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Abstract

We develop a family of fast variational meth-
ods for sequential control in dynamic settings
where an agent is incentivized to maximize
information gain. We consider the case of op-
timal control in continuous nonlinear dynami-
cal systems that prohibit exact evaluation of
the mutual information (MI) reward. Our ap-
proach couples efficient message-passing infer-
ence with variational bounds on the MI objec-
tive under Gaussian projections. We also de-
velop a Gaussian mixture approximation that
enables exact MI evaluation under constraints
on the component covariances. We validate
our methodology in nonlinear systems with
superior and faster control compared to stan-
dard particle-based methods. We show our
approach improves the accuracy and efficiency
of one-shot robotic learning with intrinsic MI
rewards. Furthermore, we demonstrate that
our method is applicable to a wider range of
contexts, e.g., the active information acquisi-
tion problem.

1 INTRODUCTION

Optimal design is a fundamental problem in statistics
that aims to choose a sequence of decisions that maxi-
mize some form of information gain or uncertainty re-
duction (Blackwell, 1950; Bernardo, 1979). Pioneering
work by (Lindley, 1956) suggests a Bayesian approach
that maximizes mutual information (MI) (Cover and
Thomas, 2006; MacKay et al., 2003), in the context
of Bayesian Optimal Experimental Design (BOED).
This setting can be interpreted as minimizing expected
posterior uncertainty over a fixed quantity of interest.
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Yet, despite the apparent benefit of BOED, its practical
application is limited by the difficulty of calculating
the underlying MI utility (Paninski, 2003), which lacks
a closed form in many nontrivial models. Numerous
works exist for bounding and approximating MI using
variational approximations (Poole et al., 2019), Monte
Carlo approaches (Drovandi et al., 2013, 2014; Solonen
et al., 2012), grid-based discretizations (Kim et al.,
2014), and even explore these approximations in a
BOED setting (Huan and Marzouk, 2016; Pacheco and
Fisher, 2019; Foster et al., 2018, 2019; Kleinegesse and
Gutmann, 2019).

This work extends variational BOED (Pacheco and
Fisher, 2019; Foster et al., 2018, 2019) by modeling an
evolving latent state driven by control inputs. Mutny
et al. (2023) consider a similar discrete setting whereas
our method applies to continuous latent states. In this
way, our setting is more closely aligned with that of
stochastic optimal control (Kushner et al., 2001; Bert-
sekas, 2012). We thus refer to our particular setting
as Optimal Information Control. This setting has a
wide range of applications, e.g. active simultaneous
localization and mapping (Durrant-Whyte and Bailey,
2006; Stachniss et al., 2005; Carlone et al., 2014), active
information acquisition (Atanasov et al., 2014; Char-
row et al., 2014) and early work on childhood detection
of social contingency (Movellan, 2005). Mutual infor-
mation could also work as an intrinsic reward for RL
tasks (Mohamed and Jimenez Rezende, 2015) when it
lacks external rewards or rewards are sparse (Fischer
and Tas, 2020).

Contributions. We address the computational as-
pects of control in this work by developing variational
techniques for approximate inference and decision-
making. We begin with an algorithm statement in
the general case. Moving to Gaussian observation mod-
els we can show that our algorithm maintains a local
upper bound on the MI reward. Finally, in models with
Gaussian mixture model (GMM) dynamics, we present
a constrained GMM projection that has a closed-form
MI approximation. We numerically evaluate our meth-
ods in different experiments. In all cases, we observe
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multiple orders of magnitude speedup over sequential
Monte Carlo (SMC) with comparably superior accu-
racy.

2 PRELIMINARIES: MI CONTROL

We formulate optimal information control as an in-
stance of stochastic control with mutual information
(MI) rewards. Due to the intractable nature of the
control problem, we provide a greedy approximation
that maximizes instantaneous MI. However, unlike in
standard control problems, the MI utility cannot be
explicitly evaluated.

2.1 Optimal information control

We consider an optimal control problem for the dynam-
ical system with latent variables XT

0 = {X0, . . . , XT },
observations Y T

1 = {Y1, . . . , YT }, and joint PDF:

p(XT
0 , Y

T
1 |dT1 )=p(X0)

T∏
t=1

p(Xt |Xt−1, dt)p(Yt |Xt) (1)

where we denote the sequence of random variables
and control inputs as XT

0 , Y T
1 , and dT1 = {d1, . . . , dT }

respectively, and the rest of the paper shares the no-
tation. Control inputs dt ∈ D modulate the transition
dynamics p(Xt | Xt−1, dt). The optimal information
control problem is an instance of stochastic optimal
control (Bertsekas, 2012), where we learn a policy π
that optimizes cumulative mutual information over the
sequence t = 1, . . . , T :

π∗ = argmax
π

I(XT
1 ;Y

T
1 | π). (2)

MI measures the dependence between random vari-
ables (Cover and Thomas, 2006), or equivalently ex-
pected reduction in entropy,

I(X;Y ) = H(X)− Ep(y)[H(X | Y = y)], (3)

where entropy is given by the formula:

H(X) = E[− log p(X)], (4)

and conditional entropy by:

H(X|y) = Ep(x|y)[− log p(X | y)]. (5)

Solving this optimization problem in either open-
loop (Atkinson et al., 2007; Ryan et al., 2016; Beck
et al., 2018) or closed-loop (Huan and Marzouk, 2016;
Drovandi et al., 2013; Solonen et al., 2012) manner is
NP-hard in general (Bertsekas, 2012), necessitating a
greedy approximation.

2.2 Sequential greedy information control

The global MI control objective in Eqn. (2) decomposes
as a sum of conditional MI terms:

max I(X1;Y1) +

T∑
t=2

I(Xt;Yt | Y t−1
1 ) (6)

where we have dropped explicit dependence on the con-
trol policy to reduce notation. A derivation of the above
is shown in the Appendix. A key property of Eqn. (6)
is that each term depends on only a single latent state
Xt. This suggests a simple greedy approximation at
each time t:

d∗t = argmax
d

I(Xt;Yt | Ht−1, d)

= argmax
d

H(Xt|Ht−1, d)−H(Xt|Yt,Ht−1, d). (7)

Note that the conditioning set of the greedy objective
Eqn. (7) is over observed measurements yt−1

1 in Ht−1 =
{yt−1

1 , dt−1
1 }, as opposed to random variables Y t−1

1 as in
the nonmyopic objective of Eqn. (6). This dependence
on realized observations induces a closed-loop greedy
sequential decision-making process.

The greedy MI reward (Eqn. (7)) is not directly ob-
served and cannot be computed in most settings (Mafi
et al., 2011; Still and Precup, 2012; Mazzaglia et al.,
2022). A widely used MI approximation via a nested
Monte Carlo (NMC) estimator is consistent, asymp-
totically unbiased, and admits a central limit theo-
rem. On the other hand, it requires posterior samples
and exhibits significant finite sample bias that decays
slowly (Zheng et al., 2018; Rainforth et al., 2018) mak-
ing them impractical in many settings. In Sec. 3, we
propose our main contribution, an efficient variational
approach that avoids costly sampling estimators.

3 VARIATIONAL MI CONTROL

This section provides details of our variational approach
to information control in a general context. We start
by motivating our approach with the difficulties of
time-varying latent variables in the dynamic control
problem. After that, we provide details of our approach
including the use of assumed density filtering (ADF)
and expectation propagation (EP) inference, and how
these mechanisms yield variational MI approximations
for control.

3.1 Variational MI Estimation

The control model of Sec. 2.1 incorporates decision
controls that modulate dynamics via p(Xt | Xt−1, dt).
Both entropy terms in the instantaneous (greedy) MI
objective of Eqn. (7) involve the control variate dt,
and neither can be computed in closed-form. We re-
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Figure 1: Assumed density filtering and MI eval-
uation. The traditional ADF updates (black lines) are
adapted from Murphy (2012). Additional steps (blue) indi-
cate projections for estimating MI in for decision d Eqn. (8).

place both terms with cross-entropies over variational
distributions,

I(Xt;Yt|Ht−1, dt) ≈ Hpdt
(q(Xt))−Hpdt

(q(Xt|Yt)) (8)

where
pdt(Xt | Ht−1, dt) ≈ q(Xt | dt) (9)

and
pdt

(Xt | Yt,Ht−1, dt) ≈ q(Xt | Yt, dt). (10)

The approximation in Eqn. (8) was previously explored
in the context of implicit likelihood models (Foster
et al., 2019). Despite the simple form of the approxima-
tion in Eqn. (8), optimizing and evaluating it efficiently
remains challenging, which we address next.

3.2 Greedy Variational MI control

The entropy terms in the variational approximation
of instantaneous MI (Eqn. (8)) require expectations
w.r.t. the joint posterior over state and measurement
p(Xt, Yt | Ht−1, dt). This distribution is not available
in practice so we perform approximate variational infer-
ence via assumed density filtering (ADF), see Murphy
(2012) for definition. Fig. 1 provides a depiction of the
stages of ADF inference and MI approximation in our
method.

Prediction Step Given a history of observations and
decisions Ht−1, we maintain an approximation of the
posterior, qt−1(Xt−1) ≈ p̂t−1(Xt−1 | Ht−1), where
qt−1(Xt−1) is a member of the exponential family, e.g. a
Gaussian distribution. For each hypothesized control
variable dt the prediction step computes an augmented
distribution as,

p̂t|t−1(Xt, Yt | Ht−1, dt) = p(Yt | Xt)∫
qt−1(xt−1)p(Xt | xt−1, dt) dxt−1. (11)

This augmented distribution represents a local approx-
imation to the predictive distribution and is not an
exponential family in general so its entropy cannot be
calculated easily.

