DiffRed: Dimensionality Reduction guided by stable rank

Prarabdh Shukla
Department of CSE, Indian Institute of Technology, Bhilai Bhilai, India

Gagan Raj Gupta
Department of CSE, Indian Institute of Technology, Bhilai Bhilai, India

Kunal Dutta
Institute of Informatics,
University of Warsaw, Warsaw, Poland

Abstract

In this work, we propose a novel dimensionality reduction technique, DiffRed, which first projects the data matrix, A, along first k_{1} principal components and the residual ma$\operatorname{trix} A^{*}$ (left after subtracting its k_{1}-rank approximation) along k_{2} Gaussian random vectors. We evaluate $M 1$, the distortion of meansquared pair-wise distance, and Stress, the normalized value of RMS of distortion of the pairwise distances. We rigorously prove that DiffRed achieves a general upper bound of $O\left(\sqrt{\frac{1-p}{k_{2}}}\right)$ on Stress and $O\left(\frac{1-p}{\sqrt{k_{2} * \rho\left(A^{*}\right)}}\right)$ on M1 where p is the fraction of variance explained by the first k_{1} principal components and $\rho\left(A^{*}\right)$ is the stable rank of A^{*}. These bounds are tighter than the currently known results for Random maps. Our extensive experiments on a variety of real-world datasets demonstrate that DiffRed achieves near zero M1 and much lower values of Stress as compared to the well-known dimensionality reduction techniques. In particular, DiffRed can map a 6 million dimensional dataset to 10 dimensions with 54% lower Stress than PCA.

1 Introduction

High dimensional data is common in biological sciences, fin-tech, satellite imaging, computer vision etc. which make tasks such as machine learning, data visualization, similarity search, anomaly detection, noise removal etc. very difficult. Dimensionality reduction is a pre-processing step to obtain a low-dimensional representation while preserving its "structure" and "vari-

Proceedings of the $27^{\text {th }}$ International Conference on Artificial Intelligence and Statistics (AISTATS) 2024, Valencia, Spain. PMLR: Volume 238. Copyright 2024 by the author(s).
ation". In this work, our focus is on the development of efficient dimensionality reduction algorithms that map D-dimensional data in \mathbb{R}^{D} to \mathbb{R}^{d} where d, the target dimension is a small number. This decreases the amount of training time and computation resources required for the above tasks.

We consider two metrics to quantify distortion, which we aim to minimize. The first metric M1 is the distortion of mean-squared pair-wise distances. Minimizing M1 ensures that the low-dimensional representation has similar "Energy" or "total variance" as the original data. While this is important, we also need to preserve both short and long pair-wise distances for preserving importance structures such the nearest-neighbors and clusters in the data. This is accomplished by minimizing Stress Kruskal, 1964, the normalized value of RMS distortion of the pairwise distance by the mapping. While M1 may be minimized by a simple scaling of data points, doing so may distort other metrics such as Stress.

Traditional dimensionality reduction techniques such as PCA, SVD, MDS Xu et al., 2008, Deegalla and Bostrom, 2008 use the structure of data to determine directions along which data should be projected. One identifies the "elbow" in a scree plot to choose the number of principal components. Beyond this, one gets diminishing returns and is forced to either choose a large target dimension or accept high distortion. In contrast to these approaches, one can use data-agnostic Gaussian random maps Bingham and Mannila, 2001 which minimize distortion of pair-wise distances. It was generally thought that to guarantee low distortion, a large number of target dimensions are required by Gaussian random maps. In a recent work, Bartal et al., 2019 obtained bounds of the form $O\left(\frac{1}{\sqrt{d}}\right)$ on Stress when using Gaussian random maps of any arbitrary dimension d. They also demonstrated that PCA can produce an embedding with Stress value being far from optimum and random maps can achieve better performance.

We propose a novel approach to dimensionality reduction that uses the stable rank (Def in Sec 3) of the data. The stable rank of a dataset gives an idea of directional spread in the data. It is always greater than 1 and less than the actual rank of the data. If the data is spread along various directions, its stable rank will be high, and if it is concentrated along a few directions only, then the stable rank will be low (refer Figure 1). Intuitively, for datasets with low stable rank, PCA is more effective. Our findings reveal a fresh perspective: Random Maps are more effective for high stable rank datasets, as opposed to the conventional belief that Random Maps are data-agnostic.

Figure 1: Stable rank as a measure of "spread" in data in a 3-D example.

In this work, we prove rigorously using Hanson Wright inequality Rudelson and Vershynin, 2013, that M1 can be bounded by $O\left(\frac{1}{\sqrt{d \rho(A)}}\right)$ where $\rho(A)$ is the stable rank (Def in Sec 3) of the data matrix A. Thus, if stable rank is high, we can guarantee low distortion for small values of d. Empirically, we observe a similar behavior with respect to Stress. Since all input data matrices may not have high stable rank, we subtract the best k-rank approximation of input data matrix and obtain the residual matrix A^{*}. Empirically, we observe that for most common high-dimensional datasets, A^{*} has a higher stable rank than A and using random maps for dimensionality reduction will minimize its distortion. DiffRed leverages these insights and first projects the data along first k_{1} principal components such that the fraction of variance, p explained by them is high. In the next step, it projects A^{*} along k_{2} Gaussian random vectors. We make sure that these two projections lie in orthogonal subspaces, which plays a crucial role in obtaining a tighter upper bound of $O\left(\sqrt{\frac{1-p}{k_{2}}}\right)$ for Stress. This gives us a good analytical trade-off between the number of principal components and random vectors used to minimize Stress while keeping the target dimension $d=k_{1}+k_{2}$ small. We demonstrate that DiffRed is effective on high dimensional datasets. It preserves global structure even with low target dimensions by carefully choosing k_{1}, such that the stable rank of the residual matrix is high and the theoretical bound is minimized.

To summarize, our contributions in this paper are as
follows:

- We develop a new dimensionality reduction algorithm, DiffRed that combines Principal Components with Gaussian random maps in a novel way to achieve tighter upper bounds on both M1 and Stress metrics.
- To the best of our knowledge, we are the first to have incorporated a metric involving the structure of the data matrix (Stable Rank) and impact of Monte-Carlo iterations in the bound of M1 and Stress for DiffRed and Random maps. This allows d to be small and explains why random maps often work well in practice for high-dimensional datasets.
- Fast implementation of DiffRed and extensive experiments to demonstrate that it achieves better performance than various commonly used dimensionality reduction techniques on real-life datasets.

2 Related Work

Dimensionality reduction has been studied by Cayton and Dasgupta, 2006, Censi and Scaramuzza, 2013, Fukumizu et al., 2004, Quist and Yona, 2004 in the context of machine learning. In the broader context of metric embedding, there is a large body of work in diverse research areas demonstrating the practicality of various dimensionality reduction and metric embedding techniques, e.g. Ng and Zhang, 2002. Dimensionality reduction techniques can be broadly classified as (i) linear and ($i i$) non-linear.
The most common linear dimensionality reduction technique is PCA (Principal Component Analysis) F.R.S., 1901, although several other classical techniques such as factor analysis and multidimensional scaling, are also used Spearman, 1904, Torgerson, 1952. However, these linear techniques are not very good at handling non-linear data, e.g. when the data is lying on a low-dimensional manifold in a highdimensional ambient space - often referred to as the manifold hypothesis Niyogi et al., 2008.
In contrast, non-linear techniques such as Kernel PCA, Isomap, Diffusion maps, or Locally Linear Embedding, etc. can be quite effective at handling particular types of non-linear data, such as convex or Gaussian data, and are being used more and more in recent applications Van Der Maaten et al., 2009. However, in general, the technique used needs to be tailored to the application, as certain maps can be quite bad for certain types of datasets.

In this scenario, the method of random projections Bingham and Mannila, 2001 is a linear dimensionality reduction technique, which has the advantages of genericity, low computational complexity, low memory requirement, and ability to handle some degree of non-linearity, e.g. data lying in lowdimensional manifolds - in contrast to PCA which, for high-dimensional data, requires significant computational time and memory, and cannot handle nonlinear data. Various time-efficient randomized variants of PCA and SVD have been proposed, such as Halko et al., 2010 Feng et al., 2018. Similarly, faster variants of the Random Map have been proposed Ailon and Chazelle, 2009. Recently, Fandina et al., 2022 have presented a fresh analysis of the Fast JL transform, showing an improvement in embedding time. Schmidt, 2018 is one of the few comparative studies involving $\overline{P C A}$ and random projections.

The notion of stable rank (or numerical rank) of a matrix is a robust version of the rank of a matrix, and is not affected significantly by very small singular values. It was first introduced in Rudelson and Vershynin, 2007 who used it to obtain low-rank approximations of matrices. Since then it has found several applications in numerical linear algebra e.g. Indyk et al., 2019|Cohen et al., 2016 Kasiviswanathan and Rudelson, 2018]. However to the best of our knowledge, it has not yet been used to obtain stronger dimensionality reduction bounds. Moreover, in the known applications of stable rank, it is advantageous to have low stable rank, e.g. to obtain low rank approximations of matrices. On the other hand, our application utilizes high stable rank, which gives a stronger concentration bound for the mapped vectors, allowing us to choose a lower target dimension.

Stress as a metric has been used in a variety of applications such as MDS Kruskal, 1964, psychology Bor, 2005 and also surface matching Bronstein et al., 2006 which is applied to 3D face recognition and medical imaging. Various quantitative studies of dimensionality reduction such as Espadoto et al., 2019, Yin, 2007. Liu et al., 2017. have also considered Stress to be an important distortion metric to measure projection quality.

Stochastic embedding methods such as T-SNE van der Maaten and Hinton, 2008] are also popular for visualization of datasets. However, they can cause large distortion and are rarely used for tasks such as machine learning, similarity search, anomaly detection, noise removal etc. UMAP McInnes et al., 2020 is another useful visualization technique that performs manifold learning. Unlike T-SNE, it has no restriction on the target dimension.

In recent years, Espadoto et al., 2019] is the most comprehensive survey of Dimensionality Reduction techniques. They work with 18 datasets, 44 techniques, and 7 quality metrics to create a projection assessment benchmark that helps answer which dimensionality reduction algorithm applies to a given context. In our experiments, we compare DiffRed to the best techniques reported in their survey.

3 Problem Formulation

Let us now formally define the problem of dimensionality reduction of a data matrix A to obtain embedding matrix \tilde{A} while minimizing $M 1$ and Stress.
Definition 1 (Data Matrix). A matrix in $\mathbb{R}^{n \times D}$ whose rows are n points $\mathbf{x}_{1}^{\top}, \ldots, \mathbf{x}_{n}^{\top}$ in \mathbb{R}^{D} is called a Data Matrix and is denoted by A. Without loss of generality, we will assume that A has rows with mean zero and unit variance ${ }^{11}$

Definition 2 (Embedding Matrix). Given a data ma$\operatorname{trix} A \in \mathbb{R}^{n \times D}$, its corresponding embedding matrix $\tilde{A} \in \mathbb{R}^{n \times d}$ is a matrix whose rows $\tilde{\mathbf{x}}_{1}^{\top}, \ldots, \tilde{\mathbf{x}}_{n}^{\top}$ are embeddings of the rows of A onto \mathbb{R}^{d}.
From now on, d shall denote the target dimension and D shall denote the original dimension unless specified otherwise.

Definition 3 (Stable Rank). For a given matrix A, let $\sigma_{1}, \sigma_{2}, \ldots$ be the singular values ordered from the highest to the lowest in magnitude. Then, the stable rank $\rho(A)$ of A is defined as

$$
\rho(A)=\frac{\sum_{i=1}^{\operatorname{rank}(A)} \sigma_{i}^{2}}{\sigma_{1}^{2}}
$$

Definition 4 (M1 Distortion). For data matrix $A \in$ $\mathbb{R}^{n \times D}$ (whose rows $\mathbf{x}_{1}^{\top}, \ldots, \mathbf{x}_{n}^{\top} \in \mathbb{R}^{D}$ are the data points) and its corresponding embedding matrix $\tilde{A} \in$ $\mathbb{R}^{n \times d}$ (whose rows $\tilde{\mathbf{x}}_{1}^{\top}, \ldots, \tilde{\mathbf{x}}_{n}^{\top}$ in \mathbb{R}^{d} are the low dimensional embeddings), the M1 distortion ($\Lambda_{M_{1}}$) is given by:

$$
\Lambda_{M 1}(A, \tilde{A})=\left|1-\frac{\|\tilde{A}\|_{F}^{2}}{\|A\|_{F}^{2}}\right|=\left|1-\frac{\sum_{i=1}^{n}\|\tilde{\mathbf{x}}\|_{2}^{2}}{\sum_{i=1}^{n}\|\mathbf{x}\|_{2}^{2}}\right|
$$

Definition 5 (Stress). For a set of points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ in D-dimensional space \mathbb{R}^{D} and their respective low dimensional embeddings, $\tilde{\mathbf{x}}_{1}^{\top}, \ldots, \tilde{\mathbf{x}}_{n}^{\top}$ in \mathbb{R}^{d}, we define the Stress Λ_{S} as:

$$
\Lambda_{S}=\left(\frac{\sum_{i, j}\left(\left\|\mathbf{d}_{i j}\right\|-\left\|\tilde{\mathbf{d}}_{i j}\right\|\right)^{2}}{\sum_{i, j}\left\|\mathbf{d}_{i j}\right\|^{2}}\right)^{\frac{1}{2}}
$$

where, $\mathbf{d}_{i j}=\mathbf{x}_{i}-\mathbf{x}_{j}$ and $\tilde{\mathbf{d}}_{i j}=\tilde{\mathbf{x}}_{i}-\tilde{\mathbf{x}}_{j}$

[^0]

Figure 2: DiffRed algorithm maps vector $\mathbf{x} \in \mathbb{R}^{D}$ to $\tilde{\mathbf{x}} \in$ $\mathbb{R}^{k_{1}+k_{2}}$ while preserving its component \mathbf{z} in the best-fitsubspace $S_{k_{1}} \cdot \mathbf{r}$ and \mathbf{y} are orthogonal to \mathbf{z}.

