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Abstract

Rule models are often preferred in prediction
tasks with tabular inputs as they can be eas-
ily interpreted using natural language and
provide predictive performance on par with
more complex models. However, most rule
models’ predictions are undefined or ambigu-
ous when some inputs are missing, forcing
users to rely on statistical imputation models
or heuristics like zero imputation, undermin-
ing the interpretability of the models. In this
work, we propose fitting concise yet precise
rule models that learn to avoid relying on fea-
tures with missing values and, therefore, limit
their reliance on imputation at test time. We
develop MINTY, a method that learns rules
in the form of disjunctions between variables
that act as replacements for each other when
one or more is missing. This results in a
sparse linear rule model, regularized to have
small dependence on features with missing
values, that allows a trade-off between good-
ness of fit, interpretability, and robustness to
missing values at test time. We demonstrate
the value of MINTY in experiments using syn-
thetic and real-world data sets and find its
predictive performance comparable or favor-
able to baselines, with smaller reliance on fea-
tures with missing values.

1 INTRODUCTION

Linear rule models find extensive use in prediction
tasks such as classification, regression, and risk scor-
ing (Fürnkranz et al., 2012; Wei et al., 2019; Margot
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and Luta, 2021), and are particularly favored in do-
mains where interpretability holds paramount impor-
tance. In the same domains, it is common for some
of the variables used in the learned rules to be unob-
served, missing at the time of prediction.

Established approaches to prediction with incomplete
data at test time, include Bayesian modeling (Webb
et al., 2010), fallback default rules (Twala et al., 2008;
Chen and Guestrin, 2016), weighted estimating equa-
tions (Ibrahim et al., 2005), prediction with missing-
ness indicators (Le Morvan et al., 2020a) and impu-
tation (Rubin, 1976). Although imputation is general
and powerful, it is not always optimal under test-time
missingness (Le Morvan et al., 2020c) and often as-
sumes that data is missing at random (MAR) (Ru-
bin, 1976; Pedersen et al., 2017). If the distribution of
missing values is preserved from training time to test
time, the precise nature of the missingness mechanism
is less important: when minimizing the expected error
under a fixed distribution p, given a training set from
p, the Bayes optimal predictive model is a function of
the missingness mask and the input (Le Morvan et al.,
2021b). However, such models may rely heavily on in-
teractions between the mask and observed features, as
well as imputed missing values.

A limitation of existing methods is that they either
i) are specific to less interpretable model classes or ii)
undermine the interpretability offered by rule-based
models by relying on less interpretable auxiliary mod-
els (for imputation, estimation weighting) (Rubin,
1988) or on parameters associated with missingness
itself (fallback rules, missingness mask) (Jones, 1996;
Chen and Guestrin, 2016; Stempfle et al., 2023).

To address these shortcomings, we aim to learn inter-
pretable rule models that inherently limit the need for
imputation of features with missing values. We call our
solution MINTY, which handles missingness and pro-
vides interpretablityy by learning generalized linear
rule models (GLRM) where literals of single variables
are grouped in disjunctive rules so that the truth value
of a rule can be determined when one of the literals is
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ScoreCoef.Model rules

+4+4MMSE ≤ 26 OR Alzheimer’s disease (AD)

-5.2-5.2TAU	≤ 191 OR PTAU ≤ 17

+0+3Married = TRUE

-1.2Predicted change:

ADMAR.PTAUTAUMMSE

NoN/AN/A17024

Anna’s features

Anna

Predicting 2-year change in cognitive function (ADAS13)

Figure 1: Illustrative example of scoring system pre-
dicting cognitive decline, measured by a change in
the ADAS13 cognitive function score, using the ADNI
data including incomplete data. The blue, underlined
features indicate that these variables are observed for
the specific patient, Anna, and the red shows that the
observations for the variables are missing.

observed and true, no matter if the others are missing.
This idea exploits redundancy in the covariate set in-
herent to many prediction tasks by allowing observed
variables to be used as replacements for missing ones.
We mitigate the reliance on imputation at test time by
using a tunable regularization penalty on rules whose
value can frequently not be determined.

Illustrative Example: Alzheimer’s Progression.
Figure 1 illustrates a disjunctive linear rule model for
predicting cognitive decline. In the model, rules (left)
are combined with coefficients (right) to calculate a
predicted change in cognitive function (measured by
ADAS13). The example shows the model’s prediction
for a patient, Anna, whose observed variables are dis-
played at the bottom. If at least one literal in each
rule is observed and true, the added score is the same
whether other variables in the rule are missing. For
Anna, her TAU protein fragment level is observed to
be in the range (Tau ≤ 191), while a measurement
for PTAU is missing. Despite this, the second rule can
be evaluated and is true, contributing -5.2 to the fi-
nal score. Similarly, the first rule is true, as we know
that for Anna, MMSE = 24, even though she has not re-
ceived a prior Alzheimer’s disease (AD) diagnosis. In
the case of a single-feature rule with a missing value,
(e.g., Married=True), we default to zero-imputation,
and no score is added to the total. This is common
practice in the use of risk scores (Afessa et al., 2005)
but may be possible to avoid by learning disjunctive
rules whose value can be determined by a single ob-
served feature and have to be zero-imputed less often.

