approximates simply selecting the minimum
norm model among all loss minimizers. In the memoryless
p = 0 setting, services have no negative users in their loss
objective at various points in time. This violates the pre-
conditions for the scikit-learn SVC fit function, so in these
instances, we preserve weights from the previous timestep.

We initialize this setting by revealing one positive and
one negative user at random to each service at a timestep
t = −1 in order to train models h0

j for all j ∈ {1, ...,m}.
Random seeds for choosing these users are held constant
at 100 between runs for consistency, and users tie-break
through splitting usage evenly between services that pro-
vide equal usage to them.

Figure 3: Banknote Authentication dataset; each graph
gives the positive and negative usages of each of the five
models; triangle markers above the lines indicate positive
usage while below the lines indicate negative, with colors
giving which model the line refers to. The left graph gives
the no-memory p = 0 setting, while the graph on the right
gives the p > 0 setting. Model order, and hence their col-
ors, are meaningless due to the random initialization.

Experiments for various numbers of services, as well as
varying the cost power factor q, are presented in the ap-
pendix. Figure 3 presents simulation results for m = 5
services, plotting the total usage of the positive and nega-
tive class over time (i.e., of genuine and forged banknotes
in circulation). In the memoryless p = 0 case, we ob-
serve some complex transients until the tenth timestep, af-
ter which point we see oscillation between models j = 2
and j = 3. The remaining models stopped observing
negative points and henceforth stopped updating; however,
it is important to note that which models converged and
which models continued oscillating is initialization depen-
dent: changing the seed resulted in different dynamics, in-
cluding changing the values that models’ usages converged
or oscillated around, in addition to changing the numbers
of models converging versus oscillating.

In the nonzero memory case p > 0, we once again ob-
serve convergence to a zero-loss point, this time after four
timesteps—the longer transient period resulting from the
larger number of services that users can choose between.
At this equilibrium, each model correctly assigns nega-
tive classifications to all the negative users, while the posi-
tive users are divided between the services. The particular
configuration of positive users is an arbitrary result of the
random initialization; figures depicting the results of other
initializations lead to different final configurations and are
presented in the appendix.

5.3 Bank Account Fraud

We include a third dataset as the Bank Account Fraud
(BAF) dataset (Jesus et al., 2022). This dataset models
the binary classification problem of predicting if a bank ac-
count opening is fraudulent or not. We interpret banks as
services providing bank accounts, with users being individ-
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uals attempting to open accounts. As with the banknote au-
thentication setting, this strategic usage setting would pro-
vide the precursor to potential feature manipulation which
might occur once fraudulent users realize no bank will pro-
vide them with utility.

This dataset suite was designed to stress test the perfor-
mance and fairness of machine learning models on realis-
tic tabular data generated from a real-world bank account
opening fraud dataset. None of the datasets fully satisfy
our realizability assumption; we selected Variant V be-
cause it was the most separable. We filtered the data points
to ensure realizability by fitting a soft-margin support vec-
tor machine and removing misclassified points. Each sam-
ple has a binary label giving whether the account open-
ing is fraudulent or not, and features include values such
as income, customer age, and payment type, exhibiting
both real-valued and enumerated types. We transform non-
numerical features into one-hot representations before nor-
malizing the mean and variance of all features, and labels
are transformed to {+1,−1}. We present results for a
subsample of 10, 000 points due to the large dataset size.
Full details of our implementation and preprocessing can
be found in the appendix.

We use Scikit-learn SVC (Pedregosa et al., 2011) to simu-
late services, with a linear kernel and regularization param-
eter C = 1010. Services are initialized in a similar manner
to the banknote authentication dataset, and a random seed
of 100 is held constant between runs for consistency.

Figure 4: Bank Account Fraud dataset; each graph gives
the positive and negative usages of each of the five models.
Notation is the same as that for Figure 3.

Experiments for the p = 0 and p > 0 can be seen in Fig-
ure 4, for m = 5 services. We once again observe oscil-
lation and non-zero usage for negative users in the memo-
ryless p = 0 case, exhibiting the failure of the system to
converge to a zero-loss state. The opposite can be seen in
the p > 0 case, as no change in usage may be observed
after the seventh epoch, and all negative users are observed
to have left the system. Further experiments on different
initializations may be observed in the appendix.