Definition 6 (p). $p=\frac{\sum_{i=1}^{k_{1}} \sigma_{i}^{2}}{\sum_{i=1}^{r} \sigma_{i}^{2}}$ represents the fraction of variance explained by k_{1} principal components of A.

4 DiffRed Algorithm and Its Analysis

In this section, we formally describe the DiffRed algorithm, which uses a combination of principal components and Gaussian random maps to provide provable low distortion. In the pseduocode below, SVD has been employed for PCA and k-rank approximation. Alternatively, eigen-decomposition can also be used.

```
Algorithm 1: DiffRed Algorithm
Input: \(A, k_{1}, k_{2}, \eta\)
compute \({ }^{2}\) SVD \(A=U \Sigma V^{\top}\)
compute \(A_{k_{1}} \leftarrow \sum_{i=1}^{k_{1}} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}\) and \(A^{*} \leftarrow A-A_{k_{1}}\)
Let \(V_{k_{1}}\) be the matrix with the \(k_{1}\) leftmost
    columns of \(V\)
\(Z \leftarrow A V_{k_{1}} \quad / /\) Project \(A\) along \(V_{k_{1}}\)
Initialize \(\min =\infty\)
Initialize \(T, T_{\text {min }} \in \mathbb{R}^{n \times k_{2}}\)
                            // \(\eta\) Monte Carlo iterations
for \(i=0, \cdots, \eta\) do
    Sample \(G \in \mathbb{R}^{D \times k_{2}}\) where \(G_{i j} \sim \mathcal{N}(0,1)\) i.i.d.
    \(G \leftarrow \frac{1}{\sqrt{k_{2}}} G\)
    \(T \leftarrow A^{*} G\)
    if \(\Lambda_{M_{1}}\left(A^{*}, T\right)<\min\) then
        \(\mid T_{\min } \leftarrow T\)
\(R \leftarrow T_{\text {min }}\)
        // \(T_{\text {min }}\) is the projection with least \(\Lambda_{M_{1}}\)
\(\tilde{A} \leftarrow[Z \mid R]\)
return \(\tilde{A}\)
```

Each vector $\mathbf{x} \in \mathbb{R}^{D}$ can be written as the following sum: $\mathbf{x}=\mathbf{z}+\mathbf{y}$. Here, $\mathbf{z} \in S_{k_{1}}=\operatorname{SPAN}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k_{1}}\right)$ where the v's are the k_{1} principal components of the data matrix (which span the row space). y lies in the residual subspace $\mathbb{R}^{D} \backslash S_{k_{1}}$ and is orthogonal to \mathbf{z}

[^1]by definition. \mathbf{z} is fully preserved during dimensionality reduction chosen by DiffRed. Only y undergoes a projection via random map to give \mathbf{r}. Finally, our embedded vector becomes $\tilde{\mathbf{x}}=\mathbf{z}+\mathbf{r}$. Our claim is that the square of the difference between length (norm) of \mathbf{x} and $\tilde{\mathbf{x}}$ is less than that of between \mathbf{r} and \mathbf{y}, i.e., $(|\mathbf{x}|-|\tilde{\mathbf{x}}|)^{2} \leq(|\mathbf{y}|-|\mathbf{r}|)^{2}$. PCA and its variants attempt to preserve only \mathbf{z} while neglecting \mathbf{y} completely. DiffRed solves this problem elegantly. Increasing k_{1} allows us to preserve "longer" \mathbf{z} while increasing k_{2} reduces the distortion of \mathbf{y}. In the proofs below, these insights are extended to the full data matrix, A.

Lemma 1 presents a tighter upper bound on M1 for Gaussian random projections using the notion of stable rank and Theorem 2 does the same for DiffRed. Corollary 4 analyzes the importance of performing Monte Carle iterations in DiffRed. Then, we state a recent result on bounding Stress in Theorem 5 Bartal et al., 2019]. Theorem 7 proves a tighter bound on Stress achieved by DiffRed.
Lemma 1. There exists a constant $c_{1}>0$, such that given a random matrix G as defined in the DiffRed Algorithm 1 and a data matrix A, for all $d \leq D$ and all $\varepsilon \in[0,1]$
$\mathbb{P}\left[\left|\|A G\|_{F}^{2}-\|A\|_{F}^{2}\right| \geq \varepsilon \cdot\|A\|_{F}^{2}\right] \leq 2 . \exp \left(-c_{1} \varepsilon^{2} d \rho_{A}\right)$.
Theorem 2 (M1 Distortion Bound). Given a data matrix $A \in \mathbb{R}^{n \times D}$ and non-negative integers k_{1} and k_{2}, let the application of the DiffRed algorithm on A with target dimensions k_{1} and k_{2} return the embedding matrix $\tilde{A} \in \mathbb{R}^{n \times d}$ where $d=k_{1}+k_{2}$. Then,

$$
\mathbb{P}\left[\Lambda_{M 1}(A) \geq \varepsilon\right] \leq 2 e^{\left(-\frac{c_{1} \varepsilon^{2} k_{2} \rho\left(A^{*}\right)}{(1-p)^{2}}\right)}
$$

where $c_{1}>0$ is a constant.
The proof of Theorem 2 is provided in the supplementary material.

To minimize $\mathbb{P}\left[\Lambda_{M 1} \geq \varepsilon\right]$ (failure probability), the argument in the exponent above needs to be large. This means we can achieve an ε of the order of $\frac{(1-p)}{\sqrt{k_{2} \rho\left(A^{*}\right)}}$. Performing Monte Carlo iterations reduces the failure probability considerably and M1 can be minimized. The following corollary is a direct consequence of Theorem 2

Corollary 3 (M1 bound for RMap). From Theorem 2. for the case of pure Random $\operatorname{Maps}\left(p=0, k_{1}=0\right.$, $k_{2}=d$), we have the following bound:

$$
\mathbb{P}\left[\Lambda_{M 1}(A) \geq \varepsilon\right] \leq 2 e^{\left(-c_{1} \varepsilon^{2} d \rho(A)\right)}
$$

Corollary 4 (M1 Distortion, Monte Carlo Version). Given a data matrix $A \in \mathbb{R}^{n \times D}, k_{1}$ and k_{2}, and given
$\eta>0$, let the application of the DiffRed algorithm on A with target dimensions k_{1} and k_{2} return the embedding matrix $\tilde{A} \in \mathbb{R}^{n \times d}$ where $d=k_{1}+k_{2}$. Then, the probability that in η Monte Carlo iterations,

$$
\begin{array}{r}
\mathbb{P}\left[\min \left\{\Lambda_{M 1}(A)\right\} \geq \varepsilon\right] \\
\leq \\
\delta_{0}^{\eta} \leq \\
\exp \left(-\eta\left(\frac{c_{1} \varepsilon^{2} k_{2} \rho\left(A^{*}\right)}{(1-p)^{2}}-\ln 2\right)\right)
\end{array}
$$

where $\delta_{0}:=2 \exp \left(-\frac{c_{1} \varepsilon^{2} k_{2} \rho\left(A^{*}\right)}{(1-p)^{2}}\right)$.
The next two results analyze the Stress Metric, Λ_{S}. Bartal et al., 2019 proved the following bound on Stress if pure Random Map is applied:
Theorem 5 (Bartal et al. Bartal et al., 2019). Let $P \subset \mathbb{R}^{D}$ be a finite point set, $q \geq 2$, and $G: \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}$ be a Gaussian random map. Then with probability at least $1 / 2$, the q-norm stress of the point set P under the map G satisfies

$$
\begin{aligned}
\Lambda_{S}^{(q)}(P) & \leq 2 \sqrt{\frac{3}{e}+\frac{3 e^{2}}{2}} \sqrt{q / d} \\
& \leq 6.2 \sqrt{q / d}=O(\sqrt{q / d})
\end{aligned}
$$

In particular, the 2 -norm stress, $\Lambda_{S}(P)$, satisfies $\Lambda_{S}(P)=O(\sqrt{1 / d})$.
Lemma 6. Given points $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{D}$ and data matrix A. Let $\mathbf{d}_{i j}=\mathbf{x}_{i}-\mathbf{x}_{j}$, then:

$$
\sum_{j<i}^{n}\left\|\mathbf{d}_{i j}\right\|^{2}=n \sum_{j<i}^{n}\left\|\mathbf{x}_{i}\right\|^{2}=n\|A\|_{F}^{2}
$$

Theorem 7 (Stress Bound). Given a set of points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, k_{1}$ and k_{2}, let application of the DiffRed algorithm return the points $\tilde{\mathbf{x}_{1}}, \ldots, \tilde{\mathbf{x}_{n}}$. Then with probability at least $1 / 2$,

$$
\Lambda_{S}=O\left(\sqrt{\frac{1-p}{k_{2}}}\right)
$$

Proof. By definition, the value of Stress is:

$$
\Lambda_{S}^{2}=\frac{\sum_{i, j}\left(\left\|\mathbf{d}_{i j}\right\|-\left\|\tilde{\mathbf{d}}_{i j}\right\|\right)^{2}}{\sum\left\|\mathbf{d}_{i j}\right\|^{2}}
$$

Now, since $\mathbf{d}_{i j}=\mathbf{x}_{i}-\mathbf{x}_{j}$ and $\tilde{\mathbf{d}}_{i j}=\tilde{\mathbf{x}}_{i}-\tilde{\mathbf{x}}_{j}$, i.e., we can break them into two components that are orthogonal to each other:

$$
\mathbf{d}_{i j}=\mathbf{d}_{i j}^{(Z)}+\mathbf{d}_{i j}^{(Y)} \text { and } \tilde{\mathbf{d}}_{i j}=\tilde{\mathbf{d}}_{i j}^{(Z)}+\tilde{\mathbf{d}}_{i j}^{(R)}
$$

Here $\mathbf{d}_{i j}^{(Z)}, \tilde{\mathbf{d}}_{i j}^{(Z)} \in S_{k_{1}}$, the best-fit Subspace of rank k_{1} and $\mathbf{d}_{i j}^{(Y)}, \tilde{\mathbf{d}}_{i j}^{(R)} \in \mathbb{R}^{d} \backslash S_{k_{1}}$, the residual space. By
using first k_{1} principal components, DiffRed ensures that $\mathbf{d}_{i j}^{(Z)}=\tilde{\mathbf{d}}_{i j}^{(Z)}$. It follows that

$$
\frac{\left\|\mathbf{d}_{i j}\right\|-\left\|\tilde{\mathbf{d}}_{i j}\right\|}{\sqrt{\left\|\mathbf{d}_{i j}^{(Z)}\right\|^{2}+\left\|\mathbf{d}_{i j}^{(Y)}\right\|^{2}}-\sqrt{\left.\left\|\mathbf{d}_{i j}^{(Z)}\right\|^{2}+\left\|\tilde{\mathbf{d}}_{i j}^{(R)}\right\|\right)^{2}} .}=
$$

In supplementary material we prove the following useful inequality:

$$
\begin{equation*}
\left(\sqrt{a^{2}+b^{2}}-\sqrt{a^{2}+c^{2}}\right)^{2} \leq(b-c)^{2} \tag{1}
\end{equation*}
$$

Plugging $a=\left\|\mathbf{d}_{i j}^{(Z)}\right\|=\left\|\tilde{\mathbf{d}}_{i j}^{(Z)}\right\|, b=\left\|\mathbf{d}_{i j}^{(Y)}\right\|$ and $c=$ $\left\|\tilde{\mathbf{d}}_{i j}^{(R)}\right\|$ helps us obtain the following bound on Stress:

$$
\begin{equation*}
\Lambda_{S}^{2} \leq \frac{\sum_{i, j}\left(\left\|\mathbf{d}_{i j}^{(Y)}\right\|-\left\|\tilde{\mathbf{d}}_{i j}^{(R)}\right\|\right)^{2}}{\sum_{i, j}\left\|\mathbf{d}_{i j}\right\|^{2}} \tag{2}
\end{equation*}
$$

