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Abstract

As the data-driven decision process be-
comes dominating for industrial applications,
fairness-aware machine learning arouses great
attention in various areas. This work proposes
fairness penalties learned by neural networks
with a simple random sampler of sensitive
attributes for non-discriminatory supervised
learning. In contrast to many existing works
that critically rely on the discreteness of sen-
sitive attributes and response variables, the
proposed penalty is able to handle versatile
formats of the sensitive attributes, so it is
more extensively applicable in practice than
many existing algorithms. This penalty en-
ables us to build a computationally efficient
group-level in-processing fairness-aware train-
ing framework. Empirical evidence shows that
our framework enjoys better utility and fair-
ness measures on popular benchmark data
sets than competing methods. We also the-
oretically characterize estimation errors and
loss of utility of the proposed neural-penalized
risk minimization problem.

1 INTRODUCTION

Algorithmic fairness has been a growing research area
as the prediction-based decision process becomes more
and more prevalent. The legal examples include the US
Equal Credit Opportunity Act, the European Union’s
General Data Protection Regulation, and the Fair
Credit Reporting Act, to name a few. On the aca-
demic side, Mhasawade et al. (2021) discussed the
importance and challenges of algorithmic fairness in
public health. Kozodoi et al. (2022) studied various
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mitigation strategies for the credit scoring application.
De-Arteaga et al. (2022) gave an overview of potential
areas demanding fairness-aware business analytics with
intriguing real-world examples such as dynamic pricing,
distribution of vaccines, job applications, and so forth.
Similar motivating examples can be easily found in
other fields as well, such as education (Loukina et al.,
2019), finance (Das et al., 2021), mortgage lending (Lee
and Floridi, 2021), and computational medicine (Xu
et al., 2022).

In pursuit of the rising demand for mitigating societal
bias in decision-making processes, there have been ver-
satile approaches, which are mainly categorized into pre-
processing, in-processing, and post-processing (Barocas
et al., 2017; Caton and Haas, 2020; Pagano et al., 2023;
Xian et al., 2023). Pre-processing includes relabeling,
reweighting, or resampling of data instances to ease
possible discrimination of a learned model (Kamiran
and Calders, 2011). Synthesizing data to be fair also
belongs to this class as well (Xu et al., 2018; Sattigeri
et al., 2019; van Breugel et al., 2021). In the field of
in-processing, optimization with fairness constraints
has been one of the main branches (Agarwal et al.,
2018; Komiyama et al., 2018; Agarwal et al., 2019; Za-
far et al., 2019; Scutari et al., 2022; Jung et al., 2023).
Comparably, model-based fairness control has been
also extensively studied, which regularizes the degree
of discrimination through an auxiliary model (Xie et al.,
2017; Beutel et al., 2017; Zhang et al., 2018; Adel et al.,
2019; Mary et al., 2019; Lee et al., 2022). Following the
model-agnostic spirit, post-processing directly modifies
the model’s outcome such that the reporting values are
non-discriminatory while minimizing the loss of util-
ity (Hardt et al., 2016; Pleiss et al., 2017; Zeng et al.,
2022). Out of such mitigation categories, there have
been versatile studies imposing fairness in clustering
(Wang et al., 2023), feature selection (Quinzan et al.,
2023), reinforcement learning (Deng et al., 2023), and
so on.

There are three key notions for pursuing better algo-
rithmic fairness: independence, separation, and
sufficiency (Barocas et al., 2017; Caton and Haas,
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2020; Pagano et al., 2023). Throughout this paper, we
denote X as covariates, Y as a response, A as sensitive
random variables to be protected (e.g., race or gender),
and h as a scoring model that makes a data-driven
decision. The independence condition requires that
A is independent of h(X), i.e., A ⊥ h(X); statistical
parity is an example of independence. Separation and
sufficiency, on the other hand, are defined based on the
conditional independence structure, i.e., A ⊥ h(X)|Y
and A ⊥ Y |h(X) respectively. For instance, if two
groups in a binary A have the same false-positive and
false-negative errors in a binary classification prob-
lem, the circumstance achieves the error rate balance
(Chouldechova, 2017) or equalized odds (Hardt et al.,
2016), implying separation. For sufficiency, evaluating
the calibration of the model across sensitive factors is a
representative example (Chouldechova, 2017; Barocas
et al., 2017).

Throughout this paper, let P (X) denote the distri-
bution law of a random variable X. For generic ran-
dom variables X1 and X2, P (X1) = P (X2) means
that X1 and X2 have the same distribution, and
P (X1|X2 = x2) implies the conditional distribution
of X1 given X2 = x2. If the two random variables
satisfy P (X1, X2) = P (X1)P (X2), we say X1 and X2

are independent of each other. On the other hand, p(x)
denotes the probability mass/density function of X,
depending on the context.

In this work, we propose a model-based in-processing
framework that flexibly captures and controls underly-
ing societal discrimination realized through the output
of h. Our contributions are as follows:

• First, we devise a fairness penalty by a neural net-
work denoted as D that leverages a simple random
sampler of sensitive variables for independence to
measure the discrepancy between P (h(X), A) and
P (h(X))P (A). The penalty can accommodate var-
ious scenarios even when A is a mix of continuous
and discrete variables, in which many prior works
fail as exhibited in Table 1.

• Second, the penalty is further extended to embrace
separation while inheriting all the remarkable prop-
erties shown in the independence case.

• Third, we mathematically quantify the underlying
mechanism of the proposed fairness-controlled su-
pervised learning. Specifically, we derive the upper
bounds of estimation error and loss of utility with
the imposed penalty based on statistical learning
theory.

2 RELATED WORKS

Density Matching Achieving fairness through
density matching has been steadily implemented.
Quadrianto and Sharmanska (2017) designed a priv-
ileged learning using a variant of a support vector
machine on which a fairness constraint via maximum
mean discrepancy is imposed. Cho et al. (2020) per-
formed matching distributions between different sensi-
tive groups via a differentiable kernel density estimation
technique. Li et al. (2021) adopted the loss function
used in the generative adversarial network (Goodfellow
et al., 2014) as an extra penalty to facilitate the scor-
ing distributions h conditional on different A values
to be indistinguishable. These density-matching-based
regularizations work well but are usually limited to the
case when A and Y are discrete or binary. That is
because their backbone optimization structures essen-
tially depend on sub-groups comparison. As an example
of independence for binary A, the loss function relies
on two subsets of data, corresponding to A = 1 and
A = 0 respectively, to measure the distributional dif-
ference between sub-groups (i.e., P (h(X)|A = 1) vs
P (h(X)|A = 0)). Obviously, this technique does not
apply to continuous A. Romano et al. (2020) suggested
using an extra generator that produces A conditionally
on Y to ensure separation. Although this approach
technically bypasses the sub-group comparison, it criti-
cally relies on the quality of the conditional generator.
If A is complex, e.g., a mix of categorical and continu-
ous variables, finding a good generator that captures
the true distribution could be an extremely difficult
task (see, e.g., Xu et al., 2019b; Kotelnikov et al.,
2023).

HGR penalty and beyond To tackle such limita-
tions in the literature, diverse approaches have been
proposed. Mary et al. (2019) first utilized Hirschfeld-
Gebelein-Rényi (HGR) maximal correlation which can
capture the nonlinear correlation between A and h(X)
regardless of the variable type. Grari et al. (2020) and
Lee et al. (2022) approximated the HGR maximal cor-
relation via neural networks, to achieve independence
and separation. These approaches conduct min-max
optimization where the auxiliary neural networks ap-
proximate the HGR by maximization and the predic-
tive model h is trained to minimize the approximated
HGR. The auxiliary neural nets in the training pro-
cess take variable A as the input instead of fitting A,
hence the multivariate nature of A does not matter
anymore. Besides, Du et al. (2021) recently proposed
a way of neutralizing the hidden layer of a neural-net
model, which can also handle multivariate A; Scutari
et al. (2022) developed a fair (generalized) linear model
that places the ridge penalty to adjust the violation of
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discrimination for any kinds of A and Y .

3 METHODOLOGY

3.1 Penalty with Resampled A

Focusing on independence, this section describes the
main idea which generalizes to any dimension or type
of sensitive variables. The methodological novelty orig-
inates from the use of a simple random sampler of A
to quantify the degree of fairness via a discriminative
neural network D. Given a sufficient network capacity,
the learned D can capture the violation of statistical
independence, so it is used as a penalty (or adversarial)
network for the risk-minimization problem of h such
that the resulting h becomes fair.

To start with, let’s formally define X ∈ X ⊂ Rp and
A ∈ A ⊂ Rl as the multivariate non-sensitive and sen-
sitive random variable respectively, and Y ∈ Y ⊂ R as
the univariate outcome variable. Given a scoring model
h : X → S ⊂ R and a loss function L : Y × S → R, we
denote the risk function as R(h) = EY,X [L(Y, h(X))]
where EY,X means the expectation w.r.t. the joint dis-
tribution of (X,Y ). Note h does not explicitly depend
on A. This structure conceptually carries on fairness
via blinding and does not input A in the inference
phase (Quadrianto and Sharmanska, 2017; Zafar et al.,
2019). In order to evaluate independence in general
settings (i.e., beyond binary A and Y ), we generalize
the existing notion of statistical parity as follows.

Definition 1 (Generalized Statistical Parity (GSP)).
The scoring model h is called to satisfy the generalized
statistical parity if P (h(X)|A = a) = P (h(X)) for all
a ∈ A.

GSP is more general than the classical statistical parity
(SP); if A = {0, 1} for the binary classification problem,
GSP implies SP, i.e., P (h(X) > τ |A = 1)=P (h(X) >
τ |A = 0) for any classification threshold τ .