Contributions Our contributions can be summa-
rized as follows: 1) We propose MINTY, a generalized
linear rule model, which uses disjunctive rules to ex-
ploit redundancy in the input variables, mitigating
the need for imputation. 2) We optimize MINTY by
adapting the column generation strategy of Wei et al.
(2019), iteratively adding rules to the model based
on a tunable trade-off between high predictive perfor-
mance and small reliance on missing values. 3) We per-
form empirical experiments comparing MINTY to base-
lines that either handle missing values natively or rely
on imputation. The results show that our proposed
method achieves comparable prediction performance
to larger black-box models and models that rely much
more on features with missing values in prediction.

2 RULE MODELS & FEATURES
WITH MISSING VALUES

We consider predicting an outcome Y ∈ R based on
a vector of d input features X = [X1, ..., Xd]

⊤ ∈ Rd

when the value of any feature Xj may be missing at
training time or at test time. Missingness is deter-
mined by a random binary mask M = [M1, ...,Md]

⊤ ∈
{0, 1}d applied to a complete variable set X∗, such
that Xj = X∗

j if Mj = 0, and Xj = NA if Mj = 1.

Our goal is to minimize the expected error in predic-
tion, R(h) := Ep[L(h(X), Y )], over a distribution p,
using a hypothesis h that handles missing values in the
input X. L is a loss function such as the squared error
or logistic loss. To learn, we are given a training set of
examples D = {(xi,mi, yi)}mi=1, assumed to be drawn
i.i.d. from p. Here, xi = [xi1, ...xid]

⊤ is the (partially
missing) feature vector of sample i, and mi, yi defined
analogously. We let X ∈ ({0, 1} ∪ {NA})n×d,M ∈
{0, 1}n×d,Y ∈ Rn×1 denote feature matrices, miss-
ingness masks and outcomes for all observations in D.

We say that a hypothesis h relies on features with miss-
ing values for an observation xi if there is a feature j
such that 1) xij = NA, and 2) computing h(xi) requires
evaluating xij or its imputed value. We use a binary
indicator ρh(xi) ∈ {0, 1} to indicate reliance on xi in h.
For example, a dense linear model used with imputa-
tion (e.g., zero imputation or MICE) relies on features
with missing values whenever its input xi has any miss-
ing value. An XGBoost ensemble h has ρh(xi) = 1 if
xi passes a “default” rule in its traversal through any
of the model’s trees. If the tree contains default rules,
but xi traverses neither of them, ρh(xi) = 0. We de-
note the average reliance ρ̄(h) = EX∼p[ρ(X)].

We propose MINTY, a learning algorithm that mitigates
reliance on features with missing values by making pre-
dictions using disjunctions (or-clauses) of literals, e.g.,
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“(Age > 60) or (Prior stroke)”. If the value of “Age” is
missing, but “Prior stroke” is True, the rule no longer
depends on the value of “Age”. This creates robust-
ness by redundancy. Moreover, MINTY adds regular-
ization to ensure that its rules can be evaluated with
high probability despite missing values. We build our
method on generalized linear rule models.

2.1 Generalized Linear Rule Models

In rule learning, features represent binary logical lit-
erals, where Xij = 1 means that literal j is True for
observation i. For instance, feature j may represent
the literal Age ≥ 70, and a subject i that is 73 years
old would have xij = 1. There are standard ways to
transform continuous and categorical values to literals,
such as discretization by quantiles and dichotomiza-
tion (Rucker et al., 2015).

Wei et al. (2019) defined generalized linear rule models
(GLRM) using three components:

1. Rule definitions zk = [z1k, ..., zdk]
⊤ ∈ {0, 1}d, for

rules k = 1, ...,K, which define logical clauses in
terms of inclusion indicators zjk of literals j ∈ [d].

2. Rule activations ai = [ai1, ..., aiK ]⊤ ∈ {0, 1}K ,
where aik indicates whether rule k is satisfied
(aik = 1) by observation xi.

3. Rule coefficients, β = [β1, ..., βK ]⊤ ∈ RK , where
βk relates rule k to the predicted outcome. Let-
ting rule 1 always be true, β1 is the intercept.

In this work, we use only disjunctive GLRMs, were the
activation of rule k for complete xi is defined as

aik :=

d∨
j=1

xijzjk = max
j∈[d]

xijzjk .

In other words, aik = 1 if for any feature j, the literal
is True (xij = 1) and j is included in rule k (zjk = 1).

A GLRM predicts the outcome yi for a complete input
xi as a generalized linear model of the rule indicators,

ŷi = Φ′(ηi) where ηi = a⊤i β

where Φ is the log-partition function of the conditional
distribution for an exponential family model p(Y = y |
X = x) = h(y) exp(ηy − Φ(η)). For linear regression,
Φ′(η) = η and for logistic regression Φ′(η) = 1/(1 +
exp(−η)) is the logistic function σ(η).

