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Abstract

Normalizing Flows (NF) are Generative mod-
els which transform a simple prior distribution
into the desired target. They however require
the design of an invertible mapping whose Ja-
cobian determinant has to be computable. Re-
cently introduced, Neural Hamiltonian Flows
(NHF) are Hamiltonian dynamics-based flows,
which are continuous, volume-preserving and
invertible and thus make for natural candi-
dates for robust NF architectures. In partic-
ular, their similarity to classical Mechanics
could lead to easier interpretability of the
learned mapping. In this paper, we show that
the current NHF architecture may still pose
a challenge to interpretability. Inspired by
Physics, we introduce a fixed-kinetic energy
version of the model. This approach improves
interpretability and robustness while requiring
fewer parameters than the original model. We
illustrate that on a 2D Gaussian mixture and
on the MNIST and Fashion-MNIST datasets.
Finally, we show how to adapt NHF to the
context of Bayesian inference and illustrate
the method on an example from cosmology.

1 INTRODUCTION

Generative models are now under growing interest re-
garding sampling high-dimensional probability distribu-
tions with applications from molecular biology (Lopez
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et al., 2020) to cosmology (Rodriguez et al., 2018) or
medical science (Frazer et al., 2021). Traditional archi-
tectures like Generative Adversarial Networks (Good-
fellow et al., 2014) have shown impressive results in
image generation but since their adversarial loss seeks
a saddle point rather than a local minimum, GANs are
notoriously hard to train and may suffer from mode-
collapse (Lin et al., 2018; Arjovsky and Bottou, 2017;
Berard et al., 2020). More robust techniques like Nor-
malizing Flows (NF) were thus developed (Tabak and
Vanden-Eijnden, 2010; Dinh et al., 2014; Rezende and
Mohamed, 2015). NF consist in training a neural net-
work to map a simple prior distribution onto the desired
target through a chain of invertible transformations.
They come with interesting characteristics, such as sta-
bility and correctness, see for example Papamakarios
et al. (2022). The main limitation comes from the
design of an invertible function for the mapping. In
particular, computing the Jacobian determinant in the
change of variable formula may be costly. Also, explain-
ability is now a growing concern within the community
(Gilpin et al., 2018), in particular regarding applica-
tions in natural science, as the transformation learned
by NF models is commonly hard to interpret.

First motivated by the mitigation of the Jacobian com-
putation limitation, Neural Hamiltonian Flows (NHF)
(Toth et al., 2020) are NF models that use Hamilto-
nian transformations. Indeed, in classical Newtonian
mechanics, the Hamiltonian of a system, composed of
a kinetic and a potential energy terms, sets its dynam-
ical evolution, which is reversible and has a Jacobian
determinant equal to one. They have exhibited per-
formance similar to RealNVPs in sampling some 2D
distributions (Toth et al., 2020). Furthermore, being
Physics-driven models, they are expected to enhance
interpretability and it is furthermore straightforward to
exploit the Hamiltonian properties to include some in-
variance under symmetrical transformations (Jimenez
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Rezende et al., 2019). However, the NHF architec-
ture is made of four neural networks black-boxes that
may render difficult the interpretation of the learned
dynamics and energies. In particular, the learnt po-
tential energy is not guaranteed to correspond to the
corresponding physical potential energy of the data,
when writing their probability distribution as a Boltz-
mann one. Even if it was numerically shown to transfer
multimodality from the target distribution to the po-
tential energy in some 2D cases (Toth et al., 2020), this
property is not ensured.

We focus here precisely on the transfer of the negative
logarithm of the target distribution into the learned
potential, which should be the case in any physical
system. This leads to propose a fixed-kinetic version
of NHF (FK-NHF), where momenta follow a Gaussian
distribution, i.e. its classical mechanics formulation.
We discuss the impact of the hyperparameters on such
transfer and study its overall robustness towards the
choice of the numerical integration scheme and of the
prior distributions. This work provides the following
five main contributions:

• We introduce a FK-NHF which, thanks to the
Hamiltonian evolution, enhances the interpretabil-
ity of the model at a cheaper computational price,
compared to the standard multilayer perceptron
version (MLPK-NHF).

• We analyze the effect of multiple parameters of
the architecture on sampling a 2D multimodal
distribution and show that NHF is robust to the
hyper-parameters choice, especially FK-NHF.

• We show that the choice of prior has an influence
on the learned dynamics. FK-NHF allows better
robustness to the choice of prior distribution.

• We evaluate the sampling performance of NHF
models on high-dimensional image generation prob-
lems and compare them to a classical RealNVP.

• Finally, aside from Generative modeling, flow-
based models are relevant for inference (Rezende
and Mohamed, 2015; Winkler et al., 2019). We
test a framework for Bayesian inference using NHF
and present numerical experiments for inferring
cosmological parameters from astronomical obser-
vations. The methodology we propose is inspired
by Boltzmann generators (Noé et al., 2019).

The manuscript is organized as follows: Section 2
presents and reviews related works. In Section 3, we
describe the theoretical framework and the practical
implementation of NHF. In Section 4, we discuss the
choice of models for the kinetic energy and introduce

FK-NHF for enhanced interpretability and reduced
complexity. Section 5 discusses the maximization of
expressivity given a fixed computational budget, with
tests on a 2D Gaussian mixture and analysis of the
impact of the Leapfrog-hyperparameters and model
complexity. We also show how the choice of base dis-
tribution affects the learned energies and thus the in-
terpretability of the model. In Section 6, we discuss
the generative performance of NHF models in high-
dimensional problems. Finally, in Section 7, we adapt
NHF for Bayesian inference and illustrate our method
on a standard model from cosmology.

2 RELATED WORKS

Generative models. Various architectures have been
presented such as Generative Adversarial Networks
(Goodfellow et al., 2014) or diffusion networks (Sohl-
Dickstein et al., 2015). Here, we will focus on Normaliz-
ing Flows techniques (Tabak and Vanden-Eijnden, 2010;
Dinh et al., 2014; Rezende and Mohamed, 2015) as a
way of smoothly transforming a simple prior distribu-
tion into the target posterior. The FK-NHF we present
can however be understood as some ODE counterpart
of diffusion models where the transformation is gov-
erned by a Langevin SDE. Both transformations agree
for one discrete time step and this situation is remi-
niscent of the one in sampling with HMC (Neal, 2012)
and Metropolis-adjusted Langevin algorithm (Rossky
et al., 1978). The main limitation of diffusion models is
that they usually require many iterations (∼ 1000 (Ho
et al., 2020)) to produce good samples, while we show
that FK-NHF only needs around 10 leapfrog steps.