Now, we define the penalty that promotes the fairness
of h. Inspired by the noise-contrastive loss (Gutmann
and Hyvärinen, 2012; Goodfellow et al., 2014), with D :
S × A → (0, 1), let’s define RF (h) = supD RF (h;D)
where

RF (h;D) = EX,A[logD(h(X), A)]

+EX,A′ [log(1−D(h(X), A′))],

and A′ shares the same distribution with A but is
independent of (X,A). We remark that A′ can be eas-
ily obtained by applying the simple random sampling
A′ from P (A). The detailed implementation for this
marginal sampling is discussed in Supplementary 7.2.
The following proposition theoretically validates that
RF (h) captures the discrepancy between P (h(X)|A)
and P (h(X)).

Proposition 1. Let pA, ph(X), ph(X)|A, and ph(X),A be
the marginal densities of A and h(X), the conditional
density of h(X) given A respectively, and the joint den-
sity of h(X) and A. Denote D∗ = arg

D
max RF (h;D).

Then, for all s ∈ S and a ∈ A,

D∗(s, a)

1−D∗(s, a)
=

ph(X),A(s, a)

ph(X)(s)pA(a)
=
ph(X)|A(s|a)
ph(X)(s)

.

The proof is shown in Supplementary 7.1. This
proposition provides a theoretical justification for
the use of RF (h;D) as a GSP controller. Fol-
lowing the argument in Theorem 1 of Goodfellow
et al. (2014), we observe that RF (h) can be inter-
preted by the Jensen-Shannon divergence J(·, ·), i.e.,
RF (h;D

∗) = 2J(P (h(X), A), P (h(X))P (A))−2 log 2,
and it implies ph(X),A(s, a) = ph(X)(s)pA(a) for all s
and a if J = 0, which underpins that h accomplishes
GSP at the minimum of RF (h). Thus, we can for-
mulate a fairness-aware optimization problem for h by
placing the extra penalty RF (h) to the (discriminatory)
risk-minimization problem, i.e.,

min
h

R(h) + λRF (h), (1)

where λ trades off between goodness-of-fit (utility) and
the degree of GSP; as λ becomes larger, the solution
model h becomes fairer (in terms of GSP) where D∗

gets closer to 0.5 but meanwhile undergoes the loss of
utility.

Finally, we employ an empirical min-max optimiza-
tion structure since (1) is practically intractable.
The population joint density of Y , X, and A is
not available, and the optimal D∗ is unknown in
general so it requires maximization over RF (h;D).
Let’s denote by {(Xi, Ai, Yi)}ni=1 the observed data
set with a sample size n. We collect {A′

i}ni=1 by
simply resampling {Ai}ni=1. This is an approxi-
mated but computationally efficient implementation
for sampling A′ from P (A). Let’s further denote
by R̂(h) = 1

n

∑n
i=1 L(Yi, h(Xi)) and R̂F (h;D) =

1
n

∑n
i=1 (logD(h(Xi), Ai) + log(1−D(h(Xi), A

′
i)))

the unbiased estimators of R and RF respectively.
Then, the empirical version of (1) is

min
h

max
D

R̂(h) + λR̂F (h;D), (2)

where we use neural networks to model both h and
D. The optimization problem (2) can be solved via
an alternative min-max strategy (Supplementary 7.2).
For every iteration, D is first trained to capture the
degree of discrimination against GSP. The model h
is then trained to minimize the risk plus the fairness
penalty evaluated by D, which in turn hinders D from
identifying the presence of discrimination in the next
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Table 1: Summary of applicability of in-processing methods: “NN” denotes whether or not neural network models
are supported. “Ind.” and “Sep.” imply independence and separation. Abbreviations “D.”, “C.”, and “M.” imply
discrete, continuous, and mixed (continuous and discrete) type; Abbreviations “A” and “Y ” mean sensitive and
outcome variables. “△” means the framework does not explicitly control specific fairness metrics. “□” means
the method is technically applicable but requires a non-trivial modification. “B.” implies the framework only
supports a binary type variable.

Methods NN Ind. Sep. D. A C. A M. A D. Y C. Y

Edwards and Storkey (2016) ✓ ✓ ✗ B ✗ ✗ ✓ ✗
Agarwal et al. (2018) ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗
Adel et al. (2019) ✓ ✓ ✓ B ✗ ✗ ✓ ✗
Cho et al. (2020) ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗
Romano et al. (2020) ✓ ✗ ✓ ✓ ✓ □ ✓ ✓
Li et al. (2021) ✓ ✓ ✓ B ✗ ✗ ✓ ✗
Du et al. (2021) ✓ △ △ ✓ ✓ ✓ ✓ ✗
Scutari et al. (2022) ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Lee et al. (2022) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

iteration. By repeating this adversarial game between
the two networks D and h, the model h settles down
to an equilibrium, determined by λ, between utility
and fairness. We name R̂F (h;D) as simple random
sampling (SRS)-based penalty (SBP).

Although this work focuses on the Jensen-Shannon
divergence, our main idea does readily apply to other
metrics. For instance, a SBP penalty utilizing the
Kantorovich-Rubinstein duality of the 1-Wasserstein
distance can be devised as

RF (h;C) = EX,A[C(h(X), A)]−EX,A′ [C(h(X), A′)],

where C belongs to the class of 1-Lipschitz functions
(Arjovsky et al., 2017). In the same way, it is straight-
forward to see that other popular f -divergence metrics
also have the specific formulation of RF (Nowozin et al.,
2016).

This penalty is not only adequately flexible to capture
nonlinear discriminatory dependency between h(X)
and A but also differentiable while most fairness criteria
are usually non-differentiable in general (Zafar et al.,
2019; Cotter et al., 2019). Noteworthily, this penalty
requires neither partitioning data sets into sub-groups
nor predicting sensitive attributes in contrast to a lot of
previous works (Edwards and Storkey, 2016; Xie et al.,
2017; Beutel et al., 2017; Zhang et al., 2018; Adel et al.,
2019; Zhao et al., 2020; Li et al., 2021; Cho et al., 2020;
Du et al., 2021). These properties greatly expand the
applicability of the proposed method to numerous real-
world problems having a mix of continuous and discrete
sensitive attributes. We also remark that the previous
sampler-based work of Romano et al. (2020) does not
apply to GSP.

3.2 Extension for Separation

We also devise a penalty for separation that inherits
all the advantages discussed in Section 3.1. To begin
with, we define the generalized equalized odds (GEO)
which is an intuitive generalization of equalized odds
(Hardt et al., 2016) beyond binary outcomes.

Definition 2 (Generalized Equalized Odds (GEO)).
The scoring model h is called to satisfy the generalized
equalized odds if P (h(X)|A = a, Y = y) = P (h(X)|Y =
y) for all a ∈ A and y ∈ Y.

To control GEO, we suggest specifying RF (h;D) =

EX,A,Y [logD(h(X), A, Y )]

+EA′EX,Y [β(A
′, Y ) log(1−D(h(X), A′, Y ))],

with some function β : A × Y → R+ and D : S ×
A×Y → (0, 1), where A′ is statistically independent of
(X,A, Y ) but A and A′ have the same distribution. The
proposed penalty accompanies the next proposition.

Proposition 2. Let ph(X)|Y be the conditional density
function of h(X) given Y and ph(X)|A,Y be of given
Y and A. For RF (h;D), if D∗ = arg

D
max RF (h;D),

then D∗(s, a, y;β) =

ph(X)|A,Y (s|a, y)

ph(X)|A,Y (s|a, y) + β(a, y)ph(X)|Y (s|y)
pA′,Y (a,y)

pA,Y (a,y)

,

for all s ∈ S, a ∈ A, and y ∈ Y, where pA′,Y and pA,Y
be the joint density functions of A′ and Y and of A
and Y respectively.

The proof appears in Supplementary 8.1. If β can-
cels out the density ratio between pA′,Y and pA,Y
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(i.e., β(a, y)pA′,Y (a, y)/pA,Y (a, y) = 1), then by the
same argument in Proposition 1, RF (h;D

∗) is min-
imized when h satisfies P (h(X)|A, Y ) = P (h(X)|Y ),
i.e., the penalty RF (h;D

∗) promotes GEO. Thus, we fit

a density-ratio estimator β̂ by maximizing Rβ(Dβ) =

EA,Y [logDβ(A, Y )] +EA′,Y [log(1−Dβ(A
′, Y ))],

where Dβ : A × Y → (0, 1) is modeled by a neu-
ral network. Then D∗

β = argDβ
max Rβ(Dβ) satis-

fies D∗
β(a, y)/(1 − D∗

β(a, y)) = pA,Y (a, y)/pA′,Y (a, y).

Given an empirical minimizer D̂β of Rβ(Dβ), let

β̂(a, y) = D̂β(a, y)/(1− D̂β(a, y)), and then by Propo-

sition 2, D∗(s, a, y; β̂) properly regularizes GEO. The
numerical algorithm to expedite GEO appears in Sup-
plementary 8.2 on the basis of the expression (2). The

algorithm needs a pre-training phase to estimate β̂ that
is leveraged as the adaptive weights for the evaluation
of the penalty RF (h;D). We observe that β̂ performs
a powerful density-ratio estimation on toy examples in
Supplementary 8.3. It is worth mentioning that when
A and Y are both discrete, β̂ can be easily found with-
out neural network training, e.g., using the empirical
probability mass functions.

Proposition 2 clearly shows the fundamental differences
of our simple random sampler approach compared to
the conditional sampler approach (Romano et al., 2020),
i.e., A′ ∼ P (A|Y ). In our case, we additionally em-
ploy β to exactly match P (h(X)|A, Y ) = P (h(X)|Y )
in the ideal separation. In contrast, the prior work does
not need β but has to obtain the conditional sampler
A′ = G(ϵ, Y ) for some generative model G and random
noise ϵ. There may be room for debate, but we believe
that estimating β is generally more straightforward
than training G. The former is equivalent to a DNN bi-
nary classification problem, which in modern practice
is hardly impacted by the dimension or characteris-
tics of A for tabular data sets. In contrast, the latter
may necessitate the use of advanced generative models,
such as generative adversarial networks (GAN) or dif-
fusion models which are well-known for their notorious
training difficulty (Xu et al., 2019b; Kotelnikov et al.,
2023), when dealing with tabular-type attributes of A.
Moreover, even a successfully trained generative model
may only learn the support rather than the shape of a
distribution (Arora et al., 2018).

