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Abstract

In this work, we provide fast dynamic algo-
rithms for repeatedly sampling from distribu-
tions characterized by Determinantal Point
Processes (DPPs) and Nonsymmetric Deter-
minantal Point Processes (NDPPs). DPPs
are a very well-studied class of distributions
on subsets of items drawn from a ground set
of cardinality n characterized by a symmetric
n×n kernel matrix L such that the probability
of any subset is proportional to the determi-
nant of its corresponding principal submatrix.
Recent work has shown that the kernel sym-
metry constraint can be relaxed, leading to
NDPPs, which can better model data in sev-
eral machine learning applications.

Given a low-rank kernel matrix L = L+L⊤ ∈
Rn×n and its corresponding eigendecomposi-
tion specified by {λi, ui}di=1 where d ≤ n is
the rank, we design a data structure that
uses O(nd) space and preprocesses data in
O(ndω−1) time where ω ≈ 2.37 is the expo-
nent of matrix multiplication. The data struc-
ture can generate a sample according to DPP
distribution in time O(|E|3 log n + |E|ω−1d2)
or according to NDPP distribution in time
O((|E|3 log n+|E|ω−1d2)(1+w)d) for E being
the sampled indices and w is a data-dependent
parameter. This improves upon the space
and preprocessing time over prior works, and
achieves a state-of-the-art sampling time when
the sampling set is relatively dense. At the
heart of our data structure is an efficient sam-
pling tree that can leverage batch initializa-
tion and fast inner product query simultane-
ously.
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1 INTRODUCTION

Determinantal point processes (DPPs) are a very well-
studied class of distributions on subsets of items. A
DPP is characterized by an n× n symmetric positive
semidefinite kernel L where n is the cardinality of the
ground set. The probability of sampling any subset is
proportional to the determinant of its corresponding
principal submatrix in the kernel L. Following their
introduction in machine learning by the seminal work
of Kulesza and Taskar (2012), DPPs have been adopted
widely for several applications such as neural network
compression (Mariet and Sra, 2016), text and video
summarization (Perez-Beltrachini and Lapata, 2021),
and coreset construction (Tremblay et al., 2019). Most
recent applications of DPPs focus exclusively on k-
DPPs, where a parameter k ≤ n is provided, and the
distribution is only over the subsets of fixed size k
(rather than a random size) such that the probability
of any particular subset of size k is proportional to the
determinant of its corresponding principal submatrix
in L.

Due to the kernel symmetry constraint, DPPs can
only model negative correlations between items in the
ground set. Recent works (Gartrell et al., 2019, 2021)
have shown that relaxing this kernel symmetry con-
straint can lead to significantly better predictive per-
formance for several machine learning tasks. For exam-
ple, consider the case of an online marketplace selling
electronics: several sets of items have positive corre-
lations like ink cartridges are often bought together
with printers. To model such relations, the Nonsym-
metric Determinantal Point Processes (NDPPs) are
introduced.

Sampling algorithms for DPPs are useful for varied
applications of DPPs such as low-rank approxima-
tions (Dereziński et al., 2020a), active learning (Biyik
et al., 2019), Gaussian processes (Kathuria and Desh-
pande, 2016), and experimental design (Dereziński
et al., 2020b). Although sampling algorithms for sym-
metric DPPs have been extensively studied (Gillenwa-
ter et al., 2019; Dereziński et al., 2019; Poulson, 2020),
the study of sampling algorithms for NDPPs is in a
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very nascent stage. Very recently, the study of sam-
pling algorithms for NDPPs was initiated by Han et al.
(2022), in which they provide linear time algorithms
for exact sampling from NDPPs with a low-rank de-
composition. Additionally, they provide a sub-linear
time rejection sampling algorithm for a special class
of NDPPs, which they call orthogonal NDPPs. Prior
work on DPP sampling has focused extensively on the
case where the kernel matrix is static. In practical set-
tings, it is often the case that the underlying datasets
constantly keep evolving, and so fast dynamic sam-
pling algorithms which can adapt to updates of the
matrix are quite useful. In the case of symmetric DPPs,
there is also a dynamic algorithm for learning low-rank
DPPs (Osogami et al., 2018).

In this work, we provide fast dynamic algorithms for
repeated sampling from distributions characterized by
determinantal point processes (DPPs) and nonsymmet-
ric DPPs (NDPPs). In particular, we will only consider
low-rank version of DPP (NDPP) (Kulesza and Taskar,
2012; Han et al., 2022).

We first formally define DPP and NDPP, then we give
a mathematical definition of the sampling problem we
solve.

Definition 1.1 (Determinantal point process (DPP)).
Given item set [n] := {1, 2, · · · , n} (see the definition
in section 3) and an n × n matrix L (called the ker-
nel), the determinantal point process (DPP) on [n] is
a process to sample a subset Y ⊆ [n] with probability
proportional to the determinant of the corresponding
principal submatrix LY of L, which is formed by taking
rows and columns in Y .

For NDPP, the kernel is a nonsymmetric positive
semidefinite matrix defined as follows.

Definition 1.2 (Nonsymmetric positive semidefinite).
A matrix X ∈ Rn×n is called nonsymmetric positive
semidefinite (nPSD) if X +X⊤ is positive semidefinite.

Definition 1.3 (Nonsymmetric determinantal point
process (NDPP)). Given an item set [n] and an n× n
nPSD matrix L, let L := L + L⊤ be the kernel.

The nonsymmetric determinantal point process (NDPP)
on [n] is a process to sample a subset Y ⊆ [n] with
probability proportional to the determinant of the corre-
sponding principal submatrix LY of L, which is formed
by taking rows and columns in Y .

The DPP/NDPP sampling problem is defined as fol-
lows:

Definition 1.4 (Sampling Oracle of (N)DPP). Given
the eigendecomposition {λi, ui}di=1 of kernel L where
ui is n-dimensional for all i ∈ [d], the goal is to design
a data structure that supports the following operations:

• Init({λi, ui}di=1, n ∈ N+, d ∈ N+). It takes the
eigendecomposition {λi, ui}di=1 of the kernel L as
inputs and initializes.

• Query(). It outputs a set of indices Y ⊂ [n]
following (N)DPP (Definition 1.3) of L.

The main contribution of this work is a new DPP
sampling algorithm that improves the prior approach
(Gillenwater et al., 2019) in preprocessing time and
space consumption. Moreover, in the dense sample
regime (when k is close to d), our result also improves
the query time. The key techniques of our algorithm
are batched computation of sampling probabilities and
efficient low-rank maintenance of DPP matrices. As
a consequence, we also obtain a fast NDPP sampling
algorithm, improving the result of Han et al. (2022).

1.1 Our Results

We present our main results as follows:

Theorem 1.5 (DPP sampling data structure, informal
version of Theorem 5.1). There exists a data structure
(EfficientPrepDPP) that uses O(nd) space with the
following procedures:

• Init({λi, ui}di=1, n ∈ N+, d ∈ N+). Taken the
eigendecomposition {λi, ui}di=1 of kernel L as in-
put where λi ∈ R, ui ∈ Rn, the data structure
initializes in O(ndω−1) time.1

• Query(). It outputs a list of indices Y ⊂ [n] with
|Y | = k ≤ d following NDPP distribution in time
O(k3 log n + kω−1d2).