Learning Hamiltonians. Learning Hamiltonians, i.e.
physical conserved quantities, is a first step towards
a better understanding of the physical processes that
govern the data generation. Multiple architectures are
proposed, such as Hamiltonian Neural Networks (Grey-
danus et al., 2019) or Hamiltonian Generative Networks
(Toth et al., 2020). These methods parameterize the
Hamiltonian with neural networks and come with useful
properties such as exact reversibility and smoothness.
They have inspired applications from domain transla-
tion (Menier et al., 2022) to fault-detection in industry
(Shen et al., 2023). Notably, they can be combined
with Markov-Chain Monte Carlo (MCMC) methods,
for instance as proposals in the Hamiltonian Monte
Carlo (HMC) algorithm (Duane et al., 1987; Dhulipala
et al., 2022). We learn here artificial Hamiltonians
for sampling and our goal is to extract the negative
logarithm of the target distribution into the potential.

Neural ODE Flows. Compared to the transforma-
tion in Neural ODE flow (Chen et al., 2018), the Hamil-
tonian ODE in NHF are volume-preserving, making for
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a cheaper log-likelihood computation, and can be inte-
grated via symplectic integrators. We discuss here its
robustness with respect to hyperparameters and choice
of prior distribution. Also, we propose the alternative
FK version of NHF to enhance interpretability while
reducing the complexity of the model.

Inference with NHF. Traditional MCMC methods
(Robert and Casella, 2004) are very popular because
they come with guarantees in terms of convergence and
much progress has been made regarding their tuning
(Homan and Gelman, 2014; Carpenter et al., 2017). NF
architectures have also been proposed in this framework
(Rezende and Mohamed, 2015; Winkler et al., 2019).
Here, we adapt NHF to sampling Bayesian posterior
distributions by transforming the prior distribution
into the posterior with no access to samples from the
target.

Explainable AI. XAI deals with the problem of un-
derstanding the decisions made by an Artificial Intel-
ligence (Samek and Müller, 2019). Indeed, complex
architectures made of multiple (deep) neural networks
are often easier to train than to understand. Some
solutions involve surrogate techniques (Ribeiro et al.,
2016), local perturbations (Ancona et al., 2022) or
meta-explanations (Lapuschkin et al., 2019). Including
physical prior knowledge into neural networks may be
another solution to understand the model (Raissi et al.,
2019; Toth et al., 2020). In this work, we build on
that idea and try to make the model as explainable as
possible by fixing its kinetic energy and thus enforcing
classical Mechanics knowledge into the architecture.

3 NORMALIZING FLOWS WITH
HAMILTONIAN
TRANSFORMATIONS

3.1 Normalizing Flows

Normalizing flows are generative models mapping a
complex target distribution π onto a known prior distri-
bution π0 which is easy to sample (Papamakarios et al.,
2022). This mapping is a series of smooth invertible
transformations T1, ..., TL. Once the model is trained,
one can reverse the learned dynamics to generate sam-
ples from the target distribution starting from the prior.
If X = TL ◦ ... ◦ T1(Z), where Z ∼ π0, the density
followed by X reads m(x) = π0

(
T −1

1 ◦ ... ◦ T −1
L (x)

)
×∏L

k=1

∣∣∣det JT −1
k

(x)
∣∣∣ . The model parameters to optimize

are denoted Θ. The goal is to minimize the Kullback-
Leibler divergence between the target distribution π
and the model distribution m with respect to Θ, i.e.

minimizing:

L(Θ) = Eπ [log π(X)− logm(X; Θ)]

= −Eπ

[
log π0

(
T −1
1 ◦ ... ◦ T −1

L (X; Θ)
)

+

L∑
k=1

∣∣∣det JT−1
k

(X; Θ)
∣∣∣]+ C.

One can use samples from the target distribution in
order to get a Monte Carlo estimation of the above loss
and minimize it with gradient descent.

At this point, transformations are to some extent arbi-
trary. Any smooth invertible transformation is suited
but the main computational cost comes from the Jaco-
bian determinants. The first goal then is to reduce this
computational cost, and the second one to enhance in-
terpretability, by a proper choice of the transformation,
and of its induced inverse.

3.2 Neural Hamiltonian Flows

Figure 1: Schematic representation of the NHF archi-
tecture. In training, dataset samples are identified as
generalized positions and the Encoder generates arti-
ficial generalized momenta. The system then evolves
in the phase space following a discretized Hamiltonian
flow. The resulting output must follow the prior distri-
bution. The target data distribution can be sampled
by inverting the learned dynamics.

To alleviate these issues, Neural Hamiltonian Flows
(NHF, Toth et al., 2020) is a NF technique that uses a
series of Hamiltonian transformations as normalizing
flows. In classical Mechanics, a system is fully described
by its coordinates (q,p) in phase-space. From that
description, it is possible to define a scalar quantity
called a Hamiltonian (Landau and Lifshitz, 1982). It
can be seen as the total energy of the system and, in
this paper, we make the assumption that it is written
as the sum of a potential energy V , solely depending
on the generalized positions q, and a kinetic energy
K, solely depending on the momenta p. The system
evolves in phase-space following Hamilton’s equations
that read:

dq

dt
=
∂H

∂p
,
dp

dt
= −∂H

∂q
. (1)

Hamiltonian transformations present at least two main
advantages that make them suited for normalizing
flows:
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• they are invertible by construction and inversion
is easy by using a classical numerical integrator,
i.e. just reversing the speed;

• their Jacobian determinant is equal to 1, removing
the necessity to compute such determinant for each
transformation.

Numerically, the continuous solution can be approached
by a symplectic, invertible and stable integrator as a
Leapfrog:

pn+ 1
2

= pn −∇V (qn)× δt
2 ,

qn+1 = qn +∇K(pn+ 1
2
)× δt,

pn+1 = pn+ 1
2
−∇V (qn+1)× δt

2 .