6 CONCLUSION & DISCUSSION

This work focuses on interaction dynamics between strate-
gic users and multiple learners in an interactive setting. We
formalize strategic usage, in which individuals choose to
use services strategically in order to pursue a positive clas-
sification. Since usage presents their data to said services,
the latter respond by retraining their classifiers, to the po-
tential benefit or detriment of these strategic individuals.
We provide sufficient conditions to guarantee a finite-time
equilibrium, including the addition of memory to classifier
retraining updates. Our work is both an extension of and
in contrast to the strategic classification setting, which pri-
marily explores dynamics involving strategic user feature
modification in pursuit of goals. We remark that while sev-
eral works have raised concern as to the adverse social out-
comes entailed by strategic classification (Milli et al., 2019;
Chen et al., 2020; Hu et al., 2019) our setting ensures that
all true positives may receive positive utility at equilibrium.

As the first to study the setting of strategic usage, our work
raises several areas for future extension. Though the realiz-
able setting is well motivated for modern ML, it is natural
to analyze the setting in which no single classifier can cor-
rectly classify the entire dataset. Another natural extension
is to consider explicit competition between services, rather
than retraining blindly, unaware of the existence of mod-
els being deployed by other services in the system. Sim-
ilarly, we study un-coordinated and short-term user objec-
tives, but an exploration of long-term strategic planning and
optimization might give insight into additional real-world
phenomena. Finally, it would be interesting to consider the
relationship between a finite user pool and an underlying
population-level distribution.
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A Missing Proofs

In this section, we restate the main theoretical results, include their full proofs, and introduce a handful of auxiliary results.

A.1 Oscillations and Counter-Examples

In this section, we present examples of dynamics that do not converge or that are not zero-loss invariant.
Proposition 1. In the memoryless p = 0 setting, there exist settings in which the state (H,A) never converges.

Proof of Proposition 1. Let there exist a set of users with features X = {(1, 1), (1, 1), (−1, 1), (1,−1), (−1,−1)} and
labels Y = {1, 1,−1,−1,−1}, selecting between two services where both services choose models from the linear model
class (Example 1) using feature transformation ϕ(x) = (x, 1), using linear utility (Example 2) and hinge loss (Examples 3).
Suppose that the initial models are defined through parameters θ1 = [1, 0, 0]⊤ and θ2 = [0, 1, 0]⊤, that retraining updates
tie-break by choosing the minimum norm classifier, and that users tie-break by dividing usage equally between services.

Optimal updates may be calculated by analyzing stable points of repeated gradient updates on the best-response updates
found in Equations 3 and 5noting that with p = 0, M t = At for any timestep t. This algebra gives us the following update
steps:

θ0 =

[
1 0 0
0 1 0

]⊤
A0 =

[
0.5 0.5 1 0 0
0.5 0.5 0 1 0

]⊤
θ1 =

[
0 1 0
1 0 0

]⊤
A1 =

[
0.5 0.5 0 1 0
0.5 0.5 1 0 0

]⊤
θ2 =

[
1 0 0
0 1 0

]⊤
A2 =

[
0.5 0.5 1 0 0
0.5 0.5 0 1 0

]⊤
It may be observed that θ2 = θ0 ̸= θ1, and A2 = A0 ̸= A1. Given the memoryless setting in which (Ht+1, At+1) depend
only on the previous (Ht, At), we may conclude that this system will oscillate for all further timesteps and will not reach
a fixed state.
Proposition 4. Without sticky tie-breaking (Assumption 4), regardless of the value of p, the existence of a zero-loss equi-
librium (Ht, At) at a timestep t does not guarantee the existence of zero-loss equilibria for further timesteps τ > t.

Proof of Proposition 4. Let there exist a set of users with features X = {(5), (−5), (0)} and labels Y = {1,−1, 1},
making usage decisions in a system with one service choosing models from the linear model class (Example 1) using
feature transformation ϕ(x) = (x, 1), using linear utility (Example 2) and hinge loss (Examples 3). Suppose that the
model is defined through parameters θ = [1,−1]⊤, with retraining updates tie-breaking stochastically.

