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Abstract

Natural gradient methods have been used to
optimise the parameters of probability dis-
tributions in a variety of settings, often re-
sulting in fast-converging procedures. Unfor-
tunately, for many distributions of interest,
computing the natural gradient has a num-
ber of challenges. In this work we propose
a novel technique for tackling such issues,
which involves reframing the optimisation as
one with respect to the parameters of a sur-
rogate distribution, for which computing the
natural gradient is easy. We give several ex-
amples of existing methods that can be inter-
preted as applying this technique, and pro-
pose a new method for applying it to a wide
variety of problems. Our method expands
the set of distributions that can be efficiently
targeted with natural gradients. Further-
more, it is fast, easy to understand, simple to
implement using standard autodiff software,
and does not require lengthy model-specific
derivations. We demonstrate our method on
maximum likelihood estimation and varia-
tional inference tasks.

1 INTRODUCTION

Many problems in scientific research require the opti-
misation of probability distribution parameters. Such
problems are of fundamental importance in the fields
of machine learning and statistics. The goal of these
optimisations is to minimise a function f(θ) where
θ ∈ Θ is the parameter vector of a probability distribu-
tion q. Notable examples include maximum likelihood
estimation (MLE) and variational inference (VI).

When f is differentiable, the archetypal optimisation
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method is gradient descent (GD). GD takes steps in
the direction in parameter space that gives the great-
est decrease in f for an infinitesimally small step size,
which is equivalent to following the direction of the
negative gradient. While GD has many desirable prop-
erties, convergence can often be slow, and much effort
has been spent in designing methods that offer im-
proved convergence properties.

Natural gradient descent (NGD) is one such method
for optimising probability distribution parameters
(Amari, 1998). In contrast with GD, NGD moves the
parameters in the direction of steepest descent on a
manifold of probability distributions, where steepness
is defined with respect to a divergence measure be-
tween distributions. This notion of steepness is intrin-
sic to the manifold, and so it is not dependent on pa-
rameterisation, dispensing with a well-known pathol-
ogy of GD.

There are some distributions for which the natural gra-
dient can be computed efficiently. However, in its most
general form, computing the natural gradient involves
instantiating and inverting the Fisher information ma-
trix, defined as

F (θ) = Eqθ(x)

[
∇θ[log qθ(x)]∇θ[log qθ(x)]

⊤
]
, (1)

posing several challenges.1 First, for some distribu-
tions, the Fisher can become singular, in which case
the natural gradient is undefined. Second, it may not
be available in closed form, in which case it must be
estimated using sampling or other numerical methods.
Finally, instantiating and inverting it explicitly costs
O(m2) in memory and O(m3) in computation, for m
the number of parameters. For even moderately large
m, this can be prohibitively expensive.

In this paper we propose a simple technique for tack-
ling optimisation problems in which computing the
natural gradient is problematic. Namely, we reframe

1We use e.g. q, to refer to both a distribution and its
density function, with the intention made clear from con-
text. We will use a subscript, e.g. qθ, when we wish to
make the dependence on parameters explicit. Our gradi-
ent notation is explained in Appendix A.
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the problem as an optimisation with respect to a surro-
gate distribution q̃, for which computing natural gra-
dients is easy, and perform the optimisation in that
space. With a judiciously chosen surrogate, conver-
gence can be rapid.

We find that a number of existing methods can be in-
terpreted as applications of this technique: the natural
gradient VI method of Lin et al. (2019) for exponential
family mixtures, stochastic natural gradient expecta-
tion propagation (Hasenclever et al., 2017), a fixed-
point iteration scheme for optimising elliptical copulas
(Hernández et al., 2014), as well as the typical use
of natural gradients in large-scale supervised learning
settings. We also describe a new method for apply-
ing the technique to a wide variety of problems, using
exponential family (EF) surrogate distributions. Our
method is easy to understand, simple to implement
using standard autodiff software, and does not require
the use of lengthy model-specific derivations.

We present a number of experiments in which we find
that our method significantly reduces the time to con-
vergence compared to existing best-practice methods,
both in number of iterations and wall-clock time. Our
experiments consist of a variety of MLE and VI tasks,
but we note that the method is applicable more gen-
erally to optimisations involving probability distribu-
tions, or indeed to any optimisation in which we think
a manifold of probability distributions may serve as a
useful surrogate for the solution space.

Our main contributions can be summarised as follows:

1. We propose a novel technique for optimising prob-
ability distribution parameters.

2. We prove the validity of this technique under
stated conditions.

3. We find several examples of existing methods that
can be viewed as applying this technique.

4. We describe a simple new method for applying it,
using known properties of EF distributions.

5. We present a variety of MLE and VI experiments
in which our method achieves significantly faster
convergence than existing best-practice methods.

This paper is structured as follows. In Section 2 we
provide a brief overview of NGD and EF distributions.
Section 3 covers items 1 and 4 of the contributions
above, as well as an overview of item 2 (details found
in Appendix B). Sections 4 and 5 cover items 5 and 3
respectively. Finally, in Section 6, we discuss limita-
tions of our method, and avenues for future research.

2 BACKGROUND

In this section we begin with an overview of NGD.
We then briefly describe a class of distribution families
for which we can efficiently compute natural gradients,
namely exponential families. NGD and EF distribu-
tions will together serve as a foundation for the method
we introduce in Section 3.

2.1 Natural Gradient Descent

NGD updates the parameters of a distribution q by
taking a step proportional to the gradient of the ob-
jective f , preconditioned by the inverse of the Fisher
matrix of q. That is, the update in parameters at step
t of the optimisation is given by

θt+1 = θt − ϵt[F (θt)]
−1∇f(θt) (2)

where F (θ) is given by (1). The step size ϵt may follow
some pre-defined schedule, or be found by line search.
It can be shown that as ϵt → 0+, update (2) moves θ in
the direction of steepest descent in f , on the manifold
of probability distributions spanned by q, where steep-
ness is defined with respect to a divergence measure
between distributions (Ollivier et al., 2017). Because
this notion of steepness is intrinsic to the manifold,
NGD is locally invariant to parameterisation.

When NGD is applied to MLE objectives, it is Fisher-
efficient (Amari, 1998), and can be seen as a ro-
bust approximation to Newton’s method (Martens and
Grosse, 2015). These properties do not, in general, ap-
ply outside of this setting. Nevertheless, natural gra-
dient methods have been applied in several other set-
tings, often resulting in rapidly converging procedures
(Kakade, 2001; Hoffman et al., 2013; Khan et al., 2017;
Hasenclever et al., 2017).

2.2 Exponential Family Distributions

In this section we provide a brief introduction to EF
distributions, whose properties support efficient natu-
ral gradient computation.

The EF of distributions defined by the vector-valued
statistic function t and base measure ν, has density

qη(x) = ν(x) exp
(
t(x)⊤η −A(η)

)
, (3)

where A is the log partition function, and η are the
natural parameters. When the components of t are
linearly independent, the family is said to be minimal.

There is an alternative parameterisation of q, given by

µ(η) = Eqη(x)[t(x)], (4)

where µ are known as the themean parameters of q. In
minimal families the correspondence between η and µ
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is one-to-one, and we denote the reverse map as η(.).2

In this paper we will only consider minimal EFs.

Notable examples of EF distributions include the mul-
tivariate normal, gamma, categorical, and Dirichlet
distributions to name but a few.

Let fη and fµ be functions related by fη = fµ◦µ. It is a
remarkable property of EFs that the natural gradients
of fη and fµ with respect to η and µ, respectively, are
given by

[F (η)]−1∇fη(η) = ∇fµ(µ(η)) (5)

[F (µ)]−1∇fµ(µ) = ∇fη(η(µ)). (6)

That is, the natural gradient in one parameterisation
is simply given by the regular gradient with respect
to the other (Hensman et al., 2012). Provided that
we have an efficient way of converting between nat-
ural and mean parameters, this allows us to compute
the natural gradient without explicitly instantiating or
inverting F (θ).

3 METHOD

The exponential families introduced in Section 2 pro-
vide us with a relatively rich set of distributions for
which we can efficiently compute natural gradients.
However, there are many distributions outside of this
set for which computing natural gradients remains dif-
ficult. In this section, we present details of our tech-
nique, which expands the set of distributions that we
can efficiently target with natural gradients.

3.1 Surrogate Natural Gradient Descent

The main idea in this paper is simple. When faced
with an optimisation objective f(θ), where θ ∈ Θ are
the parameters of a distribution q for which computing
the natural gradient update is problematic, we solve
the problem in two steps. First, we re-parameterise f
as a function of some other parameters θ̃ ∈ Θ̃, related
by θ = g(θ̃), and define the reparameterised objective

f̃(θ̃) = f(g(θ̃)). (7)

Second, we interpret θ̃ as the parameters of a surrogate
distribution q̃, for which computing natural gradients
is easy, and then perform NGD in f̃ with respect to q̃
and θ̃. That is, we perform a sequence of updates

θ̃t+1 = θ̃t − ϵt[F̃ (θ̃t)]
−1∇f̃(θ̃t), (8)

2Due to our overloaded use of µ and η to denote both
specific parameters and maps between parameterisations,
we will use e.g. µ(.) to disambiguate the latter if the in-
tention is not clear from context.

where F̃ (θ̃) is the Fisher information matrix of q̃. We
refer to q and q̃ as the target and surrogate distribu-
tions respectively. Update (8) has the straightforward
interpretation of performing preconditioned GD in a
reparameterised objective. Upon converging to a local
minimiser θ̃∗ of f̃ , a solution to the original problem
is obtained by θ∗ = g(θ̃∗). We call this technique sur-
rogate natural gradient descent (SNGD).

As a simple example, when q is a multivariate Stu-
dent’s t distribution with known degrees of freedom ν,
we can choose q̃ to be multivariate normal. If θ̃ con-
tains the mean and scale matrix parameters of q̃, and
θ the mean and covariance matrix of q, then a natural
choice for g is simply the identity map on Θ̃ = Θ.