Remark 1.6. Compared with Gillenwater et al. (2019),
which gave an DPP algorithm with O(nd2) preprocess-
ing time and k4 +d query time using O(nd2) space, our
result improves the preprocessing time and the space
complexity. Furthermore, when the sample set is dense
(i.e., k = Ω(d0.75)), our algorithm also has a faster
query procedure.

As a corollary, we also get the following NDPP sam-
pling data structure, where the proof is provided in
Appendix B.

Corollary 1.7 (NDPP sampling data structure, in-
formal version of Corollary B.1). There exists a data
structure that uses O(nd) space with the following pro-
cedures:

• Init({λi, ui}di=1, n ∈ N+, d ∈ N+). Taken the
eigendecomposition {λi, ui}di=1 of kernel L (Def-
inition 1.3) as input where λi ∈ R, ui ∈ Rn, the
data structure initializes in O(ndω−1) time.

1We use ω to denote the exponent of matrix multiplica-
tion. For more details, we refer the readers to Fact 3.1.
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• Query(). It outputs a list of indices Y ⊂ [n]
with |Y | = k ≤ d following NDPP distribution in
time O((k3 log n + kω−1d2)(1 + w)d), where w is
a data-dependent parameter2.

Roadmap. In Section 2, we discuss prior work on
DPPs and NDPPs. In Section 3, we provide some pre-
liminary notations and tools. In Section 4, we introduce
our techniques of fast (N)DPP sampling algorithms.
In Section 5, we show our DPP sampling data struc-
ture and prove the running time and correctness. In
Section 6, we draw the conclusion.

2 RELATED WORK

Symmetric DPP. DPP sampling is an extensively
studied topic with several applications in machine learn-
ing (Li et al., 2016b; Celis et al., 2018). Initial work
for exact sampling from k-DPPs (Kulesza and Taskar,
2011) relied on an expensive eigendecomposition com-
putation of the kernel matrix. Recently, there has been
a lot of progress in the fast exact sampling of k-DPPs
by avoiding the eigendecomposition computation of
the complete kernel matrix (Calandriello et al., 2020;
Gillenwater et al., 2019). Due to their use in multiple
varied applications, there has also been a lot of work for
approximate sampling for DPPs (Anari et al., 2016; Li
et al., 2016c,a). Most approximate samplers for DPPs
rely on MCMC methods.

Nonsymmetric DPP. The first class of Nonsym-
metric DPPs (NDPPs) to be studied were signed DPPs
(Brunel, 2018). Following this, Gartrell et al. (2019)
showed that a more general class of NDPPs, where the
kernel matrix L was a P0-matrix could be learned in
O(n3) where n is the size of the ground set. Gartrell
et al. (2021) improved this by providing an O(n) time
learning algorithm for NDPPs. Note that all the prior
mentioned papers focus only on the learning and infer-
ence problems for NDPPs. Sampling algorithms were
not discussed.

3 PRELIMINARY

Here, we first explain the notations that we will use
in this paper. Then, we present some basic definitions
and properties from linear algebra in order to support
our analysis.

Notations. We use N+ to denote all the positive
integers. For a matrix A, we use A−1 to denote its
inverse. We use A⊤ to denote the transpose of matrix A.

2As observed in Han et al. (2022), in many practical
datasets, the factor (1 + w)d ≪ n.

We use det(A) to denote the determinant of a matrix.
We use E[·] for expectation. We use Pr[·] for probability.
We use ∝ to denote proportional to. For any function f ,
we use Õ(f) to denote f · poly(log f). For any positive
integer n, we use [n] to denote {1, 2, · · · , n}. For two
vectors u and v, we use ⟨u, v⟩ to denote their inner
product. For two matrices A and B, we also use ⟨A,B⟩
to denote their inner product.

For a matrix A, we use Aij to denote its entry in the i-
th row and j-th column. We use Aj,: to denote its j-th
row. For a set E, we use AE to denote the submatrix
of A formed by taking rows and columns E. We say a
matrix P is a projection matrix if P = P 2.

Fact 3.1 (Fast Matrix Multiplication). Given a size
a×b matrix and a size b×c matrix, we use Tmat(a, b, c)
to denote the time of multiplying two matrices together.
We use ω to denote the exponent of matrix multiplica-
tion which means Tmat(n, n, n) = nω+o(1). Currently,
ω ≈ 2.373 (Williams, 2012; Le Gall, 2014; Alman and
Williams, 2021; Duan et al., 2023; Gall, 2024; Williams
et al., 2024).

Next, we state some basic definitions and tools in linear
algebra.

Fact 3.2 (Matrix Woodbury Identity, (Woodbury,
1949, 1950)). Given four matrices A is n × n, C is
k × k, U is n × k, and V is k × n. The Woodbury
matrix identity is

(A + UCV )−1

= A−1 −A−1U · (C−1 + V A−1U)−1V A−1,

This can be derived using blockwise matrix inversion.

Fact 3.3 (Sherman-Morrison Formula). Suppose that
A ∈ Rn×n is an invertible square matrix and u, v ∈ Rn

are column vectors.

Then, the n × n matrix A + uv⊤ is invertible if and
only if 1 + v⊤A−1u ̸= 0.

In this case, (A + uv⊤)−1 = A−1 − A−1uv⊤A−1

1+v⊤A−1u
.

4 TECHNIQUE OVERVIEW

In Section 4.1, we first introduce our techniques for
efficiently sampling DPPs. Then, in Section 4.2, we
show how to obtain an NDPP sampling algorithm from
a DPP algorithm. Meanwhile, when presenting our
techniques, we also show the relationship between our
work and prior work.

4.1 Techniques for DPP Sampling

From determinant to inner product Before de-
signing any data structure, we first need to understand
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our goal. To compute the sample probability for a
subset Y ⊂ [n] with respect to kernel L, we utilize the
equation

PrL[Y ]

=
det(LY )

det(L+ I)

=
∑

E⊆[d],|E|=|Y |

det(UY,EU
⊤
Y,E) ·

∏
i∈E

λi

λi + 1

∏
i/∈E

1

λi + 1
.

(1)

Fix E, consider the distribution of Y

Pr
E,L

[Y ] = det(UY,EU
⊤
Y,E) ·

∏
i∈E

λi

λi + 1

∏
i/∈E

1

λi + 1
.

(2)

Notice that UY,EU
⊤
Y,E is the principal submatrix of

U:,EU
⊤
:,E corresponding to Y , sampling Y following Eq.

(2) is equivalent to executing DPP with kernel U:,EU
⊤
:,E .

Thus, the DPP sampling process can be divided into 2
steps:

1. randomly select a set E with |E| = |Y | and with
probability corresponding to∏

i∈E

λi

λi + 1

∏
i/∈E

1

λi + 1
,

which can be easily achieved by d coin tossings;

2. then, execute DPP with kernel U:,EU
⊤
:,E .