(2)

An illustration of a NHF model can be found in Fig-
ure 1. NHF is trained on a dataset consisting of re-
alizations from the target distribution. To simulate
Hamiltonian dynamics, one must extend the position
space in which live the samples into the phase space,
by adding artificial momenta: this is the role of the
Encoder. The dynamics are integrated in phase-space
with the Leapfrog integrator. More precisely, during
training, NHF takes batches of qT from the training
dataset as inputs. For each qT , one pT is drawn from a
Gaussian distribution whose mean µ(qT ) and deviation
σ(qT ) depend on the qT . The resulting point in phase-
space then evolves through a series of L Leapfrog steps
with integration timestep −δt. The outputs consist
in the final position q0 and momenta p0, as well as
the initial mean µ(qT ), deviation σ(qT ) and pT used
in the loss computation. Once trained, one can easily
define a sampling function that transforms q0, p0 into
qT , by changing the sign of integration timestep and
moving the system through the learned dynamics. An
illustration of the architecture can be found in Figure 1.

Now regarding the training, following the previous
notations, let f(.|qT ) be the density of a normal dis-
tribution N (µ(qT ), σ(qT )2), and T −1 the backward
transformation of phase-space performed by NHF i.e.
T −1(qT ,pT ) = (q0,p0). Denote Π0 the joint distribu-
tion of q0, p0. By adding artificial momenta pT (Toth
et al., 2020), the distribution modeled by the NHF is
m(qT ) =

∫
M(qT ,pT )dpT =

∫
Π0(T −1(qT ,pT ))dpT .

This integral being intractable, one maximizes the fol-
lowing ELBO:

L(qT ) = Ef
[
log Π0(T −1(qT ,pT ))− log f(pT |qT )

]
.

(3)

This quantity is approximated via Monte Carlo inte-
gration. Having learned the transformation, one can
reverse the sign of timesteps and use the same poten-
tials to transform the prior distribution into the target
distribution.

To summarize, the first part of the architecture consists
of adding artificial momenta, as done by the Encoder,
to simulate Hamiltonian dynamics. Here, µ and σ
are approximated by two neural networks. As for the
Hamiltonian transformations, they are made by chain-
ing Leapfrog steps. To do so, one must design the
potential energy V and the kinetic energy K of the
system. In Toth et al. (2020), each energy term is
parameterized by a neural network. We will discuss
this choice in the following section. For now, let us
highlight that integrating Hamilton’s equations with a
symplectic numerical scheme provides flexibility. Most
NF architectures rely on a careful architecture design
rendering the computation of the Jacobian determinant
easy (Dinh et al., 2017). This is not the case with NHF
since invertibility and volume-conservation are ensured
by the use of a Leapfrog integrator and do not depend
on the neural networks that are used to parameterize
µ, σ, V and K.

4 DESIGNING THE KINETIC
ENERGY FOR NHF

MLPK-NHF. If the kinetic energy is chosen to be
a MLP (Toth et al., 2020), then the model contains
two black-boxes that are not easy to interpret a priori,
namely kinetic and potential energies K and V . In
particular, when sampling a multimodal distribution
from an unimodal prior, the learnt potential V may
not reflect the multimodal distribution.

FK-NHF. By fixing the kinetic energy inside NHF,
we gain interpretability on the learned flow by forc-
ing the latter to obey some Physics principles. In
this model, K is no longer a MLP but a quadratic
function K(p) = 1

2p
TM−1p, with M a symmetric

positive matrix. Starting from (q0,p0) drawn from an
unimodal prior distribution and imposing quadratic
kinetic energy significantly reduces the possibilities for
the potential energy to recover a multimodal qT . We
indeed aim at enforcing these energies to be classical
from a Physics perspective, i.e. making the learned
kinetic energy to be of a quadratic form and the learned
potential to be the negative logarithm of the target
distribution − log π (or an approximation), as it is the
case for diffusion models. It is noteworthy that, if the
learnt potential is − log π and K of a classical form,
then any initial distribution of q0 can be mapped to the
distribution π of the qT given the distribution of p0 is
rich enough (e.g. a Normal law). Indeed, Hamiltonian
dynamics with momenta refreshment yields an ergodic
exploration of phase-space that leaves the canonical
distribution (∝ exp(− log π −K)) invariant. Canoni-
cal distribution invariance uses volume-preservation in
phase-space, i.e. Liouville’s theorem, and ergodicity
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comes from momenta refreshment.

This is also at the basis of the HMC method (Duane
et al., 1987; Neal, 2012). Therefore the FK variant can
learn any distribution of qT .

Keeping track of the transformation dynamics, and the
analogy with the familiar classical mechanics frame-
work, makes possible the interpretability of the learned
potential. Also, learning the energy landscape associ-
ated with the target distributions offers guarantees in
terms of control of the discretization scheme, avoiding
chaotic behaviour and making the model less sensi-
tive to the choice of Leapfrog hyperparameters as we
show in Section 5. By doing so, both interpretability,
sparsity and robustness are gained through FK-NHF.
It is possible to create different versions of NHF by
fixing its kinetic energy. One could, for instance, use
a relativistic kinetic energy instead of a classical one.
We now numerically show how the classical choice for
kinetic energy yields an interpretable potential V and
such in a robust manner.

5 INTERPRETABILITY AND
ROBUSTNESS

We present the results of numerical experiments for
sampling a 2D Gaussian mixture (9 equally-weighted
Gaussians with same covariance matrix 0.52I2) (see Fig-
ure 2). Such an example, similarly studied in Toth et al.
(2020), enables us to understand important aspects of
NHF, like sensitivity to the choice of hyperparameters
and, more importantly, interpretability. Also, tradi-
tional generative models like GANs may suffer from
mode-collapse problems even in simple multimodal 2D
settings (Eghbal-zadeh et al., 2019), mode-collapses
which were never observed with NHF experiments. Ad-
ditional details about the models and hyperparameters
choice can be found in Appendix B.1. A public version
of the code is available on a Git repository 1.

5.1 Impact of Leapfrog-hyperparameters and
model complexity

Let us discuss the effect of Leapfrog-hyperparameters L
(number of Leapfrog steps) and T = L×δt (integration
time) on the optimization, but also the impact of the
model complexity. The latter is governed by the total
number of neurons in the model, this number being an
increasing function of N , the number of neurons per
hidden layer in each MLP of the model. If the model is
complex enough, we expect to learn how to adjust to
the number of Leapfrog steps and choice of integration

1https://plmlab.math.cnrs.fr/stoch-algo-phys/
generative-models/fixed-kinetic-NHF/

Figure 2: Density estimation with its marginals of the
target 2D Gaussian mixture (Left) and of the samples
produced by MLPK-NHF (Right, Top) and FK-NHF
(Right, Bottom), with, from left to right, peaked Gaus-
sian, wide Gaussian and wide soft-uniform prior.
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Figure 3: Training loss as a function of epochs for
models with different N (number of neurons per hidden
layer in each neural network of the model), L (number
of Leapfrog steps) and T (integration time).

time. If not, the model may have better performance
by increasing the number of steps, i.e. increasing L.