It is natural to question which properties SNGD shares
with NGD under q. Given that SNGD is NGD (with
respect to q̃), it remains locally invariant to parameter-
isation, and performs steepest descent in a statistical
manifold (that of q̃). What is not guaranteed, is that
the statistical manifold of q̃ remains useful for the op-
timisation of f̃ . For example, in MLE settings, SNGD
will not in general retain the asymptotic efficiency of
NGD under q. However, what it gains is tractability,
and as we demonstrate in Section 4, the practical per-
formance benefits can be significant. In some cases,
remarkably, SNGD can actually outperform NGD un-
der q, with respect to both the original parameters θ,
and the reparameterisation defined by g.

3.2 Choice of Surrogate

The performance of SNGD relies crucially on appro-
priate choices for q̃ and g. A natural assumption would
be that q̃θ̃ should be an approximation to qg(θ̃), and in
some cases this can be a useful guide. However, often
an effective surrogate can be found that has support
over an entirely different space than that of q; in fact,
this is true for most of the examples in this paper, as
can be seen in Table 1.

A more general principle is that a surrogate should
be chosen such that θ̃ has similar local effects on
Kullback-Leibler (KL) divergences in q than it does
in q̃. More specifically, the effect of a small (infinitesi-
mal) perturbance δ in θ̃ should have a similar impact
on the KL divergence from q̃θ̃+δ to q̃θ̃ as it does on that

from qg(θ̃+δ) to qg(θ̃).
3 That is, at δ = 0, we would like:

∇δ

(
KL
[
q̃θ̃+δ

∥∥ q̃θ̃
])

= ∇δ

(
KL
[
qg(θ̃+δ)

∥∥ qg(θ̃)
])

. (9)

If equality (9) is satisfied then SNGD will move in the
same direction in θ̃ as NGD under (reparameterised) q
(see Appendix G for details). Finding tractable surro-
gates for which equality holds exactly will not typically

3See Appendix G for a definition of the KL divergence.
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be possible, but this motivates choosing q̃, g, for which
it is approximately true.

3.3 Equivalence with Optimisation of f

In Appendix B we prove a number of results regarding
the validity of SNGD, which we summarise here.

Let Θ and Θ̃ be open subsets of Ri and Rj respectively,
with i ≤ j. Let g : Θ̃→ Θ be twice differentiable, with
Jacobian of rank i everywhere, and with g(Θ̃) = Θ.
Finally, let f : Θ → R be twice continuously differen-
tiable, and define f̃ = f ◦ g.

Under these conditions, optimising f̃ is equivalent to
optimising f in the following sense: finding a local
minimiser of f̃ also gives us a local minimiser for f ,
and all local minima of f are attainable through f̃ .
Furthermore, f̃ does not have any non-strict saddle
points that are not also present at the corresponding
points in f , and so f̃ does not introduce any additional
spurious attractors (Lee et al., 2016).

3.4 Exponential Familly Surrogates

In this paper we choose q̃ from the set of EF distribu-
tions described in Section 2, allowing us to perform up-
date (8) efficiently without explicitly instantiating or
inverting F̃ (θ̃). Algorithm 1 provides pseudocode for
an implementation of SNGD when Θ̃ is either the mean
or natural domain of an EF. It assumes the existence
of an autodiff operator grad, and an overloaded func-
tion dualparams, which maps from natural to mean
parameters, or vice-versa, depending on the type of
its argument. A full explanation of Algorithm 1 can
be found in Appendix C.1.

Algorithm 1 SNGD with EF surrogate

Require: objective f : Θ→ R
Require: parameter mapping g : Θ̃→ Θ
Require: initial surrogate parameters θ̃0 ∈ Θ̃
Require: step size schedule {ϵt ∈ R+ : t = 0, 1, ...}

f̃dual(.) := f(g(dualparams(.)))
t← 0
while not converged do
∇̃ ← grad[f̃dual](dualparams(θ̃t))
θ̃t+1 ← θ̃t − ϵt∇̃
t← t+ 1

end while
return g(θ̃t)

The domains of valid natural and mean parameters of
an EF are open convex sets. It is possible that finite-
length NGD steps in these parameters can move out-
side of the valid domain. These steps can be corrected
by using a backtracking linesearch, an approach taken

in previous work on natural gradients (Khan and Lin,
2017). However, we find that when this is required,
the backtracking typically occurs so infrequently as to
have a relatively small impact on performance.

3.5 Auxiliary Parameters

In some cases, a chosen surrogate’s parameters, θ̃, may
not be sufficient to fully specify θ. To handle such
cases, we can generalise SNGD by augmenting θ̃ with
an additional vector of parameters, λ ∈ Λ, that are
not optimised with natural gradients. Our reparame-
terised objective is then given by

f̃(θ̃, λ) = f(g(θ̃, λ)). (10)

We optimise (10) by updating θ̃ using natural gradi-
ents as before, and λ using standard gradient-based
techniques, either jointly or in alternation. For exam-
ple, we can apply the sequence of updates

θ̃t+1 = θ̃t − ϵt[F̃ (θ̃t)]
−1∇θ̃f̃(θ̃t, λt), (11)

λt+1 = λt − εt∇λf̃(θ̃t, λt), (12)

where ϵt, εt are the step sizes for θ̃, λ, respectively at
time t. Update (12) corresponds to GD in λ, but we
may equally use any other first-order optimiser.

Revisiting our example from Section 3.1, if q is a multi-
variate Student’s t distribution, but now with unknown
degrees of freedom ν, we can again directly map from
θ̃, which contains the location and scale matrix param-
eters of q̃, to the mean and covariance of q. ν has no
analogue in the multivariate normal distribution how-
ever, and so we can capture this with λ = (ν). g can
then simply be the identity map on Θ̃× Λ = Θ.4

This extension expands the set of distributions that
can be targeted by SNGD. Pseudocode for this exten-
sion is given in Appendix C.2, with examples appear-
ing in the experiments of Sections 4.2 and 4.3.

4 RESULTS

In this section we present a number of experiments
demonstrating the utility of SNGD. Natural gradi-
ent methods have been used in a variety of settings,
but perhaps most extensively for MLE (Amari, 1998;
Bernacchia et al., 2018; Martens and Grosse, 2015; Ren
and Goldfarb, 2019; Roux et al., 2007) and VI (Hoff-
man et al., 2013; Khan and Lin, 2017; Khan et al.,
2017, 2018; Lin et al., 2019; Salimbeni et al., 2018).
We therefore used a variety of MLE and VI tasks as
test cases.

4In practice it would be preferable to choose λ = (log ν),
with g adjusted accordingly, so that optimisation of λ is
unconstrained.
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Table 1: Summary of the surrogate-target pairs appearing in this paper, with links to the relevant sections. For
the sake of readability we have omitted the conventional multivariate prefix from distribution names, as this
information is conveyed by the support. Parameter mappings for these examples are found in Appendix E.

TARGET SURROGATE

DISTRIBUTION SUPPORT DISTRIBUTION SUPPORT SECTION

Negative binomial N Gamma R+ 4.1
Negative binomial mixture N Gamma mixture model R+ × {1, ..., k} 4.4
Skew-normal Rd Normal Rd 4.2
Skew-normal mixture Rd Normal mixture model Rd × {1, ..., k} 4.4
Skew-t Rd Normal Rd 4.2
Elliptical copula [0, 1]d Zero-mean normal Rd 4.3

In MLE the goal is to find parameters θ of distribution
q that maximise the (log) likelihood of observed data
{xi}ni=1 under q. That is, the objective function for
MLE tasks is of the form

f(θ) = −
n∑

i=1

log qθ(xi). (13)

In VI we are given a generative model p(x)p(D | x),
and observed data D, and the goal is to find param-
eters θ of distribution q that minimise the Kullback-
Leibler (KL) divergence from q to the posterior p(x|D).
The objective function for VI tasks is of the form

f(θ) = −Eqθ(x)

[
log

p(D, x)
qθ(x)

]
. (14)

It can be shown that minimising (14) is equivalent to
maximising a lower bound on the log marginal likeli-
hood: log p(D). In the VI experiments of this section,
gradients of (14) were estimated by applying the repa-
rameterisation trick (Kingma and Welling, 2014) to
the target distribution.

In each experiment, we compared SNGD with a num-
ber of baselines. For tasks that were small scale, and
had objectives that could be computed deterministi-
cally, we compared SNGD with two baselines: GD and
BFGS (Nocedal and Wright, 2006). In these cases, we
used exact line search to determine step sizes for each
method, in order to compare search direction inde-
pendent of hyperparameter settings. For larger tasks,
or where only stochastic estimates of f were available
(minibatched or VI experiments), we used Adam as
the standard baseline, and used grid search to deter-
mine the best hyperparameters for each method.

Further details of all experiments are given in Ap-
pendix D. A summary of surrogate-target pairs used
for SNGD in these experiments can be found in Table
1, and details of parameter mappings can be found in
Appendix E.

We display average training curves for each experi-
ment, with error bars corresponding to 2 standard er-
rors, computed across 10 random seeds. In Appendix
F we plot Pareto frontiers, showing the best perfor-
mance achieved by any hyperparameter setting, as a
function of both iteration count and wall-clock time.

In this section we use n to denote the number of train-
ing data points, and d for the dimensionality of the
random variable under q. For brevity, we omit the con-
ventional multivariate prefix from distribution names
in this section, as this is implicit for d > 1.

4.1 Negative Binomial Distribution

The negative binomial distribution is widely used for
modelling discrete data (Fisher, 1941; Lloyd-Smith
et al., 2005; Lloyd-Smith, 2007; Orooji et al., 2021;
Kendall et al., 2023). Maximum likelihood estimates
of the negative binomial parameters are not available
in closed form, and must be found numerically.