Optimal updates may be calculated by analyzing stable points of repeated gradient updates on the best-response updates
found in Equations 3 and 5. The first update step can be seen as follows:

θ0 =
[
1 −1

]⊤
A0 =

[
1 0 0

]⊤
It may be noted that this constitutes a zero-loss equilibrium, as for all users i, A0

i ℓ(h
0, xi, yi) = 0, and for the negative

point, ℓ(h0, xi, yi) < 1. Despite this, it is feasible for the following second update step to occur due to H not being
constrained by sticky tie-breaking:

θ1 =
[
1 −0.5

]⊤
A1 =

[
1 0 0.5

]⊤
Here, it can been that for the point (0), A1

i ℓ(h
1, xi, yi) = 0.25. As such, state (H1, A1) does not constitute a zero-loss

equilibrium, proving the claim.

A.2 Invariance

We next turn to our results about the invariance of zero-loss points. We begin with lemmas characterizing important
properties of the service retraining update.
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Lemma 2. For every user service pair i, j such that M t
ij > 0, ℓ(ht+1

j , xi, yi) = 0. Therefore, when p > 0, if At
ij > 0 for

any timestep t, then for all further timesteps τ > t it must hold that ℓ(hτ
j , xi, yi) = 0.

Proof of Lemma 2. By the separability of Equation 5 on services, we may analyze the best-response update of a particular
service j. Let us call Ht+1

j the set of models such that the best-response update ht+1
j ∈ Ht+1

j .

Ht+1
j := argmin

h∈H

n∑
i=1

M t
ij∑n

k=1 M
t
kj

ℓ(hj , xi, yi)

Since terms of the sum where M t
i,j = 0 will simply be zero we may simplify the sum, and furthermore in the interest of

brevity let us represent
Mt

ij∑n
k=1 Mt

kj
as ri,j(M t).

=

n∑
i∈{i|Mt

i,j>0}

ri,j(M
t)ℓ(hj , xi, yi) (6)

By Assumption 3, we have that there exists an h∗ ∈ H such that ∀i ∈ {1, ..., n}, ℓ(h∗, xi, yi) = 0. By the non-negativity
of ℓ and M it must hold that ri,j(M t)ℓ(hj , xi, yi) ≥ 0 for all i, j pairs, and since substituting h∗ into expression 6 would
return a sum of 0, it must be that 0 is the minimum value of the sum. For all h ∈ H such that ℓ(h, xi, yi) > 0 for some user
i where M t

i,j > 0, the value of the sum would be greater than 0 and therefore h wouldn’t minimize the sum so h ̸∈ Ht+1
j .

Finally, we may conclude that for all hj ∈ Ht+1
j , ℓ(h, xi, yi) ≤ 0 for all i such that M t

i,j > 0.

For the second statement, we may first observe that at any timestep t, if At
i,j > 0 then by Equation 4 and the non-negativity

of M , M t
i,j > 0. For the p > 0 case, if at some timestep t we have that for some user i and service j, M t

i,j > 0, then it
will hold that Mτ−1

i,j > 0 for all timesteps τ > t. This may be trivially observed through the non-negativity of A and the
memory update given by Equation 4.

By the conclusions drawn above, since Mτ−1
i,j > 0 we may conclude that ℓ(hτ

j , xi, yi) ≤ 0.

Next, we introduce an auxiliary lemma that formalizes the best response behavior of users. This lemma makes rigorous the
informal discussion at the end of Section 3.1.
Lemma 7. For a given user i, let there be a set of services J such that u0 = u(xi, h

t
j) > u(xi, h

t
k) for all services j ∈ J

and other services k ̸∈ J . The user best response at time t must satisfy u
1/(q−1)
0 =

∑
j∈J At

i,j >
∑

k ̸∈J At
i,k = 0.

Proof of Lemma 7. Analyzing the strategic objective for a user i (1) and denoting it as Lu
i for convenience, we can begin

by seeing that given some set of services J such that u(xi, hj1) = u(xi, hj2) = C0, if we hold
∑

j∈J Ai,j = C1 constant
and Ai,k constant for all k ̸∈ J such that

∑
k ̸∈J Ai,k = C2 and

∑
k ̸∈J Ai,ku(xi, hk) = C3, then any distribution of usages

between services in J doesn’t affect the value of the strategic objective.