We tested both FK-NHF and MLPK-NHF with various
choices of L, T and N and a soft-uniform prior ∝ s(x+
3)s(−x + 3), where s is the sigmoid function. The
corresponding loss decays are illustrated in Figure 3
and additional details can be found in Appendix B.2.

First, FK-NHF is more robust than the MLPK one
to the choices of L and T , at fixed N , as discrepancy
in the loss decay more clearly appears especially with
N = 8. Then, regarding the tuning of the Leapfrog
scheme, at fixed-integration time, models with L = 1
always reach higher final value of the loss, this effect
being less visible with FK-NHF. Increasing the number
of leapfrog steps leads to better final performance even
if the effect disappears once the number of Leapfrog
steps gets sufficient and no further expressivity can
be achieved. Finally, as for the effect of integration
time T , it barely appears for FK-NHF, showing that
the latter efficiently adjusts to this parameter. As

https://plmlab.math.cnrs.fr/stoch-algo-phys/generative-models/fixed-kinetic-NHF/
https://plmlab.math.cnrs.fr/stoch-algo-phys/generative-models/fixed-kinetic-NHF/
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for the MLPK-NHF, the effect of the integration time
is clearer, but mostly at N = 8, where performance
improves for T = 1, 10 compared to T = 0.1. Overall,
as the number of parameters in the model increases,
the impact of the integration time becomes limited.

Thus, there are four hyperparameters that require tun-
ing: three are usual in learning (minibatch size, learning
rate and number of neurons per hidden layer, i.e. num-
ber of learning parameters of the model) and only one
is specific to NHF: the number of Leapfrog steps, whose
tuning is less sensitive when using FK-NHF. Further-
more, compared to diffusion models (Sohl-Dickstein
et al., 2015), the required amount of steps is quite low.

5.2 Impact of the prior distribution on the
learned dynamics

We illustrate the impact of the prior choice on the
transfer of characteristics of the target distribution on
the potential V , especially regarding the multimodality
nature. All models were trained for 15,000 epochs
using N = 128, T = 1 and L = 10, with a 5,000 points
training dataset and with the soft-uniform prior, a
peaker Gaussian prior N (0, I2) and a wide Gaussian
prior N (0, 2.52I2).

All considered schemes recover the nine correct modes
from the target distribution, as illustrated in Figure 2.
We now consider the learned potential V . As the
Hamiltonian evolution only involves its derivative, we
represented a shifted version in Figure 4. Choosing
a relatively flat soft-uniform prior distribution that
covers the target region, multimodality transfers to the
potential energy for both FK-NHF and MLPK-NHF.
The potential exhibits local extrema centered at the
modes of the target, which can either be minima or
maxima for the MLPK-NHF but are minima for the
FK one. Indeed, with a MLPK model, the orientation
of the learned energies may change from one numerical
experiment to another, as we do not enforce the posi-
tiveness of the output of V and K. Similar results were
obtained using the wide Gaussian prior with a variance
large enough to cover the support of the target distribu-
tion, which stresses the impact of the spatial expansion
rather than the nature of the prior distribution.

On the other hand, with a ”peaked” prior distribution
N (0, I2) for the MLPK-NHF, the momenta pT gener-
ated by the Encoder inherit from the multimodality
of the target distribution, with the same number of
modes (see Figure 5). The learned energies are then
different from the classical Physical ones and differ
from one model to another. In the case of FK-NHF,
multimodality is transferred to the potential energy,
showing the robustness of the model to the choice of
prior distribution.

Thus, using FK-NHF allows for a more robust transfer
of important properties of the target distribution into
the learned potential. More specifically, the model is
able to learn an interpretable potential with extrema
centered at the modes of the data. When the learned
potential is not multimodal, it is an indication that mul-
timodality has been transferred instead to the artificial
momenta pT generated by the Encoder.

Finally, learning a potential approximating − log π is
interesting in terms of interpretability but also renders
the model more robust to hyperparameters. Figures 6
and 7 illustrate how learning an interpretable multi-
modal potential makes the model less sensitive to the
choice of Leapfrog steps and robust to some dynamics
extrapolation.

As shown in Figure 6 and Appendix B.3, we also inves-
tigated the possibility of enforcing the transfer of multi-
modality to V by removing the Encoder and having pT
drawn from a N (0, s2I), s being learned during train-
ing. While it improves MLPK-NHF for a peaked prior,
we find it is less efficient and directly interpretable than
fixing K. When fixing K, an Encoder-free model comes
with a reduced complexity but we find that leaving as
much flexibility as possible in the generation of mo-
menta is the relevant option, especially for challenging
problems and a small number of leapfrog steps.
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Figure 4: Shifted potential energies learned by the six
models previously defined.

6 NHF FOR IMAGE GENERATION

To the best of our knowledge, NHF models have not
been tested on high-dimensional image generation prob-
lems. We run experiments for sampling the MNIST
handwritten digits (Deng, 2012) dataset, as well as addi-
tional tests on the Fashion MNIST dataset (Xiao et al.,
2017). FK-NHF and MLPK-NHF are compared to a
RealNVP (Dinh et al., 2017) with a similar number of
learnable parameters. The RealNVP implementeation
is based on an open-source GitHub repository 2. Details

2https://github.com/bjlkeng/sandbox/tree/
master/realnvp

https://github.com/bjlkeng/sandbox/tree/master/realnvp
https://github.com/bjlkeng/sandbox/tree/master/realnvp
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Figure 7: Density estimations as L increases of samples
generated by two models trained with L = 10 and a
peaked Gaussian prior N (0, I2). First row: MLPK-
NHF which has learned a non-interpretable unimodal
potential. Second row: FK-NHF which has learned an
interpretable multimodal potential.

on the experiments can be found in the Appendix C.1.
We use a pre-processing step prescribed in Dinh et al.

RealNVP
KL=150/bpp=1.5

MLP-kinetic NHF
KL=120/bpp=2.3

Fixed-kinetic NHF
KL=140/bpp=2.3 True samples

RealNVP
KL=220/bpp=3.3

MLP-kinetic NHF
KL=210/bpp=4.3

Fixed-kinetic NHF
KL=220/bpp=4.4 True samples

Figure 8: Samples produced after training on the
MNIST and Fashion-MNIST datasets along with an
estimation of the KL divergence between the true and
model distributions and the number of bits per pixel.