Let θ = (r, s) be the parameters of the negative bino-
mial distribution with probability mass function

q(x) =

(
x+ r − 1

x

)
(1− s)xsr. (15)

The gamma distribution can be seen as a continuous
analogue of the negative binomial, and as it is a EF,
it is a natural choice of surrogate when targeting the
negative binomial with SNGD.

Let q̃, therefore, be the gamma distribution with pa-
rameters α, β and probability density function

q̃(x) =
βα

Γ(α)
xα−1 exp−βx . (16)

Guenther (1972) used the gamma distribution to ap-
proximate the CDF of the negative binomial, using the
mapping (r, s) = (α/(1 − β), β). Let g be the equiva-
lent mapping, but defined in terms ofmean parameters
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of q̃. To ensure that r and s correspond to valid nega-
tive binomial parameters, we restrict Θ to the subset
of gamma mean parameters for which β < 1.5 Finally,
let f be defined as (13), where {xi}ni=1 is the dataset
of Fisher (1941), consisting of counts of ticks observed
on a population of sheep (n=82, d=1).

Using these definitions, we applied Algorithm 1, mod-
ified to use a line search as discussed at the start of
this section. We compared SNGD with our standard
baselines: GD and BFGS. Additionally, this task was
sufficiently small that we were able to compare with
NGD under q by estimating and inverting the Fisher
directly.

Figure 1 shows that SNGD outperformed all of the
baselines. Remarkably, this included NGD under q;
this surprising result is explored in detail in Appendix
H. There, we show that this was true even when NGD
was performed with respect to the reparameterisation
defined by g, implying that this is not simply an arte-
fact of SNGD using a more effective parameterisation;
rather, it is the change of parameterisation and distri-
bution that results in such rapid convergence.

Figure 1: Negative binomial MLE on the sheep
dataset. (left) Training curves. (right) Histogram
of the observed counts, overlaid with the PDF of the
gamma surrogate of SNGD at convergence.

4.2 Skew-Elliptical Distributions

The skew-elliptical distributions are a flexible family
of unimodal multivariate distributions, allowing for
features such as asymmetry and heavy tails (Azza-
lini, 2013). In this section we consider in particular
the skew-normal and skew-t distributions. The skew-
normal can be viewed as an asymmetric generalisation
of the normal distribution. Similarly, the skew-t can
be viewed as an asymmetric generalisation of the Stu-
dent’s t distribution.

The normal distribution is a natural surrogate for
these distributions. We used it as such in a number
of experiments, mapping its mean and covariance to

5It can be shown that Θ remains an open convex set.

Figure 2: Training curves for MLE on the miniboone
dataset (n=32,840, d=43) using (left) skew-normal,
and (right) skew-t distributions.

parameters playing similar roles in the target distri-
butions, with any other parameters captured by λ, as
outlined in Section 3.5.

We performed two tasks on real data in our exper-
iments. In the first, the skew-elliptical distributions
were used for density estimation on the UCI mini-
boone dataset (n=32,840, d=43) (Roe, 2010), fitting
their parameters via MLE. In the second, they were
used as approximate posteriors in VI for a Bayesian
logistic regression model on the UCI covertype dataset
(Blackard, 1998); in this task we used a small subsam-
ple of observations in order to retain some uncertainty
in the posterior (n=500, d=53). We also performed a
further MLE experiment using high-dimensional syn-
thetic data (n=10,000, d=1,000).

Note that the numbers of free parameters in these opti-
misations wereO(d2) due to the covariance-like param-
eters of the target distributions. The skew-normal dis-
tribution had 1,032, 1,537, and 502,500 parameters in
the miniboone, covertype, and synthetic experiments,
respectively. For the skew-t distribution those num-
bers were 1,033, 1,537, and 502,501.

Figures 2, 3 and 4 show training curves from the
miniboone MLE, covertype VI, and synthetic MLE
experiments, respectively. In all cases SNGD signif-
icantly outperformed Adam. In the particular case
of the skew-normal VI experiment, it was also possi-
ble to apply the natural gradient method of Lin et al.
(2019) based on minimal conditional exponential fam-
ily (MCEF) distributions, and so we included this as
an additional baseline; its performance was virtually
identical to that of SNGD, however, we note that this
method can itself be viewed as applying SNGD, a point
we discuss further in Section 5.

4.3 Elliptical Copulas

Copula models define a distribution on the unit hyper-
cube [0, 1]d, for which each of the marginals is uniform
on [0, 1]. If x ∈ [0, 1]d is distributed according to cop-
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Figure 3: Training curves for Bayesian logistic regres-
sion VI on the covertype dataset (n=500, d=53) using
(left) skew-normal, and (right) skew-t approximations.
MCEF corresponds to the natural gradient VI method
of Lin et al. (2019).

Figure 4: Training curves for MLE on a synthetic
dataset (n=10,000, d=1,000) using (left) skew-normal,
and (right) skew-t distributions.

ula q, and yi = P−1
i (xi), where P−1

i is the inverse
CDF of a distribution qi, then yi will have marginal
distribution qi. The yi will be dependent in general,
with dependence structure determined by q(x).

Copula models are widely used in finance for modelling
high-dimensional variables, in part because they allow
marginal distributions to be modelled separately from
the dependence structure (Dewick and Liu, 2022).

The class of elliptical copulas are defined as those cop-
ulas which can be used to generate elliptical distribu-
tions (Frahm et al., 2003). Common examples are the
Gaussian and t copulas. Elliptical copulas are parame-
terised by a correlation matrix R, as well as a (possibly
empty) set of additional parameters.

A simple way to target elliptical copulas with SNGD
is to use a zero-mean normal surrogate, mapping its
correlation matrix to R. Any additional parameters
may then be captured by λ, as outlined in Section 3.5.

We used this approach to perform MLE of the t-copula
on 5 years of daily stock returns from the FTSE 100
universe (n=1,515, d=93), with marginals estimated
as (univariate) Student’s t distributions. In this ex-
periment q had 4,279 free parameters. Figure 5 shows
that SNGD converged significantly faster than Adam.

Figure 5: t-copula MLE using 5 years of daily stock
return data (n=1,515, d=93). (left) Training curves.
(right) Contours of a 2D marginal density from the
fitted copula, overlaid with the training data.

4.4 Mixture Distributions

Amixture distribution expresses a complicated density
as a convex combination of k simpler densities:

q(x) =

k∑
i=1

πiqθi(x), (17)

where π ∈ ∆k−1, and qθi is known as the i-th com-
ponent distribution. For each mixture, we can also
define a corresponding mixture model, a joint distri-
bution, with density

q(z, x) = πzqθz (x), (18)

where the mixture component identity, z ∈ {1, ..., k},
is treated as a random variable. Note then, that
q(x) =

∑k
i=1 q(z = i, x). That is, a mixture model

has a mixture as its marginal. A mixture of EFs is not
in general itself an EF. However, it can be shown that
the corresponding mixture model (joint distribution)
is an EF (see Appendix J).

When an EF is an appropriate surrogate for applying
SNGD to a given target family, it is therefore straight-
forward to consider the extension to mixtures of that
family by using an EF mixture model as a surrogate.
We emphasise that in doing so, the surrogate distribu-
tion has support over more variables (z and x) than
the target distribution (just x).

In Section 4.1 we demonstrated the use of a gamma
surrogate for optimising negative binomial distribution
parameters with SNGD. It is therefore straightforward
to use a gamma mixture model to target a negative
binomial mixture. As an experiment, we performed
MLE of a 5 component negative binomial mixture, us-
ing a dataset consisting of the number of daily COVID-
19 hospital admissions in the UK over a 3 year period
(n=1,120, d=1). Figure 6 shows that SNGD signifi-
cantly outperformed our baselines.

As a further example, similarly, we can use a normal
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Figure 6: Negative binomial mixture MLE (k=5) using
the number of daily COVID hospital admissions in the
UK over a 3 year period (n=1,120, d=1). (left) Train-
ing curves. (right) Histogram of the observed counts,
overlaid with the PDF of (a marginal of) the gamma
mixture model surrogate of SNGD at convergence.

mixture model as the surrogate for a skew-normal mix-
ture. Figure 7 shows the qualitative improvement a
skew-normal mixture can offer over a normal mixture
on the Bayesian logistic regression VI task of Murphy
(2012) (n=60, d=2). Figure 8 shows training curves
for this task, as well as for the UCI covertype VI task
of Section 4.2. In the latter, q had 4,613 and 7,689 free
parameters for k=3, 5, respectively.

k = 1 k = 3 k = 5 GT

Figure 7: Comparison of (top) normal and (bottom)
skew-normal mixture posterior approximations in the
Bayesian logistic regression VI task of Murphy (2012).
Ground truth (GT) generated using MCMC samples.

5 RELATED WORK

Several existing methods can be interpreted as exam-
ples of the general technique presented in this paper.

Lin et al. (2019) introduced the class of MCEF dis-
tributions, and showed that natural gradients with re-
spect to a particular parameterisation of MCEF distri-
butions can be efficiently computed using an identity
analogous to (5). They also showed that several stan-
dard distributions can be expressed as marginals of
MCEF distributions, including the multivariate Stu-
dent’s t and multivariate skew-normal distributions.

Figure 8: Training curves for Bayesian logistic regres-
sion VI with a skew-normal mixture approximation.
(left) the toy dataset of Murphy (2012) (n=60, d=2),
and (right) UCI covertype (n=500, d=53). k is the
number of mixture components.

They then used NGD with respect to the MCEF joint
as a surrogate for its marginal in a number of VI tasks.
This mismatch between the surrogate and target dis-
tributions (our terminology) was not explicitly dis-
cussed by Lin et al. (2019), possibly because the two
were so closely related (by marginalisation). SNGD
is more general in that it makes no such assumption
about the relationship between surrogate and target
distributions. In particular, it is not restricted to tar-
gets that can be expressed as the marginal of a MCEF
(or any other) distribution.