Remark 1. Although our approach necessitates β for
the theoretical justification, we find that the performance
of our simple random sampler-based method is fairly
robust to a poor β estimation. Refer to Section 5 and
Supplementary 10.4 for more details.

Finally, it is worth mentioning that this penalty can also
be used to obtain fair representation (Zhao et al., 2020;
Du et al., 2021). Let’s denote by E : X → E an encoder

which precedes hE : E → S with the risk R̂(hE ◦ E).
Then solving minhE ,E maxD R̂(hE ◦ E) + λR̂F (E;D)
brings a fair encoder E for either independence or
separation with D : E ×A → (0, 1) or D : E ×A×Y →
(0, 1) respectively.

4 THEORY

In this section, we characterize the estimation error
and the loss of utility of the proposed fairness-aware
optimization scheme. For the simplicity of presentation,
the analysis focuses on the solution of (2) with the GSP
penalty. Our analysis borrows some proof techniques
in the literature of generative adversarial modeling (Ji
et al., 2021). For readers who are interested in the
details of the proof, please refer to Supplementary 9.

Let’s suppose X = {x : ||x|| ≤ B, x ∈ Rp}, Y = [0, 1],
and A = [0, 1]l where || · || denotes the Euclidean norm.
For mathematical convenience, we set D(·) = σ(f(·))
with σ(x) = (1 + exp(−x))−1 and consider the fully-
connected neural networks: f(x, a) = fw(x, a) =
w⊤
d κd−1(Wd−1κd−2(· · ·W1[x

⊤, a⊤]⊤)) and h(x) =
hv(x) = v⊤g ψg−1(Vg−1ψg−2(· · ·V1x)) where w =
(W1, . . . ,Wd−1, wd) ∈ W and v = (V1, . . . , Vg−1, vg) ∈
V. We denote by F and H the function classes of f
and h. Also, it is assumed that W =

⊗d−1
i=1 {Wi ∈

Rpi+1×pi : ||Wi||F ≤ Mw(i)}
⊗

{wd ∈ Rpd×1 : ||wd|| ≤
Mw(d)} and V =

⊗g−1
i=1 {Vi ∈ Rqi+1×qi : ||Vi||F ≤

Mv(i)}
⊗

{vg ∈ Rqg×1 : ||vg|| ≤Mv(g)} with constants
Mw(·) and Mv(·), p1 = p + l, q1 = p, and the Frobe-
nius norm || · ||F . This also induces the class of D by
functional composition, defined as D = {fw(hv(x), a) :
w ∈ W,v ∈ V}.

We further assume that the activation functions ψu and
κt are Kψ(u) and Kκ(t)-Lipschitz for all t = 1, . . . , d−1
and u = 1, . . . , g−1. ReLU and Sigmoid are examples of
the 1-Lipschitz functions. These assumptions hint 1 >
γ1 ≥ σ(hv(x)) ≥ γ0 > 0 and 1 > ν1 ≥ σ(fw(x, a)) ≥
ν0 > 0 for all x and a where the upper and the lower
limits (γ1, γ0, ν1, ν0) depend on the assumed bounds
from the parameter spaces (i.e., Mw(·) and Mv(·)) and
the Lipschitz constants of the activation functions.

Now, let’s denote d(h;λ) = R(h) + λRF (h) and

d̂(h;λ) = R̂(h)+λR̂F (h) as the population-level target
function and its empirical version respectively. The
estimation error then can be characterized by evaluat-
ing the empirical solution on the population objective
based on the Rademacher complexity.

Definition 3 (Rademacher Complexity). Let H be
the function class of h. Denote by X1, . . . , Xn random
samples that are independent and identically distributed
(i.i.d.) to PX . Then the Rademacher complexity R(H)
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is defined as

R(H) = EX,ϵ

[
sup
h∈H

∣∣∣∣∣ 1n
n∑
i=1

ϵih(Xi)

∣∣∣∣∣
]
,

where ϵ1, . . . , ϵn ∼ Unif{−1, 1} i.i.d.

The Rademacher complexity for other function classes
is defined in the same fashion. Theorem 1 holds for
either the cross-entropy loss with Y ∈ {0, 1} or the
mean absolute error for Y ∈ [0, 1].

Theorem 1 (Estimation Error). Let ĥ∗ =

argh∈H min d̂(h;λ) and define L = {L(y, hv(x)) : v ∈
V } for x ∈ X and y ∈ Y. Then, for any given
λ ≥ 0, an upper bound of the estimation error is
|d(ĥ∗;λ)− infh∈H d(h;λ)| ≤

4R(L) + 2FV,ψ,B,γ0,γ1

√
log(1/δ)

2n︸ ︷︷ ︸
from R̂(h)

+ 2λ

(
Fν0,ν1R(D) + FW,V,B,κ,ψ,l,ν0,ν1

√
log(1/δ)

2n

)
︸ ︷︷ ︸

from R̂F (h)

,

with the probability 1 − 3δ where Fν0,ν1 , FV,ψ,B,γ0,γ1 ,
and FW,V,B,κ,ψ,l,ν0,ν1 are constants depending on the
architectures of neural networks h ∈ H and f ∈ F
whose exact values can be found in Supplementary 9.

Theorem 1 shows how the complexity of the neural
network function classes affects the estimation accuracy
through the Rademacher complexity and F· constants.
As sample size n increases (while other settings are
fixed), the Rademacher complexity generally decreases
to zero, leading to consistency according to Theorem
1. The hyperparameter λ controls the balance between
utility and fairness. Larger λ enforces better fairness at
the expense of possible utility loss; the next corollary
studies this utility loss.

Corollary 1 (Loss of Utility). Define ĥ∗ =

argh∈H min d̂(h;λ), h∗0 = argh∈H min d(h;λ = 0), and
h∗ = argh∈H min d(h;λ). Let’s denote ∆(h∗0, h

∗) =
RF (h

∗
0)−RF (h∗). Then the loss of utility has an upper

bound |d(ĥ∗;λ = 0)− d(h∗0;λ = 0)| ≤

4R(L) + 2FV,ψ,B,γ0,γ1

√
log(1/δ)

2n
+ λ∆(h∗0, h

∗),

with 1-δ probability for any λ ≥ 0.

The loss of utility can take place from two main sources.
Basically, the loss of utility could stem from sampling
errors, which unfolds the first two terms in the upper
bound of Corollary 1. Secondly, if the true h∗0, which

is of the best utility, is exposed to huge discrimina-
tion against A in the population, i.e., h statistically
strongly depends on A, then the penalty could lead to
tremendous loss of utility in an effort to remove the
dependency w.r.t. A (i.e., the term λ∆(h∗0, h

∗)).

5 SIMULATION

The performance of supervised learning with the pro-
posed penalties is verified in the following three scenar-
ios: (I) discrete outcome and sensitive attribute, (II)
discrete outcome and mixed sensitive attributes, and
(III) continuous outcome and sensitive attribute. The
main text only delivers results about GSP in Scenario I
and GEO in Scenario II due to the page limit. Results
about GEO in Scenario I, GSP in Scenario II, Scenario
III, and more additional studies (e.g., fair representa-
tion) are presented in Supplementary Section 10.

We compare the performance of our model (SRS-based
penalty, SBP) against several newly proposed compet-
ing methods: HGR (Lee et al., 2022) that uses the
neural-net approximation to calculate the soft HGR,
the feature neutralization (Du et al. (2021), NEU) that
interpolates feature points in a hidden layer such that
the mapped space is independent of sensitive attributes,
the kernel density estimation (Cho et al. (2020), KDE)
that employs Q-function to approximate a distribution
function, and CON (Romano et al., 2020) that uses
the learned conditional sampler of A given Y . All the
above in-processing models have the trade-off parame-
ter λ to the fairness penalty LF for fairness on top of
the main loss term LM . As a means of matching the
scale of λ for the different models, all of them are tested
under the formula (1− λ)LM + λLF with 5 replicated
experiments for various 0 < λ < 1. All methods learn
a neural network h with 3 hidden layers with 64 nodes.
For more details about simulation setups, please refer
to Supplementary Section 10.1.

Three benchmark data sets are considered for Scenario
I: Adult Data1 where Y is whether or not the annual
income is greater than $50K and A is whether an indi-
vidual is white or non-white; Law School Admission
Data 2 where Y is whether or not an applicant receives
admission and A whether an individual is white or non-
white; and Credit Card Default Data1 where Y is
whether or not a customer declares default and A is
the gender. We refer to the work (Cho et al., 2020) to
specify the sensitive attributes for analysis. Each data
set is split by 80% and 20% for training and validation
during the training course.

For the evaluation of fairness in Scenario I, statistical

1https://archive.ics.uci.edu/ml/datasets/
2http://www.seaphe.org/databases.php
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parity (SP) is assessed by calculating

SP =
∣∣∣E(Ŷ = 1|A = 1)/E(Ŷ = 1|A = 0)− 1

∣∣∣ ,
where Y = {0, 1}, A = {0, 1}, and Ŷ = I(ĥ∗(X) >
τ) with the threshold τ maximizing the area under
ROC curve (AUC) on the validation set. The AUC
value is also used as a measure of utility. We use the
Kolmogorov-Smirnov statistics (KS) to assess GSP,
which is calculated as

KS-GSP =
∑
a∈A

max
hx

|P̂ (ĥ∗(X) ≤ hx|A = a)

− P̂ (ĥ∗(X) ≤ hx)|,

where P̂ denotes the empirical distribution.