2.2 Mitigating Reliance on Missing Features
with Disjunctive Rules

GLRMs are not designed to handle missing values by
default. In this work, we treat the truth value of rules

as potentially missing as well, depending on the literals
included in the disjunction. Concretely,

aik =

1, ∃j ∈ zk : mij = 0 ∧ xij = 1
0, ∀j ∈ zk : mij = 0 ∧ xij = 0
NA, ∀j ∈ zk : mij = 1 ∨ xij = 0

.

where (j ∈ zk)⇔ (zjk = 1). For example,

(x1 ∨ x2) =


1, x1 = 1 or x2 = 1
0, x1 = 0 and x2 = 0
NA, (x1 = 0 and x2 = NA) or

(x1 = NA and x2 = 0)

.

To predict using a rule k such that aik = NA, we would
still need to impute some of the missing literals.

On the other hand, evaluating the disjunction does not
rely on all of its literals being observed. As long as one
literal is observed and True, we know that the value
of the disjunction is True as well. Hence, the reliance
ρ̄(h) for a disjunctive GLRM h can be lower than for,
e.g., a linear model applied to the same features.

3 MINTY: RULE MODELS THAT
AVOID IMPUTATION OF
MISSING VALUES

We aim to learn a small set of rules S and coeffi-
cients β that minimize the regularized empirical risk,
with a small expected reliance on features with miss-
ing values. Let K denote an index over all possible
disjunctions of d binary features and let S ⊆ K be
the subset of rules used by our model, such that k de-
fines zk and thus aik for all observations i. Then, let
ρik = 1[aik = NA] indicate the reliance of rule k on
missing values in observation xi.

We introduce a parameter γ ≥ 0 to control the average
reliance on missing features ρ̄k for included rules k, and
a general sparsity penalty λk > 0, and aim to solve,

min
β,S

1

n

n∑
i=1

[
(β⊤aiS − yi)

2 +
∑
k∈S

(γρik + λk)|βk|

]
(1)

Following Wei et al. (2019), we use an ℓ1-penalty for
controlling the size of the rule model, with parameter
λk = λ0+λ1∥zk∥1. The latter term counts the number
of literals in disjunction k. We include

∑
i ρik as a

factor in the penalty to discourage models from using
rules that both have a large influence on the prediction
(high |βk|) and frequent missingness (high

∑
i ρik). By

choosing λ0, λ1, γ, we can control the number, size and
missingness reliance of rules used by the model.

If we let S be the set of all possible disjunctions K =
{0, 1}d, our learning problem reduces to a LASSO-like
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problem with active rules determined by the sparsity
pattern in β, but with a number of rules and coef-
ficients that grows exponentially with d. Even for
moderate-size problems, these would be intractable to
enumerate. Instead, we follow the column-generation
strategy by Wei et al. (2019), which searches the space
of disjunctions and builds up S incrementally.

The idea is to first solve problem (1) restricted to a
small set of candidate rules Ŝ = S0, in our case just
the intercept rule. Given a current set of disjunctions
Ŝ and estimated coefficients β̂, a new rule is added by
finding the disjunction that aligns the most with the
residual of the current model, R = AŜ β̂ −Y, where
AŜ = [a1·, . . . , an·]

⊤ is the matrix of rule assignments

for all observations in the training set w.r.t. Ŝ.

This procedure is justified by the optimality condi-
tions of (1) which imply that at an optimal solution,
the partial derivative with respect to both the positive
and negative components of β must be non-negative.
Optimality can therefore be determined by minimizing
± 1

nR
⊤a+R(a) over the corresponding activations of

a new rule a ∈ {0, 1}n (with R(a) corresponding to
regularization terms, specified further below).

To avoid computation with NA values, we zero-impute
X, defining x̄ij = 1[mij = 0]xij , keeping track of miss-
ing values in the mask M . In principle, other imputa-
tion could be used. We choose the next rule as defined
by the minimizer z∗ of the following two problems (±),

minimize
z∈{0,1}d

a,ρ∈{0,1}n

± 1

n

n∑
i=1

(riai + γρi) + λ0 + λ1

d∑
j=1

zj

subject to ai =

K∑
k=1

max(x̄ijzj)

∀i : ρi = (1−max
j

[(1−Mij)zj x̄ij ])︸ ︷︷ ︸
(i)

(max
j

Mijzj)︸ ︷︷ ︸
(ii)

(2)

We let zk∗ , ak∗ , ρk∗ refer to the optimizers of (2), for
the sign with smallest objective value, and δk∗ to the
corresponding objective. The first constraint in (2)
makes sure that rule activations ai correspond to a
disjunction of literals x̄ij as indicated by z. The con-
straint on ρi ensures that reliance on missing factors is
counted only when (i) there is no observed True literal
in the rule, and (ii) at least one literal is missing.