Step 2 can also be accelerated via a binary tree struc-
ture. Given DPP kernel M := U:,EU

⊤
:,E , initialize a set

Y as an empty set, to satisfy DPP probability distribu-
tion, the algorithm adds elements j into Y repeatedly,
according to the following probability distribution:

Pr[j | Y ] = Kj,j −Kj,Y (KY )−1KY,j .

Note that if we define

QY := I|E| − U⊤
Y,E(UY,EU

⊤
Y,E)−1UY,E

then

Kj,j −Kj,Y (KY )−1KY,j = Uj,EQ
Y U⊤

j,E

= ⟨QY , (U⊤
j,:Uj,:)E⟩,

where the first step follows from the definition of QY

and the second step follows from the definition of the
inner product.

Thus, to compute the correct conditional probability
Pr[j|Y ], it suffices to estimate the inner product be-
tween a “query matrix” QY and an outer product

matrix that is determined by the subset of rows of
input data.

Therefore, our goal is to design a data structure that
can

• Preprocess the matrix U quickly.

• Support the query in the form of computing the
inner product between a query matrix Q and a
subset of preprocessed rows efficiently.

Batched Probability Computation. We first ob-
serve that all prior works process the inner product
one by one, so to build up the tree of depth log n,
it requires paying O(nd2) time to construct all leaf
nodes, then propagate the sum to the root in O(nd2)
time. In contrast, our approach leverages the power
of batching : instead of using a tree whose leaf corre-
sponds to one vector, we design the tree so that its
leaf corresponds to d vectors. Specifically, we parti-
tion the vectors into n/d blocks, each block contains
d vectors. For preprocessing, we compute n/d differ-
ent matrix-matrix multiplication of size d× d, which
takes O(ndω−1) time in total. With fast matrix mul-
tiplication, we improve upon prior best O(nd2) time
(Gillenwater et al., 2019). During the query, we need to
use a more sophisticated decoding mechanism by com-
puting matrix-matrix multiplication of d× k and k× d.
Compared to the state-of-the-art (Gillenwater et al.,
2019; Han et al., 2022) which can have a potentially
exponential dependence on d, our algorithm improves
upon their preprocessing time, dependence on k, and
space consumption.

Low-Rank Change of Projection and Mainte-
nance. At each iteration, we need to form a new
projection matrix

Bt = Z⊤
t (ZtZ

⊤
t )−1Zt

where Zt has only been inserted one new row compared
to Zt−1. Given the projection from the last iteration
Bt−1, we can use matrix Woodbury identity to update
the inverse much faster than directly forming Bt.

4.2 Techniques for NDPP Sampling

In order to sample from an NDPP distribution in sub-
linear time, Han et al. (2022) shows that they can use
the idea of rejection sampling (Von Neumann, 1951).
We will first give a high-level overview of how rejection
sampling algorithms work and then summarize the key
steps of the rejection sampling algorithm of Han et al.
(2022). In particular, our goal will be to sample exactly
from an NDPP distribution characterized by a kernel
L, which we will refer to as the target distribution. To
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sample from any target distribution f(x), any rejection
sampling based algorithm needs a proposal distribution
g(x) which has the same support as f(x) and which
further satisfies the property that f(x) ≤Mg(x) for all
x with M > 1 being a constant. Proposal distributions
need to be carefully chosen such that they satisfy the
above property and also it should be known how to
sample exactly from the proposal distribution. To sim-
ulate sampling from the target distribution, a sample x
is drawn from the proposal distribution g and it is then
accepted with probability f(x)/(Mg(x)). Samples are
kept being drawn from g such that at least one sample
is picked. Note that for any particular x, we know how
to compute f(x) and g(x). Further, M needs to be
known in advance. In order to sample exactly from
an NDPP distribution with kernel L, Han et al. (2022)
showed that we can use a DPP distribution defined by
a particular symmetric kernel L̂ which depends on L.
Hence, to implement an efficient sampler for NDPP, it
is crucial to use a fast sampler for DPP, and we can
use our data structure to realize this step.

5 FAST DPP SAMPLING DATA
STRUCTURE

In this section, we show our first result: a DPP sam-
pling data structure with fast initialization time. In
Section 5.1, we state the main theorem and the pseu-
docodes of the algorithm. There are three parts to
the Algorithm: initialization, query, and sample distri-
bution. In Section 5.4, we prove the running time of
initialization; in Section 5.5, we prove the running time
of the query; in Section 5.6, we prove the running time
of the sample distribution. In Section 5.2 we prove
the correctness of the sample. In Section 5.3, we prove
the correctness of the query. These two compose the
correctness of the algorithm.

5.1 Main Theorem and Algorithm

The main theorem of this section is stated as follows:

Theorem 5.1 (Formal Version of Theorem 1.5). Let
E ⊂ [d].

Then, there exists a data structure using O(nd) space
with the following procedures:

• Init({λi, ui}di=1, n ∈ N+, d ∈ N+). Taken the
eigendecomposition {λi, ui}di=1 of kernel L as in-
put, the data structure initializes in O(ndω−1)
time.

• Query(). It outputs a list of indices Y ⊂ [n] from
NDPP in time

O(|E|3 log n + |E|ω−1d2).

• Sample(Q ∈ R|E|×|E|, E). Taken a subset E of
[d] and a |E| × |E| matrix Q as input, the data
structure samples a j ∈ [n] with probability propor-
tional to ⟨(uju

⊤
j )E , Q⟩ in

O(|E|2 log n + |E|ω−2d2)

time, where uj is the j-th row of U .

Proof. Algorithms 1, 2 and 3 give the desired data
structure. The running time follows from Lemma 5.4
(for Init), Lemma 5.5 (for Query), and Lemma 5.7
(for Sample). The sample correctness follows from
Lemma 5.2 and Lemma 5.3.

Algorithm 1 EfficientPrepDPP: Initialization

1: data structure EfficientPrepDPP
2: ▷ Theorem 5.1
3: members
4: Binary tree T
5: Matrix U ∈ Rn×d

6: Vectors u1, u2, · · · , ud ∈ Rn

7: Scalars λ1, λ2, · · · , λd ∈ R
8: end members
9:

10: procedure BuildTree(A ⊂ [n])
11: if |A| = d then
12: Write A as {j1, j2, · · · , jd}
13: V ← [ U⊤

j1,:
U⊤
j2,:
· · · U⊤

jd,:
]⊤

14: T .index← A
15: T .V ← V
16: T .Σ← V V ⊤

17: return T
18: end if
19: Aℓ, Ar ← Split A in half such that |Aℓ| is a

multiple of d
20: T .left← BuildTree(Aℓ)
21: T .right← BuildTree(Ar)
22: T .Σ← T .left.Σ + T .right.Σ
23: return T
24: end procedure
25:

26: procedure Init({λi, ui}di=1) ▷ Lemma 5.4
27: U ← [ u1 u2 · · · ud ]
28: for i = 1 to n do
29: ui ← ui

30: end for
31: T = BuildTree([n])
32: T.root← T
33: end procedure
34: end data structure



Fast Dynamic Sampling for Determinantal Point Processes

Algorithm 2 EfficientPrepDPP: Query

1: data structure EfficientPrepDPP
2: ▷ Theorem 5.1
3: procedure Query ▷ Lemma 5.5
4: E ← ∅
5: for i = 1→ d do ▷ This implies that |E| ≤ d
6: E ← E ∪ {i} with probability λi/(λi + 1)
7: end for
8: Q← {0}|E|×|E|

9: Y ← ∅
10: for t = 1→ |E| do
11: j ← Sample(Q,E)
12: Y ← Y ∪ {j}
13: Zt ← Zt−1 + Uj,E

14: Bt ← Z⊤
Y,E(ZY,EZ

⊤
Y,E)−1ZY,E

15: Q← I −Bt

16: end for
17: return Y
18: end procedure
19: end data structure

5.2 Correctness of Sample

The purpose of this section is to prove Lemma 5.2,
showing the correctness of the Sample procedure. It
immediately implies the correctness of DPP sampling,
where the proof is deferred to Lemma 5.3.

Lemma 5.2 (Correctness of Sample). Procedure
Sample(Q,E) in Algorithm 2 takes Q ∈ R|E|×|E| and
E ⊆ [d] as inputs and correctly samples an index j ∈ [n]
with probability proportional to ⟨(uju

⊤
j )E , Q⟩.

Proof. For each node T of T , define S(T ) by:

• if T is a leaf, then S(T ) := T .index, a d-subset of
[n];

• if T is not a leaf, then S(T ) := S(T .left) ∪
S(T .left).

In addition, for every node T ∈ T , define event ET to
be: Sample(T , Q,E) being called in the running of
Sample(T.root, Q,E).

We first prove by induction that for every T ∈ T ,

Pr[ET ] =

∑
j∈S(T )⟨(uju

⊤
j )E , Q⟩∑

j∈[n]⟨(uju⊤
j )E , Q⟩

. (3)

First, obviously it holds for T = T.root, since
S(T.root) = [n].

Then, suppose it holds for some node T , and consider
its child nodes. We have

Pr[ET .left]

Algorithm 3 EfficientPrepDPP: Sample

1: data structure EfficientPrepDPP
2: ▷ Theorem 5.1
3: procedure Sample Auxiliary(T , Q,E)
4: ▷ Lemma 5.8
5: Assert T .index has exactly d elements
6: Write T .index as {j1, j2, · · · , jd}
7: V ← T .V
8: M ← V ⊤

E,: ·Q · VE,:

9: for i = 1 to d do
10: pi ←Mii

11: end for
12: u← uniform(0, 1)
13: for i = 1 to d do
14: if u ≤ (p1 + · · ·+ pi)/(p1 + · · ·+ pd) then
15: return ji
16: end if
17: end for
18: end procedure
19:

20: procedure Sample(T = T.root, Q,E)
21: ▷ Lemma 5.7
22: if T is a leaf then
23: return Sample Auxiliary(T , Q,E)
24: end if
25: pℓ ← ⟨T .left.ΣE , Q⟩
26: pr ← ⟨T .right.ΣE , Q⟩
27: u← uniform(0, 1)
28: if u ≤ pℓ

pℓ+pr
then

29: Sample(T .left, Q,E)
30: else
31: Sample(T .right, Q,E)
32: end if
33: end procedure
34: end data structure

=
pℓ

pℓ + pr
Pr[ET ]

=
pℓ

pℓ + pr
·
∑

j∈S(T )⟨(uju
⊤
j )E , Q⟩∑

j∈[n]⟨(uju⊤
j )E , Q⟩

=

∑
j∈S(T .left)⟨(uju

⊤
j )E , Q⟩∑

j∈S(T )⟨(uju⊤
j )E , Q⟩

·
∑

j∈S(T )⟨(uju
⊤
j )E , Q⟩∑

j∈[n]⟨(uju⊤
j )E , Q⟩

=

∑
j∈S(T .left)⟨(uju

⊤
j )E , Q⟩∑

j∈[n]⟨(uju⊤
j )E , Q⟩

,

where the first step follows from Line 28 in Algorithm 3,
the second step follows from the induction hypothesis,
the third step follows from the definitions of pℓ (at
Line 25) and pr (at Line 26), and the last step follows
from the direct computation.
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Similarly, for the right-child node, we have

Pr[ET .right] =

∑
j∈S(T .right)⟨(uju

⊤
j )E , Q⟩∑

j∈[n]⟨(uju⊤
j )E , Q⟩

.

Therefore, by induction, Eq. (3) holds for every node
T ∈ T . In particular, for a leaf T with T .index =
{j1, j2, · · · , jd}, we have

Pr[ET ] =

∑
j∈{j1,j2,··· ,jd}⟨(uju

⊤
j )E , Q⟩∑

j∈[n]⟨(uju⊤
j )E , Q⟩

.

Then, the Sample Auxiliary procedure is called to
sample an index from {j1, j2, · · · , jd}. In Line 14, we
know that for every i ∈ [d],

Pr[ji is sampled
∣∣ ET ] =

⟨(ujiu
⊤
ji

)E , Q⟩∑
j∈{j1,j2,··· ,jd}⟨(uju⊤

j )E , Q⟩
.

Thus, we get that

Pr[ji is sampled] = Pr[ET ] · Pr[ji is sampled
∣∣ ET ]

=
⟨(ujiu

⊤
ji

)E , Q⟩∑
j∈[n]⟨(uju⊤

j )E , Q⟩
,

which finishes the proof of the lemma.

5.3 Correctness of Query

In this section, we provide the correctness proof of our
Query procedure. This lemma proves that procedure
Query of data structure EfficientPrepDPP sam-
ples a set following exactly from the DPP probability
distribution.

Lemma 5.3 (Correctness of Query). The output
Y ⊂ [n] of the Query procedure in Algorithm 2 satisfies
the DPP with kernel L, i.e.,

Pr[Y ] ∝ det(LY ).

Proof. Suppose the eigendecomposition of L is
{(λi, ui)}di=1.

Suppose

U := [u1, · · · , ud] ∈ Rn×d.

Notice that Eq. (1) has shown that

Pr
L

[Y ]

=
∑

E⊆[d],|E|=|Y |

det(ZY,EZ
⊤
Y,E)

∏
i∈E

λi

λi + 1

∏
i/∈E

1

λi + 1

= Pr
K

[Y ] ·
∏
i∈E

λi

λi + 1

∏
i/∈E

1

λi + 1
,

where M := U:,EU
⊤
:,E is the DPP kernel. Therefore,

sampling Y from DPP with kernel L can be achieved
by 2 steps: first, sample a subset E; then, sample a set
Y from DPP with kernel M .