(2017) consisting of learning the dequantized target
distribution in logit space. The choice of mass ma-
trix for FK-NHF is important for expressivity. This
behaviour should be familiar to the HMC community
(Duane et al., 1987) for which an optimal mass matrix
is important for efficient exploration (Neal, 2012).

Quality of sampling is quantitatively assessed by the
KL divergence, estimated following Perez-Cruz (2008),
and the number of bits per pixel (Papamakarios et al.,
2017). Our experiments (Figure 8 and Appendix C.2)
show that RealNVP and NHF slightly outperform each
other depending on the metric. The performance of
FK-NHF is achieved with a simpler architecture though.
Furthermore, the learned potentials have extrema lo-
cated at the modes of the target distribution, see Ap-
pendix C.3. This capacity of the models to learn the
modes of the data and to store the information in the
potential energy underlines interpretability.

To compare ODE-driven flow-based models, such as
NHF, with SDE-driven diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020), we also tested an imple-
mentation of Ho et al. (2020) based on an open-source
GitHub repository 3. We adapted it so that it has
2.7 million parameters (same order as the other algo-
rithms) and uses the same pre-processing step. The
experiments ran on a HPC cluster with the same num-
ber of epochs and batch size than for the previous
experiments with normalizing flows. We tested the
model with L = 10 and L = 100 denoising steps. Re-
sults are visible on Figure 9 and it appears that around
100 denoising steps are required for producing good
samples. This should be directly compared with the 10

3https://github.com/lucidrains/
denoising-diffusion-pytorch/

https://github.com/lucidrains/denoising-diffusion-pytorch/
https://github.com/lucidrains/denoising-diffusion-pytorch/


Fixed-kinetic Neural Hamiltonian Flows

Leapfrog steps used within NHF models. This comes
in addition to the extra cost of sampling with a trained
diffusion model since it requires approximating the
reverse process from noise to images with a Markov
chain.

Figure 9: Samples produced by the diffusion model
after training on the MNIST and Fashion-MNIST
datasets. Left: L = 10 denoising steps (KL divergence
between the true and model distributions: KL= 250
(MNIST), KL=340 (Fashion-MNIST)). Right: L = 100
denoising step (KL= 70 (MNIST), KL= 70 (Fashion-
MNIST)).

7 ADAPTING NHF FOR
BAYESIAN INFERENCE

7.1 Methodology, derivation of the new loss
function

NHF can be used to perform Bayesian inference, by
using Hamiltonian flows to transform the prior distribu-
tion, in the sense of Bayes’ theorem, π0 of some vector
of parameters q into the target posterior distribution
π(q|d) of these parameters, knowing some data d and
likelihood distribution ` (see Figure 10). The main
difference with the above-described NHF lies in the
loss inspired by the KL phase in Boltzmann Generators
(Noé et al., 2019), as well as in the learning procedure.
The NHF becomes a generator of a family of functions
for variational inference. During training, this NHF
takes batches of q0 from the prior distribution as in-
puts. For each q0, one p0 is drawn from a Gaussian
distribution whose mean and deviation depend on the
q0. The resulting point in phase-space evolves through
L Leapfrog steps with integration time δt. The outputs
consist in the final positions qT and momenta pT , as
well as the initial mean µ(q0), deviation σ(q0) and p0.
All these outputs, as well as the data d, are used in
the loss computation. Once trained, it can transform
the prior into the desired posterior distribution of the
parameters. Thus, both training and sampling are
now made following the forward-direction flow from
the prior to the posterior.

Computing the loss requires access to the likelihood
distribution ` of the model, which encapsulates the

Figure 10: Schematic representation of NHF for
Bayesian inference.

covariance matrix of the data as well as the under-
lying physical mapping between vectors of parame-
ters and the corresponding data. In the framework of
Hamiltonian dynamics, the full system is made of both
positions (the parameters of interest) and artificial mo-
menta. We call q0,p0 the initial position and momen-
tum, respectively, and qT ,pT the corresponding final
position and momentum, respectively, obtained after L
Leapfrog transformations T δt1 , ..., T δtL with timestep δt,
i.e: (qT ,pT ) = T δtL ◦...◦T δt1 (q0,p0) := T (q0,p0). Also,
we introduce the notations for the projections along
the final positions and momenta, i.e. qT := Tq(q0,p0)
and pT := Tp(q0,p0). By changing the variables, the
model joint distribution M may be written as:

M(qT ,pT ) = 1×Π0(T −δt1 ◦ ... ◦ T −δtL (qT ,pT ))

= Π0(q0,p0) = π0(q0)× f(p0|q0),

where Π0 is the joint prior distribution, π0 the prior
distribution of the parameters of interest and f the
Gaussian distribution of the Encoder. We fix the target
density of the final momenta g(p) (e.g. Gaussian). We
then minimize the KL-divergence between the model
joint distribution and the desired target joint distribu-
tion conditioned on data Π(q,p|d) = π(q|d)g(p). We
write the latter as the product of a density depending
on q and one depending on p. Using Bayes’ theorem,
we have (see Appendix D):

DKL(M(qT ,pT ) || π(qT |d)g(pT )) =

∫
π0(q0,p0)

×
[

log π0(q0)+log f(p0|q0)−log π0(Tq(q0,p0))

−log `(d|Tq(q0,p0))−log g(Tp(q0,p0)
]
dq0dp0+cst.

(4)

7.2 Application to cosmology

We apply the above architecture to cosmological anal-
ysis: the determination of the cosmic expansion, and
more generally of the cosmological parameters, from
the observation of brightness and recession velocity
of Type Ia supernovæ (e.g. Riess et al., 1998; Betoule
et al., 2014). While this model used so far has been sim-
ple, it may be expanded in very complicated directions
for which sampling from the probability distribution
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becomes complex. New observatories are presently be-
ing built and expected to deliver tens of thousands of
new supernovæ Ia over the next decade (Abell et al.,
2009).