Using Lemma 6 .

$$
\begin{aligned}
\sum_{i, j}\left\|\mathbf{d}_{i j}\right\|^{2} & =n\|A\|_{F}^{2} \text { and } \\
\sum_{i, j}\left\|\mathbf{d}_{i j}^{(Y)}\right\|^{2}=n\left\|A^{*}\right\|_{F}^{2} & =(1-p)\|A\|_{F}^{2}
\end{aligned}
$$

because A^{*} is the residual matrix. Now, from and these relations, it follows that:

$$
\frac{\sum_{i, j}\left\|\mathbf{d}_{i j}\right\|^{2}}{\sum_{i, j}\left\|\mathbf{d}_{i j}^{(Y)}\right\|^{2}}=\frac{1}{1-p}
$$

Using this in equation 2 we get:

$$
\Lambda_{S}^{2} \leq(1-p)\left(\frac{\sum_{i, j}\left(\left\|\mathbf{d}_{i j}^{(Y)}\right\|-\left\|\tilde{\mathbf{d}}_{i j}^{(R)}\right\|\right)^{2}}{\sum_{i, j}\left\|\mathbf{d}_{i j}^{(Y)}\right\|^{2}}\right)
$$

The RHS is simply now $(1-p)$ times $\Lambda_{S}^{2}(R)$ which is the Stress between the residual matrix $A-A_{k_{1}}$ and the matrix R. Now the statement of the Theorem follows from Theorem 5
Corollary 8 (Stress Bound, Monte Carlo version). Given a set of points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, k_{1}$ and k_{2}, let application of the DiffRed algorithm return the points $\tilde{\mathbf{x}_{1}}, \ldots, \tilde{\mathbf{x}_{n}}$, and given $\eta>0$, then the probability that in η Monte Carlo iterations, the Stress exceeds $O\left(\frac{1-p}{k_{2}}\right)$, is at most

$$
\mathbb{P}\left[\Lambda_{S} \geq O\left(\sqrt{\frac{1-p}{k_{2}}}\right)\right] \leq \exp (-\eta \ln 2)
$$

Complexity Analysis The complexity of the DiffRed algorithm 11 is $O\left(D n \cdot \min \{D, n\}+\eta n k_{2} D\right)$ which suggests that η can be chosen of the order of $\frac{\min \{D, n\}}{k_{2}}$ to avoid adding more complexity than what is needed for k_{1}-rank approximation. (ref. Supplementary Material Section 10

5 Experiments

We have extensively evaluated DiffRed on various realworld datasets for stress and M1 distortion metric $\3 We first discuss the datasets, followed by the experimental setup, results, and various inferences.

5.1 Datasets

Name	D	n	Type	ρ	Domain
Bank	17	45211	Low	1.48	Finance
Hatespeech	100	3221	Low	11.00	NLP
F-MNIST	784	60000	Low	2.68	Image
Cifar10	3072	50000	Medium	6.13	Image
geneRNASeq	20.53 K	801	Medium	1.12	Biology
Reuters30k	30.92 K	10788	Medium	14.50	NLP
APTOS 2019	509 k	13000	High	1.32	Healthcare
DIV2K	6.6 M	800	Very High	8.39	High Res Image

Table 1: Summary of the datasets used with their respective type based on dimensionality
Table 1 summarizes the datasets used for our experiments. Our datasets span a wide range of dimensionality, application domains and stable ranks. Bank Moro et al., 2012 is a binary classification dataset of the marketing campaign of a Portuguese banking institution. Fashion MNIST [F-MNIST] Xiao et al., 2017 is a multiclass classification dataset of grayscale images of 10 different kinds of fashion products. Cifar10 Krizhevsky, 2009 is a dataset of RGB images of various objects. geneRNASeq Fiorini, 2016 is a random extraction of gene expressions of patients having five different types of tumors. Reuters 30 k is the TF-IDF representation of the Reuters-21578 dataset Lewis, 1997 which is a collection of documents consisting of financial news articles that appeared on Reuters newswire in 1987. APTOS 2019 Karthik, 2019 is a dataset of retina images used for predicting the severity of diabetic retinopathy. DIV2k Agustsson and Timofte, 2017a, Agustsson and Timofte, 2017b is a collection of high-resolution 2 K images.

5.2 Experimental Setup

For experimentation, we used a workstation with Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz , with NVIDIA RTX A6000 GPU, and a shared commodity cluster. We used Python and slurm-based shell scripting to run our experiments. To speed up our experiments (especially computation of Stress), our entire codebase was written to leverage multiprocessing.
Pre-processing: We scale each dataset to zero mean and normalize the examples to be vectors of unit norm. We convert the datasets into their vector representations using various standard techniques like label encoding, tf-idf, etc. wherever applicable.
Computing Embeddings: We have compared

[^2]DiffRed to various dimensionality reduction algorithms. Our choice of algorithms was based on the results presented by Espadoto et al., 2019. For each of these techniques, we have tried to use the most appropriate implementation wherever possible. For TSNE, we used T-SNE CUDA Chan et al., 2019: a GPU version of T-SNE to compute the embeddings. For UMap, we used the official UMap implementation. For KernelPCA, SparsePCA and PCA we used scikitlearn's Pedregosa et al., 2011 implementation. For RMap, we have used our own implementation. We have used $\alpha=20$ Gaussian RMaps on each target dimension with the same multiplicative factor and hyperparameters as specified in the DiffRed algorithm 1. We have used $\alpha=20$ random maps to build and report our 95% confidence interval. For generating random Gaussian vectors and for our own DiffRed, we have mainly relied on numPy's routines. In our experiments, we have done hyperparameter tuning using a grid search to justify our theory and show various observations. We have taken the best hyperparameters reported by Espadoto et al., 2019] as the starting point for the grid search. Finally, after hyperparameter tuning, we compare DiffRed to the best Stress found for each target dimension for each Dimensionality Reduction technique.

5.3 Experiment Results

To evaluate the performance of DiffRed, we compute the Stress and M1 distortion metrics on different datasets for different target dimensions. As a part of our experiments, we perform a grid search on different values of k_{1} and k_{2}. We use the results of the grid search to justify our method of choosing k_{1} and k_{2} for a given target dimension (discussed in Section 5.4) and to validate our theory (discussed in Sections 5.3.1 and 5.3.2.

5.3.1 Insights on M1

In this section, we discuss RMap and DiffRed in light of Corollary 3 and 4 respectively. The main observations are as follows:

Observation 1 In Figure 3, we see that for a fixed target dimension of 10 , datasets 4^{4} with higher stable rank have lower $\Lambda_{M_{1}}$. In Figure 4, we see that for Reuters30k (i.e., fixed stable rank of $\rho=14.50$), higher target dimensions cause lesser M1 distortion. These empirical observations are in agreement with Corollary 3 , where $\mathbb{P}\left[\Lambda_{M 1} \geq \varepsilon\right]$ depends on the negative exponent of $d \times \rho(A)$. Therefore, for minimization of $\Lambda_{M_{1}}$ we require either a high stable rank or a high target dimension. Since stable rank incorporates the spread

[^3]| Dataset | D | d | $\Lambda_{M_{1}}$ | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | DiffRed | PCA | RMap | S-PCA | K-PCA | UMap | T-SNE
 $(d=2)$ | | |
| Bank | 17 | 5 | $\mathbf{2 . 8 2 e - 0 5}$ | 0.54 | 0.38 | 0.58 | 0.95 | 94.89 | 2659.70 | | |
| Hatespeech | 100 | 10 | $\mathbf{1 . 9 1 e - 0 4}$ | 0.66 | 0.06 | 0.68 | 0.99 | 240.50 | 2298.09 | | |
| FMnist | 784 | 10 | $\mathbf{1 . 9 2 e - 0 4}$ | 0.60 | 0.11 | 0.64 | 1.00 | 241.35 | 829.54 | | |
| Cifar10 | 3072 | 10 | $\mathbf{1 . 3 1 e - 0 4}$ | 0.49 | 0.09 | 0.54 | 1.00 | 166.84 | 604.71 | | |
| geneRNASeq | 20.5 k | 10 | $\mathbf{7 . 9 6 e - 0 5}$ | 0.94 | 0.31 | 0.95 | 1.00 | 328.72 | $8,761.41$ | | |
| Reuters30k | 30.9 k | 10 | $\mathbf{1 . 2 7 e - 0 4}$ | 0.88 | 0.03 | 0.88 | 1.00 | 196.97 | 2393.31 | | |
| APTOS 2019 | 509 k | 10 | $\mathbf{4 . 0 9 e - 0 5}$ | 0.81 | 0.24 | - | - | - | - | | |
| DIV2k | 6.6 M | 10 | $\mathbf{7 . 0 7 e - 0 5}$ | 0.66 | 0.05 | - | - | - | - | | |

Table 2: Comparison of the M1 metric. Note that $k_{1}=2$ and $k_{2}=3$ for Bank and $k_{1}=6$ and $k_{2}=4$ for other datasets. For APTOS and DIV2k, M1 is evaluated for only PCA, RMap, and DiffRed due to memory limitations.
in data, we observe that, contrary to the popular belief, Random Maps are not data agnostic.

Figure 3: Dependence of M1 for Random Maps on stable rank described in Corollary 3) $(d=10)$ [gRS: geneRNASeq, R30k: Reuters30k]

Figure 4: Variation of M1 with target dimension for Reuters30k

Observation 2 From Table 2, we observe that DiffRed has the best values for M1 across all datasets. Detailed results on M1 distortion are deferred to the supplementary material.

Observation 3 An interesting observation is that the M1 metric is insensitive to the choice of k_{1} and
k_{2}. To measure the sensitivity of $\Lambda_{M_{1}}$ on k_{1} and k_{2}, we define the following quantity, β :

$$
\beta=\underset{d \in\{10,20,30,40\}}{\operatorname{AvERAGE}}\left(\underset{k_{1}, k_{2}}{\operatorname{Var}}\left(\Lambda_{M_{1}}\right)\right)
$$

β is the average (over target dimensions d) of the variance observed in $\Lambda_{M_{1}}$ for different pairs of k_{1} and k_{2}. In essence, β is a measure of the sensitivity of $\Lambda_{M_{1}}$ w.r.t. k_{1} and k_{2} for a given dataset. We evaluated β for different values of k_{1} and k_{2}, observed that the average of β across all datasets, $\langle\beta\rangle \approx 1.54 \times 10^{-6}$ (ref. Table 1 in the supplementary material).
The low sensitivity to k_{1} and k_{2} follows from Corollary 4 where for a constant $\eta, \mathbb{P}\left[\Lambda_{M 1} \geq \varepsilon\right]$ depends on the negative exponent of $\frac{k_{2} \rho\left(A^{*}\right)}{(1-p)^{2}}$. We can consider two cases now: (i) k_{2} is high and (ii) k_{2} is low. As illustrated by Figure 5, the exponent term remains sufficiently high for different stable ranks if k_{2} is high (i.e., Case (i) holds). Now, for the second case, we make another observation from Figure 11 that stable rank increases with k_{1}. Since a low k_{2} value implies a high k_{1} value ($k_{1}=d-k_{2}$), the exponent term remains high because of the high stable rank.

Figure 5: The exponent term $\frac{k_{2 \rho} \rho\left(A^{*}\right)}{(1-p)^{2}}$ remains high for different values of $k_{1} .(d=10)$

5.3.2 Insights on Stress

In this section, we discuss the various observations we make in context of the Stress metric. The major ob-

Dataset	D	d	Λ_{S}								
			DiffRed	PCA	RMap	S-PCA	K-PCA	UMap	UMap2	$\begin{aligned} & \text { T-SNE } \\ & (d=2) \end{aligned}$	$\begin{aligned} & \hline \text { T-SNE2 } \\ & (d=2) \\ & \hline \end{aligned}$
Bank	17	6	0.02	0.03	0.17	0.04	0.47	7.07	0.35	52.44	0.72
Hatespeech	100	10	0.15	0.36	0.16	0.36	0.65	5.29	0.46	32.86	0.38
FMnist	784	10	0.12	0.19	0.15	0.21	0.68	4.02	0.42	24.49	0.38
Cifar10	3072	10	0.13	0.21	0.16	0.24	0.69	1.26	0.60	16.88	0.31
geneRNASeq	20.5k	10	0.13	0.21	0.16	0.25	0.70	18.72	0.47	164.89	1.21
Reuters30k	30.9k	10	0.155	0.49	0.157	0.49	0.71	3.35	0.44	18.02	0.31
APTOS 2019	509k	10	0.10	0.12	0.16	-	-	-	-	-	-
DIV2k	6.6 M	10	0.14	0.31	0.16	-	-	-	-	-	-

Table 3: Comparison of DiffRed with other dimensionality reduction algorithms in context of Stress. For DiffRed, the best Stress from grid search is reported. For APTOS and DIV2k, Stress is evaluated for only PCA, RMap, and DiffRed due to memory limitations.
servations are as follows:

Observation 1 We observe that DiffRed achieves the best values of Stress among all other algorithms (Table 3). We evaluated the Stress metric on all our datasets for target dimensions 10 to 40 for different values of k_{1} and k_{2}. In Table 3 we compare the empirically obtained best values with the best values for other commonly used Dimensionality Reduction techniques. But we observe that a grid search to determine optimal k_{1} and k_{2} for a given target dimension and dataset is not required, as we will discuss in Section 5.4 (Choice of hyperparameters).