The stochastic natural gradient expectation propaga-
tion (SNEP) algorithm of Hasenclever et al. (2017)
solves a saddle-point optimisation problem, with the
inner optimisation being over a set of parameters {ηi}
known as the site parameters. The site parameters
jointly parameterise a set of distributions for which
computing natural gradients is not straightforward.
SNEP instead treats each ηi as if it were the natu-
ral parameter vector of a EF distribution in its own
right, and performs NGD in the dual (mean parame-
ter) space. These (pseudo)distributions acted as sur-
rogates for the more problematic set of distributions
that were the ultimate targets of the optimisation.

Hernández et al. (2014) devised a fixed-point itera-
tion scheme for optimising the correlation matrix pa-
rameter of an elliptical copula. Interestingly, although
their procedure was motivated in an entirely different
way, the resulting updates for R are identical to those
performed by SNGD when applied in the manner de-
scribed in Section 4.3.

In supervised learning, the goal is to model the
conditional density q(y|x) given training data D =
{(xi, yi)}ni=1. In this setting the Fisher matrix
is usually defined with respect to the distribution
pD(x)qθ(y|x), where pD(x) is the empirical distribu-
tion of x under D. In practice, when the data set
is large, the Fisher must be computed with respect
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to some subset of the training inputs S, such as
the current minibatch. This is equivalent to using
pS(x)qθ(y|x) as a surrogate for pD(x)qθ(y|x), where
pS(x) is the empirical distribution of x in S. In the
context of supervised deep learning, Ren and Goldfarb
(2019) showed that exact natural gradients with re-
spect to pS(x)qθ(y|x) can be computed efficiently when
|S| is small.

Several works have attempted to handle intractability
of the natural gradient in other ways. Some meth-
ods are based on structured approximations to the
Fisher, that allow inverse vector products to be com-
puted efficiently (Heskes, 2000; Martens and Grosse,
2015; George et al., 2018). Garcia et al. (2023) instead
approximated the inverse Fisher matrix directly by ex-
pressing it in terms of the solution to an optimisation
problem. The widely used Adam optimiser employs
a moving average of squared gradients in a diagonal
approximation to the Fisher (Kingma and Ba, 2014),
although it has been cautioned that this is more ac-
curately viewed as an approximation to the empirical
Fisher (Kunstner et al., 2019).

6 DISCUSSION

In this work we proposed a novel technique for op-
timising functions of probability distribution parame-
ters: reframing the objective as an optimisation with
respect to a surrogate distribution for which comput-
ing natural gradients is easy, and performing optimi-
sation in that space. We found several existing meth-
ods that can be interpreted as applying this technique,
and proposed a new method based on EF surrogates.
We demonstrated that our method is able to converge
rapidly on a variety of MLE and VI tasks. We believe
our method can be readily applied to distributions out-
side of the set of examples given here. We also expect
that new methods can be found by applying the more
general technique that motivated our method.

The main limitation of our method is the need to find a
suitable surrogate and reparameterisation for a given
target distribution. In some cases there is an obvi-
ous candidate, such as when an EF distribution could
serve as an approximation for the target, or when the
target can be viewed as an EF that has been warped
or transformed in some way. However, for most of the
examples in this paper, the target and surrogate distri-
butions do not even have support over the same space
(see Table 1). Our choices of surrogates were largely
guided by the intuition that θ̃ should have similar local
effects on KL divergences in q than it does in q̃. How-
ever, finding more prescriptive or systematic methods
for choosing surrogates would be beneficial, and may
be an interesting direction for future work.
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1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes, see Section 3 and Appendix B.]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes, see Appendix C.1.]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes, see Appendix D.]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes, see Section 3.3
and Appendix B.]

(b) Complete proofs of all theoretical results.
[Yes, see Appendix B.]

(c) Clear explanations of any assumptions. [Yes,
see Section 3.3 and Appendix B.]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes, see Appendix D.]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes,
see Appendix D.]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes, see Appendix D.]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes, see Appendix D.]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
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(a) Citations of the creator If your work uses ex-
isting assets. [Yes, see Appendix D.]

(b) The license information of the assets, if ap-
plicable. [Yes, see Appendix D.]
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rial or as a URL, if applicable. [Not Applica-
ble.]
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(e) Discussion of sensible content if applicable,
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(IRB) approvals if applicable. [Not Appli-
cable.]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable.]
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A GRADIENT NOTATION

In this section we introduce our notation for gradients and related quantities. We largely follow the notation of
Bertsekas (1997), with one addition. For function f : Rm → R, the gradient at x, assuming all partial derivatives
exist, is given by

∇f(x) =
[
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xm

]⊤
. (19)

Note, in particular, that this implies ∇f(g(y)) is the gradient of f evaluated at x = g(y). The Hessian of f ,
denoted ∇2f(x), is the matrix with entries given by[

∇2f(x)
]
ij
=

∂2f(x)

∂xi∂xj
. (20)

If f : Rm+n is a function of x ∈ Rm and y ∈ Rn, then

∇xf(x, y) =

[
∂f(x, y)

∂x1
,
∂f(x, y)

∂x2
, . . . ,

∂f(x, y)

∂xm

]⊤
(21)

with ∇yf(x, y) defined similarly.

When f : Rm → Rn is a vector valued function, the gradient matrix of f , denoted ∇f(x), is the transpose of the
Jacobian of f . That is, the matrix with i-th column equal to the gradient of fi, the i-th component of f :

∇f(x) = [∇f1(x) ... ∇fn(x)] . (22)

Finally (our addition), where ∇ is immediately followed by a bracketed expression, we use this to denote the
gradient of an anonymous function, with definition given by the bracketed expression, and gradient taken with
respect to the subscript, e.g.

∇x(2f(x)) = 2∇f(x), (23)

and in these cases (only), evaluation of the gradient at, e.g. x = g(y), is denoted

∇x(2f(x))
∣∣
g(y)

. (24)

B EQUIVALENCE WITH OPTIMISATION OF f

In this appendix we show that under certain conditions, optimising f̃ is equivalent to optimising f in the following
sense: finding a local minimiser of f̃ also gives us a local minimiser for f (Proposition 1), and all local minima
of f are attainable through f̃ (Proposition 2). Furthermore, we show that f̃ does not have any non-strict saddle
points that are not also present at the corresponding points in f (Proposition 5, with support from Propositions
3 and 4).

Note that the results derived here are more general than those that are summarised in Section 3.3. The conditions
stated in that section are sufficient to cover all of the examples appearing in this paper. In this appendix we use
notation mirroring the method of Section 3.1, but the results apply equally to the extension of Section 3.5 if we
replace Θ̃ with the product manifold Θ̃× Λ below.

Let Θ and Θ̃ be differentiable manifolds of dimension i and j respectively, where i ≤ j. Let g : Θ̃ → Θ be a
twice differentiable submersion on θ̃, with g(Θ̃) = Θ. Let f : Θ → R be twice continuously differentiable, and
define f̃ = f ◦ g.
Proposition 1. f̃ has a local minimum at θ̃∗ if and only if f has a local minimum at θ∗ = g(θ̃∗)

Proof. First we prove the statement: f has a local minimum at θ∗ = g(θ̃∗)⇒ f̃ has a local minimum at θ̃∗.

From the definition of a local minimum, there exists a neighbourhood of θ∗, V such that

f(θ∗) ≤ f(θ) ∀ θ ∈ V. (25)
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Because g is a continuous map, the preimage of V, U = g−1(V), is an open set which by construction contains
θ̃∗, and is therefore a neighbourhood of θ̃∗. The result then follows

f(θ∗) ≤ f(θ) ∀ θ ∈ V
⇒ f(g(θ̃∗)) ≤ f(g(θ̃)) ∀ θ̃ ∈ U
⇒ f̃(θ̃∗) ≤ f̃(θ̃) ∀ θ̃ ∈ U

(26)

Finally, we prove the statement: f̃ has a local minimum at θ̃∗ ⇒ f has a local minimum at θ∗ = g(θ̃∗).

From the definition of a local minimum, there exists a neighbourhood of θ̃∗, U such that

f̃(θ̃∗) ≤ f̃(θ̃) ∀ θ̃ ∈ U (27)

By assumption g is a submersion and therefore a continuous open map. Because U is an open set containing θ̃∗,
V = g(U) must also be an open set containing θ∗. Finally, then

f̃(θ̃∗) ≤ f̃(θ̃) ∀ θ̃ ∈ U
⇒ f(g(θ̃∗)) ≤ f(g(θ̃))∀ θ̃ ∈ U
⇒ f(θ∗) ≤ f(θ)∀ θ ∈ V

(28)

Proposition 2. For any local minimiser θ∗ of f , ∃θ̃∗ ∈ Θ̃ that is a local minimiser of f̃ s.t. θ∗ = g(θ̃∗)

Proof. g(Θ̃) = Θ⇒ ∃θ̃∗ ∈ Θ̃ s.t. θ∗ = g(θ̃∗). The result then follows from Proposition 1.

Proposition 3. f̃ has a local maximum at θ̃ if and only if f has a local maximum at θ = g(θ̃)

Proof. This follows from Proposition 1 by symmetric arguments.

Proposition 4. f̃ has a saddle point at θ̃ if and only if f has a saddle point at θ = g(θ̃)

Proof. First, we prove the following statement: f̃ has a critical point at θ̃ ⇔ f has a critical point at θ = g(θ̃).