Lu
i (A,H) =

m∑
j=1

Ai,ju(xi, hj)−
1

q

 m∑
j=1

Ai,j

q

=
∑
j∈J

Ai,ju(xi, hj) +
∑
k ̸∈J

Ai,ku(xi, hk)−
1

q

∑
j∈J

Ai,j +
∑
k ̸∈J

Ai,k

q

= C0

∑
j∈J

Ai,j + C3 −
1

q

∑
j∈J

Ai,j + C2

q

= C0C1 + C3 −
1

q
(C1 + C2)

q

Therefore, without loss of generality, let us say all usage in J is concentrated into a service j ∈ J ; since Ai,j′ = 0 for all
j′ ∈ J , j′ ̸= j we can drop them from the strategic objective and consider only a service j and services k ̸∈ J, k ̸= j.

Taking the derivative of Lu
i (A,H) with respect to some Ai,j , we get gradient d

dAi,j
Lu
i (A,H) = u(xi, hj) −(

Ai,j +
∑

k ̸=j Ai,k

)q−1

. Let us take two services j and k, such that u(xi, hj) > u(xi, hl) for all l ̸= j. Service k
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is chosen arbitrarily such that j ̸= k. We shall now enumerate options in a case analysis focusing on the total usage of
user i. We shall show that as total usage increases, the model is incentivized to concentrate all usage on the service that
provides the highest utility as the derivative of the objective function with respect to other services becomes negative.

Let us say that
∑m

l=1 Ai,l = 0. For service j, we have that d
dAi,j

Lu
i = u(xi, hj) > 0; therefore Ai,j is below the optimum.

Let us say
∑m

l=1 Ai,l < u(xi, hk)
1

q−1 . For service j, we have that d
dAi,j

Lu
i = u(xi, hj)− (

∑m
l=1 Ai,l)

q−1
> u(xi, hj)−

u(xi, hk) > 0; therefore Ai,j is below the optimum. For service k, we have that d
dAi,k

Lu
i = u(xi, hk)− (

∑m
l=1 Ai,l)

q−1
>

u(xi, hk)− u(xi, hk) = 0; therefore Ai,k is below the optimum.

Let us say
∑m

l=1 Ai,l = u(xi, hk)
1

q−1 . For service j, we have that d
dAi,j

Lu
i = u(xi, hj)− (

∑m
l=1 Ai,l)

q−1
= u(xi, hj)−

u(xi, hk) > 0; therefore Ai,j is below the optimum. For service k, we have that d
dAi,k

Lu
i = u(xi, hk)− (

∑m
l=1 Ai,l)

q−1
=

u(xi, hk)− u(xi, hk) = 0; therefore Ai,k at an optimum.

Let us say u(xi, hk)
1

q−1 <
∑m

l=1 Ai,l < u(xi, hj)
1

q−1 . For service j, we have that d
dAi,j

Lu
i = u(xi, hj) −

(
∑m

l=1 Ai,l)
q−1

> u(xi, hj) − u(xi, hj) = 0; therefore Ai,j is below the optimum. For service k, we have that
d

dAi,k
Lu
i = u(xi, hk)− (

∑m
l=1 Ai,l)

q−1
< u(xi, hk)− u(xi, hk) = 0; therefore Ai,k is above the optimum.

Let us say
∑m

l=1 Ai,l = u(xi, hj)
1

q−1 . For service j, we have that d
dAi,j

Lu
i = u(xi, hj)− (

∑m
l=1 Ai,l)

q−1
= u(xi, hj)−

u(xi, hj) = 0; therefore Ai,j is at an optimum. For service k, we have that d
dAi,k

Lu
i = u(xi, hk) − (

∑m
l=1 Ai,l)

q−1
=

u(xi, hk)− u(xi, hj) < 0; therefore Ai,k is above the optimum.

Let us say
∑m

l=1 Ai,l > u(xi, hj)
1

q−1 . For service j, we have that d
dAi,j

Lu
i = u(xi, hj)− (

∑m
l=1 Ai,l)

q−1
< u(xi, hj)−

u(xi, hj) = 0; therefore Ai,j is above the optimum. For service k, we have that d
dAi,k

Lu
i = u(xi, hk)− (

∑m
l=1 Ai,l)

q−1
<

u(xi, hk)− u(xi, hj) < 0; therefore Ai,k is above the optimum.

From all of this, we can see that the stable equilibrium holds that Ai,j = u(xi, hj)
1

q−1 , and that for all services k ̸= j,
Ai,k = 0 because of the non-negativity of A.

Corollary 8. For any user i and service j pair such that at timestep t, u(xi, h
t
j) ≤ 0, then At

i,j = 0.