We note that among all datasets, DiffRed consistently achieves the lowest Stress values, even when the dimensionality is very high. Sparse-PCA remains close to PCA while Kernel-PCA has a higher Stress value. Techniques such as UMap (manifold approximation) and T-SNE (which preserves neighborhoods) do not perform well on distance based metrics. Therefore, to be fair to them, we have included versions UMap2 and T-SNE2 in Table 3. These versions are energy-matched with the original data, i.e., they have been re-scaled such that their Frobenius norm (energy) matches that of the original data (i.e., $\Lambda_{M_{1}}=0$).

Figure 6: Λ_{S} vs d for RMap (95% confidence interval in red). $\alpha=20$ RMaps were used to generate confidence interval.

Observation 2 In accordance with Theorem5 Random Maps preserve Stress better if more target dimensions are allowed. In Figure 6, we see that RMap benefits in context of the Stress metric if more target dimensions are allowed. This is the behavior one would expect from Theorem 5 which bounds Stress of random map as $O\left(\sqrt{\frac{1}{d}}\right)$.

Observation 3 From Figure 7, we make two observations: i. PCA benefits in context of Stress if more target dimensions are allowed and ii. The general trend of PCA is to perform better for datasets whose stable rank is low to begin with. (see Table 3). Complementary to this observation, we also note from Table 3 that the general trend for RMap is to perform better for datasets that have a high stable rank to begin with.

Figure 7: Plot showing how PCA benefits from more target dimensions (d) in context of Stress.

Observation 4 From Figure 8, we note that with DiffRed, we see an improvement in preserving Stress as more target dimensions are allowed (as suggested by Theorem $7 . O\left(\sqrt{\frac{1-p}{k_{2}}}\right)$). However, in our grid search experiments on Stress (as described in Observation 5.3 .2 above), we observe that, unlike M1, Stress is, in fact, sensitive to the choice of k_{1} and k_{2} (For discussion on the choice of these hyperparameters, ref. Section 5.4 [Choice of hyperparameters]). In conclusion, if a particular downstream tasks benefits from lower

Stress, one may simply allow more target dimensions.

Figure 8: Λ_{S} vs d when DiffRed is used.

5.4 Discussion

In this section, first we validate our theory results from our experiments and then we discuss the choice of hyperaparameters and possible applications of DiffRed

DiffRed generally performs better than RMap because of the additional $\sqrt{1-p}$ factor in the Stress bound [Theorem 7. Additionally, Figure 9 below shows that both our bounds [Theorem 2 and Theorem 7 hold good in our experiments.

(a) Comparison of the M1 (b) Comparison of the Stress Bound [Theorem 2 and the bound [Theorem 7] and the exexperimentally observed M1. perimentally observed Stress.

Figure 9: Comparison between theoretical bounds and empirical observations.

Choice of hyperparameters As described in Section 5.3.1, the M1 metric is not sensitive to values of k_{1} and k_{2}, therefore, most values of k_{1} and k_{2} minimize the M1 distortion. As for Stress, we have observed in our grid search experiments [Figure 10] that values of k_{1} and k_{2} that minimize the theoretical bound usually give Stress values that are close to the empirically observed minima. Therefore, one may simply choose the k_{1}, k_{2} pair that minimizes the theoretical bound (i.e., the value of $\sqrt{\frac{1-p}{k_{2}}}$) for minimizing Stress. Computing the bound value is inexpensive, and therefore, one may simply iterate over all combinations of k_{1} and k_{2} for a given target dimension to find the minima.

Figure 11: Plots of stable rank vs k_{1}. Plots for other datasets are in the supplementary material [Figure 13].

Figure 10: (For Cifar10) [Red]Stress for k_{1}, k_{2} values that minimize the bound in Theorem 7. [Blue] Stress at empirically optimal k_{1} and k_{2} values.

Effect of Monte Carlo iterations In our experiments (ref. Supplementary Material) we found that by increasing η, we can find Random Maps that further reduce M1 metric. It is very interesting to note that such Random Maps achieve lower Stress. This justifies the selection of Random Maps based on minimization of M1 in the DiffRed algorithm.

6 Conclusion

In this paper, we design a new dimensionality reduction algorithm, DiffRed and obtain new bounds for M1 and Stress metrics that are tighter than currently known results for Random Maps. DiffRed uses the notion of stable rank in choosing the directions for projecting the dataset. When the stable rank of a dataset is high to begin with, it emphasizes random maps. When the stable rank of the dataset is low to begin with, it first chooses enough number of principal components so that the stable rank of the residual matrix increases and then uses random maps. Therefore, by incorporating stable rank (structure of data) into our bound, we have shown how dimensionality reduction can be guided by stable rank, thereby reducing the required target dimension. Through extensive experiments on real-world datasets, we have shown that DiffRed obtains significant reduction in M1 and Stress as compared to well known dimensionality reduction algorithms. As a part of future work, researchers can explore the effectiveness of DiffRed to various applications such as Clustering, Visualization, Nearest Neighbor Search, etc., where high dimensionality often becomes a bottleneck and a global-structure-preserving representation is required in lower dimensions.

Acknowledgement Kunal Dutta's work on this project was supported by the NCN SONATA grant nr. 2019/35/D/ST6/04525.

References

[Bor, 2005] (2005). MDS as a Psychological Model, pages 359-388. Springer New York, New York, NY.
[Agustsson and Timofte, 2017a] Agustsson, E. and Timofte, R. (2017a). Ntire 2017 challenge on single image super-resolution: Dataset and study. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 1122-1131.
[Agustsson and Timofte, 2017b] Agustsson, E. and Timofte, R. (2017b). Ntire 2017 challenge on single image super-resolution: Dataset and study. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.
[Ailon and Chazelle, 2009] Ailon, N. and Chazelle, B. (2009). The fast johnson-lindenstrauss transform and approximate nearest neighbors. SIAM Journal on Computing, 39(1):302-322.
[Bartal et al., 2019] Bartal, Y., Fandina, N., and Neiman, O. (2019). Dimensionality reduction: theoretical perspective on practical measures. In NIPS, volume 32 .
[Bingham and Mannila, 2001] Bingham, E. and Mannila, H. (2001). Random projection in dimensionality reduction: Applications to image and text data. KDD '01, page 245-250.
[Bronstein et al., 2006] Bronstein, A. M., Bronstein, M. M., and Kimmel, R. (2006). Generalized multidimensional scaling: A framework for isometryinvariant partial surface matching. Proceedings of the National Academy of Sciences of the United States of America, 103:1168-1172.
[Cayton and Dasgupta, 2006] Cayton, L. and Dasgupta, S. (2006). Robust euclidean embedding. ICML '06, page 169-176, New York, NY, USA.
[Censi and Scaramuzza, 2013] Censi, A. and Scaramuzza, D. (2013). Calibration by correlation using metric embedding from nonmetric similarities. IEEE Trans. on PAMI, 35(10):2357-2370.
[Chan et al., 2019] Chan, D. M., Rao, R., Huang, F., and Canny, J. F. (2019). Gpu accelerated tdistributed stochastic neighbor embedding. Journal of Parallel and Distributed Computing, 131:1-13.
[Cohen et al., 2016] Cohen, M. B., Nelson, J., and Woodruff, D. P. (2016). Optimal Approximate Matrix Product in Terms of Stable Rank. In Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., and Sangiorgi, D., editors, 43 rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), volume 55 of Leibniz International Proceedings in Informatics (LIPIcs), pages 11:1-11:14, Dagstuhl, Germany. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
[Davidson et al., 2017] Davidson, T., Warmsley, D., Macy, M., and Weber, I. (2017). Automated hate speech detection and the problem of offensive language. In Proceedings of the 11th International AAAI Conference on Web and Social Media, ICWSM '17, pages 512-515.
[Deegalla and Bostrom, 2008] Deegalla, S. and Bostrom, H. (2008). Reducing high-dimensional data by principal component analysis vs. random projection for nearest neighbor classification. In ICMLA'06, pages 245-250.
[Espadoto et al., 2019] Espadoto, M., Martins, R. M., Kerren, A., Hirata, N. S. T., and Telea, A. C. (2019). Toward a quantitative survey of dimension reduction techniques. IEEE Transactions on Visualization and Computer Graphics, 27:2153-2173.
[Fandina et al., 2022] Fandina, O. N., Høgsgaard, M. M., and Larsen, K. G. (2022). The fast johnsonlindenstrauss transform is even faster.
[Feng et al., 2018] Feng, X., Xie, Y., Song, M., Yu, W., and Tang, J. (2018). Fast randomized pca for sparse data.
[Fiorini, 2016] Fiorini, S. (2016). gene expression cancer RNA-Seq. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5R88H.
[F.R.S., 1901] F.R.S., K. P. (1901). Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559-572.
[Fukumizu et al., 2004] Fukumizu, K., Bach, F. R., and Jordan, M. I. (2004). Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces. J. Mach. Learn. Res., 5:73-99.
[Halko et al., 2010] Halko, N., Martinsson, P.-G., and Tropp, J. A. (2010). Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions.
[Indyk et al., 2019] Indyk, P., Vakilian, A., and Yuan, Y. (2019). Learning-based low-rank approximations. In Wallach, H., Larochelle, H., Beygelzimer,
A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.
[Karthik, 2019] Karthik, Maggie, S. D. (2019). Aptos 2019 blindness detection.
[Kasiviswanathan and Rudelson, 2018]
Kasiviswanathan, S. P. and Rudelson, M. (2018). Restricted eigenvalue from stable rank with applications to sparse linear regression. In Bubeck, S., Perchet, V., and Rigollet, P., editors, Conference On Learning Theory, COLT 2018, Stockholm, Sweden, 6-9 July 2018, volume 75 of Proceedings of Machine Learning Research, pages 1011-1041. PMLR.
[Krizhevsky, 2009] Krizhevsky, A. (2009). Learning multiple layers of features from tiny images.
[Kruskal, 1964] Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1):1-27.
[Lewis, 1997] Lewis, D. (1997). Reuters21578 Text Categorization Collection. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C52G6M.
[Liu et al., 2017] Liu, S., Maljovec, D., Wang, B., Bremer, P.-T., and Pascucci, V. (2017). Visualizing high-dimensional data: Advances in the past decade. IEEE Transactions on Visualization and Computer Graphics, 23(3):1249-1268.
[McInnes et al., 2020] McInnes, L., Healy, J., and Melville, J. (2020). Umap: Uniform manifold approximation and projection for dimension reduction.
[Moro et al., 2012] Moro, S., Rita, P., and Cortez, P. (2012). Bank Marketing. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5K306.
[Ng and Zhang, 2002] Ng, T. and Zhang, H. (2002). Predicting internet network distance with coordinates-based approaches. In Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, volume 1, pages 170-179 vol.1.
[Niyogi et al., 2008] Niyogi, P., Smale, S., and Weinberger, S. (2008). Finding the homology of submanifolds with high confidence from random samples. Discrete and Computational Geometry, 39(1-3):419-441.
[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830.
[Quist and Yona, 2004] Quist, M. and Yona, G. (2004). Distributional scaling: An algorithm for structure-preserving embedding of metric and nonmetric spaces. J. Mach. Learn. Res., 5:399-420.
[Rudelson and Vershynin, 2007] Rudelson, M. and Vershynin, R. (2007). Sampling from large matrices: An approach through geometric functional analysis. J. ACM, 54(4):21-es.
[Rudelson and Vershynin, 2013] Rudelson, M. and Vershynin, R. (2013). Hanson-wright inequality and sub-gaussian concentration.
[Schmidt, 2018] Schmidt, B. (2018). Stable random projection: Lightweight, general-purpose dimensionality reduction for digitized libraries. Journal of Cultural Analytics, 3(1).
[Spearman, 1904] Spearman, C. (1904). "general intelligence", objectively determined and measured. The American Journal of Psychology, 15(2):201292.
[Torgerson, 1952] Torgerson, W. (1952). Multidimensional scaling i. theory and method. Psychometrika, 17(4):401-419.
[van der Maaten and Hinton, 2008] van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9:2579-2605.
[Van Der Maaten et al., 2009] Van Der Maaten, L., Postma, E., and Van den Herik, J. (2009). Dimensionality reduction: a comparative review. J Mach Learn Res, 10:66-71.
[Xiao et al., 2017] Xiao et al. (2017). Fashionmnist: a novel image dataset for benchmarking machine learning algorithms. https://github.com/zalandoresearch/fashion-mnist.
[Xu et al., 2008] Xu, H., Caramanis, C., and Mannor, S. (2008). Robust dimensionality reduction for highdimension data. In 200846 th Annual Allerton Conference on Communication, Control, and Computing, pages 1291-1298.
[Yin, 2007] Yin, H. (2007). Nonlinear dimensionality reduction and data visualization: A review. International Journal of Automation and Computing, 4:294-303.