Moment-matching Step Given the augmented distri-
bution in Eqn. (11), the greedy MI surrogate objective
Ip̂t|t−1

(Xt;Yt | Ht−1, dt) becomes,

Ip̂t|t−1
≈ Hp̂t|t−1

(qm(Xt))−Hp̂t|t−1
(qc(Xt | Yt))

≡ Ip̂t|t−1
(q), (12)

Cross entropy is an expectation w.r.t. the aug-
mented distribution p̂t instead of the true filter as in
Eqn. (7). We approximate p̂t|t−1(Xt | Ht−1, dt) ≈ qm
and p̂t|t−1(Xt | Yt,Ht−1, dt) ≈ qc. Finding the optimal
variational distribution for Eqn. (12) is a non-convex
optimization. We take the approach of Foster et al.
(2019) and minimize an upper bound on the absolute
error,

|Ip̂t|t−1
− Ip̂t|t−1

(q)| ≤ min
qm

Hp̂t|t−1
(qm(Xt))+

min
qc

Hp̂t|t−1
(qc(Xt | Yt)) + C (13)

where C is a constant that does not affect the re-
sult of optimization. Standard approaches solved this
by (stochastic) gradient descent. However, for Gaus-
sian approximations q(dt)

t|t−1(Xt, Yt) = N (m,Σ) we show
that this bound can be efficiently solved via moment-
matching. That this moment-matching step is optimal
is not obvious, and is stated in the following theorem.
For brevity, we drop explicit time indexing in the fol-
lowing theorem statement.
Theorem 3.1. Let the joint q(X,Y ) = N (m,Σ)
match the moments of any target distribution p̂(X,Y ).
Then the marginal qm(X) =

∫
q(X, y)dy and condi-

tional qc(X | Y ) = q(X,Y )/q(Y ) minimize the upper
bound Eqn. (13).

Dahlke et al. (2023) recently demonstrated a similar
result for exponential families satisfying specific condi-
tions. We provide a novel proof for the Gaussian case in
the Appendix. We also show that the variational MI in
Eqn. (12) takes a closed-form at the moment-matching
solution.
Theorem 3.2. Let the joint q(X,Y ) = N (m,Σ) match
the moments of any target distribution p̂(X,Y ), then
we have that Hp̂(q) = Hq(q).

Update Step The projection step produces a set
of variational approximations qt|t−1 for each control
parameter dt ∈ D. MI is empirically evaluated via
Eqn. (12) for each of these quantities and the control
dt with maximum (approximate) MI is selected. The
chosen control is executed and a realized measurement
is obtained yt ∼ p(Yt | Xt) from the environment.
Finally, an ADF update is performed to yield an ex-
ponential family approximation qt ≈ p̂t(Xt | Ht) via
KL-projection (e.g. moment-matching in the exponen-
tial family).

Expectation propagation (EP) inference.
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The ADF-driven variational approach outlined in
Sec. 3.2 and Fig. 1 has the benefit of being compu-
tationally efficient as inference proceeds in a single
forward-pass. However, the non-iterative nature of
ADF can lead to poor results in some cases (Minka,
2001). To address this, we consider EP as an alternative
inference approach in the update step.

Our implementation follows standard EP proce-
dures (Minka, 2001; Heskes and Zoeter, 2002; Seeger,
2005). See the Appendix for algorithm pseudocode.
EP tends to yield more accurate inference than ADF
but does pose some practical drawbacks. First, there is
additional computational overhead due to iterative mes-
sage updates. Second, it can exhibit non-convergence or
numerical instability (Minka, 2004; Wainwright et al.,
2008). Using standard techniques to avoid these draw-
backs (message damping and abandoning numerically
invalid updates) we find that our EP implementation
is reliable in practice (see experiments Sec. 6).

4 MI CONTROL FOR GAUSSIAN
NOISE SYSTEMS

We consider a class of systems with linear Gaussian ob-
servation likelihood: p(Yt | Xt) = N (Yt | AXt + a,B),
and apply our general approach to this model with
Gaussian approximation. After that, we introduce
a special Gaussian noise system, the GMM-Gaussian
system, which has generalizability to other complex
models. Within this system, we propose the develop-
ment of a constrained Gaussian mixture variational
family in that allows analytic calculation of MI under
the variational mixture projection.

4.1 Gaussian MI approximation

We apply ADF and EP as discussed in Sec. 3.2 with
Gaussian variational approximations. Following the
prediction step in Sec. 3.2 we have an upper bound
of the MI w.r.t the augmented distribution.
Theorem 4.1. In a model with linear-Gaussian ob-
servations, given the augmented distribution at time t,
p̂t|t−1(Xt, Yt | Ht−1, dt) and its Gaussian approxima-
tion, q(dt)

t|t−1(Xt, Yt), by moment-matching,

Ip̂t|t−1
(Xt;Yt | Ht−1, dt) ≤ I

q
(dt)

t|t−1

(Xt;Yt | Ht−1, dt)

See proof in the Appendix. This theorem holds indepen-
dent of the state dynamical transitions, provided the
measurement model is a linear Gaussian distribution.
Note that the bound is w.r.t. the local approximation
under the augmented distribution as opposed to the
true filter. To better adapt to the true GMM filter
distribution we develop a specialized approach based
on GMM projections outlined next.

Figure 2: PGM of constrained GMM

4.2 Constrained GMM approximation

We consider a general class of GMM-Gaussian control
model, i.e.,

p(XT
0 , Y

T
1 | dT1 ) = N (X0 | m0,Σ0)

T∏
t=1

N (Yt | FXt, R)

K∑
k=1

wk,dt
N (Xt | Ak,dt

Xt−1, Qk,dt
). (14)

The prior on X0 and observation likelihood are both
given by standard linear Gaussian distributions. Non-
linearities in the model are introduced by the GMM
transition dynamics. Under control dt ∈ D transitions
are K-component GMMs with weights

∑K
k=1 wk,dt

= 1
and components N (Xt | Ak,dt

Xt−1, Qk,dt
). The filter

distribution at time t is a GMM with O(Kt) compo-
nents, making inference NP-hard. Besides, this model
also generalizes since the Gaussian mixture is consid-
ered a universal density approximator (Maz’ya and
Schmidt, 1996) and linear Gaussian observations can
easily be extended to a Gaussian mixture model, mak-
ing this a good candidate for general study. Moreover,
such models are widely used for model-based learning of
dynamical systems (Khansari-Zadeh and Billard, 2011;
Hersch et al., 2008). At each time t− 1, we maintain
an ensemble of K Gaussians, qt−1(Xt−1, St−1 = k) =

πk,t−1N (Xt−1 | µ̂k,t−1, Σ̂k,t−1), (15)

where St−1 is a discrete random variable, q(St−1 =
k) = πk,t−1. Note that a fixed-component Gaussian en-
semble is in the exponential family, allowing ADF/EP
updates via moment-matching (Heskes and Zoeter,
2002; Pacheco and Sudderth, 2012). Following is the
breakdown of the steps.

Prediction Step The GMM variational approxima-
tion in Eqn. (15) yields a K2-component GMM aug-
mented distribution:

p̂t|t−1(Xt, Yt, St = k | Ht−1, dt) = wkN (Yt | FXt, R)

qt−1(Xt−1)N (Xt | Ak,dt
Xt−1, Qk,dt

) (16)

Constrained GMM Moment-matching Step For
each control variate we project the K2 GMM aug-
mented distribution of Eqn. (16) to a K-component
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Gaussian ensemble via KL-projection,

q
(dt)
t|t−1(Xt, Yt, St = k) =

argmin
q

KL(p̂t|t−1(Xt, Yt, St = k | Ht−1, dt) ∥ q) (17)

However, the entropy (or cross-entropy) of a GMM
lacks a closed-form in general (Huber et al., 2008). We,
therefore, restrict the form of our projection onto an
ensemble with factorization (see Fig. 2 for PGM),

q
(dt)
t|t−1(Xt, Yt, St = k) =

ωkN (Yt | η, P )N (Xt | FkYt,Mk). (18)

In particular, the marginal moments of Yt are invari-
ant to the mixture component, whereas marginal and
conditional moments of Xt are component-dependent.
Therefore, η and P in Eqn. (18), defined as the mean
and covariance of the proposal distribution, can be
directly computed from the target distribution. The
optimal Fk and Mk are found by solving,

argmin
Fk,Mk

Ep̂t|t−1
[− log q

(dt)
t|t−1(Xt | Yt, St = k)]. (19)

Considering that q
(dt)
t|t−1(Xt | Yt, St = j) is a Gaus-

sian, the function is convex and can be solved ana-
lytically. The solution is efficient and more impor-
tantly leads to an analytic expression for the follow-
ing MI: I

q
(dt)

t|t−1

({Xt, St};Yt). We show this calculation

briefly via repeated application of the entropy chain
rule (Cover and Thomas, 2006):

I
q
(dt)

t|t−1

({Xt, St};Yt) =

K∑
k=1

ωk[Hq
(dt)

t|t−1

(Xt | St = k)−

H
q
(dt)

t|t−1

(Xt | Yt, St = k)] (20)

The result is a mixture of marginal and conditional
Gaussian entropies, each of which has a closed form.
The resulting estimator appears similar to but differs
from, the application of Jensen’s inequality to compute
GMM entropy. Fig. 3a shows that the constrained
GMM MI estimator compares comparably to other
proposed MI estimates, and substantially outperforms
Jensen’s. Note that by non-negativity of MI and an
application of the chain rule, we have a useful upper
bound,

I
q
(dt)

t|t−1

({Xt, St};Yt) ≥ I
q
(dt)

t|t−1

(Xt;Yt) (21)

We thus use MI of the constrained GMM projection
I
q
(dt)

t|t−1

(Eqn. (20)) as an approximation of Ip̂t|t−1
. Our

surrogate does not bound that quantity nor the desired
true posterior MI Ipt|t−1

, but performs well empirically
(c.f. Fig. 3a). We further demonstrate the constrained
GMM projection yields a reasonable approximation
for a GMM distribution to mimic the filter distribu-
tion, by conducting a standalone experiment. This
experiment shows two facts in a 10-decision-making

problem in a single-step scenario: both Theorem 4.1
and Eqn. 21 hold; our methods (red and yellow bars)
not only estimate the MI of a bivariate GMM close to
the "ground truth" (blue bars), estimated by the nu-
merical approximation, but also produce high-quality
decisions, tagged with diamond characters. Jensen’s
inequality provides a rough estimation of the MI, which
we use as a baseline comparison. The MI estimations
by different methods are illustrated in Fig. 3a.