According to the Λ-CDM model, the relation between
the distance and the brightness of Type Ia supernovae is
of great interest because it depends on two cosmological
parameters: the matter density parameter Ωm and the
adimensional Hubble parameter h. To be more specific,
a database of type Ia supernovae reports the distance
modulus µ. This quantity is defined as the difference
between the apparent and the absolute magnitude of an
astronomical object and is directly related to luminosity
distance (Weinberg, 1972) and thus a function of the
redshift z, Ωm and h:

µ(z,Ωm, h) = 5 log10

(
D∗L(z,Ωm)

h 10pc

)
where D∗L is a function for which one can get a closed-
form approximation in a flat Universe (Pen, 1999), see
Appendix E for details.

We aim to sample from the posterior distribution
π(Ωm, h|data) quantifying the probability that we
are living in a universe whose mean density and ex-
pansion is equal to Ωm and h given D observations
data = {zi, µi}1≤i≤D of type Ia supernovae, and the
covariance matrix C of the observed distance moduli.
We assume for simplicity that the likelihood of the
problem is Gaussian, i.e. the observed data and the
simulated output from parameters differ up to Gaus-
sian noise. We note that the exact simulation for
cosmological analysis of the supernova brightness is a
complicated and expensive procedure, involving many
nuisance parameters which participate in the final noise.
It also acts as an example for more complex inference
procedures, such as one relying on galaxy clustering, or
weak lensing. It is thus crucial to use the least amount
of parameters, and the least simulations possible to
run the inference, which is the aim of this section. The
final momenta distribution g is set to a Normal dis-
tribution. The trace plots in figure 11 compare the
performance of an FK and MLPK-NHF with an HMC.
They represent the cumulative means and standard
deviations of the set of samples. These experiments
first show that NHF, using learnt Hamiltonian flows,
are competitive with HMC, using exact Hamiltonian
flows. Indeed, NHF samples only show around 1% bias
error but they are completely uncorrelated from each
other. After training, for a fixed-computational budget,
the convergence of the empirical average can then be
faster than with HMC (clearly appearing for instance
on the variance of h in figure 11). Furthermore, the
experiments show that the KL-minimization approach
is performing better. We leave for future work a possi-
ble correction using importance sampling methods at

the end of training. More generally, a careful analysis
of the trade-off between sampling quality and compu-
tational cost, typically on a complex and multimodal
target, will be of interest.
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Figure 11: Trace plots of means and standard devia-
tions of Ωm and h produced by trained NHF models
and for an HMC on a 20,000-sample dataset, compared
to the ground truth. Soft-uniform prior, 30,000 training
epochs, g ∼ N (0, I2).

8 CONCLUSION

In this work, we analyzed and improved Normalizing
Hamiltonian Flows algorithms for Generative model-
ing. The main advantage of these methods is twofold.
First, the volume-preservation in phase-space avoids the
costly computation of Jacobian determinants. Then,
as reversibility is ensured by the symplectic integra-
tor, they allow for flexibility in the neural network
architecture. This flexibility allowed us to propose a
NHF variant based on classical kinetic energy. By ex-
ploring a 2D mixture problem, we illustrated how the
explicit classical design of the kinetic energy is a way
to increase robustness and facilitate interpretability
while reducing the computational cost. While testing
NHF models for image generation, both show similar
generative performance and are able to preserve their
interpretability properties. It is noteworthy that, com-
pared to diffusion models, they only require a short
dynamics integration. Finally, we explained how to
adapt NHF to the context of Bayesian inference to
obtain a sampler of the posterior distribution. Further
work will address methodological issues as to how the
bias generated by a trained model could be corrected
by importance sampling techniques, typically on high
dimensional cosmological models but also more funda-
mental questions regarding a more precise comparison
of NHF with diffusion models.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes/No/Not Applicable]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes/No/Not Applicable]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes/No/Not Applica-
ble] We attached a ready-to-run Python
script for testing a NHF during submis-
sion. Also, a public version of the code
4 has been released.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all
theoretical results. [Yes/No/Not Applicable]

(b) Complete proofs of all theoretical results.
[Yes/No/Not Applicable] Mathematical
derivations can be found in the Appen-
dices.

(c) Clear explanations of any assumptions.
[Yes/No/Not Applicable]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes/No/Not Applicable] See Appendices.

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
[Yes/No/Not Applicable] See Appendices.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes/No/Not Applicable]
See Appendices.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster,
or cloud provider). [Yes/No/Not Applicable]
See Appendices.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes/No/Not Applicable]

4https://plmlab.math.cnrs.fr/stoch-algo-phys/
generative-models/fixed-kinetic-NHF/

(b) The license information of the assets, if appli-
cable. [Yes/No/Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes/No/Not
Applicable]

(d) Information about consent from data
providers/curators. [Yes/No/Not Applica-
ble]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Yes/No/Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Yes/No/Not Appli-
cable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Yes/No/Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Yes/No/Not Applica-
ble]

https://plmlab.math.cnrs.fr/stoch-algo-phys/generative-models/fixed-kinetic-NHF/
https://plmlab.math.cnrs.fr/stoch-algo-phys/generative-models/fixed-kinetic-NHF/
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Supplementary Materials

A METRICS FOR EVALUATING THE QUALITY OF SAMPLING

In a D-dimensional space, we consider a set of S samples {Xs}Ss=1 := {(Xs,1, ..., Xs,D)}Ss=1 generated by a model
and S samples {X0

s}Ss=1 := {(X0
s,1, ..., X

0
s,D)}Ss=1 drawn from the true (test) dataset.

A.1 Kullback-Leibler divergence

A natural (pseudo-)distance is the KL-divergence DKL(π||m) between the true target distribution with density π
and the model distribution with density m. This pseudo-distance quantifies the loss of information when using the
model distribution instead of the true target for describing the data - so the lower the better. The KL-divergence
is defined as

DKL(π||m) =

∫
π(x) ln

π(x)

m(x)
dx ≥ 0.

When one of these probability distributions is intractable, as it is the case here, we estimate DKL by comparing
samples from the true target distribution with samples from the model distribution. The procedure described in
Perez-Cruz (2008) proceeds according to a k-neighborhood density estimate of the two distributions:

DKL(π||m) ≈ −D
S

S∑
s=1

ln
rk(Xs)

sk(Xs)
+ ln

S

S − 1

where rk(Xs) is the k-th closest neighbor of Xs in {Xs}Ss=1\{Xs} and sk(Xs) is the k-th closest neighbor of Xs

in {X0
s}Ss=1. Parameters chosen in our estimation are S = 1024 and k = 1.