7 Checklist

1. For all models and algorithms presented, check if you include:
(a) A clear description of the mathematical setting, assumptions, algorithm, and/or model. [Yes]
(b) An analysis of the properties and complexity (time, space, sample size) of any algorithm. [Yes]
(c) (Optional) Anonymized source code, with specification of all dependencies, including external libraries. [Yes]
2. For any theoretical claim, check if you include:
(a) Statements of the full set of assumptions of all theoretical results. [Yes]
(b) Complete proofs of all theoretical results. [Yes]
(c) Clear explanations of any assumptions. [Yes]
3. For all figures and tables that present empirical results, check if you include:
(a) The code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL). [Yes]
(b) All the training details (e.g., data splits, hyperparameters, how they were chosen). [Yes]
(c) A clear definition of the specific measure or statistics and error bars (e.g., with respect to the random seed after running experiments multiple times). [Yes]
(d) A description of the computing infrastructure used. (e.g., type of GPUs, internal cluster, or cloud provider). [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets, check if you include:
(a) Citations of the creator If your work uses existing assets. [Yes]
(b) The license information of the assets, if applicable. [Yes]
(c) New assets either in the supplemental material or as a URL, if applicable. [Yes]
(d) Information about consent from data providers/curators. [Not Applicable]
(e) Discussion of sensible content if applicable, e.g., personally identifiable information or offensive content. [Not Applicable]
5. If you used crowdsourcing or conducted research with human subjects, check if you include:
(a) The full text of instructions given to participants and screenshots. [Not Applicable]
(b) Descriptions of potential participant risks, with links to Institutional Review Board (IRB) approvals if applicable. [Not Applicable]
(c) The estimated hourly wage paid to participants and the total amount spent on participant compensation. [Not Applicable]

Supplementary Material

8 Proof of Theorem 2

Proof. From the DiffRed algorithm presented in Section 4 , $\tilde{A}=[Z \mid R]$, so that $\|\tilde{A}\|_{F}^{2}=\|Z\|_{F}^{2}+\|R\|_{F}^{2}$. Using the identity that $\|Z\|_{F}^{2}=\sum_{i=1}^{k_{1}} \sigma_{i}^{2}$ gives

$$
\begin{align*}
\|\tilde{A}\|_{F}^{2} & =\sum_{i=1}^{k_{1}} \sigma_{i}^{2}+\|R\|_{F}^{2}=p \sum_{i=1}^{r} \sigma_{i}^{2}+\|R\|_{F}^{2} \tag{3}\\
& =p\|A\|_{F}^{2}+\|R\|_{F}^{2}
\end{align*}
$$

Now, from Lemma 1, we know that with probability at least $1-2 \cdot \exp \left(-c_{1} \varepsilon^{2} d \rho_{A}\right)$ we have:

$$
\left|\left(\|R\|_{F}^{2}-\left\|A^{*}\right\|_{F}^{2}\right)\right| \leq \varepsilon\left\|A^{*}\right\|_{F}^{2}
$$

Let $\frac{\varepsilon}{1-p}=\varepsilon^{\prime}$. This implies,

$$
\begin{equation*}
\mathbb{P}\left[\left(1-\varepsilon^{\prime}\right)\left\|A^{*}\right\|_{F}^{2} \leq\|R\|_{F}^{2} \leq\left(1+\varepsilon^{\prime}\right)\left\|A^{*}\right\|_{F}^{2}\right] \leq 2 \cdot \exp \left(-\frac{c_{1} \varepsilon^{2} k_{2} \rho\left(A^{*}\right)}{(1-p)^{2}}\right) \tag{4}
\end{equation*}
$$

Now, using this in equation (3), we observe that with probability at least $1-2 \cdot \exp \left(-c_{1} \varepsilon^{2} k_{2} \rho\left(A^{*}\right) /(1-p)^{2}\right)$:

$$
\begin{align*}
\sum_{i=1}^{k_{1}} \sigma_{i}^{2}+\left(1-\varepsilon^{\prime}\right) \sum_{i=k_{1}+1}^{r} & \sigma_{i}^{2} \leq\|\tilde{A}\|_{F}^{2} \tag{5}\\
& \leq \sum_{i=1}^{k_{1}} \sigma_{i}^{2}+\left(1+\varepsilon^{\prime}\right) \sum_{i=k_{1}+1}^{r} \sigma_{i}^{2}
\end{align*}
$$

Simplifying the upper bound of equation (5) gives us,

$$
\|\tilde{A}\|_{F}^{2} \leq\|A\|_{F}^{2}+\varepsilon^{\prime}\left(\|A\|_{F}^{2}-\sum_{i=1}^{k_{1}} \sigma_{i}^{2}\right)=\|A\|_{F}^{2}(1+\varepsilon)
$$

Simplifying the lower bound of equation (5) gives us $\|\tilde{A}\|_{F}^{2} \geq\|A\|_{F}^{2}(1-\varepsilon)$. Thus we get that

$$
\begin{gathered}
\mathbb{P}\left[\|A\|_{F}^{2}(1-\varepsilon) \leq\|\tilde{A}\|_{F}^{2} \leq\|A\|_{F}^{2}(1+\varepsilon)\right] \geq \\
1-2 \exp \left(-\frac{c_{1} \varepsilon^{2} k_{2} \rho\left(A^{*}\right)}{(1-p)^{2}}\right)
\end{gathered}
$$

Now applying the definition of $\Lambda_{M_{1}}$, we finally get:

$$
\mathbb{P}\left[\Lambda_{M 1} \geq \varepsilon\right] \leq 2 \cdot \exp \left(-\frac{c_{1} \varepsilon^{2} k_{2} \rho\left(A^{*}\right)}{(1-p)^{2}}\right)
$$

9 Other proofs

Theorem 9. Rudelson and Vershynin, 2013 Let G be a $D \times d$ random matrix with entries being independent gaussian random variables $G_{i j}$ with mean zero and variance $1 / D$. Let B be an $n \times n$ matrix with entries $b_{i j} \in \mathbb{R}$. Then for every $t \geq 0$, we have

$$
\mathbb{P}\left[\left|\operatorname{Tr}\left(G B G^{\top}\right)-\mathbb{E}\left[\operatorname{Tr}\left(G B G^{\top}\right)\right]\right| \geq t\right] \leq 2 \cdot \exp \left(-c \cdot \min \left(\frac{t^{2}}{\|B\|_{F}^{2}}, \frac{t}{\|B\|}\right)\right)
$$

Proof (Proof of Lemma 1). The main tool in our proof is the multi-dimensional variant of the Hanson-Wright inequality Rudelson and Vershynin, 2013, stated in Theorem 9 which gives concentration bounds for certain quadratic forms of gaussian random variables.
Let $Z:=\|A G\|_{F}^{2}=\operatorname{Tr}\left(G^{\top} A^{\top} A G\right)$. We shall apply Theorem 9, with G as the $D \times d$ random matrix, and $B=A^{\top} A$ as a $D \times D$ matrix. We shall also require the following standard observations, which can be easily derived: $\|B\|=\|A\|^{2}$, and $\|B\|_{F}^{2} \leq\|A\|^{2} \cdot\|A\|_{F}^{2}$. This gives

$$
\begin{aligned}
\mathbb{P}[|Z-\mathbb{E}[Z]| \geq t] & \leq 2 \cdot \exp \left(-c \cdot \min \left(\frac{t^{2}}{D\|B\|_{F}^{2}}, \frac{t}{\|B\|}\right)\right) \\
& \leq 2 \cdot \exp \left(-c \cdot \min \left(\frac{t^{2}}{D\|B\|_{F}^{2}}, \frac{t}{\|A\|^{2}}\right)\right)
\end{aligned}
$$

By linearity of Expectation over Gaussian random variables,
$\mathbb{E}[Z]=\mathbb{E}\left[\operatorname{Tr}\left(G^{\top} A^{\top} A G\right)\right]=\mathbb{E}\left[\operatorname{Tr}\left(A G G^{\top} A^{\top}\right)\right]=d \cdot \operatorname{Tr}\left(A A^{\top}\right)$ and thus,
$\mathbb{E}[Z]=d \sum_{r=1}^{n} a_{r} a_{r}^{\top}=\sum_{r=1}^{n} d\left\|a_{r}\right\|^{2}=d\|A\|_{F}^{2}$
Now taking $t=\varepsilon \mathbb{E}[Z]=\varepsilon d\|A\|_{F}^{2}$, we get

$$
\begin{aligned}
\mathbb{P}\left[\left|Z-d\|A\|_{F}^{2}\right| \geq \varepsilon d\|A\|_{F}^{2}\right] & \leq 2 \cdot \exp \left(-c \cdot \min \left(\frac{\varepsilon^{2} d^{2}\|A\|_{F}^{4}}{D\|A\|^{2}\|A\|_{F}^{2}}, \frac{\varepsilon d\|A\|_{F}^{2}}{\|A\|^{2}}\right)\right) \\
& =2 \cdot \exp \left(-c \cdot \min \left(\frac{\varepsilon^{2} d^{2}\|A\|_{F}^{2}}{D\|A\|^{2}}, \frac{\varepsilon d\|A\|_{F}^{2}}{\|A\|^{2}}\right)\right) \\
& \leq 2 \cdot \exp \left(-c\left(\frac{\varepsilon^{2} d\|A\|_{F}^{2}}{\|A\|^{2}}\right)\right),
\end{aligned}
$$

where the last line follows by observing that $d / D \leq 1$ for $d \leq D$.
Proof (Proof of Inequality 1 (Theorem 7). We have:

$$
\begin{gathered}
a^{2}\left(c^{2}+b^{2}-2 b c\right)=a^{2}(b-c)^{2} \geq 0 \Longrightarrow a^{2} c^{2}+a^{2} b^{2} \geq 2 a^{2} b c \\
a^{4}+a^{2} c^{2}+a^{2} b^{2}+b^{2} c^{2} \geq a^{4}+b^{2} c^{2}+2 a^{2} b c=\left(a^{2}+b c\right)^{2}
\end{gathered}
$$

Since a, b, c are non negative, we can take a square root.

$$
\begin{gathered}
\sqrt{a^{2}+b^{2}} \sqrt{a^{2}+c^{2}} \geq a^{2}+b c \\
2 a^{2}-2 \sqrt{a^{2}+b^{2}} \sqrt{a^{2}+c^{2}} \leq-2 b c \\
a^{2}+b^{2}+a^{2}+c^{2}-2 \sqrt{a^{2}+b^{2}} \sqrt{a^{2}+c^{2}} \leq b^{2}+c^{2}-2 b c \\
\left(\sqrt{a^{2}+b^{2}}-\sqrt{a^{2}+c^{2}}\right)^{2} \leq(b-c)^{2}
\end{gathered}
$$

Proof (Proof of Lemma 6). As the data is centered, the sum $\sum_{j=1}^{n} \mathbf{x}_{j}=0$. We have: $\sum_{j<i}^{n}\left\|\mathbf{d}_{i j}\right\|^{2}=$ $n \sum_{i=1}^{n}\left\|\mathbf{x}_{i}\right\|^{2}-\sum_{i=1}^{n} \mathbf{x}_{i}$

10 Complexity Analysis of the DiffRed Algorithm 1

Based on the algorithm description given previously, the running time complexity of DiffRed can be obtained as follows. We first obtain a k_{1}-rank approximation of the $n \times D$ data matrix using the singular value decomposition. This takes $O\left(n D^{2}\right)$ time. Next, we generate and apply a random $k_{2} \times D$ Gaussian matrix, which can be done in time $O\left(n k_{2} D\right)$. For η Monte Carlo iterations, this becomes $O\left(\eta n k_{2} D\right)$. Thus, the total time complexity comes to $O\left(n D^{2}+\eta n k_{2} D\right)$. For the case when $D \gg n$, we work with A^{\top}, and thus get a complexity of $O\left(D n^{2}+\eta n k_{2} D\right)$. So the overall complexity can be summarized as $O\left(D n \cdot \min \{D, n\}+\eta n k_{2} D\right)$.

11 Detailed Experiment Results [From Section 5.3]

11.1 Stress and M1: Datasetwise results

In this section, we present a dataset wise summary of the results of our experiments on M1 and Stress and in the later sections, we present the full grid search results. Figure 12 shows the plots of the singular values of all the datasets.

Figure 12: Plots showing the spectral plots of all the datasets

Figure 13 shows how the stable rank of the residual matrix for all datasets increases as more directions of variance are removed (i.e., k_{1}) so long as the number of components removed remains well within the range of a practically required dimensionality $(<100$ for high dimensionality datasets). From our datasets, we note that for Bank and hatespeech, the starting dimensionality itself is low (17 and 100 respectively) and therefore the peak of the curve occurs earlier.