5 RELATED WORK

We position our work in the context of three research
areas:

BOED is a simplification of our present setting where
the latent quantity X is static. Our work extends the
variational BOED approaches of Pacheco and Fisher
(2019); Dahlke et al. (2023); Foster et al. (2019) to
the case where Xt evolves over time. Alternatives
to variational BOED include sample-based methods
that rely on a nested Monte Carlo (NMC) estima-
tor (Zheng et al., 2018; Rainforth et al., 2018) and
for implicit models (Kleinegesse and Gutmann, 2019).
Variations of BOED exist with time-varying Xt, but
where the decision variable modulates only the obser-
vation model (Williams, 2007; Shamaiah et al., 2010).

Stochastic dynamic control. Our work can be
viewed as an instance of stochastic dynamic con-
trol (Bertsekas, 2012) with some modifications. Firstly,
it is a partially observed Markov decision process
(POMDP), secondly, the MI reward is not explicitly ob-
served and lacks a closed form. Discretization methods
have been proposed in this setting (Huan and Marzouk,
2016), but have only been demonstrated for a static
(BOED-style) setting and do not scale. Our work most
closely resembles the setting of Mutny et al. (2023),
but whereas they restrict to discrete latent states we
consider continuous states and observations.

Active Information Acquisition subsumes several
problem areas in RL and control where there exists
an implicit information reward. One such area is ac-
tive sensing, where a remote sensor gathers informa-
tion (Ryan and Hedrick, 2010; Atanasov et al., 2014) to
map the environment (Bennetts et al., 2013), perform
search and rescue (Kumar et al., 2004), or surveil-
lance (Rybski et al., 2000). Similarly, intrinsically
motivated RL includes an implicit motivation of infor-
mation gathering, often in concert with an extrinsic
reward Oudeyer and Kaplan (2008). A commonly used
utility function, empowerment, measures MI between
actions and states (Salge et al., 2014). Our work more
closely aligns with that of Houthooft et al. (2016) in
that we consider MI between states and observations.
A variant that considers static latent states can be used
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to formulate active SLAM (Durrant-Whyte and Bailey,
2006).

6 EXPERIMENTAL RESULTS

The plausibility and efficiency of the proposed meth-
ods are validated by three experiments. All of these
experiments suggest that our methods are applicable
in the online control setting without an extra offline
training phase. We compare our methods with the
particle-based method, i.e., Particle Filtering (PF) for
the inference, and Nested Monte Carlo (NMC) for the
MI estimation. The NMC is widely used as a com-
parison baseline for the MI estimation, e.g., Foster
et al. (Foster et al., 2018). The first experiment is
conducted in a GMM-Gaussian dynamical system, de-
fined in Sec. 4. We compare our approaches with the
particle-based method in terms of efficiency, accuracy,
and decision quality. In the second experiment, we
apply the MI reward to a variant of the robotic prob-
lem (Porta et al., 2006) in the Partially Observable
Markov Decision Process (POMDP) and show that
our methods are applicable in the scenario with sparse
explicit reward. And it will improve the performance
in efficiency and accuracy in the one-short learning
style. Finally, we demonstrate our methods are widely
applicable by applying them to a problem of active
information acquisition, which lacks an explicit reward
function. Further details are included from Sec. 6.1 to
Sec. 6.3 correspondingly. We conduct these experiments
on an iMac with a 3-GHz 6-Core Intel i5 processor and
32 GB memory.

6.1 GMM-Gaussian system

We validate our method on the GMM-Gaussian dynam-
ical system of Eqn. (14) over a horizon of T = 20 time
steps and a choice of 5 transition models. We compare
the results of six different methods to make decisions
for optimizing the MI: numerical approximation, ran-
dom choice, Particle Filtering (PF), ADF-Gaussian
(ADF), EP-Gaussian (EP), and ADF-GMM. To evalu-
ate cumulative MI against optimal (greedy) selection
and inference we use a numerical Riemann sum approx-
imation on a grid size of 6, 000 bins in each dimension.

After the decision-making process, we evaluate the
cumulative information of trajectories relative to
the optimal numerical sequence. Given the de-
cision trajectory T of a method and the mea-
surements it received, we compute the cumulative
MI using numerical Riemann sum integration as∑

t H(Xt | Ht−1)−H(Xt | Yt,Ht−1). Accuracy is
scored relative to the trajectory generated by numerical
inference and optimal greedy decision-making, which
we use as ground truth.

Comparable accuracy to PF baseline. We conduct
11 independent trials of each method. For each trial,
we evaluate the realized information gain relative to
optimal as previously described. Fig. 3c reports the
mean cumulative MI at each state and +/- 1 STDEV
relative to optimal numerical selection. In all cases,
the mean results are better than the baseline PF with
1, 000 particles. We note that variational methods
demonstrate significantly tighter standard deviations
of error. All methods outperform random selection.

Orders of magnitude speedup. To evaluate per-
formance we record the running time for making a
decision at each step t and calculate the average per-
formance. We experiment on multiple combinations of
n-component GMM dynamic transition and k decisions,
where n ∈ {2, 3, 4, 5, 6, 7, 8} and k ∈ {5, 6, 7, 8, 9, 10}.
Fig. 3d demonstrates that our variational methods are
orders of magnitude faster than PF as a function of the
number of decisions at each time point, varying from
5 to 10. ADF methods show 4 orders of magnitude
speedup while the iterative overhead of EP yields 2
orders of magnitude. However, we note that EP has
tighter confidence intervals in Fig. 3c as a result. The
ADF-GMM inference shows minimal overhead com-
pared to Gaussian ADF. See similar speedups as a
function of the number of components in the GMM
transition in the appendix.

Qualitatively comparable inference to baseline.
Our methods produce qualitatively similar inferences
compared to PF, but we reiterate that the variational
approaches are orders of magnitude faster. To save
space, we put them into the appendix.

6.2 Continuous POMDP

Environment and Challenge. We adopt the basic
environmental setup as Porta et al. (2006) but focus
on a one-shot POMDP learning problem to underline
the need for efficiency and accuracy. The robot’s
objective is to reach the correct door by navigating the
corridor (taking actions to move left, right, and enter),
as Fig. 4a. Operated in the POMDP setting, the robot’s
continuous true positions Xt ∈ [−21, 21] are latent,
but it receives continuous noisy measurements Yt ∈
[0, 5] of the width of the current position. The state
dynamic transition is a linear Gaussian distribution
dependent on three decisions,

p(Xt+1 | Xt, dt) = N (Xt + ad, 0.05), (22)

where ad ∈ {0,−2,+2}. The measurement model is
defined as

p(Yt | Xt) ∝
n∑

i=1

N−1(Xt | ηi,Λi)N (Yt | µi,Σi), (23)



Jianwei Shen, Jason Pacheco

Estimated MI

 }
 } }

 }

 }

1 2 3 4 5 6 7 8 9 10

Control Decision

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
I e

st
im

at
io

n

True
Gaussian
Constrained GMM
Numerical GMM
Jensen's

(a) MI estimations

Inference for a fixed trajectory

2 4 6 8 10 12 14 16 18 20

Timesteps

-15

-10

-5

0

5

10

15

S
ta

te
s

True States
Measurements
EP estimation
ADF-GMM Constrained Inference estimation
ADF-Gaussian estimation
ADF-GMM Unconstrained Inference estimation
PF estimation
Numerical estimation

(b) Posterior inference

Cumulative MI Relative to Optimal

0 2 4 6 8 10 12 14 16 18 20

Timesteps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

R
ea

liz
ed

 M
I /

 O
pt

im
al

 M
I

EP
Random
PF
ADF-GMM
ADF-Gaussian

(c) MI gained

5 6 7 8 9 10

Number of decisions

10 -4

10 -3

10 -2

10 -1

100

101

D
ec

is
io

n 
tim

e 
pe

r 
st

ep
 (

lo
g(

s)
)