Let θ̃ and θ = g(θ̃) be represented as co-ordinates for some charts at those points, with f , g, f̃ defined similarly.
Then the statement about critical points can be expressed as follows

∇f̃(θ̃) = 0 ⇔ ∇f(g(θ̃)) = 0 (29)

where 0 is a vector of zeros. To show that ∇f̃(θ̃) = 0 ⇒ ∇f(g(θ̃)) = 0, we have

∇f̃(θ̃) = ∇g(θ̃)∇f(g(θ̃)) (30)

where ∇g(θ̃) is the transposed Jacobian of g (see Appendix A for an explanation of this notation) and has full
column rank due to g being a submersion, and so:

∇g(θ̃)∇f(g(θ̃)) = 0⇒ ∇f(g(θ̃)) = 0. (31)

For the other direction, ∇f(g(θ̃)) = 0⇒ ∇f̃(θ̃) = 0, trivially,

∇f̃(θ̃) = ∇g(θ̃)∇f(g(θ̃))
= ∇g(θ̃)0
= 0.

(32)

Having proven correspondence of critical points, we can proceed to prove the proposition statement in two parts.

First, if f̃ has a saddle point at θ̃, then f must have a critical point at θ = g(θ̃). However, from Propositions 1
and 3, we know that this cannot be a local minimum or local maximum, and hence must be a saddle point.

Second, in the other direction, if f has a saddle point at θ = g(θ̃), then f̃ has a critical point at θ̃, which by
similar reasoning must also be a saddle point.



Optimising Distributions with Natural Gradient Surrogates

Proposition 5. If f̃ has a non-strict saddle point at θ̃ then f has a non-strict saddle point at θ = g(θ̃)

Proof. From Proposition 4, we know that if f̃ has a non-strict saddle point at θ̃, then f must have a saddle point
at θ = g(θ̃). It remains to be proven that the saddle point at θ must be a non-strict saddle point. We do this by
contradiction. Let us assume that the saddle point of f at θ = g(θ̃) is strict.

Let θ̃, θ be represented as co-ordinates for some charts at those points, with f , g, f̃ defined similarly. Furthermore,
let Hf = ∇2f̃(θ̃), Hf̃ = ∇2f(g(θ̃)) be the Hessians of f and f̃ , at θ̃ and θ = g(θ̃), respectively. Then,

Hf̃ = ∇g(θ̃)Hf∇g(θ̃)⊤ +

j∑
k=1

[∇f(g(θ̃))]k∇2gk(θ̃)

= ∇g(θ̃)Hf∇g(θ̃)⊤
(33)

where ∇2gk(θ̃) is the Hessian of the k-th component of g. The second equality follows from θ being a critical
point of f .

A strict saddle point is a saddle point for which there is at least one direction of strictly negative curvature, and
so given the assumption that θ = g(θ̃) is a strict saddle point of f , ∃v ∈ Ri such that v⊤Hfv < 0. Let ṽ = A⊤v,

where A is any left inverse of ∇g(θ̃), then

ṽ⊤Hf̃ ṽ = (A⊤v)⊤∇g(θ̃)Hf∇g(θ̃)⊤(A⊤v)

= v⊤Hfv
(34)

< 0, (35)

implying that f̃(θ̃) is a strict saddle point, a contradiction, and so we conclude that the saddle point at f(θ)
cannot be strict.

C ALGORITHMS

C.1 SNGD WITH EF SURROGATES

In Algorithm 1, restated with line numbers below, we provide pseudocode for an implementation of SNGD when
q̃ is an EF distribution, and θ̃ are either natural or mean parameters of that family. We assume the existence
of an autodiff operator grad, which takes as input a real-valued function, and returns another function for
computing its gradient. Note that when f cannot be computed deterministically, such as in VI or minibatch
settings, we assume grad returns a function that provides unbiased stochastic estimates of the gradient. In our
VI experiments, where gradients had to be taken through samples, we used the reparameterisation trick (Kingma
and Ba, 2014), applied to the target distribution.

We also assume the existence of an overloaded function dualparams, which converts from mean to natural
parameters of the EF, or vice-versa, depending on the type of its argument.6 That is, in the notation of Section
2.2, dualparams resolves to either µ(.) or η(.) as appropriate. We note that each dualparams pair only needs to
be defined once for each EF, and is not dependent on e.g. the target distribution or loss function, meaning that
if these are supplied as part of a software library, the end user is only required to supply f , g and θ̃0. Algorithm
1 also assumes a given step size schedule, but can easily be extended to incorporate line search or other methods
for choosing ϵt.

On line 1 of Algorithm 1 we define a reparameterisation of f̃ in terms of the dual parameters. That is, if θ̃ are
natural parameters, f̃dual is a function of mean parameters, and vice-versa. Line 4 computes the natural gradient,
given by equation (5) or (6), using automatic differentiation of the function f̃dual. Note that both overloads of
dualparams are called: one inside the auto-differentiated function f̃dual, and the other outside (to compute its
argument). It is often possible for the inner conversion to be elided; for example, the user can supply a function
gdual (instead of g) that can perform the map from dual parameters to θ directly, more efficiently than the
composition g ◦ dualparams. For example, this is often the case when f depends on covariance-like parameters,
and the composition g ◦ dualparams would otherwise involve inverting a matrix twice (a no-op).

6This is purely for convenience, as it allow us to describe a single implementation handling both parameterisations.
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Algorithm 1 SNGD with EF surrogate

Require: objective f : Θ→ R
Require: parameter mapping g : Θ̃→ Θ
Require: initial surrogate parameters θ̃0 ∈ Θ̃
Require: step size schedule {ϵt ∈ R+ : t = 0, 1, ...}
1: f̃dual(.) := f(g(dualparams(.)))
2: t← 0
3: while not converged do
4: ∇̃ ← grad[f̃dual](dualparams(θ̃t))
5: θ̃t+1 ← θ̃t − ϵt∇̃
6: t← t+ 1
7: end while
8: return g(θ̃t)

If θ̃ are mean parameters of q̃, then the computational overhead of Algorithm 1 (relative to GD in f) is approxi-
mately cost[η]+3×cost[g ◦µ], where cost returns the cost of its function argument. Similarly, if θ̃ are natural
parameters, then the overhead will be approximately cost[µ] + 3 × cost[g ◦ η]. The factor of 3 in the second
term in each case results from taking gradients through g ◦ dualparams; however, as discussed above, it is often
the case the composition is almost zero cost, in which case this term can be largely eliminated by implementing
gdual directly.

We have assumed here that we can take gradients through either µ(.) or η(.) efficiently, depending on the choice
of parameterisation. For µ(.) this is true by assumption for tractable families. For some families the ‘reverse’ map
η(.), is not available in closed form, but can be efficiently computed using an iterative optimisation procedure
(Minka, 2000, 2002). In such cases, we can use implicit differentiation techniques to efficiently compute gradients
(Christianson, 1994; Blondel et al., 2022).

C.2 SNGD WITH EF SURROGATES AND AUXILIARY PARAMETERS

In Algorithm 2 we provide pseudocode for the extension of Section 3.5, in which we augment θ̃ with auxiliary
parameters λ. θ̃ are optimised using natural gradients, whereas λ are optimised with standard first-order methods.
Algorithm 2 uses GD with a fixed learning rate schedule for λ, but the extension to any first-order optimiser is
straightforward.

The structure of Algorithm 2 is largely the same as that of Algorithm 1. One notable difference is that f̃dual
now has 2 arguments, and so the call to grad on line 4 returns a function that returns a 2-tuple of gradients,
one for each argument.

Algorithm 2 SNGD with EF surrogate and auxiliary parameters

Require: objective f : Θ→ R
Require: parameter mapping g : Θ̃→ Θ
Require: initial surrogate parameters θ̃0 ∈ Θ̃
Require: initial auxiliary parameters λ0 ∈ Λ
Require: θ step size schedule {ϵt ∈ R+ : t = 0, 1, ...}
Require: λ step size schedule {εt ∈ R+ : t = 0, 1, ...}
1: f̃dual( 1, 2) := f(g(dualparams( 1), 2))
2: t← 0
3: while not converged do
4: (∇̃θ,∇λ) ← grad[f̃dual](dualparams(θt), λt)
5: θt+1 ← θt − ϵt∇̃θ

6: λt+1 ← λt − εt∇λ

7: t← t+ 1
8: end while
9: return g(θt, λt)
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D EXPERIMENT DETAILS

In this appendix we provide additional details about the experiments presented in the main paper. The code for
these experiments is available at https://github.com/cambridge-mlg/sngd.

We repeated all experiments with 10 different random seeds. In all cases this led to different random parameter
initialisations. For VI experiments, this also seeded randomness in the Monte Carlo samples, and for experiments
with minibatching, it also seeded randomness in the minibatch sampling. The mean and standard errors as
displayed in the training curves and Pareto frontier plots were computed over the 10 runs. For VI experiments
we used the reparameterisation trick to estimate gradients for each method (Kingma and Welling, 2014).

In experiments that were small scale and had objectives that could be computed deterministically, namely MLE
experiments using the sheep and COVID datasets, we used exact line search to determine step sizes for each of
the methods being tested. This allowed us to compare the search direction of each method without confounding
results with choice of hyperparameter settings.

For all other experiments we chose hyperparameters using a grid search. The training curves in the main paper
correspond to the ‘best’ hyperparameter settings for each method. The best setting was considered to be that
which had the best average (across time steps) worst case (over random seeds) value of the evaluation metric
(negative elbo or negative log-likelihood as appropriate). Although this choice is somewhat arbitrary, we found
that it consistently chose settings with training curves that closely resembled those that we considered best
for each method. In Appendix F we provide Pareto frontier plots which incorporate all of the hyperparameter
settings tried, which qualitatively are very similar to the training curves in the main paper.

For SNGD we chose θ̃ to be mean parameters of q̃ for all MLE tasks, and natural parameters for all VI tasks.
These choices were motivated by the results of Appendix I, and we found them to consistently perform better
than alternatives.

All experiments were executed on a 76-core Dell PowerEdge C6520 server, with 256GiB RAM, and dual Intel
Xeon Platinum 8368Q (Ice Lake) 2.60GHz processors. Each individual optimisation run was locked to a single
dedicated core. Implementations were written in JAX (Bradbury et al., 2018).