A.2 Bits per pixel

For evaluating the quality of images generated by the considered models, we compute the number of bits per
pixel, decaying as the quality of the image increases. We start with a pre-processing step. First, pixels of
training images are dequantized by adding uniform noise ε ∼ U ]0, 1[ and ranging them back to interval [0, 1] as
x← (255x+ ε)/256. Then, the models are trained on the target distribution in logit space by transforming the
resulting noisy pixels as x← logit((1− 2λ)x+ λ) with λ = 10−6.

Once trained, we evaluate the number of bits per pixel of a pre-processed image X̃0
s := (X̃0

s,1, ..., X̃
0
s,D) in logit

space from the test dataset following Papamakarios et al. (2017):

b(X̃0
s ) = − lnm(X̃0

s )

D ln 2
− log2(1− 2λ) +

1

D

D∑
d=1

[
log2(logit(X̃0

s,d)) + log2(1− logit(X̃0
s,d))

]
.

In the above equation, we evaluate the probability distribution in the logit space of the model, namely m(X̃0
s ).

For a classical flow-based model, it is straightforward since m(X̃0
s ) = π0(T−1(X̃0

s ))×
∣∣∣JacT−1(X̃0

s )
∣∣∣ where T−1 is

the transformation from logit space to latent space learned by the model.

However, for NHF, the change of variable formula is only valid in phase-space for the model joint distribution of
the positions and momenta: M(X̃0

s , Vs) = Π0(T−1(X̃0
s , Vs))× 1. We use a Monte Carlo approximation of m(X̃0

s )
by drawing N momenta Vs,1, ..., Vs,N from the Gaussian distribution f(.|X̃0

s ) parameterized by the Encoder as:

m(X̃0
s ) =

∫
M(X̃0

s , Vs)dVs ≈
1

N

N∑
i=1

M(X̃0
s , Vs,i)

f(Vs,i|X̃0
s )

.

For evaluating the number of bits per pixel of a model on the two MNIST datasets, we average the bits per pixel
values obtained with 1024 images from the test dataset, using N = 10 for NHF. The histograms of bits per pixel
are exhibited in Appendix C.2.
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B NUMERICAL EXPERIMENTS ON THE 2D PROBLEM

B.1 Experimental details

For the 2D Gaussian mixture problem, we tested four different NHF models:

• MLP-kinetic NHF with Encoder: µ and σ are MLPs with size (2, N,N, 2), V and K are MLPs with size
(2, N,N, 1). According to the experiments, we used N = 8, 32, 128.

• Fixed-kinetic NHF with Encoder: µ and σ are MLPs with size (2, N,N, 2), V is a MLP with size (2, N,N, 1).
Kinetic energy K is a positive quadratic form whose mass matrix is learned during training. According to
the experiments, we used N = 8, 32, 128.

• MLP-kinetic NHF without Encoder: we use this model for experiments in Section 5. Artificial momenta pT
are drawn from a N (0, C) where C = Diag(s2

1, s
2
2), s1, s2 being learned during training. V and K are MLPs

with size (2, 156, 156, 1). The number of neurons per hidden layer was chosen so that the resulting model has
about the same number of parameters as an Encoder-based Fixed-kinetic NHF with N = 128.

• Fixed-kinetic NHF without Encoder: this model is considered in Section 5. Artificial momenta pT are
drawn from a N (0, C) where C = Diag(s2

1, s
2
2), s1, s2 being learned during training. V is a MLP with size

(2, 220, 220, 1). Kinetic energy K is a positive quadratic form whose mass matrix is learned during training.
The number of neurons per hidden layer was chosen so that the resulting model has about the same number
of parameters as an Encoder-based Fixed-kinetic NHF with N = 128.

We used Softplus activation functions in between hidden layers. All models were trained on a 5,000 points dataset
with minibatches of size 512. Weights and biases were optimized with the Adam algorithm Kingma and Ba (2015),
setting the learning rate to 5× 10−4. The experiments were run on a HPC cluster, each of them using one GPU.

B.2 Additional experiments for showing robustness of the models

We also present the results of additional experiments with N = 32 in Figure 12. Removing more than 90% of
parameters (passage from N = 128 to N = 32), the final values are always higher by less than 4%, for both
models. The different final values of the loss function can be represented on scatter plots, see Figure 13. The
latter clearly illustrates the robustness of the fixed-kinetic model, see Figure 12. It also shows that models with
L = 1 perform poorer than those with L = 2, 10, 50.

B.3 Additional results on Encoder-free NHF models

We tested different Encoder-free NHF models on the 2D Gaussian mixture target. As can be seen in Figure 14,
all models have learned an interpretable multimodal potential. The corresponding samples are presented in
Figure 15. These experiments clearly illustrate that the transfer of multimodality and thus interpretability of the
model can be achieved more easily by fixing the distribution of the artificial momenta pT to a unimodal Gaussian.
However, we chose to push the investigation further only with Encoder-based models as leaving as much flexibility
as possible in the generation of momenta may be useful in sampling more challenging target distributions.

C NUMERICAL EXPERIMENTS ON THE MNIST DATASETS

C.1 Experimental details

The considered models were tested on the MNIST handwritten digits and Fashion MNIST datasets, which
contain 60,000 images of size 28 × 28. The energy functions within the MLP-kinetic and Fixed-kinetic NHF
are parameterized by 3-hidden layer MLPs with size (784, 512, 256, 128, 1). As for µ and σ, they are 3-hidden
layer MLPs with size (784, 256, 256, 256, 784). We use LeakyReLU activation functions in between hidden layers
with slope 0.1 for µ and σ and Softplus activation functions in between hidden layers for the energies. For
the Fixed-Kinetic model, the mass matrix is optimized on the fly during training by learning its Cholesky
decomposition, which has D(D + 1)/2 parameters, D being the dimension of data, as was done in Celledoni
et al. (2023). This represents a grand total of 1.94 million learnable parameters for Fixed-kinetic NHF and
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Figure 12: Training loss as a function of epochs for models with different N (number of neurons per hidden layer
in each neural network of the model), L (number of Leapfrog steps) and T (integration time).
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Figure 13: Scatter plots L vs. T of final values of the loss averaged on last 500 epochs. First row: MLP-kinetic
NHF; second row: fixed-kinetic model. From left to right: N = 128, 32, 8. Models were trained for 15, 000
epochs on a 5,000-point dataset with minibatches of size 512.