Figure 13: Plots showing the stable rank vs. k_{1} for all the datasets

11.1.1 Bank

Bank Moro et al., 2012] is a binary classification dataset of a Portugese bank's marketing campaign. The goal of the classification is to predict if a client will subscribe to a term deposit or not. The dataset has a low dimensionality of 17 which puts it out of the curse of dimensionality regime. We account for this low dimensionality in our experiments by exploring only low target dimensions in the range 1 to 8 . It also has a relatively low stable rank of 1.48 . Figure 12 a shows the singular value plot for Bank and Figure 13a shows the
stable rank plot. Table 6 and Table 14 show the results of our grid search experiments on Stress and M1 metrics to find the optimal values of k_{1} and k_{2}. The rows having the minimum metric value are marked in bold.

11.1.2 Hatespeech

Hatespeech Davidson et al., 2017 is a dataset of tweets labelled according to different types of offensive content. For our experiments we use the .npy files provided by Espadoto et al., 2019] on their paper website ${ }^{5}$. The dataset has a dimensionality of 100 and a stable rank of 11 . Figure 12 b shows the plot of singular values and Figure 13 b shows the stable rank plot. Tables 7 and 15 show the results of our experiments on M1 and Stress.

11.1.3 FMnist

Fashion-MNIST Xiao et al., 2017] (abbreviated as FMnist in our paper) is an image dataset consisting of 60,000 images of fashion images belonging to 10 different classes. Each image is a 28 by 28 grayscale image which can be represented as a 784 dimensional vector. The dataset has a stable rank of 2.68. Figure 12b shows the singular value plot and Figure 13 b shows the stable rank plot for FMnist. Tables 8 and 16 show our experiment results.

11.1.4 Cifar10

Cifar10 Krizhevsky, 2009 is a dataset of 60,000 color images belonging to 10 classes. Each image is a 32 by 32 image with 3 channels, therefore, each image can be represented as a 3072 dimensionality vector. The stable rank of the dataset is 6.13 . Figures 12d and 13d are the relevant spectral and stable rank plots. Tables 9 and 17 show the results of our experiments on Stress and M1.

11.1.5 geneRNASeq

geneRNASeq Fiorini, 2016 is a dataset of gene expressions with the aim of classifying 5 types of tumor. It has a dimensionality of 20531 and a stable rank of 1.12 which is also the lowest stable rank among all datasets. Figures 12 e and 13 e show the spectral and stable rank plots respectively. Tables 10 and 18 show the results of our grid search experiments on k_{1} and k_{2}.

11.1.6 Reuters30k

Reuters30k is a TF-IDF vector respresentation of the Reuters newswires dataset Lewis, 1997] which is a collection of news articles belonging to different topics. We use this ${ }^{6}$ huggingface version of the dataset. To generate TFIDF representation, we use scikit-learn's TfidVectorizer. The dimensionality of the dataset becomes 30,916 after this preprocessing. It also has the highest stable rank (14.50) among all datasets. Figures 12 f and 13 f show the relevant spectral and stable rank plots. Tables 11 and 19 show the results of our experiments on Stress and M1. Another interesting observation is that for target dimension 40, we achieve 81.87% reduction in Stress as compared to PCA (marked in red).

11.2 Very High Dimensionality Datasets

We chose two very high dimensionality datasets- APTOS 2019 (509 k) and DIV2k (6.6 M)- one with a low stable rank and one with a high stable rank. We only evaluated these datasets on PCA and RMap other than DiffRed because their high dimensionality made other algorithms very slow.

11.2.1 APTOS 2019

APTOS 2019 Karthik, 2019] is a Kaggle dataset of 13,000 retina images taken using fundus photography. It is a multiclass-classification dataset where each image is labelled as belonging to one of the five levels of severity of diabetic retinopathy. For our purpose, we resized each image to size of 474 by 358 yielding vectors of dimensionality 509,076 (as each image has 3 channels). This is one of our datasets in the 'very high dimensionality' category. It has a low stable rank of 1.32. Figures 14a and 15a show the spectral and stable rank plots for APTOS 2019 and Tables 12 and 20 show the results of the grid search experiments on k_{1} and k_{2} for Stress and M1 metrics.

11.2.2 DIV2k

DIV2k Agustsson and Timofte, 2017a, Agustsson and Timofte, 2017b is a dataset of 8002 K high resolution image dataset from the NTIRE 2017 challenge. For our purposes, we rescale every image to 1080 by 2048 which

[^4]

Figure 14: Spectral plots of very high dimensionality datasets.

Figure 15: Stable Rank plots of very high dimensionality datasets.
means that each image can be represented as a $6,635,520$ dimensional vector (3 channels of color). The dataset has a high stable rank of 8.39 . Figures 14 b and 15 b are the respective spectral and stable rank plots. Tables 13 and 21 show the results of our grid search experiments to find optimal k_{1} and k_{2} for Stress and M1 metrics.

11.3 Low sensitivity of $\Lambda_{M_{1}}$ to k_{1} and k_{2}

The following table shows the Average Variance of $\Lambda_{M_{1}}$ over different k_{1} and k_{2} values for different dimensions (described in Section 5.3.1. Observation 2).

Dataset	β
Bank	$3.85 \mathrm{e}-06$
Hatespeech	$3.45 \mathrm{e}-07$
FMnist	$9.85 \mathrm{e}-07$
Cifar10	$3.25 \mathrm{e}-07$
geneRNASeq	$3.59 \mathrm{e}-06$
Reuters30k	$2.17 \mathrm{e}-08$
APTOS 2019	$3.07 \mathrm{e}-06$
DIV2k	$9.80 \mathrm{e}-08$

Table 4: Variance β (defined in Sec. 5.3.1. Observation 2) observed in $\Lambda_{M_{1}}$ for different combinations of k_{1} and k_{2} averaged over all target dimensions.

11.4 Hyperparameter tuning

For our experiments on hyperparameter tuning for other dimensionality reduction techniques, we have presented the most optimal values of Stress and M1 in our tables. For full results, please refer to the files in the following
directories in our repository ${ }^{7}$:

- Full results: Experiments/dimensionality_reduction_metrics/results/other_dr_techniques/
- Code: Experiments/dimensionality_reduction_metrics/other_dr_techniques/

11.5 Effect of Monte Carlo iterations [From Section 5.4]

Figure 16 shows that performing Monte Carlo iterations helps in finding good random directions. With more Monte Carlo iterations, we find Random Maps that further reduce the M1 metric. We note that such Random Maps (which minimize M1), also further reduce Stress. All the results presented in the paper have been computed at $\eta=100$.

Figure 16: Log scale plot of Stress and M1 metrics against the number of Monte Carlo iterations η showing how diminishing improvements over the metrics are obtained with increasing η

11.6 Application: DiffRed as a precursor to visualization

PCA has been widely used to reduce the dimensionality of high-dimensional datasets before applying TSNE/UMap to mitigate the slow computation for high dimensions. Using DiffRed, we can reduce the data to an intermediate dimension while preserving Stress (global structure) and then apply T-SNE/UMap for visualization. The following Table 5 shows that using DiffRed as a preprocessing step causes significant improvement in the Stress of the final T-SNE/UMap visualization for the Reuters30k dataset.

Method	Λ_{S}
PCA + T-SNE	0.55
DiffRed + T-SNE	$\mathbf{0 . 3 2}$
PCA + UMap	0.56
DiffRed + UMap	$\mathbf{0 . 4 5}$

Table 5: Stress of T-SNE and UMap after using PCA \& DiffRed as pre-processing step for Reuters30k with intermediate dimension 10. Final Stress for the T-SNE2 and UMap2 versions described in the main paper are presented here.

12 Tables

In this section, we provide data from various hyper-parameter tuning experiments. For DiffRed, we varied the target dimension and the values of k_{1} and k_{2}. It is clear from these experiments, that by increasing the target dimension, we can reduce the Stress metric. The M1 metric is not sensitive to the choice of k_{1} and k_{2}. However, the values of k_{1} and k_{2} have to be chosen carefully to minimize Stress. The optimal choice can be made by using the theoretical bound as discussed in the main text of the paper in Section 5.3.2.

[^5]
12.1 Stress

Table 6: Bank: Λ_{S}

Target	Dimension	k1	k2	Stress	PCA Stress	RMap Stress ($\alpha=\mathbf{2 0)}$		S-PCA Stress	K-PCA Stress	UMAP Stress
						μ	σ			
	1	0	1	0.278474	0.175070	0.40	0.128	0.189710	0.507601	12.799170
	2	0	2	0.413185	0.085241	0.28	0.095	0.099255	0.481864	8.930940
	2	1	1	0.310159						
	3	0	3	0.250078	0.038763	0.28	0.060	0.057670	0.470851	7.912646
	3	1	2	0.169713						
	3	2	1	0.056258						
	5	0	5	0.117427	0.003634	0.22	0.098	0.036128	0.465844	7.402985
	5	1	4	0.098115						
	5	2	3	0.050027						
	5	3	2	0.010721						
	5	4	1	0.004978						
	6	0	6	0.082337	0.003634	0.17	0.059	0.037417	0.465480	7.069356
	6	1	5	0.073995						
	6	2	4	0.02745						
	6	3	3	0.012201						
	6	4	2	0.004184						
	6	5	1	0.00235						
	7	0	7	0.1341	0.001219	0.17	0.091	0.036316	0.465270	7.107705
	7	1	6	0.053662						
	7	2	5	0.011971						
	7	3	4	0.00538						
	7	4	3	0.002543						
	7	5	2	0.00159						
	7	6	1	0.00109						
	8	0	8	0.109656	0.000674	0.18	0.070	0.037008	0.465107	7.131875
	8	2	6	0.032214						
	8	3	5	0.007498						
	8	4	4	0.002741						
	8	5	3	0.002032						
	8	6	2	0.00073						
	8	7	1	0.000424						

Table 7: Hatespeech: Λ_{S}

Target Dimension	k1	k2	Stress	PCA Stress	RMap Stress ($\alpha=20$)		S-PCA Stress	K-PCA Stress	UMAP Stress
					μ	σ			
10	0	10	0.154463						
10	1	9	0.152249						
10	2	8	0.161939						
10	3	7	0.159242	0.36	0.16	0.01	0.36	0.65	5.29
10	4	6	0.167399	0.36	0.16	0.01	0.36	0.65	5.29
10	5	5	0.167598						
10	6	4	0.182932						
10	7	3	0.207632						
20	0	20	0.108961						
20	2	18	0.107507						
20	3	17	0.098006						
20	4	16	0.098426						
20	5	15	0.097116						
20	8	12	0.099934	0.26	0.11	0.00	0.27	0.64	5.21
20	10	10	0.107269						
20	12	8	0.115551						
20	15	5	0.127951						
20	18	2	0.181814						
30	0	30	0.089438						
30	2	28	0.085617						
30	3	27	0.083632						
30	5	25	0.079905						
30	6	24	0.082452						
30	8	22							
30	10	20	0.07936	0.20	0.09	0.00	0.22	0.63	5.17
30	12	18	0.073679						
30	15	15	0.076703						
30	18	12	0.086769						
30	20	10	0.090678						
30	25	5	0.103606						
30	27	3	0.127849						
40	0	40	0.078129						
40	2	38	0.071711						
40	4	36	0.07244						
40	5	35	0.069092						
40	8	32	0.064041						
40	10	30	0.064503						
40	11	29	0.066805	0.16	0.08	0.00	0.17	0.63	5.09
40	15	25	0.059473						
40	16	24	0.058154						
40	20	20	0.058028						
40	25	15	0.062881						
40	30	10	0.071768						
40	35	5	0.086825						

Table 8: FMnist: Λ_{S}

Dimension	k1	k2	Stress	PCA Stress	RMap Stress ($\alpha=\mathbf{2 0 \text {) }}$		S-PCA Stress	K-PCA Stress	UMAP Stress
					μ	σ			
10	0	10	0.149077						
10	2	8	0.12508						
10	3	7							
10	4	6	0.120748	0.19	0.15	0.009	0.21	0.68	4.02
10	5	5	0.117036						
10	6	4	0.124043						
10	7		0.134036						
20	0	20	0.111262						
20	2	18	0.085441						
20	4	16	0.073317						
20	5	15	0.068579						
20	6	14	0.069169						
20	8	12	0.066389	0.14	0.11	0.009	0.16	0.68	4.34
20	10	10	0.067899						
20	12	8	0.070051						
20	15	5	0.080917						
20	18	2	0.112871						
30	0	30	0.095465						
30	3	27	0.06347						
30	5	25	0.053878						
30	8	22	0.048813						
30	10	20	0.047958						
30	12	18	0.048057	0.12	0.09	0.008	0.14	0.68	4.98
30	15	15	0.047662						
30	18	12	0.050517						
30	20	10	0.052338						
30	25	5	0.067108						
30	27	3	0.083181						
40	0	40	0.085391						
40	4	36	0.048749						
40	5	35	0.045706						
40	8	32	0.040424						
40	10	30	0.039411						
40	15	25	0.037091	0.10	0.08	0.006	0.13	0.68	4.18
40	16	24	0.037105						
40	20	20	0.037701						
40	25	15	0.039636						
40	30	10	0.045351						
40	35	5	0.058315						