Decision time,8 components in dynamic transition

ADF-Gaussian
Numerical
PF
EP-Gaussian
ADF-GMM

(d) Runtime

Figure 3: (a) This figure demonstrates the MI estimations of the Gaussian mixture model with K2 = 16 components
by five methods. The marked bars with a diamond character represent the decisions they will take respectively. All
our methods always outperform Jensens’ inequality estimation (green bars) in terms of making a decision. (b) Posterior
inference of the same trajectory for different methods, grayscale bars representing the filter distribution approximated by
the numerical approximation method. (c) This figure shows the cumulative MI by each method (with different decision
trajectories chosen) versus the optimal MI. We demonstrate the ratio of these two values to validate that our approaches,
ADF-Gaussian, EP, and ADF-GMM, will yield high-quality decisions. (d) We fix the number of components in the GMM
dynamic transition to 8 and collect the average running time of each method for making a decision. The number of
decisions is from 5 to 10. ADF-Gaussian and ADF-GMM are much faster than the rest, and EP-Gaussian also achieves a
reliable performance in running time.
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(b) Explicit only reward
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(c) MI-empowered reward
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Figure 4: (a) This is a demonstration of the environment. (b) It shows a case where the exact-reward-only mode can cause
the oscillation of the robotic motion and lead to getting stuck. We approximate the true belief states by PF and the MI is
approximated by the NMC estimator in this figure. (c) This figure shows a case where we apply the MI-empowered reward
and ADF inference and decision-making process. From the same initial position as the (b), it explores the surroundings
first and moves towards the target door after it is quite certain about its position. (d) It represents the distance between
the robot and the mean value of the correct door at the last step. Our ADF method with an MI-empowered reward
achieves almost the same accuracy as the near-optimal PF approximation with an MI-empowered reward. And it is more
stable than the explicit-only methods.
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Figure 5: (a) The PGM. The agent (X) aims to reach the stochastically moving target (Z) by dynamically transmitting its
position according to the measurement (Y). (b) The trajectory taken by the agent, applying two different methods, with
the true target position and measurement received. (c) The average realized MI is estimated by numerical approximation
given the zT1 , x

T
1 and yT

1 for 11 repeated trials. Both methods achieve similar MI. (d) The average runtime at each time
step for 11 repeated trials. Our method is approximately 5x faster than the PF.
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where ηi and Λi are natural parameters of the Gaussian
distribution. We plot the joint distribution in Fig. 6a.
The environment is composed of four different features,
left edge, right edge, corridor, and doors with different
widths, {1,2,3,4}. We plot the distribution of different
positions given the feature, i.e., p(X | Y = y), where
y ∈ {1, 2, 3, 4}, in Fig. 6b. The explicit reward function
plotted in Fig. 6c implies that it is sparse in the given
domain, which suggests a slow convergence and can
use empowerment in online few-shots learning settings.
This simulated environment can be extended to real-
world scenarios like fire rescue, where the robot needs
efficient localization and target-finding capabilities in
unknown environments.

Computing the belief state, i.e. the posterior distribu-
tion bt−1 = p(Xt−1 | Ht−1), is infeasible since it is a
GMM and the number of components grows exponen-
tially. Given the belief state bt−1 and reward function
r(a,X), the optimal policy is learned by

π∗ = argmax
π

Ep(Xt,Yt|Ht−1)[r(π(x), Xt = x)+R̄], (24)

where R̄ is the future reward. Learning an optimal
policy is NP-hard, even its approximation is compu-
tationally prohibitive. A straightforward and effec-
tive method is to apply a greedy reward. But we ob-
serve that, with Ep(Xt,Yt|Ht−1)[r(at, Xt = x)] (greedy
expected explicit reward) only, the performance of the
robot is not stable and it tends to get stuck at one
place as Fig. 4b.

MI-empowered reward. Inspired by intrinsically
motivated RL and curiosity-driven RL, we modify the
reward function by adding an MI term between the
latent state and measurement,

R(at) = Ep(Xt,Yt|Ht−1)[r(at, Xt = x)]+

αI(Xt;Yt | at,Ht−1). (25)

The α value is a 0-1 value set to control the balance of
exploration and exploitation, i.e. the reward encourages
the robot to explore more when it is not certain about
its position but prevents the robot from overly exploring
when it has a near-precise belief of its position. In
practice, we set it to 0 when the variance of the belief
state is below a threshold γ = 0.5.

Methodology. We approximate the belief state by a
fixed-number Gaussian ensemble by moment-matching
and apply a Gaussian MI approximation shown in
Sec. 4.1 to estimate the MI term in Eqn. (25). As a
comparison, we also implement PF with 3000 samples
in this space to approximate the truth. As shown in
Fig. 4c, with MI-empowered reward, the robot has the
ability to address the oscillation problem in Fig. 4b. In
our experiment, the robot first explores the area for
self-localization and then it moves to the target area
when it is equipped with the MI-empowered reward.

Comparable accuracy and significant improve-
ment in speeding up the process. We terminate
the process once the robot enters within the range of
the correct door. To assess the method’s accuracy,
we collect the distance to the correct door at the last
step (Fig. 4d) in 11 runs and calculate the mean and
+ 1 STDEV. The result confirms the accuracy of our
method (ADF MI-empowered) is nearly as accurate as
the PF with MI-empowered reward and outperforms
explicit-reward-only methods. Detailed computational
speed advantages are discussed in Sec. 6.1. See other
experimental results in the appendix.

6.3 Active information acquisition

We apply our method in an active information acquisi-
tion context (Atanasov et al., 2014; Charrow et al.,
2014). We illustrate the PGM of this problem in
Fig. 5a, with observed agent states XT

1 controlled
by dT1 , stochastically moving latent target states ZT

1 ,
and observable measurements Y T

1 , related with both
the agent and the target. The goal of the agent is to
maximize information I(ZT

1 ;Y
T
1 | XT

1 ). Observation
noise scales with the relative distance to target, so this
objective results in the agent acquiring the target.

Model and MI objective. The agent moves by
choosing from three discrete decisions to the left, to
the right, and stays, with a Gaussian noise for all the
cases,

p(Xt+1 | Xt, ad) = N (Xt+1 | Xt + ad, σ
2), (26)

where ad is a control variate. The target moves stochas-
tically by the model

p(Zt+1 | Zt) =

K∑
i

wiN (Zt+1 | Zt + bi,Σi). (27)

At each time, the agent receives a measurement based
on the position of its own and the target,

p(Yt | Zt, Xt) = N (Yt | Zt, α|Zt −Xt|+ ϵ). (28)

Without an explicit reward objective, we apply the mu-
tual information I(Zt;Yt | Xt, dt,Ht−1) as the intrinsic
reward per step. To note, Ht−1 = {yt−1

1 , xt−1
1 , dt−1

1 },
includes realizations of agent states, decisions, and mea-
surements of the past. This reward motivates the agent
to move towards the target and keep track of it.

Difficulty and methodology. The biggest hurdle
originates from the exact inference of the belief state.
Compared to the previous experiments, the exact belief
state is not only intractable but also has no closed-form
solution. It also causes difficulty in MI calculation since
both terms have no closed-form solution.

max
dt

H(Yt | Xt, dt,Ht−1)−H(Yt | Zt, Xt, dt,Ht−1),

(29)
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(a) The joint distribution.
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(c) The reward model of the experiment.

Figure 6: (a) This figure shows the joint distribution of states and measurements, which displays the multi-modality of
this modal for most of the cases. (b) It demonstrates the distribution of states given mean values of measurements for four
features, i.e., p(X | Y = y), where y ∈ {1, 2, 3, 4} and they represent Left edge, Right edge, Corridor, and Door respectively.
(c) This plot depicts the explicit reward values for different decisions evaluated at different states, where the positive values
only occur when the robot enters within the range of the correct door at position 3.

Thus, we record the approximate belief state

p(Zt−1 | Ht−1) ≈ N (Zt−1 | µt−1,Σt−1). (30)

During the decision-making phase, we compute the aug-
mented latent state marginal distribution p̂(Zt | Ht−1)
with the approximate belief state and draw samples
{Z(s)

t }Ns=1 from it. Independently, we forward sample
the agent state {X(s)

t }Ns=1 from p(Xt | Xt−1 = xt−1, dt).
For each sample X

(s)
t , we approximate

p̂(Yt | X(s)
t ) ≈ 1

N

N∑
s

p(Yt | Z(s)
t , X

(s)
t ), (31)

and estimate its entropy by moment-matching as dis-
cussed before. To obtain the updated belief state after
receiving a new measurement, we apply the ADF. As
a comparison, we also implement the PF and estimate
the MI by NMC.

Comparable accuracy and significant speedup.
We evaluate our method from three dimensions, the
completion of reaching and tracking the target, the
realized MI estimated by the numerical approximation,
and the time for making decisions. We compare our
method with PF. We discover that our method has a
similar performance in task completion and MI acqui-
sition, but achieves a significant boost in runtime. See
results from Fig. 5b to Fig. 5d.

7 LIMITATIONS

Methods proposed follow similar limitations to that
of ADF and EP. In particular, moments of the aug-
mented distribution must be computable either an-
alytically or empirically. In general the augmented
distribution in Eqn. (11) should have a closed-form
or be approximable by numerical methods. Our ex-

periments assume a known dynamics and observation
model, though model-based learning is possible but
beyond the present scope.