Proof of Corollary 8. By Lemma 7, we have that if there exists some service k such that u(xi, h
t
k) > u(xi, h

t
j) then

At
i,j = 0. Let us analyze the case where for all users k, u(xi, h

t
j) = 0 ≥ u(xi, h

t
k). Once again taking the derivative of the

strategic objective for a user i (1) with respect to At
i,j and denoting it as d

dAt
i,j
Lu
i (A

t, Ht) for convenience, we can see that

if
∑m

k=1 A
t
i,k > 0 then d

dAt
i,j
Lu
i (A

t, Ht) < 0. This indicates that the optimum value of At
i,j is 0.

Finally, we prove the main invariance result.

Proposition 3. If a state (Ht, At) is zero-loss at time t, then all future states are zero-loss for all times τ ≥ t.

Proof of Proposition 3. We prove the proposition by showing that if a state (Ht, At) is a zero-loss equilibrium, then
(Ht+1, At+1) is also a zero-loss equilibrium.

We begin by arguing that Ht+1 = Ht. Consider the retraining objective for service j at t:
∑n

i=1

Mt
i,j∑n

k=1 Mt
k,j

ℓ(ht
j , xi, yi) By

Lemma 2, we know that ℓ(ht
j , xi, yi) = 0 for all users i and services j such that M t−1

i,j > 0. By zero-loss condition 1 we
have that ℓ(ht

j , xi, yi) = 0 for all users i and services j such that At
i,j > 0. Thus by the definition of memory (4), it must

be that ℓ(ht
j , xi, yi) = 0 for all users i and services j such that M t

i,j > 0. We conclude that ht
j achieves zero retraining

loss, and therefore by the definition of sticky tie-breaking (1), ht+1
j = ht

j for all services j. This implies that the zero-loss
condition 2 holds: 0 ≥ u(xi, h

t
j) = u(xi, h

t+1
j ).

We next argue that if At is zero loss, so is At+1. First, consider negative users i with yi = −1. By the zero-loss condition
2 shown in the previous paragraph u(xi, h

t
j) ≤ 0. Therefore, by Corollary 8 the best response is At+1

ij = 0 for all j and all
negative users i, thus ensuring that zero-loss condition 1 holds for negative users i.

Now, consider positive users i with yi = +1. Because Ht+1 = Ht the user best-response objective remains the same. By
monotonicity of ℓ, we have that there exists some value v′ such that if ℓ(h, x,+1) = 0, u(x, h) = v′. As we know that
ℓ(ht

j , xi, yi) = 0 for all At
i,j > 0, we have that for all At

i,j > 0, u(xi, h
t
j) = v′ij . Let us say that there exists some positive
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user i and service j such that ℓ(ht+1
j , xi, yi) > 0, meaning u(xi, h

t+1
j ) < v′ij . By Lemma 7, this implies that At+1

i,j = 0.
As such, for all i, j, if ℓ(ht+1

j , xi, yi) > 0 then At+1
i,j = 0; therefore, At+1ℓ(ht+1

j , xi, yi) = 0 for all users i and services j.
This satisfies zero-loss condition 1 for positive users.

Thus we have shown that if a state (Ht, At) is a zero-loss equilibrium, then (Ht+1, At+1) is also a zero-loss equilibrium.
Through induction, this guarantees that the state (Hτ , Aτ ) is a zero-loss equilibrium for all timesteps τ > t.

A.3 Convergence

With invariance results in hand, we can now prove the main convergence result.
Lemma 5. For any timestep t if there exists no values M t−1

i,j = 0 such that At
i,j > 0, then (Ht, At) is zero-loss.

Proof of Lemma 5. Lets say that there exists some timestep t such that there exists no values M t−1
i,j = 0 such that At

i,j > 0.

By Lemma 2 and by the non-negativity of ℓ, this means that ℓ(ht
j , xi, yi) = 0 for all users i and services j such that M t−1

i,j >

0. This gives us that for all users i and services j,
Mt−1

i,j∑n
k=1 Mt−1

k,j

ℓ(ht
j , xi, yi) = 0 as either M t−1

i,j = 0 or ℓ(ht
j , xi, yi) = 0.

Since At
i,j = 0 when M t−1

i,j = 0 and when M t−1
i,j > 0 it holds that ℓ(ht

j , xi, yi) = 0, we can similarly conclude that for all
i, j, At

i,jℓ(h
t
j , xi, yi) = 0. This satisfies the first condition of zero-equilibrium states.