Next we provide details specific to each task featured in the experiments. In the list below, n denotes the number
of training observations, and d denotes the dimensionality of the distribution that is being optimised in the task.

Sheep (n=82, d=1) Taken from a seminal work on the negative binomial distribution by Fisher (1941), this
dataset consists of the number of ticks observed on each member of a population of sheep. The task for this
dataset was MLE of the negative binomial distribution.

UCI miniboone (n=32,840, d=43) Taken from the MiniBooNE experiment at Fermilab, this dataset consists
of a number of readings that can be used to classify observations as either electron or muon neutrinos (Roe,
2010).7 We follow the pre-processing of Papamakarios et al. (2017). Using this dataset we performed MLE of
skew-normal and skew-t distributions. We used 32,840 of the observations for training, and the remaining 3, 648
observations for evaluation. We used a minibatch size of 256 for each method.

UCI covertype (n=500, d=53) This dataset classifies the forest cover type of 581, 024 pixels, based on 53
cartographic variables (Blackard, 1998).8 We used the ‘binary scale’ preprocessing of Chang and Lin (2011).
The task was to perform VI in a Bayesian logistic regression model, with regularisation parameter 1.0. We found
that using anything close to the full number of observations resulted in degenerate posteriors with virtually
zero uncertainty, obviating the need for variational inference, and so we used a randomly chosen subset of
500 observations for our experiments. We used skew-normal, skew-t and skew-normal mixture distributions as
approximate posteriors. All methods used 20 Monte Carlo samples for training and 1000 for evaluation.

Synthetic skew-normal (n=10,000, d=1,000) We generated synthetic data from a d-dimensional skew-normal
distribution with parameters (ξ,Ω, η), where ξ and η were drawn from N (0, Id). We chose Ω = d−1W⊤W +

7Licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
8Licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.

https://github.com/cambridge-mlg/sngd
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10−4Id, where the components of W ∈ Rd×d were drawn from independent standard normal distributions. The
task was to perform MLE of a skew-normal distribution on this dataset.

Synthetic skew-t (n=10,000, d=1,000) We generated synthetic data from a d-dimensional skew-t distribution
with parameters (ξ,Ω, η, ν). ξ, Ω and η were generated in the same manner as the synthetic skew-normal task as
detailed above, with ν chosen to be 10. The task was to perform MLE of a skew-t distribution on this dataset.

FTSE 100 stock returns (n=1,515, d=93) This dataset consists of daily stock price returns from 2017/01/01
to 2022/12/31 for the subset of FTSE 100 stocks that were members of the index during the entire period.9 We
first fitted univariate Student’s t distributions to each dimension independently, and then transformed the data
by converting each observed variable to its quantile value under the marginal distribution. The task was then
MLE of a t copula on the quantile values.

COVID hospital admissions (n=1,120, d=1) This dataset consists of the number of daily COVID hospital
admissions in the UK from 2020/4/1 to 2023/5/1.10 The task for this dataset was MLE of a 5-component
negative binomial mixture.

Synthetic 2D logistic regression (n=30, d=2) This synthetic logistic regression dataset was generated
using the same procedure as Murphy (2012). The task was VI in a Bayesian logistic regression model, with
regularisation parameter 1. We used a skew-normal mixture approximate posterior, with 20 Monte Carlo samples
for training and 1, 000 for evaluation.

Now we provide details particular to the distributions being optimised in the tasks above. Note that the corre-
spondence between tasks (above) and target distributions (below) is many to many: some target distributions
were applied to more than one task, and some tasks were used for several target distributions. The parameter
mappings used for SNGD are given in Table 2 in Appendix E; we do not repeat them here unless additional
explanation is required. When the parameter mappings make use of the auxiliary parameter extension of Section
3.5, we used Adam to optimise λ.

With our baseline methods, when a target distribution required a positive definite covariance matrix parameter,
we tried two different parameterisations; covariance square-root (e.g. Σ = W⊤W ) and precision square-root
(e.g. Σ−1 = W⊤W ) (Salimbeni et al., 2018). This parameterisation choice was determined by a hyperparameter
which we included in our grid search. Further parameterisation details are given below.

Negative binomial The PMF of the negative binomial with parameters θ = (r, s) is given by (15).
We initialised negative binomial parameters for all methods by drawing s ∼ Uniform(0.05, 0.95), r ∼
Gamma(6.25, 1.25). With GD, BFGS and NGD we used a log parameterisation of r, and a logit parameter-
isation of s. For SNGD we chose θ̃ to be mean parameters of q̃. In order to ensure that g(θ̃) ∈ Θ ∀ θ̃ ∈ Θ̃, we
require β < 1 ∀ θ̃ ∈ Θ̃, therefore we chose Θ̃ as the subset ofM (the mean domain of q̃) for which β < 1. It can
be shown that this remains an open convex set.

Skew-normal The PDF of the multivariate skew-normal with parameters θ = (ξ,Ω, η) is given by qθ(x) =
2Nd(x; ξ,Ω)Φ(η

⊤(x− ξ)), where Nd(.) is the PDF of the d-dimensional normal distribution, and Φ(.) is the CDF
of the standard normal distribution.11 We used random initialisations of ξ ∼ N (0, 0.012Id), η ∼ N (0, 0.012Id),
with Ω initialised to Id.

Skew-t The PDF of the multivariate skew-t with parameters θ = (ξ,Ω, η, ν) is given by qθ(x) =

2Td(x; ξ,Ω, ν)Ψ(α⊤x
√
(ν + d)/(ν + x⊤Ω̄−1x); ν + d), where Td is the PDF of the d-dimensional Student’s t,

Ψ(.) is the CDF of the (univariate) Student’s t, ω = (Ω⊙ Id)
1/2, Ω̄ = ω−1Ωω−1, and α = ωη.12 We used random

initialisations of ξ ∼ N (0, 0.012Id), η ∼ N (0, 0.012Id), with Ω and ν initialised to Id and 50 respectively. For all
methods we parameterised ν as log(ν − 2).

9Downloaded from the Bloomberg Terminal.
10Downloaded from https://coronavirus.data.gov.uk and licensed under the Open Government License v3.0.
11Equation (5.1) of Azzalini (2013).
12Equation (6.24) of Azzalini (2013).

https://coronavirus.data.gov.uk
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t copula The d-dimensional t copula with parameters θ = (R, ν) has PDF qθ(x) = Td(z; 0, R)/
∏

i T (zi; 0, 1),
where T is the PDF of the univariate Student’s t. We initialised R to corr(I + W⊤W ), and ν to 50, where

Wij ∼ N (0, .012), and corr(Σ) = (Σ⊙ Id)
− 1

2Σ(Σ⊙ Id)
− 1

2 projects a covariance matrix to its implied correlation
matrix. For all methods we parameterised ν as log(ν − 2).

Negative binomial mixture The negative binomial mixture with k components and parameters θ =
(πi, ri, si)

k
i=1 has PMF given by (17), where qθi(x) is the negative binomial PMF given by (15) with param-

eters θi = (ri, si). We initialised πi to k−1 for i = 1, . . . , k, and the component negative binomials were
initialised to have mean mi and variance vi, with mi ∼ Uniform(0.1xmax, 0.9xmax) and vi = mioi where
o−1
i ∼ Uniform(0.001, 0.02) and xmax is the maximum value observed in the training data. With GD and
BFGS, we used a softmax parameterisation of the mixture probabilities, a log parameterisation of ri, and a logit
parameterisation of si.

Skew-normal mixture The skew-normal mixture with k components and parameters θ = (πi, ξi,Ωi, νi)
k
i=1

has PDF given by (17), where qθi(x) is the skew-normal PDF with parameters θi = (ξi,Ωi, νi). We initialised πi

to k−1 for i = 1, . . . , k, with the remaining parameters initialised equivalently to the (non-mixture) skew-normal
case. With Adam, we used a softmax parameterisation of the mixture probabilities.

E PARAMETER MAPPINGS

In Table 2 we provide parameter mappings for all of the examples appearing in this paper. For convenience,
we express the mappings in terms of the standard parameterisation of q̃. For the method described in Section
3.1, θ̃ would be the mean or natural parameters corresponding to the parameters stated here, with g similarly
adjusted. Note that in Table 2 we follow convention by using µ to denote the mean of a normal distribution,
whereas in the main paper it refers to the mean parameters (expected sufficient statistics) of an EF distribution.
See Appendix D for target distribution definitions.

Table 2: Example surrogate-target parameter mappings

TARGET SURROGATE θ θ̃ λ g(θ̃, λ)

Neg. bin. Gamma r, s α, β α/(1− β−1), β−1

Neg. bin. mix. Gamma mix. model (πi, ri, si) (πi, αi, βi) (πi, αi/(1− β−1
i ), β−1

i )
Skew-normal Normal ξ,Ω, η µ,Σ η µ,Σ, η
Skew-normal mix. Normal mix. model (πi, ξi,Ωi, ηi) (πi, µi,Σi) (ηi) (πi, µi,Σi, ηi)
Skew-t Normal ξ,Ω, η, ν µ,Σ η, log(ν − 2) µ,Σ, η, ν
Elliptical copula Zero-mean normal R, . . . Σ . . . corr(Σ), . . . 13

F ADDITIONAL RESULTS

In this appendix we provide additional results for the experiments presented in the main paper. In several of the
experiments (those not using line-search), the competing methods were dependent on hyperparameters which
were chosen by grid search. For the training curves in the main paper, we used the heuristic method described
in Appendix D in order to choose the ‘best’ settings for each method.

In order to provide a more complete comparison, in Figures 9 through 16 we present Pareto frontier plots
that show the best (average) value of the chosen metric (y axis) attained by any learning rate setting for each
method, as a function of both iteration count and wall-clock time (x axis). The displayed error bars correspond
to 2 standard errors, computed for the optimal setting at the corresponding point in time.