Since the model intrinsically has multi-objectives (util-
ity and fairness) in nature, the trained models at all iter-
ations are evaluated over the validation data. Then, we
plot the Pareto frontier curve of (AUC versus SP/KS)
for each independent run. The Pareto frontier (Em-
merich and Deutz, 2018) is a set of solutions that are
not dominated by other pairs. For instance, a pair
of AUC and SP, e.g., (0.5, 0.5), is not dominated by
(0.4, 0.4) but by (0.6, 0.4). This analysis helps design
fair comparison studies without designing different or
non-comparable early stopping strategies for the com-
petitors (for example, NEU tends to degenerate to the
trivial solution, which is perfectly fair but has no utility,
for long-run iterations, so comparing the last iterates
among the competing methods is not fair).

Figure 1 clearly illustrates the remarkable advantages
of using SBP over the competitors. The closer the set
of points is to the upper left corner of the figure, the
higher performance is verified. We observe that SBP
provides more consistent and better solutions in the
sense that the Pareto frontiers are much more tightly
gathered along the trade-off path than other competing
methods. Note CON is not available for SP. Table 2
reports the fairness scores (SP/KS) of the Pareto solu-
tions whose AUC is above the thresholds. The table
succinctly demonstrates our superiority which is consis-
tent with Figure 1. Those thresholds are chosen such
that all methods yield a sufficient number of candidate
SP/KS scores by referring to Figure 1. More tables with
different thresholds appear in Supplementary 10.2.2.

For Scenario II, we use an additional data set ACSEm-
ployment3 from California in 2018 where Y is whether
or not an individual is employed and A is a vector of
age (continuous) and gender (discrete). We choose
age (continuous) and race (discrete) for Adult and also
age (continuous) and gender (discrete) for Credit Card

3https://github.com/socialfoundations/folktables

Default as sensitive attributes respectively while the
output variables are the same as in Scenario I. For
CON, we devise a conditional GAN model (Mirza and
Osindero, 2014) because the trivial estimation method
for P (A|Y ) in the original work (Romano et al., 2020)
is not directly applicable when A is a mix of discrete
and categorical variable. For a fair comparison, we
use the same network structure for β in SBP and the
discriminator for CON. To measure fairness for discrete
attributes, we define

EO =
∑
y∈Y

∣∣∣∣∣E(Ŷ = 1|A = 1, Y = y)

E(Ŷ = 1|A = 0, Y = y)
− 1

∣∣∣∣∣ ,
and KS-GEO =∑

y∈Y,a∈A
max
hx

|P̂ (ĥ∗(X) ≤ hx|A = a, Y = y)

− P̂ (ĥ∗(X) ≤ hx|Y = y)|.

We similarly define the fairness measures for continuous
attributes; please refer to Supplementary 10.2 to see
the formal definition.

Table 3 contrasts all models except KDE on the three
data sets. Note KDE can not be implemented for
continuous sensitive attributes. The thresholds are
chosen based on Figure 4 in Supplementary 10.2. As
is consistent with the table, the figure illustrates that
SBP tends to outperform the competitors for both
sensitive variables in general. For the computing time,
ours is generally more efficient as shown in Table 4.

To intuitively explain that SBP outperforms others, we
comment that HGR involves more burdensome approx-
imation because it has to estimate four auxiliary neural
networks in the adversarial training procedure, leading
to larger estimation errors and computing time; NEU,
on the other hand, does not explicitly control fairness
metrics in its training process, leading to uneven perfor-
mance. CON is significantly defeated by SBP mainly
because estimating a good conditional generator A|Y
via the GAN approach is more difficult than estimating
a good β̂. On the other hand, we observe that SBP
for separation is robust against a poor estimation of β̂
(details in Supplementary 10.4).

In spite of such remarkable performance, an unavoid-
able issue of the proposed penalty remains regarding
the adversarial game structure between h and D which
is known to be unstable in general. As remedies to this
obstacle, users can harness popular stabilization tech-
niques used in the GAN literature such as penalizing
the gradient of D (Zhou et al., 2019) or adding normal-
ization layers (Miyato et al., 2018). It is also practical
for the users to save the snapshots of h being learned
over the Pareto frontier and deploy the final model
having the desired Pareto solution for the purpose.
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Figure 1: (Scenario I) Pareto frontiers: the first row includes pairs of SP and AUC, and the second row shows
pairs of KS-GSP and AUC from 5 experiments for each λ. SBP (ours) tends to be more tightly in the upper-left
corner than the competitors.

Table 2: Averages of the 5 smallest SP/KS-GSPs whose AUCs are greater than the thresholds. Those scores are
selected in the Pareto solutions appearing in Figure 1. Standard deviations are in the parentheses next to the
averages. All values are rounded to the third decimal place.

Adult (AUC ≥ 0.85) Cred. Card. (AUC ≥ 0.75) Law School. (AUC ≥ 0.80)
Model SP (↓) KS-GSP (↓) SP (↓) KS-GSP (↓) SP (↓) KS-GSP (↓)
SBP 0.001 (≈ 0) 0.014 (≈ 0) ≈ 0 (≈ 0) 0.011 (0.001) 0.004 (0.003) 0.018 (0.001)
HGR 0.070 (0.005) 0.040 (≈ 0) 0.001 (0.001) 0.023 (0.001) 0.096 (0.003) 0.064 (0.002)
KDE 0.355 (0.010) 0.124 (0.002) 0.013 (0.009) 0.024 (≈ 0) 0.239 (0.013) 0.132 (0.003)
NEU 0.446 (0.029) 0.154 (0.003) 0.040 (0.010) 0.020 (0.003) 0.214 (0.017) 0.098 (0.005)

Table 3: Averages of the 5 smallest EO/KS-GEOs whose AUCs are greater than the thresholds. Those scores are
selected by referring to Figure 4 in Supplementary 10.2. Standard deviations are in the parentheses.

Adult (AUC ≥ 0.80) Cred. Card. (AUC ≥ 0.75) ACSEmpl. (AUC ≥ 0.75)
Metric Model Race (↓) Age (↓) Gender (↓) Age (↓) Gender (↓) Age (↓)

EO

SBP 0.047 (0.004) 0.078 (0.002) 0.001 (≈ 0) 0.016 (0.001) 0.066 (0.004) 0.209 (0.002)
CON 0.358 (0.029) 0.162 (0.027) 0.006 (0.003) 0.016 (0.004) 0.155 (0.006) 0.316 (0.011)
HGR 0.273 (0.073) 0.307 (0.002) 0.002 (0.001) 0.033 (0.001) 0.193 (0.005) 0.447 (0.002)
NEU 0.292 (0.019) 0.201 (0.007) 0.027 (0.007) 0.055 (0.005) 0.099 (0.003) 0.276 (0.006)

KS-
GEO

SBP 0.098 (0.003) 0.120 (0.001) 0.040 (0.001) 0.036 (0.001) 0.071 (0.001) 0.167 (0.002)
CON 0.177 (0.001) 0.094 (0.007) 0.049 (0.001) 0.038 (≈ 0) 0.100 (0.002) 0.207 (0.003)
HGR 0.160 (0.003) 0.208 (0.008) 0.041 (0.003) 0.047 (0.001) 0.122 (0.001) 0.320 (0.004)
NEU 0.156 (0.005) 0.130 (0.001) 0.063 (0.004) 0.054 (0.001) 0.074 (0.001) 0.205 (0.002)

6 CONCLUSION

The proposed fair-ML framework that employs the
simple random sampler is universally applicable to clas-

sification/regression problems across various fairness
criteria, without worrying whether sensitive attributes
are continuous or discrete, or even a mix of them. This
methodological versatility is of great importance as
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Table 4: Training times (mins) for the first 1000 iter-
ations on A30 GPU for separation in Adult, includ-
ing/excluding the pre-training time. Note that for
Scenario II, CON, NEU, and SBP need a pre-training
(additional NN models) course but KDE and HGR do
not. Refer to Supplementary 10.1 for more details.

Without With
pre-training pre-training

Model Scenario I Scenario II Scenario II

SBP 0.22 (0.02) 0.59 (0.05) 0.80 (0.07)
CON 0.21 (0.03) 0.40 (0.03) 1.45 (0.09)
HGR 0.47 (0.08) 0.77 (0.10) -
KDE 1.31 (0.09) - -
NEU 1.01 (0.09) 1.46 (0.03) 3.61 (0.09)

multifarious communities in society pay more atten-
tion to the unbiased data-driven decision process while
having more and more diverse variables with distinc-
tive characteristics to be protected together (Loukina
et al., 2019; Lee and Floridi, 2021; Kozodoi et al., 2022;
De-Arteaga et al., 2022). In future research, the funda-
mental concept of unconditionally sampling sensitive
attributes will be a promising tool for promoting fair-
ness for other related works that heavily depend on
the discreteness, mixed or even high-dimensional sen-
sitive variables, such as synthesizing a fair data set
(Xu et al., 2019a) or fair uncertainty quantification (Lu
et al., 2022).
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Supplementary Materials: Fair Supervised Learning with A Simple
Random Sampler of Sensitive Attributes

7 DETAILS OF SECTION 3.1

7.1 Proof of Proposition 1

Let’s recall

RF (h;D) = EX,A[logD(h(X), A)] +EX,A′ [log(1−D(h(X), A′))],

where A and A′ are independent but identically distributed. Let s = h(x) where x is a realization of X and also
a is of A. The loss function can be written

RF (h;D) =

∫
logD(s, a)p(s, a)dsda+

∫
log(1−D(s, a′))p(s, a′)dsda′,

=

∫
logD(s, a)p(s|a)p(a) + log(1−D(s, a))p(s)p(a)dsda.

By the proof of Proposition 1 in Goodfellow et al. (2014), RF (h;D) is maximized at

D∗(s, a) =
p(s|a)p(a)

p(s|a)p(a) + p(s)p(a)
=

p(s|a)
p(s|a) + p(s)

,

for any s ∈ S and a ∈ A.