When no rule can be found with a negative solution
to (2), or a maximum number of rules kmax has been
reached, the algorithm terminates. We finish by solv-
ing (1) with respect to β for fixed Ŝ. The algorithm
can be adapted to generalized linear models like lo-
gistic regression, without changing the rule generation
procedure, as shown by Wei et al. (2019). We summa-

Algorithm 1 MINTY learning algorithm

Input: X,M ∈ {0, 1}n×d, Y ∈ Rn

Parameters: λ0, λ1, γ ≥ 0, kmax ≥ 1
Output: S, β
1: Initialize Ŝ = {0} where 0 is the intercept rule
2: Initialize δk∗ = −∞
3: Let X̄ be zero-imputed X, x̄ij = 1[mij = 0]xij

4: Let l = 0
5: while δk∗ < 0, l < kmax do
6: β ← argminβ O(X̄,Y, Ŝ, λ0, λ1, γ) ▷ (1)

7: aik = maxj∈[d] zjkx̄ij for i ∈ [n], k ∈ Ŝ
8: ri =

∑
k∈Ŝ βkaik − yi for i ∈ [n]

9: zk∗ , δk∗ ← ADD(X̄,Y,R, λ0, λ1, γ) ▷ (2)
10: if δk∗ ≥ 0: then
11: break. The current solution is optimal.
12: else
13: Append new rule k∗ to Ŝ,
14: l← l + 1
15: end if
16: end while
17: β̂ ← argminβ O(X̄,Y, Ŝ, λ0, λ1, γ)

18: return Ŝ, β̂

rize our method, referred to as MINTY, in Algorithm 1.

As an alternative, ρ̄ could be defined as the proportion
of missing/undetermined components (rules) in a rule
model, rather than the proportion of observations with
≥ 1 missing rule. Compared to our definition, such a
penalty would be harsher on models for which multiple
rules are missing for the same observation, and more
lenient when only one rule is missing.

3.1 Solving the Rule Generation Problem

The problem in (2) is an integer linear program with
nonlinear constraints. We consider two methods in ex-
periments: Exact solutions using the off-the-shelf op-
timization toolkit Gurobi (Gurobi Optimization, LLC,
2023), and approximate solutions using a heuristic
beam search algorithm, as used by Oberst et al. (2020).

For the beam search algorithm, we initialize the beam
to contain all disjunctions of a single literal. We then
retain the top-Wb of these, in terms of the objective
in (2). Then, we generate the next set of candidates
by adding one literal to all disjunctions, and evalu-
ate these in the same way, retaining the top-Wb and
proceeding in the same way until at most Db literals
have been added. Throughout, we keep track of the
rule with the smallest objective, no matter its size,
and return this once the beam has reached its maxi-
mum depth. In experiments, we let the beam width be
Wb = d (the number of features) and depth Db = 7.
The time complexity of the search is linear in WbDb.
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3.2 MINTY in the Limits of Regularization

In our proposed method, we penalize reliance on miss-
ingness to disjunctive linear rule models, controlling
the emphasis on observed literals within rules, with
the parameter γ ≥ 0. In the low limit, γ = 0, MINTY
is equivalent to a disjunctive linear rule model with
zero-imputation. In stationary environments, where
p(X,M, Y ) doesn’t change between training and test-
ing, for sufficiently large data sets, learning with γ = 0
will result in the smallest error in general since this im-
poses the least constraints on the solution. This comes
at the cost of reduced interpretability by relying on
features with missing values in prediction.

In the limit γ →∞, MINTY imposes a hard constraint
that no rule should be included in the model unless it
can be evaluated for every example in the training set
without relying on imputed values, ∀i, k : ρik = 0.
This could be appropriate in settings where there are
some features that are never missing and would be
preferred over features that are predictive but rarely
measured. However, if any configuration m ∈ {0, 1}d
of missing values is possible, MINTY will return an
empty set of rules in the large-sample limit.

Observation 1. If the all-missing configuration has
positive marginal probability, ∃ϵ > 0 : p(M = 1d) > ϵ,
the set of rules which have at least one literal measured
for every example in the training set vanishes almost
surely with a growing number of samples n. As a re-
sult, there is no non-trivial GLRM h with ρ̄(h) = 0.
An important special case of this is the Missingness-
Completely-At-Random (MCAR) mechanism (Rubin,
1976) with missingness probability q > ϵ1/d. In other
words, requiring perfect variable redundancy through
rules by letting γ →∞ is too strict for many settings.
Instead, we can aim to limit or minimize the reliance
on missing values ρ̄ by selecting a moderate γ.

3.3 Comparison With a Linear Model
Trained on Complete Data

In many applications, interpretable risk scores trained
on complete cases are deployed in settings where fea-
tures are occasionally missing, necessitating the impu-
tation of missing values with a constant, often 0 for
binary variables. One example is the APACHE fam-
ily of clinical risk scores (Afessa et al., 2005; Haniffa
et al., 2018). It is natural to compare the bias of this
approach to the bias of a model with inherently low
reliance on missing values. Below, we do this for the
case where the true outcome is a linear function and
the variable set has a natural redundancy.