In Line 6, we sample each element i ∈ [d] independently
from the Bernoulli distribution with probability λi

λi+1 .
Hence, the set E is sampled correctly.

Next, we sample |E| elements in [n] and add them to
the output set Y one-by-one in Lines 10 - 16. Let Y
be the current set with t elements, where 0 ≤ t < |E|.
Consider the marginal distribution of the (t + 1)-th
sample element. By Eq. (3) in Gillenwater et al. (2019),
we know that for any j ∈ [n],

Pr[j is sampled | Y ] = Kj,j −Kj,Y (KY )−1KY,j

= ⟨Qt, UE,jU
⊤
E,j⟩,

where

Qt = I − U⊤
Y,E(UY,EU

⊤
Y,E)−1UY,E . (4)

By the definition of U , we have

UE,jU
⊤
E,j = (uju

⊤
j )E .

Hence, the marginal distribution of j is the same as the
output distribution of the Sample(Q,E) procedure in
Algorithm 3.

In Line 15, we know that Q is correctly computed in
each iteration according to Eq. (4). And in Line 11, we
know that an element j is sampled from the marginal
distribution using the Sample procedure.

Therefore, the Query procedure can sample a subset
Y ⊂ [n] from the DPP with kernel L. The lemma is
then proved.

5.4 Running Time of Initialization

The following lemma shows the running time of the
Init procedure.

Lemma 5.4. Procedure Init in Algorithm 1 takes the
eigendecomposition {λi, ui}di=1 of L as input and runs
in O(ndω−1) time.

Proof. The running time of BuildTree(A) only de-
pends on |A|.

Therefore, we let f(k) denote the running time of
BuildTree(A) where |A| = k is a multiple of d.

For k = d, consider an A such that |A| = d, since
V times V ⊤ takes O(dω) time, BuildTree(A) times
O(dω) time, we have

f(d) = O(dω).
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For k > d, consider an A such that |A| = md where
2t < m ≤ 2t+1, since BuildTree(A) recursively calls
BuildTree(Aℓ) and BuildTree(Ar) and spends ex-
tra O(d2) time summing up T .left.Σ and T .right.Σ,
we have

f(md) = f(⌊m/2⌋d) + f(⌈m/2⌉d) + cd2

where c > 0 is a constant. Hence, we get the following
recurrence relations:{

f(md) = f(⌊m/2⌋d) + f(⌈m/2⌉d) + cd2

f(d) = O(dω)
.

Solving the recurrence, we get that Procedure Init in
Algorithm 1 takes f(n) = O(ndω−1) time.

5.5 Running Time of Query

The purpose of this section is to prove Lemma 5.5,
which shows the running time of the Query procedure.

Lemma 5.5 (Running Time of Query). Procedure
Query outputs a set Y ⊂ [n] and runs in

O(|E|3 log n + |E|ω−1d2) = O(k3 log n + kω−1d2)

time. Here ω is the exponent of matrix multiplication.

Proof. Computing E ⊂ [d], Y ⊂ [n] and Q takes |E|2
time. The for-loop from line 5 takes O(d) time.

For the for-loop from line 10, in each iteration,

• computing j takes O(k2 log n + kω−2d2) time by
Lemma 5.7.

• computing Bt takes O(k2) time by Lemma 5.6.

• computing Q takes O(k2) time.

Therefore, the total running time of Query is:

#iterations× cost per iteration

= k ·O(k2 log n + kω−2d2).

Thus, we complete the proof.

The following Lemma 5.6 analyzes the running time of
a certain part of Algorithm 2, which is used in Lemma
5.5.

Lemma 5.6. For the for-loop from line 10 to 16 in
Algorithm 2, computing k × k matrix Bt takes O(k2)
time in each iteration.

Proof. Since Zt is a rank-1 update of Zt−1, by Claim
A.3, ZtZ

⊤
t is a rank-2 update of Zt−1Z

⊤
t−1 and can be

computed in O(k2) time by first computing 3 outer

products in O(k2) time then add them to the prior
Zt−1Z

⊤
t−1. By Claim A.4, Gt := (ZtZ

⊤
t )−1 ∈ Rt×t is a

rank-2 update of (Zt−1Z
⊤
t−1)−1, and

(ZtZ
⊤
t )−1

= (Zt−1Z
⊤
t−1 + UV ⊤)−1

= (Zt−1Z
⊤
t−1)−1 + (Zt−1Z

⊤
t−1)−1U

· (I − V ⊤(Zt−1Z
⊤
t−1)−1U)−1V ⊤(Zt−1Z

⊤
t−1)−1,

for the time to compute the inverse, we note that

• Computing (Zt−1Z
⊤
t−1)−1U takes O(k2) time.

• Computing V ⊤(Zt−1Z
⊤
t−1)−1 takes O(k2) time.

• Computing V ⊤(Zt−1Z
⊤
t−1)−1U takes O(k2) time.

• Computing (I −V ⊤(Zt−1Z
⊤
t−1)−1U)−1 takes O(1)

time.

Hence, the matrix Gt takes O(k2) time.

By Claim A.3, Z⊤
t ·Gt ·Zt is a rank-4 update of Z⊤

t−1 ·
Gt−1 ·Zt−1, and can be computed in O(k2) time. Thus
computing Q takes O(k2) time in total.

5.6 Running Time of Sample

The purpose of this section is to prove Lemma 5.7,
which shows the running time of the Sample procedure.

Lemma 5.7 (Running time of Sample). Procedure
Sample takes Q ∈ R|E|×|E| and E ⊆ [d] as inputs
and runs in O(k2 log n + kω−2d2) time. Here ω is the
exponent of matrix multiplication.

Proof. Consider procedure Sample(T , Q,E). If T
is a leaf, then by Lemma 5.8, its running time is
O(kω−2d2). If T is not a leaf, then the procedure
first spends O(k2) time to compute pℓ and pr, and
then recursively calls one of Sample(T .left, Q,E)
or Sample(T .right, Q,E). Since the depth of T is
O(log(n/d)) = O(log n), Sample(T.root, Q,E) takes
O(log n) layers of recursion until T is a leaf.

Thus, the running time of Sample(Q,E) is:
O(k2 log n+kω−2d2). Thus, we complete the proof.

Lemma 5.8. Procedure Sample Auxiliary(T , Q,E)
with |T .A| = d in Algorithm 2 takes O(kω−2d2) time.
Here ω is the exponent of matrix multiplication.

Proof. VE,: is a k× d matrix, thus computing M takes

Tmat(d, k, k) + Tmat(d, k, d) = O(d/k · kω + (d/k)2 · kω)

= O(kω−2d2)

time.

Other operation all takes O(k2d) time. Thus, the
procedure takes O(kω−2d2) time in total.
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6 DISCUSSION

In this paper, we study efficient algorithms to sample
from the DPP and NDPP distributions when the input
kernel matrix admits a low-rank decomposition. We
show that it suffices to design data structures that
support efficient sampling based on inner products. To
achieve this goal, we either use a sampling tree that
batches the input to speed up the preprocessing or use
more novel and fast data structures to get superior
query time. One limitation is that our approach, in its
current form, may not be easily extended to improve the
efficiency of DPP (NDPP) learning or inference. Thus,
it is important to develop more efficient algorithms for
these tasks.
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Appendix

Roadmap. In Section A, we present several basic tools, which include the fundamental claims and the definition
of rank-k update. In Section B, we present our fast NDPP sampling data structure. In Section C, we provide an
additional discussion about data structures and analyze their key properties.