7.2 Algorithm of GSP penalty

Let {(xi, ai, yi)}ni=1 be a set of the realization of {Xi, Ai, Yi}ni=1. The simple random sampler of A can be easily
obtained by the minibatch construction (Algorithm 1). In practice, producing a′(i) directly from D, which is an
approximated implementation of Algorithm 1, works well. In every iteration, D serves as a fairness critic by
quantifying the degree of discrimination against GSP. The model h is then trained to minimize the risk but at
the same time to be debiased such that D would not capture the discrimination. Note w and v are parameters of
D and h. The algorithm to control GSP appears in Algorithm 2. It is allowed to update w up to T ′ ≥ 1 times
for every single update of v for better approximation for R̂F (h), e.g., T

′ = 1, . . . , 10.

Algorithm 1: Minibatch Construction (MC) at the tth iteration

Data: Let Dn = {(xi, ai, yi)}ni=1 be the set of training data set. Set the minibatch size nb. The subscript (i)
denotes the ith drawn sample.

Result: Dnb

D = {(x(i), a(i), y(i))}nb
i=1 is randomly drawn from Dn.

D′ = {(x′(i), a
′
(i), y

′
(i))}

nb
i=1 is randomly drawn from Dn \D.

Construct Dnb
= {(x(i), a(i), y(i), a′(i))}

nb
i=1 by selecting {a′(i)}

nb
i=1 from D′ and combining it into D.
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Algorithm 2: Generalized Statistical Parity

Data: Let Dn = {(xi, ai, yi)}ni=1 be the set of training data set. Denote the tth iterate of model parameters
by w(t) and v(t) and α is a learning rate. Fix the number of training iterations T and T ′; set t = 0;
and initialize w(0) and v(0).

Result: hv(T )

while t ≤ T do
t = t+ 1
{(x(i), a(i), y(i), a′(i))}

nb
i=1 = MC(Dn)

t′ = 0
while t′ ≤ T ′ do

t′ = t′ + 1

R̂F (hv;Dw(t)) = 1
nb

∑nb

i=1

(
logDw(t)(hv(t)(x(i)), a(i)) + log(1−Dw(t)(hv(t)(x(i)), a

′
(i)))

)
w(t+1) = w(t) + α

∂

∂w(t)
R̂F (hv(t) ;Dw(t))

end

R̂(hv(t)) = 1
nb

∑nb

i=1 L(y(i), hv(t)(x(i)))

v(t+1) = v(t) − α
∂

∂v(t)
(R̂(hv(t)) + λR̂F (hv(t) ;Dw(t)))

end

8 DETAILS OF SECTION 3.2

8.1 Proof of Proposition 2

The penalty for separation is

RF (h;D) = EX,A,Y [logD(h(X), A, Y )] +EA′EX,Y [β(A
′, Y ) log(1−D(h(X), A′, Y ))],

=

∫
logD(s, a, y)p(s|a, y)p(a, y)dadyds+ β(a′, y) log(1−D(s, a′, y))p(s|y)p(a′)p(y)da′dyds,

=

∫
logD(s, a, y)p(s|a, y)p(a, y) + β(a, y) log(1−D(s, a, y))p(s|y)p(a)p(y)dadyds.

By the same argument in Supplementary 7.1, D∗ = argDmaxRF (h : D) has the form of

D∗(s, a, y;β) =
p(s|a, y)p(a, y)

p(s|a, y)p(a, y) + β(a, y)p(s|y)p(a)p(y)
=

p(s|a, y)

p(s|a, y) + β(a, y)p(s|y)p(a)p(y)
p(a, y)

.

8.2 Algorithm of GEO penalty

GEO needs a pre-training step for Dβ that is also modeled by a neural network with parameter u. We additionally
denote by Du(l) the lth iterate of Dβ . With the same notation in Supplementary 7.2, the numerical algorithm for
GEO appears in Algorithm 3.

8.3 Estimation performance from Dβ on a toy experiment

We test the estimation performance of Dβ for the density ratio estimator β. Suppose p(y|a) = P (Y = y|A =
a) = (1+ exp(−a))−1 with P (A = a) = 0.5 for y, a ∈ {0, 1}. Dβ is assumed to have 2 dense hidden layers with 64
nodes and Relu activation functions, and its output layer has a single dimension with Sigmoid activation. In the
total number of 10000 training iterations with 100 minibatch size, the last iterate is selected as the point estimate
of p(y|a)/p(y). Based on 5 replicated experiments, we calculate the averages and the standard deviation of the

point estimates. As it is shown in Table 5, β̂ successfully estimates the true density ratios.
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Algorithm 3: Generalized Equalized Odds

Data: Let {(xi, ai, yi)}ni=1 be the set of training data set and obtain {a′i}ni=1 by permuting {ai}ni=1. Denote
the tth iterate of model parameters by u(t), w(t) and v(t) and α is a learning rate. Fix L, T , and T ′;
set t = 0 and l = 0; and initialize u(0), w(0) and v(0).

Result: hv(T )

while l ≤ L do
l = l + 1
{(x(i), a(i), y(i), a′(i))}

nb
i=1 = MC(Dn)

R̂β(Du(l)) = 1
nb

∑nb

i=1

(
logDu(l)(a(i), y(i)) + log(1−Du(l)(a′(i), y(i)))

)
u(l+1) = u(l) + α

∂

∂u(l)
R̂β(Du(l))

end
while t ≤ T do

t = t+ 1
{(x(i), a(i), y(i), a′(i))}

nb
i=1 = MC(Dn)

t′ = 0
while t′ ≤ T ′ do

t′ = t′ + 1
R̂F (hv;Dw(t)) =

1
nb

∑nb
i=1

(
logDw(t)(hv(t)(x(i)), a(i), y(i)) +

Du(L)(a(i), y(i))

1−Du(L)(a(i), y(i))
log(1−Dw(t)(hv(t)(x(i)), a

′
(i), y(i)))

)
w(t+1) = w(t) + α

∂

∂w(t)
R̂F (hv(t) ;Dw(t))

end

R̂(hv(t)) = 1
nb

∑nb

i=1 L(y(i), hv(t)(x(i)))

v(t+1) = v(t) − α
∂

∂v(t)
(R̂(hv(t)) + λR̂F (hv(t) ;Dw(t)))

end

Table 5: Estimation performance for β̂ in the toy example. The point estimate is found by averaging 5 outputs.
Std. implies the standard deviation calculated from the 5 outputs.

p(1|1)/p(1) p(1|0)/p(1) p(0|1)/p(0) p(0|0)/p(0)
True 1.1877 0.8123 0.6995 1.3005
Point Estimate (Std.) 1.1810 (0.0077) 0.8126 (0.0029) 0.7082 (0.0018) 1.2955 (0.0048)

9 DETAILS OF SECTION 4

9.1 Proof of Theorem 1

Our theory specifically deals with binary cross-entropy and mean absolute error for binary and continuous
outcomes respectively. The overall proof strategy is to check the bounded difference condition to use McDiarmid’s
inequality.

The estimation error can be defined as

|d(ĥ∗;λ)− inf
h∈H

d(h;λ)|, (3)

where ĥ∗ = arghmin d̂(h;λ). The estimation error is further decomposed as follows.

d(ĥ∗;λ)− inf
h
d(h;λ) = d(ĥ∗;λ)− d(h∗;λ) = d(ĥ∗;λ)− d̂(ĥ∗;λ) (4)

+ d̂(h∗;λ)− d(h∗;λ) (5)

+ d̂(ĥ∗;λ)− d̂(h∗;λ), (6)
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where h∗ = arghmin d(h;λ), and it is trivial to see (6) ≤ 0. The first line (4) is equivalent to

d(ĥ∗;λ)− d̂(ĥ∗;λ) = R(ĥ∗)− R̂(ĥ∗) + λ(RF (ĥ
∗)− R̂F (ĥ

∗)).

For (5), we have

d̂(h∗;λ)− d(h∗;λ) = R̂(h∗)−R(h∗) + λ(R̂F (h
∗)−RF (h

∗)).

Therefore, the estimation error is bounded by

|d(ĥ∗;λ)− inf
h
d(h;λ)| ≤ 2 sup

h
|R(h)− R̂(h)|︸ ︷︷ ︸

I

+2λ sup
h

|RF (h)− R̂F (h)|︸ ︷︷ ︸
II

. (7)

Since R̂(h) is an empirical risk function, we denote T ((X1, Y1), . . . , (Xn, Yn)) = suph |R(h) − R̂(h)|. For the
binary cross-entropy loss function, i.e., L(Yi, h(Xi)) = Yi log σ(h(Xi)) + (1− Yi) log(1− σ(h(Xi))), the bounded
difference of the ith differing variable can be bounded by

|T ((X1, Y1), . . . , (Xi, Yi), . . . , (Xn, Yn))− T ((X1, Y1), . . . , (X
†
i , Y

†
i ), . . . , (Xn, Yn))|

≤ sup
h

| 1
n
(L(Yi, h(Xi))− L(Y †

i , h(X
†
i )))|,

≤ 1

n
sup
h

|Yi log σ(h(Xi)) + (1− Yi) log(1− σ(h(Xi)))−

Y †
i log σ(h(X†

i ))− (1− Y †
i ) log(1− σ(h(X†

i )))|. (8)

Without loss of generality, let’s consider (i) Yi = Y †
i = 1, (ii) Yi = Y †

i = 0, and (iii) Yi = 1 and Y †
i = 0. Since the

sigmoid function σ is a 1-Lipschitz function, (i) upper bounds

| log σ(h(Xi))− log σ(h(X†
i ))| ≤

1

γ0
|σ(h(Xi))− σ(h(X†

i ))|,

≤ 1

γ0
|h(Xi)− h(X†

i )|,

≤ 1

γ0

g∏
j=1

Mv(j)

g−1∏
k=1

Kψ(k)× 2B.