Assume that the outcome Y is linear in X ∈ {0, 1}d

and has noise of bounded conditional variance,

Y = β⊤X+ϵ(X), where E[ϵ | X] = 0,M[ϵ | X] ≤ σ2 ,

with β ∈ Rd. Next, assume that X has the following
structure. For each Xi there is a paired “replacement”
variable Xj(i), with j(j(i)) = i, such that for δ ≥ 0,
p(Xi = Xj(i)) ≥ 1− δ, and that whenever Xi is miss-
ing, Xj(i) is observed, Mi = 1 ⇒ Mj(i) = 0. Assume
also that ∀i, k ̸∈ {i, j(i)} : Xi ⊥⊥ Xk.

Proposition 1. Under the conditions above, there is
a GLRM h with d two-variable rules {X̄i ∨ X̄j(i)}di=1,
where X̄i = (1−Mi)Xi, with expected the squared error

R(h) ≤ δ∥β∥22 + δ2
∑

i,k ̸∈{i,j(i)}

|βiβk|+ σ2 .

Additionally, if βi ≥ 0 and E[XiMi] ≥ η for all
i ∈ [d], using the ground truth β (the ideal complete-
case model) with zero-imputed features X̄ results in an
expected squared error bounded from below as

R(β) ≥ η∥β∥22 + σ2 ,

and a greater missingness reliance than the GLRM,
ρ̄(β) ≥ ρ̄(h). Thus, with a = ∥β∥22/

∑
i,k ̸∈{i,j(i)} |βiβk|,

the GLRM is preferred when δ < (
√

a2 + 4η − a)/2.

A proof is given in the Appendix.

By Proposition 1, there are data-generating processes
for which a disjunctive GLRM has a strictly smaller
risk and smaller reliance on features with missing val-
ues than the ground-truth linear rule model used with
zero imputation. For simplicity, the result is writ-
ten for rules involving pairs of variables that are in-
ternally strongly correlated and independent of other
pairs but can be generalized to disjunctions of vari-
ables in cliques of any size with the same property.

4 EMPIRICAL STUDY

We evaluate the proposed MINTY algorithm1 on syn-
thetic and real-world data, aiming to answer three
main questions: i) How well can we learn rules when
covariates are missing at training and test time? ii)
How does the accuracy of MINTY compare to baseline
models; iii) How does regularizing reliance on missing
values affect performance and interpretability?

4.1 Experimental Setup

In our experiments, we solve the rule-generation sub-
problem of MINTY using beam search, as described in

1Code and instructions for reproducing experiments are
available at https://github.com/Healthy-AI/minty.

https://github.com/Healthy-AI/minty
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Section 3.1. In the Appendix, we use a small synthetic
data set to show that the predictive performance dif-
fers only minimally compared to solving the ILP in
(2) exactly using Gurobi (Gurobi Optimization, LLC,
2023). To find optimal coefficients β, given rule defi-
nitions S, we use the LASSO implementation in scikit-
learn (Buitinck et al., 2013), re-weighting covariates to
achieve variable-specific regularization. Missing values
were zero-imputed for MINTY with the original missing-
ness mask informing the missingness reliance penalty.

The objective function regularizes each rule z·k with
strength λk = λ0 + λ1∥z·k∥0, limiting the reliance on
missingness by minimizing the number of rules us-
ing zero-imputed features. The values of λ0 and λ1

range within [10−3, 0.1]. We choose their best val-
ues through a grid search based on their validation
set performance. The values for γ were chosen from
[0, 10−7, 10−3, 0.01, 0.1, 10000]. The number of rules
used by the model is set to 20. We present the result
for several values of γ, to illustrate the tradeoff be-
tween performance and reliance on missing values. To
mitigate the effects of scaling, outcome variables were
normalized during training and re-scaled for evalua-
tion to estimate the RMSE in the original scale of the
outcome variable for each data set, respectively.

We compare MINTY to the baselines: Imputation +
LASSO regression, Imputation + Decision Tree (DT),
Imputation + RULEFIT (Friedman and Popescu, 2008),
and XGBoost (XGB), where missing values are sup-
ported by default (Chen et al., 2019). Last, we com-
pare to NeuMiss networks (NEUMISS) that use a new
type of non-linearity: the multiplication by the miss-
ingness indicator (Le Morvan et al., 2020b). For im-
putation, we use zero (I0) or multiple iterative im-
putation (Imice) from Scikit-Learn (Pedregosa et al.,
2011b; Van Buuren, 2018), that replaces missing values
with multiple imputations using chained regressions.
Iterative imputation was performed over 5 iterations.
Details about implementations, hyperparameters, and
evaluation metrics are given in Appendix A.1.