8 CONCLUSION

We propose an efficient approach that combines fast
variational inference with variational MI approximation
in a cohesive framework for information control. We
demonstrate the effectiveness of our approach in the
robotic control and the active information acquisition
context. We believe our method is well-suited for these
problems and plan to explore them in future work.
Note that greedy decision-making can be arbitrarily
suboptimal and closed-loop optimal methods provide
quality guarantees, see Williams (2007) for reference,
which is the focus of future work.
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Appendix : Efficient Variational Sequential Information Control

A Global MI control objective

For convenience, we restate the MI control objective from the main text (Eqn. (2)) here:

π∗ = argmax
π

I(XT
1 ;Y

T
1 | π). (32)

We will show that this decomposes into a sum of objectives across time, each of which depends only on a single
latent state Xt, as in Eqn. (6). For simplicity of notation, we drop the dependence on the policy π. The derivation
makes use of the MI chain rule Cover and Thomas (2006), namely for three random variables A,B,C the MI
decomposes as:

I(A; {B,C}) = I(A;B) + I(A;C|B), (33)

By the MI chain rule on variables Y T
1 the MI control objective in Eqn. (32) decomposes additively as:

I(XT
1 ;Y

T
1 ) = I(XT

1 ;Y1) + I(XT
1 ;Y

T
2 |Y1)

= I(XT
1 ;Y1) + I(XT

1 ;Y2|Y1) + I(XT
1 ;Y

T
3 |Y1)

. . .

= I(XT
1 ;Y1) +

T∑
t=2

I(XT
1 ;Yt|Y t−1

1 ). (34)

The chain rule is further applied on variables XT
1 for each term in Eqn. (34). Taking the first term as an example

we have,

I(XT
1 ;Y1) = I(X1;Y1) +

T∑
t=2

I(Xt;Y1|Xt−1
1 ) = I(X1;Y1). (35)

The last equality holds since
∑T

t=2 I(Xt;Y1|Xt−1
1 ) = 0 because Yt ⊥⊥ Xi ̸=t|Xt by the observation model p(yt | xt).

Continuing repeated application of the chain rule and the aforementioned independence each term in Eqn. (34)
simplifies as,

I(XT
1 ;Yt | Y t−1

1 ) = I(Xt;Yt | Y t−1
1 ) + I({Xi}i∈{1,...,T}\t;Yt | Y t−1

1 , Xt) = I(Xt;Yt | Y t−1
1 ). (36)

Combining these steps we have the decomposed global MI objective,

I(XT
1 ;Y

T
1 ) = I(X1;Y1) +

T∑
t=2

I(Xt;Yt|Y t−1
1 ). (37)

One detail not discussed in the main text due to space limitations is that our model includes an initial state X0,
which does not appear in the MI objective Eqn. (37). There is no observation associated with this initial state X0

so it is simply marginalized out for each d1 ∈ D during the initial control step at t = 1. Explicitly incorporating
the decision variable we see that the initial decision d1 modulates the prior entropy H(X1 | d1) in the first term
I(X1;Y1 | d1) = H(X1 | d1)−H(X1 | Y1, d1) and so is accounted for even when X0 is marginalized out of the
objective.

B Moment-matching in Gaussian case

We propose the Theorem 3.1 and claim that Eqn. (12) takes a closed-form solution at the moment-matching case.
Due to the space limit, we defer the proof here.
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B.1 Proof of theorem 3.1

Theorem 3.1 states:Let the joint q(X,Y ) = N (m,Σ) match the moments of any target distribution p̂(X,Y ).
Then the marginal qm(X) =

∫
q(X, y)dy and conditional qc(X | Y ) = q(X,Y )/q(Y ) minimize the upper bound

Eqn. (13).

Proof. Recall the upper bound on MI error as Eqn. (13),

|Ip̂t|t−1
− Ip̂t|t−1

(q)| ≤ min
qm

Hp̂t|t−1
(qm(Xt)) + min

qc
Hp̂t|t−1

(qc(Xt | Yt)) + C. (38)

For Gaussian marginal and conditional,

qm(Xt) = N (Xt | µ,Q) and qc(Xt | Yt) = N (Xt | AYt + b,Γ), (39)

the optimal Gaussian q∗m that minimizes marginal cross-entropy is given by moment-matching Murphy (2012),

q∗m = argmin
qm

Hp̂t|t−1
(qm(Xt))−Hp̂t|t−1

(Xt)︸ ︷︷ ︸
constant

= argmin
qm

KL(p̂t|t−1 ∥ qm), (40)

so

µ∗ = Ep̂t|t−1
[Xt] and Q∗ = Covp̂t|t−1

(Xt). (41)

For simplicity, we drop the p̂t|t−1 in the expectation and covariance calculations in the following of this proof.
Now we consider the conditional objective:

q∗c = argmin
qc

Hp̂t|t−1
(qc(Xt | Yt))

Let α(A, b,Γ) ≡ E [− logN (Xt | AYt + b,Γ)]

=
1

2
log | Γ | +E

[
1

2
tr(Γ−1(Xt − b−AYt)(Xt − b−AYt)

T )

]
+ Const. (42)

First, we solve for b,

∇b α = ∇b E

[
1

2
tr(Γ−1(Xt − b−AYt)(Xt − b−AYt)

T )

]
= E

[
Γ−1(Xt − b−AYt)(−∇b b)

]
= −E

[
Γ−1(Xt − b−AYt)

]
= 0

b∗ = E [(Xt −AYt)] . (43)

Second, we solve for A,

∇A α = ∇A E

[
1

2
tr(Γ−1(Xt − b−AYt)(Xt − b−AYt)

T )

]
= E

[
Γ−1(Xt − b−AYt)(−∇A AYt)

]
= −E

[
Γ−1(Xt − b−AYt)Y

T
t

]
= 0

0 = E
[
XtY

T
t − bY T

t −AYtY
T
t

]
Backsubstitute b∗

0 = E
[
XtY

T
t − E [(Xt −AYt)]Y

T
t −AYtY

T
t

]
= E

[
XtY

T
t

]
− E [Xt]E

[
Y T
t

]
+

AE [Yt]E
[
Y T
t

]
−AE

[
YtY

T
t

]
= Cov(Xt, Yt)−ACov(Yt, Yt)

A∗ = Cov(Xt, Yt)Cov(Yt, Yt)
−1 (44)

Back substitute into b∗,

b∗ = E [Xt −AYt] = E [Xt]− Cov(Xt, Yt)Cov(Yt, Yt)
−1E [Yt] . (45)
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The full conditional mean is then,

A∗Yt + b∗ = Cov(Xt, Yt)Cov(Yt, Yt)
−1Yt + E [Xt]−

Cov(Xt, Yt)Cov(Yt, Yt)
−1E [Yt]

= E [Xt] + Cov(Xt, Yt)Cov(Yt, Yt)
−1(Yt − E [Yt]) (46)

Solve for conditional covariance Γ,

∇Γ α = ∇Γ
1

2
log | Γ | +1

2
E
[
tr(Γ−1(Xt − b−AYt)(Xt − b−AYt)

T )
]

= Γ− E
[
(Xt − b−AYt)(Xt − b−AYt)

T )
]
= 0

Γ∗ = E
[
(Xt − b−AYt)(Xt − b−AYt)

T )
]

(47)

Back substitute A∗Yt + b∗,

Γ∗ = E[(Xt − E [Xt]− Cov(Xt, Yt)Cov(Yt, Yt)
−1(Yt − E [Yt])

(Xt − E [Xt]− Cov(Xt, Yt)Cov(Yt, Yt)
−1(Yt − E [Yt])

T ]

= E[(Xt − E [Xt])(Xt − E [Xt])
T ]

− 2E[(Xt − E [Xt])(Yt − E [Yt])
T ]Cov(Xt, Yt)Cov(Yt, Yt)

−1

+Cov(Xt, Yt)Cov(Yt, Yt)
−1E[(Yt − E [Yt])(Yt − E [Yt])

T ]

∗ Cov(Yt, Yt)
−1Cov(Xt, Yt)

T

= Cov(Xt, Xt)− 2Cov(Xt, Yt)Cov(Yt, Yt)
−1Cov(Xt, Yt)

T

+Cov(Xt, Yt)Cov(Yt, Yt)
−1Cov(Yt, Yt)Cov(Yt, Yt)

−1Cov(Xt, Yt)
T

= Cov(Xt, Xt)− Cov(Xt, Yt)Cov(Yt, Yt)
−1Cov(Xt, Yt)

T .

Now we consider q
(dt)
t|t−1(Xt, Yt) = N (m,Σ) moment-matched to p̂t|t−1(Xt, Yt),

m =

[
mX

mY

]
=

[
Ep̂t|t−1

[Xt]
Ep̂t|t−1

[Yt]

]
Σ =

[
ΣX ΣXY

ΣT
XY ΣY

]
=

[
Covp̂t|t−1

(Xt, Xt) Covp̂t|t−1
(Xt, Yt)

Covp̂t|t−1
(Xt, Yt)

T Covp̂t|t−1
(Yt, Yt)

]
(48)

Thus,

qm = N (mX ,ΣX) = N (µ∗, Q∗) = argmin
qm

Hp̂t|t−1
(qm(Xt)). (49)

The conditional Gaussian from the joint q
(dt)
t|t−1 are,

qc = N (Xt | mX +ΣXY Σ
−1
Y (Yt −mY )︸ ︷︷ ︸

A∗Yt+b∗

,ΣX − ΣXY Σ
−1
Y ΣT

XY︸ ︷︷ ︸
Γ∗

) = argmin
qc

Hp̂t|t−1
(qc). (50)

Therefore, moment-matching the augmented distribution to a joint Gaussian distribution yields optimal Gaussian
marginal and conditional approximations that minimize the MI error bound, when qm and qc are considered as
Gaussian distributions. In other words, optimal q∗m and q∗c share the same joint distribution when qm and qc are
considered as Gaussian distributions.

According to the Foster et al. Foster et al. (2019), the MI error bound can be restated as,

|Ip̂t|t−1
− Ip̂t|t−1

(q)| ≤ min
qm

Hp̂t|t−1
(qml(Yt)) + min

qc
Hp̂t|t−1

(qcl(Yt | Xt)) + C, (51)

where C does not depend on qml or qcl. So we could have a similar corollary as Theorem 3.1.