The first inequality comes from the Lipschitz property of the logarithm whose domain is bounded below by a
positive constant. The Cauchy-Schwarz inequality and the Lipschitz conditions of the activation functions lead
the last inequality. Similarly, for (ii), we have

| log(1− σ(h(Xi)))− log(1− σ(h(X†
i )))| ≤

1

1− γ1
|σ(h(Xi))− σ(h(X†

i ))|,

≤ 1

1− γ1

g∏
j=1

Mv(j)

g−1∏
k=1

Kψ(k)× 2B,

For (iii), we obtain

| log σ(h(Xi))− log(1− σ(h(X†
i )))| ≤

1

min{γ0, 1− γ1}
|σ(h(Xi)) + σ(h(X†

i ))− 1| ≤ |2γ1 − 1|
min{γ0, 1− γ1}

.

Therefore, the upper bound (8) is represented as

max

 |2γ1 − 1|
nγ0,1

,
1

nγ0,1

g∏
j=1

Mv(j)

g−1∏
k=1

Kψ(k)× 2B

 ,

where γ0,1 = min{γ0, 1− γ1}.
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On the one hand, if the underlying loss function has the mean absolute error, i.e., L(Yi, h(Xi)) = |Yi − h(Xi)|,
the upper bound of the bounded difference is

|T ((X1, Y1), . . . , (Xi, Yi), . . . , (Xn, Yn))− T ((X1, Y1), . . . , (X
†
i , Y

†
i ), . . . , (Xn, Yn))|

≤ sup
h

| 1
n
(L(Yi, h(Xi))− L(Y †

i , h(X
†
i )))|,

≤ 1

n
sup
h
(|Yi − Y †

i |+ |h(Xi)− h(X†
i )|),

≤ 1

n

1 +

g∏
j=1

Mv(j)

g−1∏
k=1

Kψ(k)× 2B

 .

Next, we take expectation to (I) in (7) with respect to the random samples. We obtain

EX,Y sup
h

|R(h)− R̂(h)| = EX,Y sup
h

|EX̃,Ỹ
1

n

n∑
i=1

L(Ỹi, h(X̃i))−
1

n

n∑
i=1

L(Yi, h(Xi))|,

≤ EX,Y,X̃,Ỹ sup
h

| 1
n

n∑
i=1

L(Ỹi, h(X̃i))−
1

n

n∑
i=1

L(Yi, h(Xi))|,

= EX,Y,X̃,Ỹ ,ϵ sup
h

| 1
n

n∑
i=1

ϵi(L(Ỹi, h(X̃i))− L(Yi, h(Xi)))|,

≤ 2EX,Y,ϵ sup
h

| 1
n

n∑
i=1

ϵiL(Yi, h(Xi))| := 2R(L),

where ϵi ∼ Unif{−1, 1} are i.i.d, (X̃i, Ỹi) are i.i.d. copies (ghost samples) of (X,Y ), and L := {L(y, hv(x)) : v ∈ V }
is a function class of the given loss L.

Therefore, McDiarmid’s inequality implies

I ≤ 2R(L) + FV,ψ,B,γ0,γ1

√
log(1/δ)

2n
, (9)

with the 1-δ probability, where R is the Rademacher complexity of L, and the involved constant is

FV,ψ,B,γ0,γ1 =

max

{
|2γ1 − 1|
γ0,1

,
1

γ0,1

∏g
j=1Mv(j)

∏g−1
k=1Kψ(k)× 2B

}
if L is cross-enstropy,(

1 +
∏g
j=1Mv(j)

∏g−1
k=1Kψ(k)× 2B

)
if L is mean absolute difference.

Similarly, we can upper bound (II). First, we check the bounded difference condition that is induced by the neural
penalty, i.e.,

II ≤ sup
h,D

[|EX,A logD(h(X), A)− Ê logD(h(X), A)|]︸ ︷︷ ︸
U1((X1,A1),...,(Xi,Ai),...,(Xn,An))

+ sup
h,D

[|EX,A′ log(1−D(h(X), A′))− Ê log(1−D(h(X), A′))|]︸ ︷︷ ︸
U2((X1,A′

1),...,(Xi,A′
i),...,(Xn,A′

n))

.



Jinwon Sohn, Qifan Song, Guang Lin

Then, for any differing the ith coordinate,

|U1((X1, A1), . . . , (Xi, Ai), . . . , (Xn, An))− U1((X1, A1), . . . , (X
†
i , A

†
i ), . . . , (Xn, An))|

≤ 1

n
sup
h,D

| logD(h(Xi), Ai)− logD(h(X†
i ), A

†
i )|,

≤ 1

nν0
|σ(f(h(Xi), Ai))− σ(f(h(X†

i ), A
†
i ))|,

≤ 1

nν0

d∏
k=1

Mw(k)

d−1∏
j=1

Kκ(j)× ||[h(Xi), Ai]− [h(X†
i ), A

†
i ]||,

≤ 1

nν0

d∏
k=1

Mw(k)

d−1∏
j=1

Kκ(j)×

√√√√l + 4B2

(
g∏
k=1

Mv(k)

g−1∏
l=1

Kψ(l)

)2

,

:=
FW,V,B,κ,ψ,l

nν0
.

Likewise, we get the similar result for U2 as follows,

|U2((X1, A
′
1), . . . , (Xi, A

′
i), . . . , (Xn, A

′
n))− U2((X1, A

′
1), . . . , (X

†
i , (A

′
i)

†), . . . , (Xn, A
′
n))|

≤ FW,V,B,κ,ψ,l

n(1− ν1)
.

In addition,

EX,AU1((X1, A1), . . . , (Xi, Ai), . . . , (Xn, An)) ≤ EX,AEX̃,Ã sup
h,D

| 1
n

n∑
i=1

logD(h(X̃i), Ãi)− logD(h(Xi), Ai)|,

≤ 1

ν0
EX,AEX̃,Ã sup

h,f
| 1
n

n∑
i=1

f(h(X̃i), Ãi)− f(h(Xi), Ai)|,

=
1

ν0
EX,AEX̃,Ã,ϵ sup

h,f
| 1
n

n∑
i=1

ϵi(f(h(X̃i), Ãi)− f(h(Xi), Ai))|,

≤ 2

ν0
EX,A,ϵ sup

h,f
| 1
n

n∑
i=1

ϵif(h(Xi), Ai)| :=
2

ν0
R(D),

where ϵi ∼ Unif{−1, 1}, are i.i.d., (X̃i, Ãi) are i.i.d. copies (ghost sample) of (X,A), and D = {fw(hv(x), a) :
w ∈ W,v ∈ V} is a compositional function class. Therefore, with the probability 1− δ,

U1((X1, A1), . . . , (Xi, Ai), . . . , (Xn, An)) ≤
2

ν0
R(D) +

1

ν0
FW,V,B,κ,ψ,l

√
log(1/δ)

2n
.

Similarly for U2, with 1− δ probability,

U2((X1, A
′
1), . . . , (Xi, A

′
i), . . . , (Xn, A

′
n)) ≤

2

1− ν1
R(D) +

1

(1− ν1)
FW,V,B,κ,ψ,l

√
log(1/δ)

2n
.

Therefore, with 1− 2δ probability,

II ≤ 2

(
1

ν0
+

1

1− ν1

)
R(D) +

(
1 + ν0 − ν1
ν0(1− ν1)

)
FW,V,B,κ,ψ,l

√
log(1/δ)

2n
.

Consequently, by combining I and II, the estimation error is bounded above by

|d(ĥ∗;λ)− inf
h
d(h;λ)| ≤

4R(L) + 2FV,ψ,B

√
log(1/δ)

2n
+ 2λ

(
Fν0,ν1R(D) + FW,V,B,κ,ψ,l,ν0,ν1

√
log(1/δ)

2n

)
,

with 1− 3δ probability, where Fν0,ν1 = 2
(

1
ν0

+ 1
1−ν1

)
and FW,V,B,κ,ψ,l,ν0,ν1 =

(
1+ν0−ν1
ν0(1−ν1)

)
× FW,V,B,κ,ψ,l.
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9.2 Proof of Corollary 1

Let ĥ∗ = argmin d̂(h;λ), h∗0 = argmin d(h;λ = 0), and h∗ = argmin d(h;λ). Let’s denote by ∆(h∗0, h
∗) :=

RF (h
∗
0)−RF (h∗) the amount of decision discrimination in the population with respect to the sensitive information.

Since d(h∗;λ) ≤ d(h∗0;λ), we obtain

d(ĥ∗;λ = 0)− inf
h
d(h;λ = 0) = R(ĥ∗)−R(h∗0),

= R(ĥ∗)−R(h∗) +R(h∗)−R(h∗0),

≤ R(ĥ∗)−R(h∗) + λ∆(h∗0, h
∗).

Similar to (4) ∼ (6), the loss of utility has the following upper bound

|d(ĥ∗;λ = 0)− inf
h
d(h;λ = 0)| ≤ 2 sup

h
|R(h)− R̂(h)|︸ ︷︷ ︸

I

+λ∆(h∗0, h
∗),

where I has the same upper bound (9).
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10 DETAILS OF SIMULATION

This section explains simulation setups and delivers additional empirical studies to justify the performance of our
method. The outline of this section is as follows.

• 10.1 explains the simulation settings concretely.

• 10.2 displays all other simulation results omitted in the main text such as simulation results for (generalized)
statistical parity in Scenario II and (generalized) equalized odds in Section I, trade-off figures, and additional
tables summarizing fairness scores.

• 10.3 compares our model to HGR and CON in Scenario III.

• 10.4 discusses the estimation stability of our method when the density ratio estimator (for separation) is
poor.

• 10.5 illustrates our method outperforms in having fair representation.

10.1 Overall simulation setting

Target objective function We first clarify that the notation (1− λ)LM + λLF in the manuscript. For the
competing methods, we refer to the notation of their original papers. All methods below share R̂(h) to express
an empirical risk function.

• For Ours,

LM = R̂(h), LF = R̂F (h;D).

• CON has the same R̂(h) and R̂F (h;D) but it uses A′ ∼ P (A|Y ).