Let us define an Lu
i as follows:

Lu
i (A,H) =

1

q

 m∑
j=1

Ai,j

q

−
m∑
j=1

Ai,ju(xi, hj)

We know that for all M t−1
i,j > 0, ℓ(ht

j , xi, yi) = 0 by Lemma 2 and the non-negativity of ℓ. This indicates that for all i
such that yi = −1, if M t−1

i,j > 0 then u(xi, h
t
j) ≤ 0. By Corollary 8, this gives that At

i,j = 0. Since At
i,j = 0 if M t−1

i,j = 0

as well, this indicates that for all services j, for all users i such that yi = −1, At
i,j = 0.

Let us say for contradiction that for some user i such that yi = −1, for service j = argmaxj u(xi, h
t
j) it holds that

u(xi, h
t
j) > 0. By Lemma 7, it must hold that At

i,j > 0. This poses a contradiction, and therefore we may state that for all
i such that yi = −1, for all j, u(xi, h

t
j) ≤ 0.

Theorem 6. Given nonzero memory p > 0, there is a finite time t ∈ N after which for all τ > t, (Hτ , Aτ ) is zero-loss.

Proof of Theorem 6. We may analyze each timestep t as either a timestep in which there exists some user-service pair i, j
such that At

i,j > 0 and M t−1
i,j = 0, or in which no such pair exists. There are only n × m such i, j pairs and as such a

maximum of nm timesteps where the first condition is satisfied. In the contrary, at any step t where the condition isn’t
satisfied, by Lemma 5, we have shown that we have reached a fixed point. Therefore, there is a maximum of nm timesteps
before the conditions are reached to reach a zero-loss equilibrium. By Proposition 3, this indicates that for all timesteps
τ ≥ nm, (Hτ , Aτ ) constitutes a zero-loss equilibrium.

We construct examples to indicate the linear dependence of convergence time on n and m. Let us define the model class as
h(x) = sign(x+ θ), with utility as u(x, h) = min{x+ θ, 1} and loss as ℓ(h, x, y) = max{0, 1− y(x+ θ)}. We set q = 2
and p > 0. User tie-breaking is done by stochastically selecting one service to use, and services tie-break by choosing the
minimum change classifier between timesteps.
Example 5. Let there be n evenly spaced positive users, with features:

{(0), (−0.7), (−1.4), ..., (−0.7)(2− n), (−0.7)(1− n)} : .

If m = 1 service is instantiated with model θ0 = 0.5, at every timestep t, user t will receive positive utility and elect for
positive usage, pushing the classifier to θt = 1− xt. This will result in nm = n total timesteps before convergence.
Example 6. Let there be n = 1 user such that X = {(0)} and Y = {−1}. If m services are instantiated with models
θ0j = j+1, at every timestep t, some service j will receive usage from the user, pushing the classifier to θtj = −1, at which
point it’ll never receive positive usage again. This will result in nm = m total timesteps before convergence.

A.4 Round Robin Updates

It might not be realistic that users and services update on the same schedule: while prior proofs assume that services
conduct one synchronous update based on current usage and users synchronously best respond once based on the updated



Strategic Usage in a Multi-Learner Setting

services at every timestep, it could be that services only update every several years while users may reallocate usage yearly.
Additionally, users and services don’t necessarily update synchronously, and one might conduct several updates at a time
while others only do one. In this setting, a timestep stops being a feasible metric of progression; instead, we generalize to
the concept of a round.

Instead of there being one joint user and one joint service update as in a timestep, we generalize rounds to users and services
updating asynchronously and differing numbers of times. We maintain three constraints on this system. First, rounds are
divided into alternating user update periods and service update periods, such that only users or services are updating at a
time. Second, each round must contain at least one user period and one service period. Finally, each user and each service
undergoes at least one best response update in each period.

Proposition 9. Given nonzero memory p > 0, there there are a finite number of rounds r ∈ N after which for all ρ > r,
(Hρ, Aρ) is zero-loss.

Proof of Proposition 9. We shall prove this by showing that a round is functionally equivalent to a set of timesteps that
assume stochastic user tie-breaking. Since we have that a zero-loss point will be reached after a finite number of timesteps
by Theorem 6, this will imply the existence of a zero-loss point after a finite number of rounds.