A BASIC TOOLS

In this section, we introduce some basic tools.

Definition A.1 (Rank-k Update). Let A and B be d× d matrices. We say B is a rank-k update of A if B can
be expressed as

A + u1v
⊤
1 + u2v

⊤
2 + · · ·+ ukv

⊤
k ,

where ui, vi are both d-dimensional vector, for every i ∈ [k].

Claim A.2. Let A be a d× d matrix. If Anew is a rank-k update of A, then (Anew)⊤ is a rank-k update of A⊤.

Proof. Suppose Anew = A + u1v
⊤
1 + · · ·+ ukv

⊤
k , then (Anew)⊤ = A⊤ + v1u

⊤
1 + · · ·+ vku

⊤
k is a rank-k update of

A⊤.

Claim A.3. Let A, B be d× d matrices. If Anew is rank-k update of A and Bnew is rank-l update of B, then
AnewBnew is rank-(k + l) update of AB.

Proof. Suppose

Anew = A + ∆A,

in which ∆A is rank k and

Bnew = B + ∆B ,

in which ∆B is rank l, then

AnewBnew = AB + ∆AB + A∆B + ∆A∆B .

Using the fact that rank(XY ) ≤ min{rank(X), rank(Y )}, we get

rank(∆AB) ≤ min{rank(∆A), rank(B)} = k

rank((A + ∆A)∆B) ≤ min{rank(A), rank(∆B)} = l

Thus, AnewBnew is a rank-(k + l) update of AB.

Claim A.4. Let A be a d× d invertible matrix. If Anew is a rank-k update of A and Anew is also invertible, then
(Anew)−1 is a rank-k update of A−1.

Proof. We prove this by using the matrix Woodbury formula.

Suppose Anew = A + UV ⊤ for which U, V ∈ Rd×k, then

(Anew)−1 = (A + UV ⊤)−1

= A−1 −A−1U(I − V ⊤A−1U)−1V ⊤A−1

note the smallest rank among the product is k, hence the update is rank k.
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B FAST NDPP SAMPLING DATA STRUCTURE

In this section, we show that our fast DPP sampling algorithm implies a fast NDPP sampling algorithm.

Corollary B.1 (NDPP Sampling Data Structure). Let k ≤ d be a positive integer. There exists a data structure
that uses O(nd) space with the following procedures:

• Init({λi, ui}di=1, n ∈ N+, d ∈ N+). Taken the eigendecomposition {λi, ui}di=1 of kernel L̂ as input where
λi ∈ R, ui ∈ Rn, the data structure initializes in O(ndω−1) time.

• Query(). It outputs a list of indices Y ⊂ [n] where |Y | = k following NDPP distribution in time O((k3 log n+
kω−1d2)(1 + w)d/2), where w is a data-dependent parameter3.

Proof. The algorithm pseudocode is presented in Algorithm 4. The main idea follows from rejection sampling the
NDPP distribution of L from the DPP distribution of L̂.

As shown in Theorem 1 in Han et al. (2022), the probability ratio for a subset Y ⊂ [n] is:

PrL[Y ]

PrL̂[Y ]
=

det(LY )/det(L̂ + I)

det(L̂Y )/det(L̂ + I)
≤ det(L̂ + I)

det(L + I)
.

Hence, there exists a universal constant U ≤ det(L̂+I)
det(L+I) that upper bounds the ratio between the target distribution

PrL[Y ] and the proposed distribution PrL̂[Y ]. Therefore, the rejection sampling gives that, if we take the

acceptance probability to be p := det(LY )

det(L̂Y )
, then the resulting distribution will be the target distribution: the

NDPP with matrix L. Thus, the sample correctness of our algorithm is proved.

For the running time of Algorithm 4, we note that the NDPP matrix L is implicitly given as input to the
algorithm, since we only need query access to it. For the Init procedure, its time complexity is dominated by the
time complexity of the DPP sampling data structure. Thus, by Lemma 5.4, we know that the running time is
O(ndω−1).

For the Query procedure, Han et al. (2022) showed that the number of iterations of the rejection sampling is

bounded by (1 +w)d/2, where w = 2
d

∑d/2
i=1

2σi

σ2
i+1
∈ (0, 1] and σi are the singular values of the skew-symmetric part

of L. In each iteration, the DPP sample Y can be obtained in O(k3 log n + kω−1d2)-time by Lemma 5.5. The
matrix L̂Y ∈ Rk×k can be formed in O(k2d)-time and the quantity p can be computed in O(kω)-time. Therefore,
the total running time is

(1 + w)d/2 ·O(k3 log n + kω−1d2 + k2d + kω) = O((k3 log n + kω−1d2)(1 + w)d/2),

where we use the condition of k ≤ d.

The corollary is then proved.

C ADDITIONAL DATA STRUCTURES: A DISCUSSION

In this section, we provide two more data structures that can see potential usage for DPP and NDPP sampling.
In Section C.1, the first data structure is related to the classic prefix sum array (see Algorithm 5 and 6). In
Section C.2, the second data structure is a sophisticated data structure that uses coefficients to maintain a
structured projection matrix (see Algorithm 7).

C.1 Compute Prefix Inner Products: Sum Array

In this section, we present a Sum Array data structure. Roughly speaking, we first compute all the inner products
via a matrix multiplication, then accumulate a sum array containing all the prefix sums of inner products. This
way, we can query any range of inner products in O(1) time.

3As observed in Han et al. (2022), in many practical datasets, the factor (1 + w)d ≪ n.
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Algorithm 4 Fast NDPP sampling algorithm

1: data structure NDPPSampling
2: members
3: Data structure EfficientPrepDPP DPP ▷ Algorithm 1
4: Query access to the NDPP matrix L
5: NDPP kernel L̂’s eigendecomposition {λi, ui}di=1

6: end members
7: procedure Init(L, {λi, ui}di=1)
8: L← L, {λi, ui}di=1 ← {λi, ui}di=1 ▷ Setup query access to L
9: DPP.Init({λi, ui}di=1) ▷ It takes O(ndω−1)-time

10: end procedure
11:

12: procedure Query
13: while true do
14: Y ← DPP.Query() ▷ It takes O(k3 log n + kω−1d2)-time

15: L̂Y ←
∑d

i=1 λi(ui)Y (ui)
⊤
Y ▷ It takes O(k2d)-time

16: p← det(LY )

det(L̂Y )
▷ It takes O(kω)-time

17: u ∼ Uniform([0, 1])
18: if u ≤ p then
19: return Y
20: end if
21: end while
22: end procedure