• For HGR (Lee et al., 2022),

LM = R̂(h),

LF = HGRsoft(h(X), A⊗ Y )−HGRsoft(h(X), Y ) for EO,

LF = HGRsoft(h(X), A) for SP.

Refer to the original paper to see the exact form of HGRsoft.

• For KDE (Cho et al., 2020),

LM = R̂(h),

LF = DDP for SP,

LF = DEO for EO,

Refer to the original paper to see the exact expression of DDP and DEO.

• For NEU (Du et al., 2021),

LM = LMSE, LF = LSmooth.

Refer to the original paper to see the exact expression of LMSE and LSmooth. It is assumed that the sensitive
information is available during the training phase. For NEU, the model h is pre-trained by minimizing R̂(h)
with an early-stopping procedure. Then the discriminatory h is trained to minimize (1− λ)LM + λLF to
make it debiased.
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Network architectures for the simulation studies All methods have the same neural network model for h.
More specifically,

A. Scenario I & II (binary classification with cross-entropy)

• h has [Dense(64)-BN-ReLU]*3-[Dense(1)-Sigmoid].

• D has [Dense(64)-BN-ReLU]*2-[Dense(1)-Sigmoid].

• Dβ has [Dense(64)-ReLU]*2-[Dense(1)-Sigmoid] (for separation).

For HGRsoft, two neural networks are needed, and each of them is set to [Dense(64)-BN-ReLU]*2-[Dense(1)].
As a result, HGR employs four auxiliary networks in total for separation and two networks for independence.
For NEU, h’s first output layer is neutralized. For CON in Scenario II, the discriminator has the same
structure with Dβ while the generator G = [GD, GC ] with GD = GB-Dense(1)-Sigmoid and GC = GB-
Dense(1) where GB =[Concat(Unif(2,[0,1]),Y )-Dense(64)-ReLU-Dense(64)-ReLU]. Unif(2,[0.1]) denotes a
2-dimensional uniform random variable each of which is in [0, 1]. The binary value is determined by binning
the outputs of GD with the threshold 0.5.

B. Scenario III (regression with mean absolute error)

• h has [Dense(16)-BN-ReLU]*3-[Dense(1)].

• D has [Dense(16)-BN-ReLU]*2-[Dense(1)-Sigmoid].

• Dβ has [Dense(16)-ReLU]*2-[Dense(1)-Sigmoid] (for separation).

HGRsoft has two [Dense(16)-BN-ReLU]*2-[Dense(1)]. For CON, the generator only has a continuous output
G =[Concat(Unif(2,[0,1]),Y )-Dense(16)-ReLU-Dense(16)-Dense(1)].

Hyperparameter All models experimented 5 times for each λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} based on 80% training
and 20% validation set. Seed numbers are specified such that all models in the comparison are trained on the same
data sets for each λ. For optimization, we adopt stochastic gradient descent with a learning rate of 0.005. For
SBP and HGR, the number of training iterations for the maximization part of both algorithms, e.g., the notation
T ′ in our work (Algorithm 1 and 2), is set to 1. The evaluation metrics are calculated every 100 iterations. Each
metric is basically expressed as a sum, but it is equivalent to finding an average value. To see other details
including a mini-batch size or the number of epochs for all data sets, please refer to the shared code scripts.

Training time comparison shown in Table 4 NEU, SBP, and CON require pre-training courses, i.e.,
pre-training of h for NEU, of β̂ for SBP, the GAN model for CON. As a possible case of NEU, pre-training of h
may need substantial training time or longer evaluation epochs for using early stopping. In the case of CON,
learning the generator gets longer as the complexity of A|Y increases. Tables 4 and 6 present the training times
including/excluding the pre-training courses during early iterations for EO and SP to the Adult data. The same
pattern is observed in other data sets, so they are omitted. All experiments, written in Tensorflow 2.4.0, run on
CentOS 7 featuring Nvidia A30 GPU and 192GB of RAM.

Table 6: Training times (mins) for the first 1000 iterations on A30 GPU for independence in Adult. Note NEU
needs the pre-training course while others do not, and KDE cannot be applied to Scenario II.

Without pre-training With pre-training
Model Scenario I Scenario II Scenario II

SBP 0.23 (0.02) 0.56 (0.05) -
HGR 0.24 (0.02) 0.59 (0.06) -
KDE 0.88 (0.07) - -
NEU 1.01 (0.09) 1.46 (0.14) 3.61 (0.73)
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10.2 More simulation results in Scenario I & II

For the continuous variable, we calculate

SP = |A∗|−1
∑
a∈A∗

∣∣∣E(Ŷ = 1|A ≤ a)/E(Ŷ = 1)− 1
∣∣∣ ,

KS-GSP = |A∗|−1
∑
a∈A∗

max
hx

|P̂ (ĥ∗(X) ≤ hx|A ≤ a)− P̂ (ĥ∗(X) ≤ hx)|,

where A∗ = {q̃10, . . . , q̃90} with the q̃r :=
r

100 th quantile of A. For EO and KS-GEO,

EO = |A∗|−1
∑

y∈Y,a∈A∗

∣∣∣∣∣E(Ŷ = 1|A ≤ a, Y = y)

E(Ŷ = 1|Y = y)
− 1

∣∣∣∣∣ ,
KS-GEO = |A∗|−1

∑
y∈Y,a∈A∗

max
hx

|P̂ (ĥ∗(X) ≤ hx|A ≤ a, Y = y)− P̂ (ĥ∗(X) ≤ hx|Y = y)|.

Following the same manner in the manuscript, we collect the Pareto frontiers for all 5 experiments for each λ.
It is possible that each experiment produces a set of Pareto solutions. Figures 2, 3, and 4 overlay those Pareto
frontiers for all competitors and fairness measures. In Figure 2, we observe that CON works as well as SBP in
Scenario I. This is because P (A|Y ) can be easily estimated by the maximum likelihood method.

10.2.1 Trade-off curves by differing λ

Figure 5 shows that our method can capture the trade-off between utility and fairness in independence as λ
differs. For clear visualization, λ is specifically chosen as 0.1, 0.5, and 0.9, respectively. The trade-off is also
shown in separation (Figure 6).

10.2.2 Evaluation tables with other AUC thresholds

• (Scenario I-SP) Table 7 uses other thresholds compared to Table 2.

• (Scenario I-EO) Tables 8 and 9 show the tables with different thresholds.

• (Scenario II-SP) Table 10 show the results in SP.

• (Scenario II-EO) Table 11 uses other thresholds compared to Table 3.

These extra tables show consistent results with the tables in the main text and with their corresponding figures.
In general, our method outperforms the competing methods. The thresholds are chosen such that there are a
sufficient number of fairness scores to calculate their averages and standard deviations from the 5 smallest scores.
For instance, if the larger threshold is chosen such as AUC ≥ 0.9 in Adult, there are no available fairness scores
in all comparison methods.

Table 7: (Scenario I) Averages of the 5 smallest of SP/KS-GSPs whose AUCs are greater than the thresholds.
Those scores are selected in the Pareto solutions appearing in Figure 1. Standard deviations are in the parentheses
next to the averages. Note CON is not available for SP.

Adult (AUC ≥ 0.80) Cred. Card. (AUC ≥ 0.70) Law School. (AUC ≥ 0.85)
Model SP (↓) KS-GSP (↓) SP (↓) KS-GSP (↓) SP (↓) KS-GSP (↓)
SBP 0.001 (≈ 0) 0.014 (≈ 0) ≈ 0 (≈ 0) 0.011 (0.001) 0.199 (0.032) 0.112 (0.011)
HGR 0.070 (0.005) 0.040 (≈ 0) 0.001 (0.001) 0.020 (0.001) 0.123 (0.005) 0.089 (0.001)
KDE 0.280 (0.018) 0.110 (0.005) 0.005 (0.003) 0.023 (0.001) 0.252 (0.006) 0.151 (0.001)
NEU 0.372 (0.018) 0.137 (0.002) 0.002 (0.001) 0.013 (0.001) 0.385 (0.008) 0.159 (0.006)
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Figure 2: (Scenario I) Pareto frontiers: the first row includes pairs of EO and AUC, and the second row shows
pairs of KS-GEO and AUC from 5 experiments for each λ. Since SBP and CON are similar, they are directly
compared in the below figure. SBP and CON illustrate better results than others in Adult and Law School
Admission as they are tightly in the upper-left corner.

10.3 Simulation results (for both independence and separation) in Scenario III

We further compare SBP with HGR and CON in Scenario III using Community and Crime1 data. Following
Lee et al. (2022), the number of violent crimes per population and the ratio of black people in the population are
used as a continuous outcome and a sensitive variable respectively. For the evaluation of fairness, we consider the
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Figure 3: (Scenario II) Pareto frontiers: the first and the second row correspond to Adult, Credit Card Default,
and ACSEmployment respectively from 5 experiments for each λ. SBP is superior to both NEU and HGR overall
but comparable to HGR in Adult. Note CON cannot handle statistical parity.

Table 8: (Scenario I) Averages of the 5 smallest of EO/KS-GEOs whose AUCs are greater than the thresholds.
Those scores are selected in the Pareto solutions appearing in Figure 2. Standard deviations are in the parentheses
next to the averages.