We report the average RMSE and R2, and their re-
spective standard deviations over 10 random train/test
splits of the data. Additionally, we estimate the re-
liance on features with missing values, ρ̄ of all methods
on the test sets. For LASSO, this counts the fraction of
observations with missing values among the features
with non-zero coefficients. For DT and RULEFIT, we re-
port the fraction of inputs with a feature that is both
missing (and thus imputed) and used in a split to de-
cide that input prediction. For XGB, we do the same,
but count observations for which any of the trees rely
on a missing value. NEUMISS uses all variables for pre-
diction, and so ρ̄ measures the fraction of observation
with at least one missing value. For MINTY, we define

ρ̄ as explained in Section 3.

Real-world Data Sets We used three different re-
gression tasks for evaluation. The first task, ADNI,
is sourced from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database and involves predicting
the outcome of the ADAS13 cognitive test at a 2-year
follow-up based on baseline data. In the second task,
Life, we aim to predict life expectancy from various
factors, including immunization, mortality, economic,
and social factors (Roser et al., 2013). Last, the task
called Housing involves predicting property prices in
Ames, Iowa, using physical attributes and geographi-
cal features (De Cock, 2011). The data sets were dis-
cretized and used with binary data for MINTY. For the
baselines, we use the original continuous values and
one-hot encode the categorical values using the Stan-
dardScaler by Scikit-learn (Pedregosa et al., 2011a).
More details can be found in the Appendix. We split
the data randomly into a test set (20%) and a training
set (80%), withholding a validation portion (20%) of
the training set for selecting hyperparameters.

Missing Values ADNI has incomplete entries na-
tively, indicated in results as “(Natural)” missingness.
We added missing values to Life and Housing accord-
ing to the Missing Completely at Random (MCAR)
mechanism, where the probability that a feature Xj

has a missing value is q, independent of other vari-
ables. In our experiments, we set q to 0.1. The same
mechanism was used both during training and testing.

Synthetic Data In the Appendix, we also apply our
algorithms to synthetic data where n = 5000 sam-
ples of c = 30 features are drawn from independent
Bernoulli variables. Then, for each variable Xi, i ∈ [c]
a “replacement variable” Xc+i, is added which has
the same value as Xi with probability 0.9. The out-
come Y is a linear combination of all features with
added noise. Missingness was added with different
mechanisms—MCAR, Missing-At-Random (MAR), or
Missing-Not-At-Random (MNAR) using the imple-
mentation by Mayer et al. (2019).

4.2 Results

We report the predictive performance of all models
and their reliance on features with missing values in
Tables 1–2, and comment on their interpretability.

Overall, MINTY achieves good held-out predictive per-
formance (high R2, low RMSE), comparable with
other models across all data sets (ADNI , Housing ,
Life), while relying substantially less on features with
missing values in the test set (smaller ρ̄) than models
with similar predictive accuracy. On ADNI , a MINTY



Lena Stempfle, Fredrik D. Johansson

Table 1: Performance results for the real-world data sets ADNI and Housing . For MINTY using ADNI we use
λ0 = 0.001, λ1 = 0.01, and for Housing we choose λ0 = 0.001, λ0 = 0.001 based on a 0.1 missingness proportion
in the data. DT, XGB, RULEFIT, and LASSO are trained on non-discretized data, and all versions ofMINTY and
NEUMISS on discretized data.

ADNI (Natural) HOUSING (MCAR)
Model R2(std) RMSE (std) ρ̄ R2 (std) RMSE (std) ρ̄

ADAS13 score $10k

LASSOImice(A),I0(H)
0.65 (0.02) 5.08 (0.12) 0.51 0.57 (0.06) 5.13 (0.58) 0.83

DTI0(A),Imice(H) 0.58 (0.03) 5.63 (0.26) 0.15 0.66 (0.06) 4.53 (0.58) 0.18
XGB 0.66 (0.02) 5.19 (0.16) 0.55 0.84 (0.05) 3.10 (0.08) 0.99
RULEFITI0 0.64 (0.02) 5.15 (0.21) 0.43 0.68 (0.05) 4.49 (0.62) 0.60
NEUMISS 0.61 (0.04) 5.60 (0.30) 0.55 0.55 (0.04) 5.60 (0.24) 1.0
MINTYγ=0 0.64 (0.02) 5.22 (0.19) 0.40 0.71 (0.04) 4.18 (0.49) 0.76
MINTYγ=0.01(A),γ=0.1(H) 0.63 (0.02) 5.27 (0.23) 0.27 0.72 (0.03) 4.05 (0.44) 0.49
MINTYγ=1e4 0.62 (0.02) 5.27 (0.18) 0.0 0.47 (0.06) 5.64 (0.47) 0.0

Table 2: Performance results for real-world data set
Life with λ0 = 0.001, λ1 = 0.001 for MINTY. The miss-
ingness proportion is 0.1. DT, XGB, RULEFIT, NEUMISS
and LASSO are trained on non-discretized data, and all
MINTY versions used discretized data.