Algorithm 5 Sum Arrary in one-dimensional

1: data structure SumArraryOneD
2: members
3: A vector x ∈ Rn+1

4: function f : R→ R
5: end members
6:

7: procedure Init(u ∈ Rd, {v1, v2, · · · , vn} ⊂ Rd, f : R→ R)
8: ▷ This takes O(nd) time
9: f ← f

10: x← {0}n+1 ▷ For convenient, we use the index of x from 0 to n
11: x0 ← 0
12: for i = 1 to n do
13: xi ← xi−1 + f(⟨u, vi⟩)
14: end for
15: end procedure
16:

17: procedure Query(a ∈ [n], b ∈ [n])
18: ▷ We require that a < b
19: return xb − xa−1 ▷ For simplicity, we assume x0 ← 0
20: end procedure
21: end data structure

Theorem C.1. There exists a data structure SumArrayOneD (Algorithm 5) uses O(n + d) space with the
following procedures:

• Init(u ∈ Rd, {v1, v2, · · · , vn} ⊆ Rd, f : R → R). Procedure Init takes a vector u, a set of vectors
{v1, v2, · · · , vn} and a function f : R→ R as input and initializes in O(nd) time.

• Query(a ∈ [n], b ∈ [n]). Procedure Query takes two indices a, b ∈ [n] as input, returns
∑b

i=a f(u, vi) in
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O(1) time.

Proof. For procedure Init, each for-loop takes O(d) time to compute inner product, thus Init takes O(nd) time
in total.

For procedure Query(a, b), for correctness, we have it outputs

b∑
i=1

f(⟨u, vi⟩)−
a∑

i=1

f(⟨u, vi⟩) =

b∑
i=a

f(⟨u, vi⟩),

for running time, since getting xb and xa takes O(1) time, we have it runs in O(1) time.

Theorem C.2. There exists a data structure SumArrayTwoD (Algorithm 6) uses O(n2) space with the
following procedures:

• Init({v1, v2, · · · , vn} ⊆ Rd, f : R→ R). Procedure Init takes a set of vectors {v1, v2, · · · , vn} and a function
f : R→ R as input and initializes in Tmat(n, d, n) time.

• Query(i ∈ [n], a ∈ [n], b ∈ [n]). Procedure Query takes three indices i ∈ [n], a ∈ [n] and b ∈ [n] as input,

returns
∑b

j=a f(⟨vi, vj⟩) in O(1) time.

Proof. For procedure Init, we need to

• Compute Y = V V ⊤, which takes Tmat(n, d, n) time.

• Construct the matrix X, since it’s an (n + 1)× (n + 1) time, and construct each entry requires to evaluate f ,
suppose the evaluation of f is O(1), this takes O(1) time.

Hence, the time is dominated by Tmat(n, d, n).

For procedure Query, we just need to read two entries of X, which takes O(1) time.

Remark C.3. The two dimensional sum array data structure can effectively handle the problem that makes use
of the form of f(⟨vi, vj⟩). In the case of DPP sampling, we need to construct a matrix Z iteratively that consists
of rows of a known matrix V , and at each iteration, compute the inner product between rows of V and a projection
matrix defined by Z: Z⊤(ZZ⊤)−1Z. Note that the information we need here is essentially the inner product
square ⟨vi, vj⟩2. Hence, the two dimensional sum array data structure can see potential usage in improving DPP
sampling process.

C.2 The FindCoefficients Procedure

In this section, we study another data structure that handles a specific type of projection maintenance and
quadratic form computations.

Suppose we are given a matrix X ∈ Rn×d in advance, and we are iteratively constructing a matrix Z ∈ Rk×d that
consists of a subset of X’s rows with cardinality k. At each iteration, we need to compute the following quadratic
form: let xi ∈ Rd be the i-th row of X, then we are asked to compute

x⊤
i Z⊤(ZZ⊤)−1Z︸ ︷︷ ︸

P

xi.

Note that even the projection matrix P ∈ Rd×d is given, naively forming the quadratic form still takes O(d2)
time.

We present a data structure that takes Tmat(n, d, n) time for preprocessing, and then support the one-quadratic
form query in time O(kd).

We start by introducing some definitions.
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Algorithm 6 Sum arrary in two-dimensional

1: data structure SumArraryTwoD ▷ Theorem C.2
2: members
3: A matrix X ∈ R(n+1)×(n+1)

4: function f : R→ R
5: end members
6:

7: procedure Init({v1, v2, · · · , vn} ⊂ Rd, f : R→ R)
8: ▷ This takes Tmat(n, d, n) time
9: V ← [ v1 v2 · · · vn ]⊤ ▷ V ∈ Rn×d

10: Compute Y = V · V ⊤

11: f ← f
12: X ← {0}(n+1)×(n+1) ▷ For convenient, we use the index of x from 0 to n
13: for i = 1→ n do
14: Xi,0 ← 0
15: for j = 1→ n do
16: Xi,j ← Xi,j−1 + f(Yi,j)
17: end for
18: end for
19: end procedure
20:

21: procedure Query(i ∈ [n], a ∈ [n], b ∈ [n])
22: ▷ We require that a < b
23: return Xi,b −Xi,a−1 ▷ For simplicity, we assume Xi,0 ← 0
24: end procedure
25: end data structure

Definition C.4. Given d-dimensional vectors x1, x2, · · · , xn, for t ∈ [n], we define Zt = [ x1 x2 · · · xt ]⊤ ∈ Rt×d,
and Ht = Z⊤

t (ZtZ
⊤
t )−1Zt ∈ Rd×d.

We first show that the d× d matrix Ht can be expressed in a special form.

Lemma C.5. For k ∈ [n],

Hk = Z⊤
k (ZkZ

⊤
k )−1Zk =

k∑
i=1

αixix
⊤
i︸ ︷︷ ︸

diagonal terms

+
∑
i̸=j

αi,jxix
⊤
j︸ ︷︷ ︸

off−diagonal terms

,

where Hk ∈ Rd×d and Zk ∈ Rt×d are matrices defined in Definition C.4.

Proof. We will prove by induction on k.

Base case. When k = 1, then the target expression is

x1(x⊤
1 x1)−1x⊤

1 =
1

∥x1∥22
x1x

⊤
1 .

Inductive hypothesis. Suppose up to some k < d, we have that

(Zk)⊤(Zk(Zk)⊤)−1Zk =

k∑
i=1

αixix
⊤
i +

∑
i ̸=j

αi,jxix
⊤
j
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Inductive step. Now, let’s prove for k + 1. First, observe that

Zk+1Z
⊤
k+1 =


x⊤
1 x1 x⊤

1 x2 . . . x⊤
1 xk x⊤

1 xk+1

...
... . . .

...
...

x⊤
k x1 x⊤

k x2 . . . x⊤
k xk x⊤

k xk+1

x⊤
k+1x1 x⊤

k+1x2 . . . x⊤
k+1xk x⊤

k+1xk+1


=

[
A b
b⊤ c

]

where A = ZkZ
⊤
k ∈ Rk×k, b =

x
⊤
1 xk+1

...
x⊤
k xk+1

 ∈ Rk and c = x⊤
k+1xk+1. We also use d = (c− b⊤A−1b)−1 ∈ R.