13corr(.) projects a covariance matrix to its implied correlation matrix. See Appendix D for its definition.
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Figure 9: Pareto frontiers for Bayesian logistic regres-
sion VI on UCI covertype (n=500, d=53), with a skew-
normal approximation.

Figure 10: Pareto frontiers for Bayesian logistic regres-
sion VI on UCI covertype (n=500, d=53), with a skew-t
approximation.

Figure 11: Pareto frontiers for skew-normal MLE on
UCI miniboone (n=32,840, d=43).

Figure 12: Pareto frontiers for skew-t MLE on UCI
miniboone (n=32,840, d=43).

Figure 13: Pareto frontiers for skew-normal MLE on
synthetic dataset (n=10,000, d=1,000).

Figure 14: Pareto frontiers for skew-tMLE on synthetic
dataset (n=10,000, d=1,000).

Figure 15: Pareto frontiers for t-copula MLE on 5 years
of stock return data (n=1,515, d=93).

Figure 16: Pareto frontiers for Bayesian logistic regres-
sion VI on UCI covertype (n=500, d=53), with a skew-
normal mixture approximation.
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Figure 17: Illustration of SNGD. An infinitesimal KL ball (ellipse, in parameter space) around θ̃ with respect
to: q̃ (shaded), and q (dashed). Contours are of f̃(θ̃). δ∗ points to the minimum point in the shaded region; this
is the SNGD direction. In general this will differ from the direction of NGD in q, which would instead point in
the direction of the minimum point in the dashed region (not marked).

G CHOOSING EFFECTIVE SURROGATES

In order to apply SNGD to a given target distribution q, we must choose a surrogate q̃, and reparameterisation
θ = g(θ̃). Appropriate choices here determine the effectiveness of SNGD.

One guiding principle that can be used is based on a view of NGD involving Kullback-Leibler (KL) divergences.
The KL divergence from continuous14 distribution q to p is defined as

KL[q ∥ p] =
∫

q(x) log
q(x)

p(x)
dx. (36)

The NGD direction can be motivated by a result due to Ollivier et al. (2017), restated here in our notation.

Proposition 6. Let f be a smooth function on the parameter space Θ. Let θ ∈ Θ be a point where ∇̃f(θ) =
[F (θ)]−1∇f(θ) does not vanish. Then, if

δ = − ∇̃f(θ)
||∇̃f(θ)||F

(37)

is the negative direction of the natural gradient of f (with ||.||F the Fisher norm), we have

δ = lim
τ→0+

1√
2τ

argmin
δ′∈B(τ)

f(θ + δ′) (38)

where B(τ) = {δ′ : KL[qθ+δ′ ∥ qθ] < τ}.

In words, this says that NGD moves in the direction in parameter space that gives the greatest decrease in the
objective within an infinitesimally small KL-ball around the current point.

This suggests that we would ideally like to find q̃ and g such that the KL divergence between the surrogate q̃θ̃ and
a perturbed version q̃θ̃+δ is identical to the KL divergence from the target qg(θ̃) and its corresponding pertubation
qg(θ̃+δ), for any small pertubation δ. However, because this is only required to hold in some infinitesimally small

neighbourhood of θ̃, it is sufficient to satisfy

∇δ

(
KL
[
qθ̃+δ

∥∥ q̃θ̃
])∣∣

0
= ∇δ

(
KL
[
qg(θ̃+δ)

∥∥ qg(θ̃)
])∣∣

0
. (39)

If equality (39) holds then SNGD will move in the same direction in θ̃ as ‘exact’ NGD under (reparameterised)
q. While it will not typically be possible to find tractable surrogates for which equality holds exactly, this

14The discrete KL divergence is defined similarly, with summation replacing integration.



Jonathan So, Richard E. Turner

observation motivates choosing q̃, g for which it is approximately true. We illustrate this in Figure 17. This
perspective also highlights the reason that q and q̃ do not need to be distributions over the same space; all that
matters is that the effect of (small) changes in θ̃ on q̃ and q is similar in a KL-divergence sense. If approximating
NGD under q is our goal, then this perspective can help guide us toward a choice of q̃ and g.15

As a concrete example, let q be a mixture distribution, with PDF given by

qθ(x) =
∑k

i=1 πiqθi(x), (40)

where qθi are the component distributions, θ = (πi, θi)
k
i=1, and π ∈ ∆k−1. Let us consider as a surrogate for qθ

the corresponding mixture model (joint distribution) with PDF

q̃θ̃(z, x) = πzqθz (x), (41)

where θ̃ = (πi, θi)
k
i=1, so that g is simply the identity map, and

∑k
i=1 q̃θ̃(z = i, x) = qθ̃(x) = qg(θ̃)(x). Using

standard identities, we have

∇δ

(
KL
[
q̃θ̃+δ(z, x)

∥∥ q̃θ̃(z, x)
])

= ∇δ

(
KL
[
q̃θ̃+δ(x)

∥∥ q̃θ̃(x)
]
+ Eq̃θ̃+δ(x)

[[[
KL
[
q̃θ̃+δ(z|x)

∥∥ q̃θ̃(z|x)
]]]])

= ∇δ

(
KL
[
qg(θ̃+δ)(x)

∥∥ qg(θ̃)(x)
]
+ Eqθ̃+δ(x)

[[[
KL
[
q̃θ̃+δ(z|x)

∥∥ q̃θ̃(z|x)
]]]]) (42)

≈ ∇δ

(
KL
[
qg(θ̃+δ)(x)

∥∥ qg(θ̃)(x)
])

(43)

It follows that using a mixture model joint, as a surrogate for its marginal, can be viewed as using an approximate
metric which includes an additional term. This term imposes an additional penalty on directions in parameter
space that affect the expected responsibility distributions.16 In the experiments of Section 4.4 we take this
approximation one step further, and use EF mixture models as surrogates for mixtures with components that
are not EF distributions.

As an aside, we note that Lin et al. (2019) performed NGD with respect to a joint distribution in a VI objective
for which the optimisation target was a marginal of the NGD distribution. This mismatch was not explicitly
discussed by Lin et al. (2019). However, it is clear that this aspect of their method can be interpreted as an
application of SNGD, and similar reasoning to that above shows that it implies making a specific approximation
to the Fisher metric.

H COMPARISON WITH NGD UNDER q

In Appendix G we provided a motivation for SNGD that viewed it as approximating NGD under a reparameteri-
sation of q. However, for the negative binomial MLE experiment of Section 4.1, we demonstrated that SNGD was
actually able to outperform NGD under q. In Figure 18, we show that this was true when NGD was performed
with respect to both a standard parameterisation (also shown in Figure 1), and the reparameterisation defined
by g(θ̃). This implies that the outperformance of SNGD is not simply an artefact of the reparameterisation.
This surprising result deserves extra scrutiny.

We begin by highlighting that in fact, SNGD is NGD, but in the objective f̃(θ̃) = f(g(θ̃)) and with respect to
distribution q̃. It is helpful therefore to consider the desirable properties of NGD:

1. It is locally invariant to parameterisation of the distribution being optimised.

2. It follows the direction of steepest descent in the objective on the statistical manifold of the distribution
being optimised.17

3. For MLE objectives, it asymptotically approaches Newton’s method near the optimum.

15Approximating NGD under q should not necessarily be our ultimate goal. We elaborate on this in Appendix H.
16The responsibility of component i for x is the probability that x was generated by component i having observed x.
17Where steepness is defined with respect to a KL divergence.
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Figure 18: Training curves for negative binomial MLE on the sheep dataset (n=82, d=1), using surrogate natural
gradient descent (SNGD) and natural gradient descent under q with respect to both a standard parameterisation
(NGD), and the reparameterisation defined by g (NGD-g).

Properties 1 and 2 apply always, and so they are necessarily inherited by SNGD. However, when f is a MLE
objective for q (as in the experiment of Section 4.1), f̃ is not, in general, an MLE objective for q̃, and so SNGD
loses property 3. Contrast this with NGD in f̃ with respect to q: although the objective function is the same
as that of SNGD, it is simply a reparameterised MLE objective for q, and so property 3 is retained. In other
words, the asymptotic efficency of NGD is retained under change of parameterisation, but not under change of
distribution.

(a) Vectors represent a full (undamped) step under
each method. When far from the optimum, a full step
of SNGD more consistently moves to a low value of the
objective, compared to that of NGD under q.

(b) The optimum magnified ×1000. At this scale the
loss is well approximated by a quadratic. The Fisher
of q, F (θ̃), approaches the Hessian. This is not true

of F̃ (θ̃), because the loss is not a MLE objective for
q̃. Here the gradient vector lengths have been scaled
down by a factor of 3 for clarity.

Figure 19: Comparison of SNGD and NGD in the sheep experiment of Section 4.1. Contours are of f̃(θ̃), an
MLE objective for q.

On the face of it, then, when f is a MLE objective for q, SNGD appears less desirable than NGD under
q, inheriting only two of the properties listed above. However, none of these properties say anything about
performance over large (or indeed, any non-inifinitesimal) steps in parameter space. But there is one special
case in which we can say something about the performance of NGD over large steps in parameter space: when
NGD is applied to a MLE objective of an EF distribution with respect to the mean parameters of that distribution,
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a single undamped step will converge straight to the optimum (see Proposition 7 in Appendix I).

When we apply SNGD with EF q̃, and with respect to mean parameters θ̃, we meet 2 of the criteria for single-step
convergence. Although f̃(θ̃) is not in general a MLE for q̃, if it behaves approximately like a MLE objective
for q̃, then SNGD can make rapid progress over large distances in parameter space, and approximately converge
in a single step. And so, while SNGD loses the asymptotic efficiency of NGD under q, it is possible to obtain
improved performance in the early to mid stages. This is exactly what we observe in the experiment of Section
4.1, as is further illustrated in Figure 19.

The ability to make rapid progress early on is arguably more important for the overall performance of an optimiser
in practice; however, if convergence to an exact (within machine precision range) optimum is required, it may be
beneficial to switch to Newton-type methods during the late phase, an approach previously proposed by Tatzel
et al. (2022).