LIFE (MCAR)
Model R2(std) RMSE (std) ρ̄

years

LASSOI0 0.89 (0.01) 3.00 (0.15) 0.86
DTI0 0.95 (0.01) 2.07 (0.19) 0.31
XGB 0.99 (0.01) 1.08 (0.10) 0.88
RULEFITI0 0.76 (0.04) 4.55 (0.35) 0.27
NEUMISS 0.72 (0.31) 4.35 (0.57) 0.88
MINTYγ=0 0.91 (0.01) 2.76 (0.12) 0.77
MINTYγ=0.03 0.87 (0.01) 3.35 (0.13) 0.24
MINTYγ=2.5 0.50 (0.05) 6.62 (0.33) 0.0

model with ρ̄ = 0 outperforms DT with higher per-
formance and less reliance on missing values, despite
DT having the lowest missingness reliance among the
baselines. A MINTY model with ρ̄ = 0.01 achieves bet-
ter R2 than NEUMISS and similar performance as LASSO
and XGB, models for which more than 50% for of the
test samples must use default rules or be imputed, re-
spectively. MINTY’s results confirm that it is possible to
learn to avoid imputation to a large degree while main-
taining a competitive model. We see similar results on
Housing and Life, despite the missingness being un-
structured in these examples (MCAR). On Life, MINTY
suffers from a coarse discretization (4 bins) of contin-
uous values (e.g., Infant deaths); baselines use native
rule generation strategies (e.g., decision tree splitting).

In Appendix Table 5, we compare all models on syn-
thetic data in MCAR, MAR, and MNAR settings and
see that MINTYγ = 0.01 is among the best-performing
models regardless of the missingness mechanism. We
note that XGB (tree ensemble) and NEUMISS (multi-

layer neural network) support prediction with missing
values natively and perform well in all tasks, but can
be difficult to interpret due to their large size and/or
black-box nature. RULEFIT leverages random forests,
breaking down each tree into decision rules for extra
features in a Lasso model. Despite strong performance
across data sets, its reliance on imputed values and low
interpretability due to over 20 rules limit its utility.

In Appendix Figure 3, we report the R2 values on
ADNI , together with estimator-specific measures of
complexity. These results, the results in Tables 1–
2, and the model description in Table 3 confirm that
MINTY can be used to learn (more) interpretable mod-
els while handling missing values at test time. Notably,
across all data sets, DT also relies less on missing values
than other baselines, simply because not every variable
will be used to compute the prediction for every test
instance. Building trees with explicit regularization
for ρ is worth further investigation.

The Impact of Regularizing ρ̄ For all data sets,
there are values of γ > 0 such that MINTYγ>0 and
MINTYγ=0 differ minimally in R2 and RMSE values
but where MINTYγ>0 shows substantially lower reliance
on imputation. For example, on Housing , MINTYγ=0.1

achieves almost the same R2 as MINTYγ=0 but with
reliance ρ̄ = 0.49 compared to ρ̄ = 0.76 for the un-
regularized model. As remarked previously, achieving
ρ̄ = 0 with non-trivial predictive performance is not al-
ways possible: on Life, the upper extreme of γ = 1000
leads to a notably less effective model, since there were
no rules which were always determined by observed
values other than the intercept.

In Figure 2, we show the results of MINTY for 20 values
of γ from a log-scale range over [10−6, 1000]. For γ =
1000, the model disallows any use of missing values in
the rules (ρ̄ = 0), which leads to worse predictive per-
formance (bottom left in Figure). In the top right cor-
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Figure 2: Predictive performance (R2) and reliance
on features with missing values ρ̄ on ADNI for MINTY
with γ chosen from a log scale over [10−6, 103].

ner, γ = 0 results in the best predictive performance,
but the highest reliance on missing values. Regular-
izing the reliance ρ̄ moderately (γ = 0.01) leads to a
good balance of predictive accuracy (R2 = 0.63) and
reliance on imputation (ρ̄ = 0.27).

4.3 Interpreting Learned Rules on ADNI

In Table 3, we visualize the models learned by MINTY

on ADNI , in the style of risk scores used in medicine
or criminal justice, see, e.g., Ustun and Rudin (2019).
On the left are rule definitions and on the right, their
coefficients—the score added if the rule is true. The
scores for each active rule are summed together with
the intercept to form a prediction. The top table rep-
resents the learned set of rules using MINTYγ=0 and the
bottom one for MINTYγ=0.01.

In the ADNI task, the goal is to predict the cogni-
tive decline measured by a change in the cognitive
test score ADAS13 (high score means low cognitive
ability, a positive change means deteriorating ability)
from baseline to a 2-year follow-up. The learned coeffi-
cients match expectations as, for example, diagnoses of
Alzheimer’s disease (AD) or mild cognitive impairment
(LMCI) are associated with higher cognitive decline
(positive coefficients). Similarly, MMSE ≥ 29 (normal
cognitive ability) is associated with a smaller decline
in ADAS13 (negative coefficient).