Table 9: Cifar10: Λ_{S}

Target Dimension	k1	k2	Stress	PCA Stress	RMap Stress ($\alpha=\mathbf{2 0)}$		S-PCA Stress	K-PCA Stress	UMAP Stress
					μ	σ			
10	0	10	0.150986						
10	2	8	0.130287						
10	3	7	0.127005						
10	4	6	0.131711	0.21	0.16	0.009	0.24	0.69	1.26
10	5	5	0.134101						
10	6	4	0.13699						
10	7	3	0.149397						
20	0	20	0.10698						
20	2	18	0.088584						
20	4	16	0.080418						
20	5	15	0.079099						
20	8	12	0.076988	0.15	0.11	0.005	0.18	0.69	1.25
20	10	10	0.07744						
20	12	8	0.080066						
20	15	5	0.091193						
20	18	2	0.125555						
30	0	30	0.087177						
30	3	27	0.067666						
30	5	25	0.060986						
30	8	22	0.056502						
30	12	18	0.054123						
30	15	15	0.053645	0.12	0.09	0.004	0.15	0.69	1.27
30	18	12	0.055647						
30	20	10	0.057995						
30	25	5	0.073301						
30	27	3	0.088451						
40	0	40	0.072628						
40	4	36	0.053967						
40	5	35	0.052083						
40	8	32	0.046417						
40	10	30	0.045487						
40	15	25	0.042958	0.11	0.08	0.003	0.13	0.69	1.27
40	16	24	0.042068						
40	20	20	0.041934						
40	25	15	0.043438						
40	30	10	0.047964						
40	35	5	0.062596						

Table 10: geneRNASeq: Λ_{S}

Target	Dimension	k1	k2	Stress	PCA Stress	RMap Stress ($\alpha=\mathbf{2 0 \text {) }}$		S-PCA Stress	K-PCA Stress	UMAP Stress
						μ	σ			
	10	0	10	0.154996						
	10	2	8	0.156133						
	10	3	7	0.138719						
	10	4	6	0.132871	0.21	0.16	0.008	0.25	NA	18.72
	10	5	5	0.130126						
	10	6	4	0.133581						
	10	7	3	0.147557						
	20	0	20	0.103773						
	20	2	18	0.091928						
	20	4	16	0.082728						
	20	5	15	0.080249						
	20	6	14	0.077367						
	20	8	12	0.071007	0.17	0.11	0.006	0.24	0.70	18.60
	20	10	10	0.075024						
	20	12	8	0.078858						
	20	15	5	0.094134						
	20	18	2	0.134547						
	30	0	30	0.092378						
	30	3	27	0.070738						
	30	5	25	0.059465						
	30	8	22	0.054121						
	30	10	20	0.052897						
	30	12	18	0.055643	0.15	0.09	0.009	0.25	0.70	18.72
	30	15	15	0.057122						
	30	18	12	0.059765						
	30	20	10	0.062337						
	30	25	5	0.083422						
	30	27	3	0.101695						
	40	0	40	0.090848						
	40	4	36	0.055797						
	40	5	35	0.050136						
	40	8	32	0.045299						
	40	10	30	0.043141						
	40	15	25	0.043549	0.14	0.08	0.004	0.25	0.70	18.22
	40	16	24	0.044106						
	40	20	20	0.045514						
	40	25	15	0.049506						
	40	30	10	0.05636						
	40	35	5	0.077122						

Table 11: Reuters30k: Λ_{S}

Dimension	k1	k2	Stress	PCA Stress	RMap Stress ($\alpha=20$)		S-PCA Stress	K-PCA Stress	UMAP Stress
					μ	σ			
10	0	10	0.155841						
10	2	8	0.162356						
10	3	7	0.170477						
10	4	6	0.183243	0.49	0.16	0.001	0.49	0.71	3.35
10	5	5	0.197407						
10	6	4	0.216498						
10	7	3	0.244457						
20	0	20	0.110339						
20	2	18	0.109416						
20	4	16	0.114293						
20	5	15	0.11665						
20	8	12	0.127054	0.45	0.11	0.001	0.46	0.70	3.27
20	10	10	0.136838						
20	12	8	0.150428						
20	15	5	0.184754						
20	18	2	0.27384						
30	0	30	0.090478						
30	2	28	0.088198						
30	3	27	0.088585						
30	5	25	0.089782						
30	8	22	0.094184						
30	10	20	0.097164	0.43	0.09	0.001	0.44	0.70	3.21
30	12	18	0.101738	0.43	0.09	0.001	0.44	0.70	3.21
30	15	15	0.109841						
30	18	12	0.120367						
30	20	10	0.130392						
30	25	5	0.179204						
30	27	3	0.225727						
40	0	40							
40	2	38	0.075794						
40	4	36	0.075186						
40	5	35	0.076406						
40	8	32	0.077578						
40	10	30	0.079557	0.41	0.08	0.001	0.43	0.70	3.12
40	15	25	0.085225	0.41	0.08	0.001	0.43	0.70	3.12
40	16	24	0.086591						
40	20	20	0.093946						
40	25	15	0.10561						
40	30	10	0.127771						
40	35	5	0.175076						

Table 12: APTOS 2019: Λ_{S}

Target Dimension	k1	k2	Stress	PCA Stress	RMap Stress ($\alpha=\mathbf{2 0 \text {) }}$	
					μ	σ
10	0	10	0.179073			
10	1	9	0.148839			
10	2	8	0.123974			
10	3	7	0.122061			
10	4	6	0.1052	0.12	0.16	0.016
10	5	5	0.097674			
10	6	4	0.101736			
10	7	3	0.097584			
20	0	20	0.095128			
20	2	18	0.085237			
20	3	17	0.075839			
20	4	16	0.06693			
20	5	15	0.058859	0.08	0.11	
20	8	12	0.045718	0.08	0.11	0.014
20	10	10	0.047303			
20	12	8	0.046251			
20	15	5	0.05158			
20	18	2	0.06905			
30	0	30	0.091059			
30	2	28	0.060186			
30	3	27	0.060056			
30	5	25	0.046503			
30	8	22	0.034993			
30	10	20	0.032974			
30	11	19	0.031663	0.06	0.09	0.008
30	12	18	0.030824			
30	15	15	0.030116			
30	18	12	0.030801			
30	20	10	0.030715			
30	25	5	0.038002			
30	27	3	0.045107			
40	0	40	0.086019			
40	2	38	0.055444			
40	4	36	0.042809			
40	5	35	0.038921			
40	8	32	0.029978			
40	10	30	0.026612	0.05	0.08	0.012
40	15	25	0.023963	0.05	0.08	0.012
40	16	24	0.024174			
40	20	20	0.022142			
40	25	15	0.022693			
40	30	10	0.025446			
40	35	5	0.031453			

Table 13: DIV2k: Λ_{S}

Target Dimension	k1	k2	Stress	PCA Stress	RMap Stress ($\alpha=\mathbf{2 0)}$	
					μ	σ
10	0	10	0.156703			
10	1	9	0.144361			
10	2	8	0.144838			
10	3	7	0.146517	0.31	0.16	0.003
10	4	6	0.149547	0.31	0.16	0.003
10	5	5	0.157161			
10	6	4	0.174424			
10	7	3	0.185904			
20	0	20	0.109547			
20	2	18	0.099879			
20	3	17	0.09588			
20	4	16	0.093435			
20	5	15	0.091908			
20	8	12	0.096338	0.26	0.11	0.003
20	10	10	0.102482			
20	12	8	0.109068			
20	15	5	0.132754			
20	18	2	0.190162			
30	0	30	0.09143			
30	2	28	0.081431			
30	3	27	0.076753			
30	5	25	0.072565			
30	8	22	0.073153			
30	10	20	0.072457			
30	12	18	0.073059	0.23	0.09	0.002
30	15	15	0.078949			
30	18	12	0.083008			
30	20	10	0.090443			
30	25	5	0.121266			
30	27	3	0.147061			
40	0	40	0.080119			
40	2	38	0.069251			
40	4	36	0.064546			
40	5	35	0.061345			
40	8	32	0.061543			
40	10	30	0.05954	0.21	0.08	0.002
40	15	25	0.062452	0.21	0.08	0.002
40	16	24	0.061158			
40	20	20	0.064559			
40	25	15	0.06917			
40	30	10	0.083609			
40	35	5	0.109629			

$12.2 \quad M 1$

Table 14: Bank: $\Lambda_{M_{1}}$

Target Dimension	k1	k2	M1	PCA M1	RMap μ	$\mathrm{M} 1 \begin{gathered} (\alpha=20) \\ \sigma \end{gathered}$	S-PCA M1	K-PCA M1	UMAP M1
1	0	1	0.006966	0.651017	0.61	0.425	0.683462	0.960012	171.177790
2	0	2	0.012508	0.584043	0.42	0.229	0.614852	0.951856	95.028671
2	1	1	0.012201	0.584043	0.42	0.229	0.614852	0.951856	95.028671
3	0	3	0.001685						
3	1	2	0.003476	0.550702	0.43	0.265	0.577230	0.947818	94.888941
3	2	1	0.000357						
5	0	5	0.002059						
5	1	4	$2.51 \mathrm{e}-5$						
5	2	3	$2.82 \mathrm{e}-5$	0.535537	0.38	0.446	0.564456	0.945817	122.448199
5	3	2	0.000148						
5	4	1	5.82e-6						
6	0	6	0.002623						
6	1	5	0.004556						
6	2	4	$3.60 \mathrm{e}-5$	0.535173	0.23	0.204	0.576306	0.945657	182.743756
6	3	3	0.000192	0.535173	0.23	0.204	0.576306	0.945657	182.743756
6	4	2	$2.92 \mathrm{e}-5$						
6	5	1	$4.57 \mathrm{e}-7$						
7	0	7	0.011784						
7	1	6	0.003607						
7	2	5	$1.94 \mathrm{e}-5$						
7	3	4	0.000287	0.534967	0.26	0.234	0.575984	0.945562	190.630670
7	4	3	$3.31 \mathrm{e}-6$						
7	5	2	$2.59 \mathrm{e}-6$						
7	6	1	$9.22 \mathrm{e}-6$						
8	0	8	0.001774						
8	2	6	0.000117						
8	3	5	$2.54 \mathrm{e}-5$						
8	4	4	$1.01 \mathrm{e}-5$	0.534825	0.23	0.202	0.575932	0.945489	256.766924
8	5	3	$7.06 \mathrm{e}-6$						
8	6	2	$3.57 \mathrm{e}-6$						
8	7	1	$3.49 \mathrm{e}-7$						

Table 15: Hatespeech: $\Lambda_{M_{1}}$

Dimension	k1	k2	M1	PCA M1	RMap M1 ($\alpha=\mathbf{2 0)}$		S-PCA M1	K-PCA M1	UMAP M1
					μ	σ			
10	0	10	0.001827						
10	1	9	0.001306						
10	2	8	$4.47 \mathrm{e}-4$						
10	3	7	0.001135	0.66	0.06	0.04	0.68	0.99	240.50
10	4	6	0.00197	0.66	0.06	0.04	0.68	0.99	240.50
10	5	5	0.002305						
10	6	4	0.000191						
10	7	3	0.000364						
20	0	20	$1.64 \mathrm{e}-3$						
20	2	18	0.000502						
20	3	17	$1.36 \mathrm{e}-3$						
20	4	16	$9.59 \mathrm{e}-6$						
20	5	15	0.000354	0.50	0.04	0.03	0.53	0.99	569.90
20	8	12	$6.57 \mathrm{e}-4$	0.50	0.04	0.03	0.53	0.99	569.90
20	10	10	0.000718						
20	12	8	0.000512						
20	15	5	0.000965						
20	18	2	0.000668						
30	0	30	0.00033						
30	2	28	1.76e-6						
30	3	27	0.000218						
30	5	25	$2.21 \mathrm{e}-3$						
30	6	24	$3.64 \mathrm{e}-4$						
30	8	22	$6.39 \mathrm{e}-4$						
30	10	20	$1.82 \mathrm{e}-4$	0.41	0.03	0.02	0.44	0.99	828.16
30	12	18	$4.03 \mathrm{e}-4$						
30	15	15	$5.34 \mathrm{e}-5$						
30	18	12	$1.54 \mathrm{e}-4$						
30	20	10	$3.40 \mathrm{e}-6$						
30	25	5	$7.39 \mathrm{e}-5$						
30	27	3	$3.76 \mathrm{e}-4$						
40	0	40	$1.26 \mathrm{e}-3$						
40	2	38	0.00123						
40	4	36	$3.35 \mathrm{e}-4$						
40	5	35	$2.42 \mathrm{e}-4$						
40	8	32	$7.41 \mathrm{e}-5$						
40	10	30	$3.36 \mathrm{e}-5$						
40	11	29	$2.31 \mathrm{e}-4$	0.33	0.03	0.02	0.36	0.99	1095.06
40	15	25	$2.14 \mathrm{e}-4$						
40	16	24	0.000412						
40	20	20	$5.38 \mathrm{e}-6$						
40	25	15	0.000328						
40	30	10	0.000132						
40	35	5	$8.17 \mathrm{e}-5$						