Corollary B.1. When qml and qcl are Gaussian distributions, moment-matching q
(dt)
t|t−1(Xt, Yt) = N (m,Σ) to

p̂t|t−1(Xt, Yt), will yield optimal q∗ml =
∫
q
(dt)
t|t−1(xt, Yt)dxt and q∗cl =

q
(dt)

t|t−1
(Xt,Yt)∫

q
(dt)

t|t−1
(Xt,yt)dyt

.

The proof is identical to that of Theorem 3.1 but swap Xt and Yt. Therefore, we don’t reiterate here.
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B.2 Closed-form solution for MI

Lemma B.2. Given q
(dt)
t|t−1(Xt, Yt) = N (m,Σ), which moment-matches p̂t|t−1(Xt, Yt), Ip̂t|t−1

(q) ≡
Hp̂t|t−1

(qm(Xt)) − Hp̂t|t−1
(qc(Xt | Yt)) has a closed-form solution, where qm and qc are marginal and condi-

tional distribution of q(dt)
t|t−1 respectively.

Proof. Given that qm and qc are Gaussian distributions, we have proved in theorem 3.1 that they share the same
joint distribution. Thus, we have

Ip̂t|t−1
(q) = Hp̂t|t−1

(qt|t−1(Xt))−Hp̂t|t−1
(qt|t−1(Xt | Yt)). (52)

Since qm and qc are both Gaussian distributions, w.l.o.g., we prove that Hp̂t|t−1
(qt|t−1(Xt)) has a closed-form

solution, and it applies to Hp̂t|t−1
(qt|t−1(Xt | Yt)). Assume qt|t−1(Xt) = N (Xt | mX ,ΣX) and the dimension of

ΣX is k,

Hp̂t|t−1
(qt|t−1(Xt)) = −Ep̂t|t−1

[logN (Xt | mX ,ΣX)]

= −Ep̂t|t−1
[−k

2
log 2π − 1

2
log | ΣX | −1

2
(Xt −mX)TΣ−1

X (Xt −mX)]

=
k

2
log 2π +

1

2
log | ΣX | +1

2
Ep̂t|t−1

[(Xt −mX)TΣ−1
X (Xt −mX)]

(53)

We assume that ΣX is a valid covariance matrix, thus it could be decomposed as ΣX = LLT .

Ep̂t|t−1
[(Xt −mX)TΣ−1

X (Xt −mX)] = Ep̂t|t−1
[(L−1Xt − L−1mX)T (L−1Xt − L−1mX)] (54)

Let C ≡ Ep̂t|t−1
[(L−1Xt − L−1mX)(L−1Xt − L−1mX)T ], and Ep̂t|t−1

[L−1Xt] = L−1mX . By definition,

C = Cov(L−1Xt, L
−1Xt)

= L−1 Cov(Xt, Xt)︸ ︷︷ ︸
ΣX

L−T

= L−1LLTL−T

= I.

Therefore,
Ep̂t|t−1

[(Xt −mX)TΣ−1
X (Xt −mX)] = tr(C) = k. (55)

Summing terms up, we have a closed-form solution for

Hp̂t|t−1
(qt|t−1(Xt)) =

k

2
log 2π +

1

2
log | ΣX | +k

2
. (56)

A similar result applies to Hp̂t|t−1
(qt|t−1(Xt | Yt)), but replace ΣX with ΣX − ΣXY Σ

−1
Y ΣT

XY

Hp̂t|t−1
(qt|t−1(Xt | Yt)) =

k

2
log 2π +

1

2
log | ΣX − ΣXY Σ

−1
Y ΣT

XY | +k

2
. (57)

Ip̂t|t−1
(q) =

1

2
log | ΣX | −1

2
log | ΣX − ΣXY Σ

−1
Y ΣT

XY | . (58)

Theorem 3.2 states: Let the joint q(X,Y ) = N (m,Σ) match the moments of any target distribution p̂(X,Y ),
then we have that Hp̂(q) = Hq(q).

Proof. We have proved as Eqn. (56), when q is a Gaussian distribution with k-dimension covariance matrix Σq

that moment-matches p̂, the cross entropy is

Hp̂(q) =
k

2
log 2π +

1

2
log | Σq | +k

2
. (59)

By definition, the entropy of Gaussian distribution q is

Hq(q) =
k

2
log 2π +

1

2
log | Σq | +k

2
= Hp̂(q). (60)
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C Algorithm statement of sequential variational information control

Algorithm 1 provides a complete statement of our proposed method for sequential variational MI control in the
greedy setting. The algorithm is provided for, both, EP and ADF inference with relevant components to each
denoted by color. ADF is a special case of EP, consisting of only the first forward pass of inference, and is denoted
in (red). Additional (blue) lines are specific to EP as the iterate forward-and-backward message updates. The MI
approximation and decision selection are equivalent for both cases.

Algorithm 1 Sequential Variational Information Control

Input: Start state x0,prior distribution x0 ∼ N (µ0,Σ0)
Output: A series of decisions D1:T

Initialization: α0(x0) = N (µ0,Σ0), β0:T−1 = 1
Let D[t] be the optimal decision at time t when the final step is t,1 ≤ t ≤ T
{// Estimate MI for each decision at time t}
for t = 1 to T do

for dt = 1 to K do
p̂t,dt(Xt, Yt) =

∫
αt−1(xt−1)p(Xt|xt−1, dt)p(Yt|Xt) dxt−1 {// Augmented predictive distribution at time t}

qt,dt
(Xt, Yt) = argminq KL(q||p̂t,dt

) {// KL-projection}
end for
d∗t = argmaxdt∈{1,...,K} Ip̂t,dt

(qt,dt
) {// Choose decision with maximum MI per Sec. 3.2 or Sec. 4.2}

Execute decision d∗t and observe Yt = yt
{// ADF-update: (always do this)}
p̂t(Xt) ∝

∫
αt−1(xt−1)p(Xt | xt−1, d

∗
t )p(yt|Xt)d xt−1 {// Augmented filter distribution at time t}

αt(Xt) = argminα KL(p̂t ∥α) {// KL-projection–forward message update}
{// EP-update: (only if doing EP)}
repeat

for i = 1 to t do
p̂i(Xi) =

∫
αi−1(xi−1)p(Xi | xi−1, d

∗
i )p(yi | Xi)βi(Xi) dxi−1

qi(Xi) = argminq KL(p̂i ∥ q)
αi(Xi) ∝ qi(Xi)

βi(Xi)
{// EP Forward message update}

end for
for i = (t− 1)to 0 do
p̂(Xi) =

∫
αi(Xi)p(xi+1 | xi, d

∗
i+1)p(yi+1 | xi+1, d

∗
i+1)βi+1(xi+1) dxi+1

qi(Xi) = argminq KL(p̂i ∥ q)
βi(Xi) ∝ qi(Xi)

αi(Xi)
{// EP Backward message update}

end for
until {αi, βi} converge

end for

D Theorem 4.1

Theorem 4.1 states, In a model with linear-Gaussian observations, given the augmented distribution at time t,
p̂t|t−1(Xt, Yt | Ht−1, dt) and its Gaussian approximation, q(dt)

t|t−1(Xt, Yt), by moment-matching,

Ip̂t|t−1
(Xt;Yt | Ht−1, dt) ≤ I

q
(dt)

t|t−1

(Xt;Yt | Ht−1, dt)

Proof. For brevity, we drop the time and decision index for p̂t|t−1 and q
(dt)
t|t−1 in the proof below. According to the

definition of the information control setting and mutual information, the mutual information between Xt and Yt

for the augmented distribution p̂ can be decomposed as

Ip̂(Xt;Yt | dt) = Hp̂(Yt | dt)−Hp̂(Yt | Xt) (61)
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Similarly, the mutual information for the approximation q is decomposed as

Iq(Xt;Yt) = Hq(Yt | dt)−Hq(Yt | Xt). (62)

Since Gaussian p̂(Xt, Yt) ≈ q(Xt, Yt) by moment-matching, and according to Theorem 3.2,

Hq(Yt | dt) = Hp(q(Yt | dt)). (63)

With Lemma B.2, the MI Iq(Xt;Yt) can be solved in closed-form. Moreover, by Corollary B.1,

Ip̂(q) = Hp̂(q(Yt | dt))−Hp̂(q(Yt | Xt)) (64)

optimizes the MI error bound as Eqn. 51. Specially, when p̂(Yt | Xt) = N (Yt | HXt + b, R) (R is k-dimensional),
the entropy is

Hp̂(Yt | Xt) =
k

2
log 2π +

1

2
log | R | +k

2
(65)

by definition. Since Gaussian distribution q(Yt | Xt) moment-matches p̂(Yt | Xt), according to Theorem 3.2,

Hp̂(Yt | Xt) = Hq(Yt | Xt) =
k

2
log 2π +

1

2
log | R | +k

2
. (66)

So

Iq(Xt;Yt | dt) = Hq(Yt | dt)−Hq(Yt | Xt) = Hq(Yt | dt)−Hp̂(Yt | Xt) (67)

On the other hand, by the Gibbs inequality,

Hp̂(Yt | dt) ≤ Hp̂(q(Yt | dt)) = Hq(Yt | dt). (68)

Thus,

Hp̂(Yt | dt)−Hp̂(Yt | Xt) ≤ Hq(Yt | dt)−Hp̂(Yt | Xt) = Hq(Yt | dt)−Hq(Yt | Xt)

Ip̂(Xt;Yt | dt) ≤ Iq(Xt;Yt | dt) (69)

E Constrained GMM approximation

E.1 Moment-matching calculation

At time t, let the approximated filter distribution q(Xt|yt1, dt1) =
∑K

i=1 πiN (Xt|µi,Σi), given the GMM-Gaussian
system, i.e.,

pd(Xt+1|Xt) =

N∑
i=1

wd(i)N (Xt+1|Ad,iXi, Cd,i), (70)

p(Yt+1|Xt+1) = N (Yt+1 | HXt+1, R), (71)

for a given decision d

p̂(Xt+1, Yt+1, St+1 = j) =

∫ K∑
i=1

πiN (Xt|µi,Σi)wjN (Xt+1|AjXt, Cj)p(Yt+1|HXt+1, R)dXt

=

K∑
i=1

πiwjN (Yt+1|HXt+1, R)N (Xt+1 | Ajµi, Cj +AjΣiA
T
j )

=

K∑
i=1

πiwjN (Yt+1|HXt+1, R)N (Xt+1 | mij , Pij) (72)

where we define Pij = Cj +AjΣiA
T
j , mij = Ajµi.