We now attempt to characterise what it means for f̃ to behave approximately like a MLE for q̃. Let q̃ be an EF
with mean parameters θ̃. Furthermore, let f(θ̃) be an MLE objective for q so that

f̃(θ̃) = f(g(θ̃))

= −EpD(x)

[
log qg(θ̃)(x)

] (44)

where pD(x) =
1
n

∑n
i=1 δ(x−xi) is the empirical density function. Using a trivial identity, we can rewrite this as

f̃(θ̃) = KL
[
q̃θ̃∗

∥∥ q̃θ̃
]
− EpD(x)

[
log qg(θ̃)(x)

]
−KL

[
q̃θ̃∗

∥∥ q̃θ̃
]

= f̃∗(θ̃) + h(θ̃)
(45)

where θ̃∗ are optimal parameters of f̃ , and we have defined

f̃∗(θ̃) = KL
[
q̃θ̃∗

∥∥ q̃θ̃
]
, (46)

and

h(θ̃) = −EpD(x)

[
log qg(θ̃)(x)

]
−KL

[
q̃θ̃∗

∥∥ q̃θ̃
]
. (47)

f̃∗(θ̃) can be minimised by a single NGD step with respect to q̃ and θ̃ (see Proposition 7). The second term,
h(θ̃), can then be seen as distorting the natural gradient step, acting to move it away from the optimum θ̃∗. If
h(θ̃) is (approximately) constant with respect to θ̃, then SNGD will (approximately) converge in a single step.

In Figure 20 we show that in the sheep experiment of Section 4.1, the effect of the distortion term is indeed
small, even when far from the optimum, illustrating why SNGD is able to make rapid progress on this problem.

(a) Contours of f̃∗(θ̃), Vectors show

[F̃ (θ̃)]−1∇f̃∗(θ̃) at 3 distinct loca-
tions; these always move straight to
the optimum of f̃ .

+

(b) Contours of the distortion term

h(θ̃). Vectors show [F̃ (θ̃)]−1∇h(θ̃).
at a regular grid of points

=

(c) Contours of f̃(θ̃). Vectors
now show the resulting SNGD step,
[F̃ (θ̃)]−1∇f̃(θ̃). This is the sum of
the previous two vector fields.

Figure 20: The objective, and SNGD steps for the sheep experiment of Section 4.1, each decomposed according
to equation (45). The star marks the optimum of f̃ .
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To add some intuition behind h(θ̃), let us assume that the data were generated from the model distribution q
with parameters θ∗. Furthermore, take the infinite data limit,18 so that

f̃(θ̃) = −Eqθ∗ (x)

[
log qg(θ̃)(x)

]
(48)

and θ∗ = g(θ̃∗). The distortion term h(θ̃) can then be written as

h(θ̃) = −Eqθ∗ (x)

[
log qg(θ̃)(x)

]
−KL

[
q̃θ̃∗

∥∥ q̃θ̃
]

= KL
[
qg(θ̃∗)

∥∥ qg(θ̃)
]
−KL

[
q̃θ̃∗

∥∥ q̃θ̃
]
+ c

(49)

where c is constant with respect to θ̃. For h(θ̃) to be roughly constant, we then require

∇θ̃

(
KL
[
q̃θ̃∗

∥∥ q̃θ̃
])
≈ ∇θ̃

(
KL
[
qg(θ̃∗)

∥∥ qg(θ̃)
])
. (50)

This is similar to the statement expressed by equation (39), concerning the effect of θ̃ on reverse KL divergences
between nearby points, whereas now we have a statement about the effect of θ̃ on forward KL divergences from
the (potentially distant) optimal point.

I EF NATURAL GRADIENTS

When NGD is applied to objectives involving a KL divergence (or related quantity), it has special properties
when it is performed with respect to either the natural or mean parameters of an EF distribution, as the following
propositions show.

Proposition 7. For EF q with mean parameters µ ∈M, and mean domainM, let

f(µ) = −Ep∗(x)[log qµ(x)] + c (51)

where p∗ is any distribution with supp[p∗] ⊆ supp[q], and c is constant with respect to µ. Then, ∀ µ ∈M,

µ− [F (µ)]−1∇f(µ) = argmin
µ′∈M

f(µ′). (52)

Proof. First, let η be dually coupled with µ, so that µ = Eqη(x)[t(x)]. From (6), we have that

µ− [F (µ)]−1∇f(µ) = µ+∇η

(
Ep∗(x)

[
log qη(x)

])
= µ+∇η

(
Ep∗(x)

[
t(x)⊤η −A(η) + log ν(x)

])
= µ−∇A(η) + Ep∗(x)

[
t(x)

]
= Ep∗(x)

[
t(x)

] (53)

where we have used the standard EF identity ∇A(η) = µ(η). It remains to show that Ep∗(x)[t(x)] =
argminµ′∈M f(µ′). Let us reparameterise f(µ) as fη(η) = f(µ(η)), then

∇fη(η) = −∇η

(
Ep∗(x)

[
t(x)⊤η −A(η) + log ν(x)

])
= µ− Ep∗(x)

[
t(x)

]
,

(54)

and equating to zero, we find the unique stationary point at µ = Ep∗(x)[t(x)]. To show that this is a minimum,
note that

∇2fη(η) = ∇2A(η). (55)

Given that A is strictly convex and twice-differentiable (see Wainwright and Jordan (2008)), then fη is also
strictly convex, and so must be minimised when µ = Ep∗(x)[t(x)].

18We do this for convenience; for finite samples, the resulting expressions hold in expectation (over random data sets).
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Proposition (7) says that (undamped) NGD with respect to the mean parameters of EF q will converge in
a single step when the objective is a cross entropy from any distribution p∗ to qµ plus a constant that does
not depend on µ. Two straightforward corollaries of this are that NGD also has single step convergence when
f(µ) = KL

[
p∗(x) || qµ(x)

]
(a forward KL divergence), or when f(µ) = −

∑n
i=1 log qµ(xi) (a MLE objective).

Typically, when performing MLE of an EF distribution, we simply think of it as ‘solving’ for the parameters,
or ‘moment matching’; Proposition (7) shows that actually, this is equivalent to performing (undamped) NGD
with respect to µ.

There is an almost-symmetry regarding NGD with respect to the natural parameters of q, as the following
proposition states.

Proposition 8. For EF q with natural parameters η ∈ O, and natural domain O, let

f(η) = KL
[
qη(x) || qη∗(x)

]
+ c (56)

where qη∗ is from the same EF as q with natural parameter η∗. Then, ∀ η ∈ O,

η − [F (η)]−1∇f(η) = argmin
η′∈O

f(η′). (57)

Proof. First, let µ be dually coupled with η, so that µ = Eqη(x)[t(x)]. From (5), we have that

η − [F (η)]−1∇f(η) = η −∇µ

(
KL
[
qµ(x) || qη∗(x)

])
= η −∇µ

(
A∗(µ) +A(η∗)− µ⊤η∗

)
= η −∇A∗(µ) + η∗

= η∗

(58)

where: qµ denotes the EF distribution with mean parameter µ; A∗, the convex dual of A, is the negative entropy
of q; and we have used the identity ∇A∗(µ) = η. It is clear from the properties of the KL divergence that η∗

must be the unique minimiser for f(η).

Note that Proposition 8 requires qη∗ to be from the same family as qη, which is not the case for the corresponding
result with respect to mean parameters. This is a generalisation of a result found in Hensman et al. (2013);
Salimbeni et al. (2018) for sparse Gaussian process VI. It is similar to to a result given by Sato (2001) for
variational Bayes. Note that an analogous result to Proposition 8 can be derived for any Bregman divergence in
the same manner.

J EF MIXTURE MODELS

An EF mixture with k components has density

q(x) =

k∑
i=1

πiν(x) exp
(
t(x)⊤ηi −A(ηi)

)
(59)

where πi > 0 are the mixture probabilities with π ∈ ∆k−1, and ηi are the natural parameters of mixture
component i. We can also define a related mixture model, a joint distribution in which we consider the mixture
identity z ∈ {1, ..., k} as a latent variable, with density

q(z, x) = πzν(x) exp
(
t(x)⊤ηz −A(ηz)

)
. (60)
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A finite EF mixture is not, in general, an EF. However, the corresponding mixture model (joint distribution) is
an EF. Consider its density,

q(z, x) = πzν(x) exp
(
t(x)⊤ηz −A(ηz)

)
=

k∑
i=1

Ii(z)πiν(x) exp
(
t(x)⊤ηi −A(ηi)

)
= ν(x)

k∏
i=1

[
πi exp

(
t(x)⊤ηi −A(ηi)

)]Ii(z)
= ν(x) exp

(
k∑

i=1

Ii(z) log πi + Ii(z)t(x)⊤ηi − Ii(z)A(ηi)

)

= ν(x) exp

[(
k−1∑
i=1

Ii(z)
(
log

πi

πk
−A(ηi) +A(ηk)

))
+

(
k∑

i=1

Ii(z)t(x)⊤ηi

)
+ log πk −A(ηk)

]
,

(61)

where Ii(z) is an indicator function for the singleton set {i}. We can then recognise (61) as having the form of an
EF density with: base measure ν(.); log-partition A(ηk)− log πk; and sufficient statistics and natural parameters
as listed in Table 3. Note that the statistic functions are linearly independent, and so the EF defined by (60) is
minimal.

Table 3: Sufficient statistics and natural parameters for an EF mixture model. Note that t is a vector-valued
function, and each ηi is a vector of equal dimension.

Sufficient statistic Natural parameter

I1(z) log π1

πk
−A(η1) +A(ηk)

... ...
Ik−1(z) log π1

πk
−A(ηk−1) +A(ηk)

I1(z)t(x) η1
... ...

Ik(z)t(x) ηk