Table 16: FMnist: $\Lambda_{M_{1}}$

Table 17: Cifar10: $\Lambda_{M_{1}}$

Target	Dimension	k1	k2	M1	PCA M1	RMap M1 ($\alpha=\mathbf{2 0 \text {) }}$		S-PCA M1	K-PCA M1	UMAP M1
						μ	σ			
	10	0	10	0.002759						
	10	2	8	0.000142						
	10	3	7	0.000154						
	10	4	6	0.000156	0.49	0.09	0.062	0.54	1.00	166.84
	10	5	5	0.001149						
	10	6	4	0.000131						
	10	7	3	0.000799						
	20	0	20	0.000342						
	20	2	18	0.000517						
	20	4	16	0.000547						
	20	5	15	0.001161						
	20	8	12	0.00011	0.38	0.04	0.035	0.43	1.00	485.22
	20	10	10	0.000162						
	20	12	8	0.000167						
	20	15	5	0.000416						
	20	18	2	0.000236						
	30	0	30	0.001148						
	30	3	27	0.000331						
	30	5	25	0.000243						
	30	8	22	0.000126						
	30	12	18	0.000454	0.32	0.05	0.031	0.38		
	30	15	15	5.66e-5	0.32	0.05	0.031	0.38	1.00	753.84
	30	18	12	0.00086						
	30	20	10	$6.23 \mathrm{e}-5$						
	30	25	5	$9.57 \mathrm{e}-5$						
	30	27	3	0.000344						
	40	0	40	0.000331						
	40	4	36	0.001214						
	40	5	35	0.000229						
	40	8	32	0.000165						
	40	10	30	$2.01 \mathrm{e}-5$						
	40	15	25	$2.84 \mathrm{e}-5$	0.28	0.04	0.028	0.34	1.00	1008.78
	40	16	24	$2.03 \mathrm{e}-4$						
	40	20	20	$4.94 \mathrm{e}-5$						
	40	25	15	0.000398						
	40	30	10	$1.12 \mathrm{e}-4$						
	40	35	5	$1.35 \mathrm{e}-5$						

Table 18: geneRNASeq: $\Lambda_{M_{1}}$

Target Dimension	k1	k2	M1	PCA M1	RMap M1 ($\alpha=\mathbf{2 0 \text {) }}$		S-PCA M1	K-PCA M1	UMAP M1
					μ	σ			
10	0	10	0.009101						
10	2	8	0.000113						
10	3	7	0.000175						
10	4	6	$3.68 \mathrm{e}-5$	0.94	0.31	0.246	0.95	1.00	328.72
10	5	5	$1.69 \mathrm{e}-5$						
10	6	4	$7.96 \mathrm{e}-5$						
10	7	3	$6.20 \mathrm{e}-5$						
20	0	20	0.004859						
20	2	18	$8.93 \mathrm{e}-5$						
20	4	16	0.000114						
20	5	15	$2.59 \mathrm{e}-6$						
20	6	14	$8.39 \mathrm{e}-6$	0.93		0.149	0.95	1.00	
20	8	12	$2.39 \mathrm{e}-5$	0.93	0.18	0.149	0.95	1.00	586.64
20	10	10	$1.58 \mathrm{e}-5$						
20	12	8	$4.68 \mathrm{e}-5$						
20	15	5	$8.67 \mathrm{e}-6$						
20	18	2	0.000121						
30	0	30	0.001417						
30	3	27	$1.25 \mathrm{e}-6$						
30	5	25	$2.02 \mathrm{e}-5$						
30	8	22	$1.51 \mathrm{e}-5$						
30	10	20	$6.49 \mathrm{e}-6$						
30	12	18	$1.53 \mathrm{e}-6$	0.93	0.19	0.143	0.95	1.00	826.54
30	15	15	$5.31 \mathrm{e}-6$						
30	18	12	$2.33 \mathrm{e}-5$						
30	20	10	$6.10 \mathrm{e}-6$						
30	25	5	$2.02 \mathrm{e}-6$						
30	27	3	$8.15 \mathrm{e}-6$						
40	0	40	0.001658						
40	4	36	$6.77 \mathrm{e}-6$						
40	5	35	$1.25 \mathrm{e}-5$						
40	8	32	$1.02 \mathrm{e}-5$						
40	10	30	$1.38 \mathrm{e}-5$						
40	15	25	$4.61 \mathrm{e}-6$	0.93	0.12	0.081	0.95	1.00	1089.52
40	16	24	$1.61 \mathrm{e}-5$						
40	20	20	$1.07 \mathrm{e}-5$						
40	25	15	$2.02 \mathrm{e}-5$						
40	30	10	$4.68 \mathrm{e}-6$						
40	35	5	$1.48 \mathrm{e}-5$						

Table 19: Reuters30k: $\Lambda_{M_{1}}$

Target	Dimension	k1	k2	M1	PCA M1	RMap M1 ($\alpha=\mathbf{2 0)}$		S-PCA M1	K-PCA M1	UMAP M1
						μ	σ			
	10	0	10	0.00062						
	10	2	8	$7.17 \mathrm{e}-5$						
	10	3	7	0.000112						
	10	4	6	0.000445	0.88	0.03	0.018	0.88	1.00	196.97
	10	5	5	$9.61 \mathrm{e}-6$						
	10	6	4	0.000127						
	10	7	3	$6.91 \mathrm{e}-5$						
	20	0	20	0.000577						
	20	2	18	$2.30 \mathrm{e}-5$						
	20	4	16	$6.20 \mathrm{e}-5$						
	20	5	15	0.000112						
	20	8	12	$2.88 \mathrm{e}-5$	0.85	0.03	0.020	0.85	1.00	394.25
	20	10	10	$8.41 \mathrm{e}-5$						
	20	12	8	$2.10 \mathrm{e}-5$						
	20	15	5	0.000129						
	20	18	2	0.000133						
	30	0	30	$1.83 \mathrm{e}-5$						
	30	2	28	NA						
	30	3	27	$1.50 \mathrm{e}-6$						
	30	5	25	$1.20 \mathrm{e}-4$						
	30	8	22	$3.25 \mathrm{e}-5$						
	30	10	20	$1.99 \mathrm{e}-5$						
	30	12	18	$2.53 \mathrm{e}-5$	0.83	0.02	0.017	0.84	1.00	679.72
	30	15	15	$7.05 \mathrm{e}-5$						
	30	18	12	$1.60 \mathrm{e}-5$						
	30	20	10	$7.19 \mathrm{e}-5$						
	30	25	5	$7.04 \mathrm{e}-5$						
	30	27	3	$2.16 \mathrm{e}-5$						
	40	0	40	$4.49 \mathrm{e}-5$						
	40	2	38	NA						
	40	4	36	$1.72 \mathrm{e}-4$						
	40	5	35	$8.02 \mathrm{e}-5$						
	40	8	32	$4.53 \mathrm{e}-6$						
	40	10	30	$5.61 \mathrm{e}-5$						
	40	15	25	$5.17 \mathrm{e}-7$	0.81	0.02	0.014	0.83	1.00	913.86
	40	16	24	$1.04 \mathrm{e}-5$						
	40	20	20	$4.85 \mathrm{e}-5$						
	40	25	15	$9.50 \mathrm{e}-6$						
	40	30	10	$4.60 \mathrm{e}-5$						
	40	35	5	$7.85 \mathrm{e}-5$						

Table 20: APTOS 2019: $\Lambda_{M_{1}}$

Target Dimension	k1	k2	M1	PCA M1	RMap M1 ($\alpha=20$)	
					μ	σ
10	0	10	0.006698			
10	1	9	0.000345			
10	2	8	0.000173			
10	3	7	$2.47 \mathrm{e}-5$	0.81	0.24	0.15
10	4	6	$2.98 \mathrm{e}-5$	0.81	0.24	0.15
10	5	5	$3.82 \mathrm{e}-5$			
10	6	4	$4.09 \mathrm{e}-5$			
10	7	3	$1.58 \mathrm{e}-5$			
20	0	20	$1.95 \mathrm{e}-3$			
20	2	18	$8.24 \mathrm{e}-5$			
20	3	17	$1.27 \mathrm{e}-5$			
20	4	16	$5.36 \mathrm{e}-5$			
20	5	15	$2.09 \mathrm{e}-5$			
20	8	12	$2.58 \mathrm{e}-5$	0.79	0.15	0.12
20	10	10	$2.76 \mathrm{e}-6$			
20	12	8	$4.15 \mathrm{e}-5$			
20	15	5	$7.27 \mathrm{e}-5$			
20	18	2	$8.11 \mathrm{e}-5$			
30	0	30	0.008812			
30	2	28	$6.57 \mathrm{e}-5$			
30	3	27	$9.98 \mathrm{e}-5$			
30	5	25	$9.81 \mathrm{e}-5$			
30	8	22	$3.99 \mathrm{e}-5$			
30	10	20	$4.82 \mathrm{e}-5$			
30	11	19	$1.57 \mathrm{e}-5$	0.78	0.15	0.08
30	12	18	$9.66 \mathrm{e}-5$			
30	15	15	$1.87 \mathrm{e}-5$			
30	18	12	$1.83 \mathrm{e}-5$			
30	20	10	$4.97 \mathrm{e}-5$			
30	25	5	$9.97 \mathrm{e}-6$			
30	27	3	8.88e-6			
40	0	40	0.002634			
40	2	38	$2.69 \mathrm{e}-4$			
40	4	36	6.84e-6			
40	5	35	$1.38 \mathrm{e}-4$			
40	8	32	$7.96 \mathrm{e}-5$			
40	10	30	$3.79 \mathrm{e}-5$			
40	15	25	$2.26 \mathrm{e}-5$	0.77	0.13	0.14
40	16	24	$9.11 \mathrm{e}-6$			
40	20	20	$6.41 \mathrm{e}-6$			
40	25	15	2.25e-6			
40	30	10	$7.04 \mathrm{e}-6$			
40	35	5	$2.02 \mathrm{e}-5$			

Table 21: DIV2k: $\Lambda_{M_{1}}$

Target Dimension	k1	k2	M1	PCA M1	RMap M1 ($\alpha=20$)	
					μ	σ
10	0	10	0.001538			
10	1	9	0.00092			
10	2	8	0.000219			
10	3	7	0.000219	0.66	0.05	0.029
10	4	6	0.0007	0.66	0.05	0.029
10	5	5	0.000289			
10	6	4	7.07e-5			
10	7	3	0.000231			
20	0	20	$3.01 \mathrm{e}-6$			
20	2	18	$7.61 \mathrm{e}-5$			
20	3	17	$9.13 \mathrm{e}-5$			
20	4	16	$3.25 \mathrm{e}-5$			
20	5	15	$9.80 \mathrm{e}-5$	0.58	0.04	0.027
20	8	12	0.000158			
20	10	10	0.000147			
20	12	8	$9.74 \mathrm{e}-5$			
20	15	5	$4.49 \mathrm{e}-5$			
20	18	2	0.00063			
30	0	30	0.000279			
30	2	28	0.000965			
30	3	27	$8.80 \mathrm{e}-5$			
30	5	25	0.000117			
30	8	22	0.00059			
30	10	20	0.000402	0.54	0.02	0.020
30	12	18	0.000163	0.54	0.02	0.020
30	15	15	0.000301			
30	18	12	7.46e-5			
30	20	10	0.000432			
30	25	5	0.000187			
30	27	3	0.000164			
40	0	40	0.000696			
40	2	38	0.000442			
40	4	36	$5.37 \mathrm{e}-5$			
40	5	35	$9.36 \mathrm{e}-5$			
40	8	32	$6.96 \mathrm{e}-5$			
40	10	30	0.00034	0.51	0.03	0.018
40	15	25	$8.92 \mathrm{e}-5$	0.51	0.03	0.018
40	16	24	$6.33 \mathrm{e}-5$			
40	20	20	$8.28 \mathrm{e}-6$			
40	25	15	0.000162			
40	30	10	4.00e-6			
40	35	5	0.000191			

[^0]: ${ }^{1}$ This assumption will help us in proving Lemma 6

[^1]: ${ }^{2}$ When U and V both are extremely large, a custom power iteration algorithm may be used to calculate only the top k_{1} singular vectors and singular values

[^2]: ${ }^{3}$ Code: https://github.com/S3-Lab-IIT/DiffRed

[^3]: ${ }^{4}$ except Bank, which has a low dimensionality to begin with.

[^4]: ${ }^{5}$ https://mespadoto.github.io/proj-quant-eval/
 ${ }^{6}$ https://huggingface.co/datasets/reuters21578

[^5]: ${ }^{7}$ https://github.com/S3-Lab-IIT/DiffRed