Applying constrained GMM projection to approximate p(Xt+1, Yt+1|St+1 = j) by

q(Xt+1, Yt+1, St+1 = j) = N (Yt+1|η, P )wjN (Xt+1|FjYt+1,Mj). (73)
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We could first compute P as the projection of Covp̂(Y )–the covariance of Y under the augmented distribution
p̂(Y ):

p̂(Yt+1) =

K∑
i=1

πi

N∑
j=1

wj

∫
N (Yt+1 | Hxt+1, R)N (xt+1|mij , Pij)dxt+1

=

K∑
i=1

πi

N∑
j=1

wjN (Yt+1 | Hmij , R+HPijH
T ) (74)

Let

M =

K∑
i=1

πi

N∑
j=1

wj(Hmij),

V =

K∑
i=1

πi

N∑
j=1

wj [R+HPijH
T + (Hmij)(Hmij)

T ]−MMT (75)

P = Covp̂(Y ) = V

η = M (76)

To compute Fj and Mj , we consider

G(Fj ,Mj) ≡ min
Fj ,Mj

E [− logN (Xt | FjYt,Mj)]

= min
Fj ,Mj

1

2
log | Mj | +E

[
1

2
tr(M−1

j (Xt − FjYt)(Xt − FjYt)
T )

]
. (77)

Solve for Fj ,

∇Fj G = ∇Fj E

[
1

2
tr(M−1

j (Xt − FjYt)(Xt − FjYt)
T )

]
= E

[
M−1

j (Xt − FjYt)(−∇Fj FjYt)
]

= −E
[
M−1

j (Xt − FjYt)Y
T
t

]
= 0

0 = E
[
XtY

T
t − FjYtY

T
t

]
F ∗
j = E

[
XtY

T
t

]
E
[
YtY

T
t

]−1

= {Cov(Xt, Yt) + E[Xt]E[Y T
t ]}{Cov(Yt, Yt) + E[Yt]E[Y T

t ]}−1 (78)

Solve for Mj ,

∇Mj
G = ∇Mj

1

2
log | Mj | +

1

2
E
[
tr(M−1

j (Xt − FjYt)(Xt − FjYt)
T )
]

= Mj − E
[
(Xt − FjYt)(Xt − FjYt)

T )
]
= 0

M∗
j = E

[
(Xt − FjYt)(Xt − FjYt)

T )
]

= Cov(Xt, Xt) + E[Xt]E[XT
t ]− {Cov(Xt, Yt) + E[Xt]E[Y T

t ]}
{Cov(Yt, Yt) + E[Yt]E[Y T

t ]}−1{Cov(Yt, Xt) + E[Yt]E[XT
t ]} (79)

Moreover, we project Covp̂(Xt+1|St+1 = j) to Covq(Xt+1|St+1 = j) for MI estimation, which is shown later.

p̂(Xt+1, Yt+1, St+1 = j) = ΣK
i=1 πiwjN (Yt+1|HXt+1, R)N (Xt+1|mij , Pij) (80)

p̂(Xt+1, Yt+1|St+1 = j) = ΣK
i=1 πiN (Yt+1|HXt+1, R)N (Xt+1|mij , Pij)

= ΣK
i=1 πiN

([
Xt+1

Yt+1

] ∣∣∣∣∣
[
mij

Hmij

]
,

[
Pij PijH

T

HPij R+HPijH
T

])
(81)
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Let

µ̃t+1 = ΣK
i=1 πi

[
mij

Hmij

]
,

Ṽt+1 = ΣK
i=1 πi

{[
Pij PijH

T

HPij R+HPijH
T

]
+

[
mij

Hmij

] [
mij

Hmij

]T}
−µ̃t+1µ̃

T
t+1 (82)

Let

mj = ΣK
i=1 πimij , Vj = ΣK

i=1 πi[Pij +mijm
T
ij ]−mjm

T
j , (83)

then

Covp̂(Xt+1, Yt+1|St+1 = j) =

[
Vj VjH

T

HVj R+HVjH
T

]
, (84)

Cov−1
p̂ (Xt+1, Yt+1|St+1 = j) =

[
V −1
j +HTR−1H −HTR−1

−R−1H R−1

]
, (85)

Covp̂(Xt+1|St+1 = j) = Vj . (86)

Since

Covq(Xt+1, Yt+1|St+1 = j) =

[
Mj + FjPFT

j FjP
PFT

j P

]
(87)

and

Covq−1(Xt+1, Yt+1|St+1 = j) =

[
M−1

j −M−1
j Fj

−FT
j M−1

j P−1 + FT
j M−1

j Fj

]
, (88)

Covq(Xt+1|St+1 = j) = Mj + FjPFT
j = Vj , (89)

and

Covq(Xt+1|Yt+1, St+1 = j) = Mj . (90)

E.2 MI of Constrained GMM approximation

Our goal is to compute

Iq({Xt+1, St+1};Yt+1) = Hq(Xt+1, St+1)−Hq(Xt+1, St+1|Yt+1)

= Hq(Xt+1|St+1) +Hq(St+1)

−Hq(Xt+1|St+1, Yt+1)−Hq(St+1|Yt+1). (91)

Due to the dependence shown as the Fig. 2, H(St+1|Yt+1) = H(St+1). We can further simplify Eqn. (91) by

Iq({Xt+1, St+1};Yt+1) = H(Xt+1|St+1)−H(Xt+1|St+1, Yt+1)

=

N∑
j

q(St+1 = j)[H(Xt+1|St+1 = j)]

−
N∑
j

q(St+1 = j)[H(Xt+1|St+1 = j, Yt+1)]. (92)

Because both q(Xt+1|St+1 = j) and q(Xt+1|St+1 = j, Yt+1) are Gaussian distribution, their entropy only
involves their covariance matrix respectively. And we have computed Covq(Xt+1|St+1 = j) as Eqn. (89) and
Covq(Xt+1|St+1 = j, Yt+1) as Eqn. (90). Moreover, q(St+1) = p(St+1). Thus, Eqn. (92) can be analytically
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(a) Constrained GMM projection
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Figure 7: (a) This figure shows that our methods perform well in approximating the K2 = 16-component Gaussian
mixture model. The constrained GMM projection method, represented in blue, performs a constrained projection to a
K = 4-component GMM. (b) We fix the number of decisions to 10 and compare the average running time as the number
of components in the GMM dynamic transition grows from 2 to 8. We can see that our approaches perform consistently as
the number of components grows.

calculated as

Iq({Xt+1, St+1};Yt+1) = Hq(Xt+1, St+1)−Hq(Xt+1, St+1|Yt+1)

= Hq(Xt+1|St+1)−Hq(Xt+1|St+1, Yt+1)

=
1

2

N∑
j

wj log |2πe(Mj + FjPFT
j )| − 1

2

N∑
j

wj log |2πeMj | (93)

F Additional experimental results

Due to space limitations in the main text, we provide only a limited set of experimental results for variational MI
control. We provide a more detailed and extensive empirical evaluation here, considering a more comprehensive
array of configurations than in the main text.

F.1 Single-step scenario

We validate that the constrained GMM projection has good performance in approximating the target distribution.
The approximation result of one example is shown in Fig. 7a. The constrained GMM projection projects the true
distribution down to a K-component Gaussian mixture. A plot of the PGM of constrained GMM approximation
is shown as Fig. 2.