Using Schur complement, we have

(Zk+1Z
⊤
k+1)−1 =

([
A b
b⊤ c

])−1

=

[
A−1 + A−1b(c− b⊤A−1b)−1b⊤A−1 −A−1b(c− b⊤A−1b)−1

−(c− b⊤A−1b)−1b⊤A−1 (c− b⊤A−1b)−1

]
=

[
A−1 + dA−1bb⊤A−1 −dA−1b

−db⊤A−1 d

]

Z⊤
k+1(Zk+1Z

⊤
k+1)−1Zk+1 =

[
Z⊤
k xk+1

] [A−1 + dA−1bb⊤A−1 −dA−1b
−db⊤A−1 d

] [
Zk

x⊤
k+1

]

=
[
Z⊤
k xk+1

] [A−1Zk + dA−1bb⊤A−1Zk − dA−1bx⊤
k+1

−db⊤A−1Zk + dx⊤
k+1

]
= Z⊤

k A−1Zk + dZ⊤
k A−1bb⊤A−1Zk − dZ⊤

k A−1bx⊤
k+1

− dxk+1b
⊤A−1Zk + dxk+1x

⊤
k+1.

We compute each term individually.

• For Z⊤
k A−1Zk ∈ Rd×d, by inductive hypothesis, we know it is

∑k
i=1 αixix

⊤
i +

∑
i̸=j αi,jxix

⊤
j .

• For dZ⊤
k A−1bb⊤A−1Zk ∈ Rd×d. For j ∈ [k], let aj denote the j-th row of the k × k matrix A−1, then we

know that Z⊤
k A−1 =

∑k
j=1 xja

⊤
j ∈ Rd×d, and

Z⊤
k A−1b =

k∑
j=1

xja
⊤
j b

=

k∑
j=1

(a⊤j b)xj

is a d-dimensional vector. The outer product gives

Z⊤
k A−1b(Z⊤

k A−1b)⊤ = (

k∑
j=1

(a⊤j b)xj) · (
k∑

j=1

(a⊤j b)x
⊤
j )

=

k∑
i=1

(a⊤i b)
2xix

⊤
i +

∑
i ̸=j

(a⊤i b)(a
⊤
j b)xix

⊤
j
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• For dZ⊤
k A−1bx⊤

k+1 ∈ Rd×d, recall that Z⊤
k A−1b =

∑k
j=1(a⊤j b)xj is a d-dimensional vector, therefore

Z⊤
k A−1bx⊤

k+1 = (

k∑
j=1

(a⊤j b)xj)x
⊤
k+1

=

k∑
i=1

(a⊤i b)xix
⊤
k+1

• For dxk+1b
⊤A−1Zk ∈ Rd×d, it is symmetric as the prior case.

• For dxk+1x
⊤
k+1 ∈ Rd×d, it is straightforward.

Hence, we have shown that we can express Hk as a sum of the outer product of xi’s, as desired.

Definition C.6. For a matrix M ∈ Rd×d , if M can be expressed as
∑k

i=1 αixix
⊤
i +

∑
i ̸=j αi,jxix

⊤
j , we call the

set {α1, · · ·αk} ∪ {αi,j}i ̸=j,i,j∈[k] as the coefficient set of M .

Remark C.7. Note the above proof also provides an algorithm (see Algorithm 7) to find coefficients, suppose a
new vector is added in and we have access to the inverse matrix of the last iteration.

Theorem C.8 (Find Coeffeicients). There is an algorithm (see Algorithm 7) which takes the coefficient set of
Hk ∈ Rd×d and (ZkZ

⊤
k )−1 ∈ Rk×k as input, and returns the coefficient set of Hk+1 ∈ Rd×d and (Zk+1Z

⊤
k+1)−1

in O(k2 + kd) time.

Lemma C.9 (Running Time). Algorithm 7 runs in O(k2 + kd) time.

Proof. Computing c takes O(d) time. Computing Zk takes O(kd) time. Computing b takes O(kd) time. Computing
g takes O(kd) time. From line 8 to line15, the algorithm computes αi,j for every i, j ∈ [k + 1], taking O(1) time
respectively, that is, taking O(k2) time in total. Computing A−1

k+1 takes O(k2) time.

To sum up, Algorithm 7 runs in O(k2 + kd) time.

Algorithm 7 The FindCoefficients procedure, it takes the representation from last iteration and computes a
new representation.

1: procedure FindCoefficients({αi,j}(i,j)∈[k]×[k], {x1, . . . , xk, xk+1} ⊂ Rd, A−1
k ∈ Rk×k)

2: ▷ {αi,j} are coefficient sets of Hk, (ZkZ
⊤
k )−1 respectively

3: ▷ A−1 is (ZkZ
⊤
k )−1

4: c← x⊤
k+1xk+1

5: Zk ←
[
x1 x2 · · ·xk

]⊤ ∈ Rk×d

6: b← Zkxk+1 ∈ Rk

7: g ← A−1
k b ∈ Rk

8: αk+1,k+1 ← (c− b⊤A−1
k b)−1

9: for i = 1→ k do
10: αi,k+1 ← αk+1 · gi
11: αk+1,i ← αk+1 · gi
12: for j = 1→ k do
13: αi,j ← αi,j + αk+1 · gi · gj
14: end for
15: end for

16: A−1
k+1 =

[
A−1

k + dA−1
k bb⊤A−1

k −dA−1
k b

−db⊤A−1
k d

]
17: return {αi,j}i,j∈[k+1], A

−1
k+1

18: end procedure

Remark C.10. We now give an overview of how to implement a data structure with FindCoefficients. In
preprocessing, we simply compute the matrix multiplication XX⊤ in time Tmat(n, d, n), notice this product stores
all pairwise inner products between rows of X.
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Given a row xi ∈ Rd and a matrix Z ∈ Rk×d that contains k rows of X, we observe that

x⊤
i (

k∑
j=1

αixjx
⊤
j +

∑
j ̸=l

αi,jxjx
⊤
l )xi

=

k∑
j=1

αi⟨xi, xj⟩2 +
∑

j ̸=l,(j,l)∈[k]×[k]

αi,j⟨xi, xj⟩ · ⟨xi, xl⟩

Since the inner products have been pre-computed, we only need to find the coefficient set {α1, . . . , αk} ∪
{αj,l}j ̸=l,j,l∈[k].

The FindCoefficients procedure tells us that if Z is iteratively constructed by inserting one new row at a time,
then we can find the coefficients in time O(kd). Updating all O(k2) coefficients takes time O(k2). Hence, the
overall time of computing this quadratic form is O(kd + k2).

Remark C.11. We notice that the DPP sampling procedure is essentially building up the matrix Z and computing
the quadratic form at each iteration. If one can generalize this data structure to handle computing n quadratic
forms efficiently, then it will lead to direct improvement in the DPP process.
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