Adult (AUC ≥ 0.85) Cred. Card. (AUC ≥ 0.75) Law School. (AUC ≥ 0.85)
Model EO (↓) KS-GEO (↓) EO (↓) KS-GEO (↓) EO (↓) KS-GEO (↓)
SBP 0.009 (0.005) 0.070 (0.002) 0.003 (0.001) 0.040 (0.001) 0.166 (0.027) 0.140 (0.005)
CON 0.019 (0.008) 0.066 (0.002) 0.001 (0.001) 0.038 (0.002) 0.217 (0.033) 0.190 (0.009)
HGR 0.164 (0.031) 0.170 (0.006) 0.002 (0.001) 0.047 (0.002) 0.891 (0.080) 0.409 (0.014)
KDE 0.383 (0.013) 0.172 (0.003) 0.002 (0.001) 0.050 (0.001) 0.311 (0.128) 0.262 (0.006)
NEU 0.450 (0.028) 0.205 (0.005) 0.030 (0.019) 0.046 (0.001) 0.421 (0.022) 0.299 (0.003)

following metrics,

SP = |A∗|−1
∑
a∈A∗

∣∣∣E(ĥ∗(X)|A ≤ a)/E(ĥ∗(X))− 1
∣∣∣ ,

EO = |Y∗|−1
∑
y∈Y∗

|A∗|−1
∑
a∈A∗

∣∣∣E(ĥ∗(X)|A ≤ a, Y ≤ y)/E(ĥ∗(X)|Y ≤ y)− 1
∣∣∣ ,

KS-GSP = |A∗|−1
∑
a∈A∗

max
hx

|P̂ (ĥ∗(X) ≤ hx|A ≤ a)− P̂ (ĥ∗(X) ≤ hx)|,

KS-GEO = |Y∗|−1
∑
y∈Y∗

|A∗|−1
∑
a∈A∗

max
hx

|P̂ (ĥ∗(X) ≤ hx|A ≤ a, Y ≤ y)− P̂ (ĥ∗(X) ≤ hx|Y ≤ y)|,
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Figure 4: (Scenario II) Pareto frontiers: the first and the second row correspond to Adult, Credit Card Default,
and ACSEmployment respectively from 5 experiments for each λ. Remarkably, SBP (ours) outperforms the
competitors for the most part. Note KDE cannot handle continuous attributes.

Table 9: (Scenario I) Averages of the 5 smallest of EO/KS-GEOs whose AUCs are greater than the thresholds.
Those scores are selected in the Pareto solutions appearing in Figure 2. Standard deviations are in the parentheses
next to the averages.

Adult (AUC ≥ 0.80) Cred. Card. (AUC ≥ 0.70) Law School. (AUC ≥ 0.80)
Model EO (↓) KS-GEO (↓) EO (↓) KS-GEO (↓) EO (↓) KS-GEO (↓)
SBP 0.009 (0.005) 0.070 (0.003) 0.003 (0.001) 0.040 (0.001) 0.020 (0.010) 0.078 (0.001)
CON 0.016 (0.007) 0.066 (0.002) 0.001 (0.001) 0.038 (0.002) 0.014 (0.003) 0.074 (0.002)
HGR 0.127 (0.025) 0.167 (0.007) 0.002 (≈ 0) 0.047 (0.002) 0.587 (0.152) 0.365 (0.027)
KDE 0.282 (0.064) 0.155 (0.009) 0.001 (0.001) 0.049 (0.001) 0.194 (0.016) 0.216 (0.007)
NEU 0.364 (0.013) 0.182 (0.003) 0.016 (0.003) 0.046 (0.001) 0.380 (0.033) 0.245 (0.012)

where A∗ and Y∗ are the sets of quantile values of A and Y ; Y∗ = {b̃10, . . . , b̃90} with the b̃r :=
r

100 th quantile of
Y .

In Scenario III, NEU cannot be implemented because NEU requires partitioning a data set with respect to the
outcome variable, which is practically impossible for the continuous outcome. Figure 7 and Table 12 show that
SBP and HGR are comparable in Scenario III.
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Figure 5: (Scenario I of SBP) Pareto frontiers of SP (and KS-GSP) and AUC by differing λ from 0.1 to 0.9 for all
5 experiments.

Figure 6: (Scenario I of SBP) Pareto frontiers of EO (and KS-GEO) and AUC by differing λ from 0.1 to 0.9 for
all 5 experiments.

10.4 Robust estimation against the poor estimate of β(a, y)

We also investigate the impact of β̂ discussed in Section 3.2 based on II. Interestingly, we observe that β̂ hardly
affects the performance of SBP even though the density-ratio estimator is required to guarantee GEO theoretically.
Figure 9 compares the Pareto frontiers when using β̂(a, y) = D̂β(a, y)/(1− D̂β(a, y)) (SBP) or using β̂(a, y) = 1
for all a, y (SBP NW). SBP NW is set to having the same simulation configuration as SBP. The figure describes
that SBP and SBP NW are almost the same in both scenarios. The same tendency is also found in Scenario I
(Figure 8).
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Table 10: (Scenario II) Averages of the 5 smallest of SP/KS-GSPs whose AUCs are greater than the thresholds.
Those scores are selected by referring to Figure 3. Standard deviations are in the parentheses next to the averages.

Adult (AUC ≥ 0.80) Cred. Card. (AUC ≥ 0.75) ACSEmpl. (AUC ≥ 0.75)
Met. Mod. Race (↓) Age (↓) Gender (↓) Age (↓) Gender (↓) Age (↓)

SP
SBP 0.002 (0.001) 0.018 (0.002) ≈ 0 (≈ 0) 0.004 (0.001) 0.001 (0.001) 0.116 (0.002)
HGR 0.148 (0.006) 0.019 (0.001) ≈ 0 (≈ 0) 0.010 (0.001) ≈ 0 (≈ 0) 0.196 (0.004)
NEU 0.338 (0.018) 0.216 (0.010) 0.050 (0.011) 0.040 (0.004) ≈ 0 (≈ 0) 0.216 (0.008)

KS-
GSP

SBP 0.019 (0.002) 0.015 (≈ 0) 0.014 (≈ 0) 0.010 (≈ 0) 0.019 (0.003) 0.078 (0.002)
HGR 0.062 (0.005) 0.021 (0.001) 0.015 (≈ 0) 0.012 (≈ 0) 0.017 (0.002) 0.118 (0.001)
NEU 0.127 (0.001) 0.088 (0.003) 0.025 (0.003) 0.026 (≈ 0) 0.012 (≈ 0) 0.140 (0.001)

Table 11: (Scenario II) Averages of the 5 smallest of EO/KS-GEOs whose AUCs are greater than the thresholds.
Those scores are selected by referring to Figure 4. Standard deviations are in the parentheses next to the averages.

Adult (AUC ≥ 0.85) Cred. Card. (AUC ≥ 0.70) ACSEmpl. (AUC ≥ 0.80)
Met. Mod. Race (↓) Age (↓) Gender (↓) Age (↓) Gender (↓) Age (↓)

EO

SBP 0.143 (0.013) 0.122 (0.002) 0.001 (≈ 0) 0.016 (0.001) 0.168 (0.004) 0.373 (0.006)
CON 0.425 (0.017) 0.241 (0.002) 0.006 (0.003) 0.016 (0.003) 0.224 (0.004) 0.458 (0.031)
HGR 0.355 (0.010) 0.307 (0.002) 0.002 (0.001) 0.033 (0.001) 0.195 (0.004) 0.447 (0.002)
NEU 0.385 (0.022) 0.268 (0.012) 0.015 (0.010) 0.038 (0.004) 0.143 (0.008) 0.443 (0.017)

KS-
GEO

SBP 0.147 (0.002) 0.124 (0.002) 0.040 (0.001) 0.036 (0.001) 0.094 (0.001) 0.247 (0.002)
CON 0.177 (0.001) 0.138 (0.002) 0.049 (0.001) 0.038 (≈ 0) 0.115 (0.003) 0.312 (0.002)
HGR 0.162 (0.004) 0.221 (0.001) 0.041 (0.003) 0.047 (0.001) 0.122 (0.001) 0.356 (0.005)
NEU 0.196 (0.008) 0.166 (0.004) 0.053 (0.003) 0.051 (0.001) 0.101 (0.006) 0.334 (0.009)

Table 12: (Scenario III) Averages of the 5 smallest of SP/KS-GSP/EO/KS-GEOs whose MAEs are less than the
thresholds. Those scores are selected in the Pareto solutions appearing in Figure 7. Standard deviations are in
the parentheses next to the averages.

Community and Crime (MAE ≤ 0.12)
Model SP (↓) KS-GSP (↓) EO (↓) KS-GEO (↓)
SBP 0.225 (0.007) 0.141 (0.004) 0.083 (0.003) 0.060 (0.002)
CON - - 0.094 (0.004) 0.062 (0.002)
HGR 0.247 (0.002) 0.155 (0.001) 0.082 (0.004) 0.069 (0.002)

10.5 Fair Representation

We carry out additional simulation studies to verify that the neural penalty can be used to produce fair
representation in Scenario II for EO. Following the same notation in Section 3.2, we set E as [Dense(64)-BN-
ReLU] and hE as [Dense(64)-BN-ReLU]*2-[Dense(1)-Sigmoid], so that h = hE ◦ E. This is the same architecture
as NEU. For HGR, we calculate HGRsoft(E(X), A) for SP and HGRsoft(E(X), A⊗ Y )−HGRsoft(E(X), Y ) for
EO. When training SBP and HGR, the number of training iterations for the maximization part is set to 5, i.e.,
T ′ = 5.

Figure 11 highlights that SBP succeeds in generating fair representation as achieving comparable or even better
performance than the competing methods. The collected Pareto frontiers of the models on the benchmark data
sets illustrate that SBP tends to defeat others slightly. We see that the SBP can represent the fair representation
for SP as well (Figure 10).
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Figure 7: (Scenario III) Pareto frontiers: the points are pairs of the fairness metrics and MAE. Note the bottom-left
tendency implies a better trade-off.

Figure 8: (Scenario I, the impact of β̂) Pareto frontiers: the points are pairs of EO and AUC or KS-GEO and
AUC.
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Figure 9: (Scenario II, the impact of β̂) Pareto frontiers: the points are pairs of EO and AUC or KS-GEO and
AUC.
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Figure 10: (Scenario II, fair representation) Pareto frontiers: the points are pairs of SP and AUC or KS-GSP and
AUC.
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Figure 11: (Scenario II, fair representation) Pareto frontiers: the points are pairs of EO and AUC or KS-GEO
and AUC.
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