F.2 GMM-Gaussian Control

Fig. 8a to Fig. 8f show qualitative comparisons of inference for individual runs of each method. Grayscale bars in
the plots represent the filter distribution approximated by the numerical approximation method. The lines are
the estimations of true states by each method respectively. Apart from that, we also show our methods perform
closely in posterior inference to the numerical method in the setting of the same trajectory, i.e., all the methods
share the same decision path and observed measurements. The result is shown in Fig. 3b. We have to reiterate
that our method is much faster than PF or the numerical approximation when the sampling size/number of bins
is large (e.g., 3000) for both methods. Another speedup test is shown in Fig. 7b.
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(a) ADF-Gaussian
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(b) ADF-GMM constrained
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(c) ADF-GMM unconstrained
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(d) EP-Gaussian
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(e) PF
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(f) Numerical

Figure 8: These figures display the posterior inference of each method separately. Different methods would have a different
decision trajectory, upon which with the corresponding measurements, the ’exact inference’ is approximated by the numerical
approximation. And the ’exact’ posterior distribution density is shown by the grayscale blocks. The ADF-Gaussian and EP-
Gaussian project the target distribution to a single Gaussian distribution, and the ADF-GMM(constrained/unconstrained)
maintains a GMM approximation of the filter distribution. ADF-GMM constrained method performs the ADF update
using the projected distribution in estimating the MI, while the ADF-GMM unconstrained method drops the projected
distribution and applies an unconstrained projection for inference.
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(b) ADF-GMM inference
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(c) PF inference
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Figure 9: (a) This figure shows the PGM of a SSSM: a dynamic hybrid latent continuous state Xt and discrete state St

with observations Yt. Control inputs dt ∈ D (decisions) parameterize the transition distribution p(xt | xt−1, st = j, dt).(b)
This figure is the posterior inference of the state from the ADF-GMM. The ’exact inference’ shown in grayscale blocks, is
computed by the numerical approximation using the trajectory and measurement generated by the ADF-GMM method.
The ADF-GMM maintains a K-component Gaussian filter distribution, so the estimation of states is computed by the
mean of the K-component Gaussian posterior. (c) This figure shows the inference results of the PF with the particles it
sampled through the decision-making process. (d) We show that our method outperforms the PF in terms of the decision
quality, measured by the ratio of MI acquired against the optimal MI.
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(a) The last exact explicit reward
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Figure 10: (a) This figure shows the evaluations of the exact explicit reward at the last step. Our approach is as accurate
as PF with MI-empowered reward. (b) This figure shows the advantage of our method from another perspective, which
says it reaches the correct door as fast as PF does. Also, we observe that our method with MI-empowered reward appears
more stable than those without MI rewards, i.e., it reaches the goal using almost the same time steps from any initial
position. On the other hand, as we have shown in Sec. 6.1, our approach is more computationally efficient when the
number of samples is large enough to approximate the truth.

F.3 Switching state space model

The switching state-space model (SSSM) is a natural extension of the GMM-Gaussian model in the sense that
marginalizing discrete switching states yield mixture dynamics. The SSSM is a more expressive model as dynamics
mixtures are not constant over time. Marginalizing the switching states corresponds to mixture dynamics
with an exponential number of components at each time, due to Markov dependence on the discrete switching
states Murphy (2012). As shown in Fig. 9a the consists of continuous latent states {Xt}Tt=1 ∈ X , discrete latent
states {St}Tt=1 ∈ S and continuous measurements {Yt}Tt=1 ∈ Y. Due to space limitations, we defer the whole
experiment here. For the SSSM we focus our comparison on three methods: ADF-GMM, Rao-Blackwellized
PF, and random guess (as a control). In all settings, we also compute numerical inference and optimal greedy
decisions via Reimann sum approximation.

The SSSM generative model is given by Markov transitions on the discrete states: p(St = k|St−1 = i) = ρki.
Continuous state transitions and observations are then given by the remaining components of the forward model:

p(St|Xt−1, St = k, dt) = N (Xt|Ak,dtXt−1, Qk,dt), p(Yt|Xt) = N (Yt|HXt, R) (94)

We perform 11 individual trials and find that quantitative and qualitative results are largely consistent with the
GMM-Gaussian experiment in Sec. 6.1. Fig. 9b shows qualitative inference results of ADF-GMM. In general,
we observe comparable qualitative inferences between each of these methods (ADF and Rao-Blackwellized PF),
Fig. 9b and Fig. 9c. Similarly, Fig. 9d reports mean +/- STDEV cumulative MI using the same evaluation
methodology as in the GMM-Gaussian example of Sec. 6.1. It shows that our method produces better decisions
in terms of the MI acquired in this model. Both control methods outperform the random guess baseline.

F.4 MI-empowered C-POMDP

We re-implemented the C-POMDP environment with a discrete decision set in Porta et al. (2006). The detailed
environment setup is shown as follows. Along with the environment, we also demonstrate the mathematical
derivation of posterior inference using ADF and expected reward estimation. We also attach two extra experimental
results in Fig. 10a and Fig. 10b to show the advantages of MI-empowered reward and our method.
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State Dynamic Transition:

p(Xt+1 | Xt) =


N (Xt − 2, 0.05), if d = 0, move to the left.
N (Xt + 2, 0.05), if d = 1, move to the right.
N (Xt, 0.05), if d = 2, enter the door.

(95)

Measurement Model:

p(Yt | Xt) ∝
n∑

i=1

N−1(Xt | ηi,Λi)N (Yt | µi,Σi), (96)

where ηi and Λi are natural parameters of the Gaussian distribution. We define the Gaussian distribution in this
format to facilitate further calculation concerning the Gaussian distribution. Given p̂(Xt) =

∑K
k=1 wkN (Xt |

mk, Pk) and a control selected,

p̂(Xt+1) =


∑K

k=1 wkN (mk − 2, Pk + 0.05) =
∑K

k=1 wkN−1( mk−2
Pk+0.05 ,

1
Pk+0.05 ), if d = 0.∑K

k=1 wkN (mk + 2, Pk + 0.05) =
∑K

k=1 wkN−1( mk+2
Pk+0.05 ,

1
Pk+0.05 ), if d = 1.∑K

k=1 wkN (mk, Pk + 0.05) =
∑K

k=1 wkN−1( mk

Pk+0.05 ,
1

Pk+0.05 ), if d = 2.

(97)

Define

ϕki,d =


N ( ηi

Λi
| mk − 2, 1

Λi
+ Pk + 0.05) if d = 0.

N ( ηi

Λi
| mk + 2, 1

Λi
+ Pk + 0.05) if d = 1.

N ( ηi

Λi
| mk,

1
Λi

+ Pk + 0.05) if d = 2.

(98)

the augmented distribution is,

p̂(Xt+1, Yt+1) ∝



∑n
i=1

∑K
k=1 wk ∗ ϕki,0N−1(Xt+1 | ηi + mk−2

Pk+0.05 ,Λi +
1

Pk+0.05 )

N (Yt+1 | µi,Σi), if d = 0.∑n
i=1

∑K
k=1 wk ∗ ϕki,1N−1(Xt+1 | ηi + mk+2

Pk+0.05 ,Λi +
1

Pk+0.05 )

N (Yt+1 | µi,Σi), if d = 1.∑n
i=1

∑K
k=1 wk ∗ ϕki,2N−1(Xt+1 | ηi + mk

Pk+0.05 ,Λi +
1

Pk+0.05 )

N (Yt+1 | µi,Σi), if d = 2.

(99)

F.4.1 Implicit Reward

Î(Xt+1;Yt+1) = Hp̂(Xt+1)−Hp̂(Xt+1 | Yt+1) (100)

MI estimation: Given the Eq.(99) and normalize the weights, we could moment-match it to a single Gaussian
distribution. Then we could compute Î(Xt+1;Yt+1) analytically.

Posterior update: Given Yt+1 = yt+1,

p̂(Xt+1 | yt+1) ∝



∑K
k=1 wk

∑n
i=1 ϕki,0N (Yt+1 = yt+1 | µi,Σi)

N (Xt+1 |
ηi+

mk−2

Pk+0.05

Λi+
1

Pk+0.05

, 1
Λi+

1
Pk+0.05

), if d = 0.∑K
k=1 wk

∑n
i=1 ϕki,1N (Yt+1 = yt+1 | µi,Σi)

N (Xt+1 |
ηi+

mk+2

Pk+0.05

Λi+
1

Pk+0.05

, 1
Λi+

1
Pk+0.05

), if d = 1.∑K
k=1 wk

∑n
i=1 ϕki,2N (Yt+1 = yt+1 | µi,Σi)

N (Xt+1 |
ηi+

mk
Pk+0.05

Λi+
1

Pk+0.05

, 1
Λi+

1
Pk+0.05

), if d = 2.

(101)

Fit a Gaussian N (Xt+1) ≈
∑n

i=1 ϕki,dN (Yt+1 = yt+1 | µi,Σi)N (Xt+1 | ·) by moment-matching. The weight
w

(new)
k =

wk∗
∑n

i=1 ϕki,dN (Yt+1=yt+1|µi,Σi)∑K
k=1 wk∗

∑n
i=1 ϕki,dN (Yt+1=yt+1|µi,Σi)
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F.4.2 Explicit Reward

The explicit reward function is a function of the state s given a decision d, i.e.,

r(X) =


−2N (X | −21, 1)− 2N (X | −19, 1)− 2N (−X | 17, 1), if d = 0.

−2N (X | 21, 1)− 2N (X | 19, 1)− 2N (X | 17, 1), if d = 1.

−10N (X | −25, 250) + 2N (X | 3, 3)− 10N (X | 25, 250), if d = 2.

(102)

Given a decision d, denote the reward as rd(X) =
∑

i w
(d)
i ϕ(X | µ(d)

i ,Σ
(d)
i ). To note, the reward function is a

linear combination of Gaussians w.r.t the state instead of a normalized Gaussian mixture model. In the POMDP
environment, we are not able to evaluate the exact reward function but compute the expected reward w.r.t the

augmented distribution, Let µ̂
(0)
t+1 =

ηi+
mk−2

Pk+0.05

Λi+
1

Pk+0.05

,µ̂(1)
t+1 =

ηi+
mk+2

Pk+0.05

Λi+
1

Pk+0.05

,µ̂(2)
t+1 =

ηi+
mk

Pk+0.05

Λi+
1

Pk+0.05

, and ˆvart+1 = Λi +
1

Pk+0.05

< rd, b > =

∫ ∫ ∑
i

w
(d)
i ϕ(Xt+1 | µ(d)

i ,Σ
(d)
i )p̂d(xt+1, yt+1)dxt+1dyt+1 (103)
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