As we have already analyzed the result of a service best responding to a set of users, and a user best responding to a set of
services, let us analyze the change when services and users undergo multiple consecutive updates.

Given a service j at update k > 0, let us denote hk
j as the best response to memory Mk

j updating on usages A. By
the memory update (4), we have that for all users i, Mk

i,j = 0 if and only if Mk+1
i,j = 0. By Lemma 2, we have that

Mk+1
i,j ℓ(hk

j , xi, yi) = 0 for all users i. As hk
j achieves a value of zero for the objective value of the service update, by the

non-negativity of loss and M we have that hk
j is a best-response to Mk+1. Sticky updating gives that hk+1

j = hk
j .

Given a user i at update k > 0, let us denote Ak
i as the best response to services H . Ak+1

i will be a user best response
to H; since no other variables are involved in the user objective function, this is equivalent to choosing a new sample Ak

i

from the equivalence class of usages that maximizes the user objective function on H .

Due to the separability of the joint user and service updates, these asynchronous updates can be reanalyzed as parts of the
joint update. As such, we can collapse all consecutive user updates and all consecutive service updates; without loss of
generality, rounds can now be seen as a series of alternating user and service updates. This can be re-indexed as a series of
timesteps, each composed of one joint user and one joint service update.

By Theorem 6, this concludes the proof.

B ADDITIONAL EXPERIMENTS

We present additional experiments on the settings introduced in Section 5.

Figure 5: 5-Points dataset; the top three graphs give the p = 0.1 case while the bottom three give p = 1.0.
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Synthetic Dataset In Figure 5, we show that different values of p > 0 don’t affect the convergence. The top set of plots
gives service loss and usages for p = 0.1 and the bottom set gives the same for p = 1; however, both values of p give the
same usages and losses as each other across epochs.

Figure 6: Banknote Authentication dataset; ablating on m. The top four graphs give the p = 0 case while the bottom four
give p = 0.5. In each graph, triangle markers indicate positive usages while circular markers indicate negative usages;
colors indicate the different services.

Banknote Authentication Figure 6 demonstrates how varying numbers of services can affect convergence. Plots for
m = 1, 2, 3, 4 are given, both in the zero memory and nonzero memory cases. This illustrates that as the number of
services increases, convergence may take longer due to services interfering with each other and disincentivizing users to
reveal themselves to other services through usage. Note that due to the static seed, between graphs models are shown the
same initial users when the model is present.

We illustrate the potential for a variety of outcomes depending on the initial seed in Figure 7. Generally, this shows that
the initial conditions can have drastic effects on both the time to convergence and the final stable state.

To inspect the effect of cost power factor q on convergence, we provide usages over epochs for varying values of q both
with and without memory in Figure 8. No meaningful relationship with convergence is found for q > 1.

Bank Account Fraud All experiments were run for m = 5 services, with cost power factor q = 2. From the realizable
subset of the data, we select the first 5, 000 positive and 5, 000 negative points to speed up runtime.

Results under a variety of initial seeds can be seen in Figure 9, including both results with and without memory. These
results further corroborate the earlier theoretical findings, demonstrating convergence in the memory case with oscillation
commonly occurring in the naı̈ve retraining setting.

B.1 Hardware and Specifications

All experiments were run on an Intel(R) Core(TM) i9-10885H CPU @ 2.40GHz. Our code is available at https:
//github.com/eliotshekhtman/strategic-usage.

https://github.com/eliotshekhtman/strategic-usage
https://github.com/eliotshekhtman/strategic-usage
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Figure 7: Banknote Authentication dataset; ablating on the seed (s). The top four graphs give the p = 0 case while the
bottom four give p = 0.5. In each graph, triangle markers indicate positive usages while circular markers indicate negative
usages; colors indicate the different services.

Figure 8: Banknote Authentication dataset; ablating on usage cost power factor q. The top four graphs give the p = 0
case while the bottom four give p = 0.5. In each graph, triangle markers indicate positive usages while circular markers
indicate negative usages; colors indicate the different services.
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Figure 9: Bank Account Fraud dataset; ablating on the seed (s). The top four graphs give the p = 0 case while the bottom
four give p = 0.5. In each graph, triangle markers indicate positive usages while circular markers indicate negative usages;
colors indicate the different services.
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