2.20 million for MLP-Kinetic NHF, that both use 10 Leapfrog steps with integration timestep dt = 0.1. As
for the Real NVP to which they are compared, it uses 6 coupling layers and 32 planes for a total of 2.27
million learnable parameters. We adapted an architecture from a public open source GitHub project available at
https://github.com/bjlkeng/sandbox/tree/master/realnvp under MIT Licence. All models were trained
using a N (0, I784) base distribution, except for the NHF models on the MNIST handwritten digits which use a
N (0, 22I784). All models were trained for 50 epochs on minibatches with size 32 and optimization was performed
using the Adam algorithm Kingma and Ba (2015). The experiments were run on a HPC cluster, each of them
using one GPU.

C.2 Additional quantitative results

It should be noted that the reported values of bits per pixel for MNIST handwritten digits and Fashion MNIST
correspond to an average over some samples drawn from the true test dataset. In Figure 16 and Figure 17 are
plotted the histograms of the bits per pixel values for 1024 samples drawn from the true test datasets, for each
model. Figure 16 on the MNIST dataset exhibits comparable results for the three tested architectures whereas

https://github.com/bjlkeng/sandbox/tree/master/realnvp
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Figure 14: Shifted potential energy learned by 4 different Encoder-free models. All of them have recovered the 9
correct modes of the data.
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Figure 15: Density estimation of samples generated by 4 different Encoder-free models.

the Fashion MNIST experiment shows slightly better bits per pixel values for RealNVP.
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Figure 16: Histogram of bits per pixel values from the MNIST handwritten digits dataset. The standard deviation
is approximately equal to 0.3 for each model.



Fixed-kinetic Neural Hamiltonian Flows

2.5 5.0 7.5
0.0

0.1

0.2

0.3

0.4

RealNVP

2.5 5.0 7.5

MLP-kinetic NHF

2.5 5.0 7.5

Fixed-kinetic NHF

Figure 17: Histogram of bits per pixel values from the Fashion MNIST dataset. The standard deviation is
approximately equal to 1 for each model.

C.3 Interpretability of NHF models in higher dimension

Both NHF models preserve their interpretability properties even in high dimension image generation problems.
They have learned extrema at the modes of data. As can be seen in Figure 18, the fixed-kinetic model has learned
local minima at the modes of data while the usual MLP-kinetic model has learned local maxima. Imposing a
positive quadratic term for the kinetic energy ensures that it will always be minima.
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V value of a true 0

V values around 0

Figure 18: For two NHF models trained on the MNIST handwritten digits, we plot the value of the potential for
a true ’0’ corresponding to a point x0 in a 784-dimensional logit space, as well as the values of the potential for
200 perturbations of the form x = x0 + ε where ε ∼ N (0, 22I784).

Again, by learning an interpretable potential we observe that the model is less sensitive to the number of Leapfrog
steps. This is particularly visible for MLP-kinetic NHF on both MNIST handwritten digits and Fashion MNIST
datasets, as well as for FK-NHF especially on Fashion MNIST, see Figure 19 and Figure 20.

D DERIVATION OF THE KL-DIVERGENCE AND ELBO FOR THE
INFERENCE PROBLEM

The KL-divergence suited to the inference problem is derived as follows:
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MLP-K, L=5 MLP-K, L=10 MLP-K, L=15 MLP-K, L=20

Fixed-K, L=5 Fixed-K, L=10 Fixed-K, L=15 Fixed-K, L=20

Figure 19: Stability of both NHF models trained with L = 10 to the number of Leapfrog steps, for the MNIST
handwritten digits dataset.
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Fixed-K, L=5 Fixed-K, L=10 Fixed-K, L=15 Fixed-K, L=20

Figure 20: Stability of both NHF models trained with L = 10 to the number of Leapfrog steps, for the Fashion
MNIST dataset.

DKL(M(qT ,pT ) || π(qT |d)g(pT )) =

∫
M(qT ,pT ) logM(qT ,pT )dqT dpT −

∫
M(qT ,pT ) [log π(qT |d) + log g(pT )] dqT dpT

=

∫
Π0(T −1

(qT ,pT )) log Π0(T −1
(qT ,pT ))dqT dpT −

∫
M(qT ,pT ) [log π0(qT ) + log `(d|qT )− log p(d) + log g(pT )] dqT dpT

=

∫
Π0(q0,p0) [log π0(q0) + log f(p0|q0)] dq0dp0 −

∫
M(qT ,pT ) [log π0(qT ) + log `(d|qT ) + log g(p)] dqT dpT + cst

=

∫
Π0(q0,p0) [log π0(q0) + log f(p0|q0)− log π0(Tq(q0,p0))− log `(d|Tq(q0,p0))− log g(Tp(q0,p0)] dq0dp0 + cst.

(5)
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We can also adapt the ELBO to the inference framework:

lnπ0(q0) = ln

∫
Π0(q0,p0)dp0

= ln

∫
Π0(q0,p0)

f(p0|q0)
f(p0|q0)dp0

= lnEf

[
Π0(q0,p0)

f(p0|q0)

]
≥ Ef [ln Π0(q0,p0)− ln f(p0|q0)]

= Ef [lnM(T (q0,p0))− ln f(p0|q0)] .

Then, expliciting M(q, p) = π0(q)`(d|q)g(p):

ELBO(q0) = Ef [ln [π0(Tq(T (q0,p0)))`(d|Tq(T (q0,p0)))g(Tp(T (q0,p0)))]− ln f(p0|q0)] . (6)

E SOME TECHNICAL DETAILS ABOUT THE COSMOLOGICAL PROBLEM

In Section 7, we defined a relationship between the distance modulus µ and the redshift z which also depends on
two cosmological parameters Ωm and h. To be more specific:

µ(z,Ωm, h) = 5 log10

(
D∗L(z,Ωm)

h10pc

)
where

D∗L(z,Ωm) =
c(1 + z)

H0

∫ z

0

ds√
1− Ωm + Ωm(1 + s)3

,

and H0 = 100 km s−1 Mpc−1, c being the speed of light.

In practice, we avoid computing the integral in D∗L by using an approximation from Pen (1999) which is only
valid for a flat Universe:

D∗L(z,Ωm) =
c(1 + z)

H0

[
η(1,Ωm)− η

(
1

1 + z
,Ωm

)]
,

with

η(a,Ωm) = 2
√

1 + s3

(
1

a
− 0.1540

s

a3
+ 0.4304

s2

a2
+ 0.19097

s3

a
+ 0.066941s4

)
.

Note that the formal definition of these quantities imposes constraints on the possible values of the parameters,
that can only be comprised between zero and one. We avoid the problem by outputting a sigmoid of qT .
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