The two models with γ = 0 and γ = 0.01 learn sim-
ilar rules with similar coefficients but with different
reliance on features with missing values (ρ̄ = 0.40 vs
ρ̄ = 0.27). The rules, TAU ≤ 191.1 OR Hippocampus

≥ 7721.0 and FDG ≤ 1.163 are not included in the
second model (γ = 0.01), since they are missing for
0.33% and 0.27% of all individuals in the data set. By
using a higher γ we achieve a more robust solution
with less dependence on imputed values.

Table 3: MINTY models learned on ADNI using γ = 0
(top) and γ = 0.01 (bottom). The R2 for the two
models were 0.64 and 0.63 respectively, the latter with
smaller reliance on features with missing values (ρ̄ =
0.28 vs ρ̄ = 0.40). Two rules in the top model are not
in the bottom model due to more frequent missingness;
the bottom model adds two rules with less missingness.

Rules by MINTY with γ = 0 Coeff.

AD diagnosis OR LMCI diagnosis +0.35
MMSE ≤ 26.0 OR LMCI diagnosis +0.23
LDELTOTAL ≤ 3.0 +0.63
AD diagnosis +0.65
Hippocampus ≤ 6071.0 OR Sex = Male +0.18
MMSE ≥ 29.0 −0.16
Entorhinal ≤ 3022.0 +0.18
LDELTOTAL score 3− 8 +0.27
TAU ≤ 191.1 OR Hippocampus ≥ 7721.0 −0.19
FDG ≤ 1.163 +0.17

Intercept -0.57

Rules by MINTY with γ = 0.01 Coeff.

AD diagnosis OR LMCI diagnosis +0.36
MMSE ≤ 26.0 OR LMCI diagnosis +0.22
LDELTOTAL ≤ 3.0 +0.67
AD diagnosis +0.68
Hippocampus ≤ 6071.0 OR Sex = Male +0.19
MMSE ≥ 29 −0.17
Entorhinal ≤ 3022.0 +0.17
LDELTOTAL score ∈ [3, 8] +0.28
Hippocampus ≥ 7721.0 -0.16
APOE4 = 1 +0.08

Intercept -0.61

For MINTYγ=0.1, which achieves ρ̄ = 0, shared in Ta-
ble 6 in the Appendix, we see that the learned rules
contain mostly features that are always measured such
as demographics and cognitive test scores, following
the constraint that rules should not be included unless
it can be evaluated for every example. We also show
an example in Table 7 in the Appendix, where the true
rules produced by synthetic data are recovered.

5 RELATED WORK

Predicting with missing values The rich litera-
ture on learning from data with missing values, see
e.g., Little and Rubin (2019); Mayer et al. (2019),
studies both a) settings in which complete inputs are
expected at test time but have missing values dur-
ing training, and b) predictive settings where missing
values are expected also during testing (Josse et al.,
2019). Studies of the first category have produced
impressive results that give inference guarantees un-
der different missingness mechanisms, such as MCAR,
MAR, MNAR (Rubin, 1976) and have often focused
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on imputing missing values with model-based tech-
niques (Van Buuren, 2018). Our work falls firmly
in the second category, born out of supervised learn-
ing: rather than assuming that a particular mechanism
generated missingness, we assume that the mechanism
is preserved at test time (Josse et al., 2019).

Two common strategies in our setting are to i) impute-
then-regress—to impute missing values and proceed as
if they were observed, or ii) build models that explic-
itly depend on the missingness mask M , indicators for
missing values (Little and Rubin, 2019). The former
approach can introduce avoidable bias even with pow-
erful imputation methods in the setting where values
are missing in the same distribution during testing as
during training (Le Morvan et al., 2021a). Josse et al.
(2019) showed that pairing constant imputations, for
example with 0, with a sufficiently expressive model
leads to consistent learning. A drawback of this is
that the optimal imputation or regression models are
often complex and challenging to interpret.

The second strategy has resulted in diverse methods,
many of which incorporate the missingness mask in
deep learning (Bengio and Gingras, 1995; Che et al.,
2018; Le Morvan et al., 2020c; Nazabal et al., 2020).
Recently, NeuMiss networks (Le Morvan et al., 2020b)
introduced a deep neural network architecture that ap-
plies a non-linearity based on the missingness mask to
learn optimal linear predictive models. Another ap-
proach is the so-called Missing Incorporated in At-
tribute (MIA) (Twala et al., 2008) which uses miss-
ingness itself as a splitting criterion in tree learning,
as used by e.g., XGBoost (Chen and Guestrin, 2016).
A drawback of these methods is that they are difficult
to interpret due to their complexity. In concurrent
work, Chen et al. (2023) addressed missing values with
explainable machine learning but focused on a differ-
ent model class from ours, using explainable boosting
machines (EBMs) to gain insights without relying on
imputation or specific missingness mechanisms.

Rule models and missing values Rule-based
models, such as decision trees, are relatively easy
to understand because they mimic human decision-
making processes (Molnar, 2022). Examples of rule-
based methods aimed at interpretability include Rule-
Fit, which utilizes rule ensembles by a linear model
of tree-based decision rules (Friedman and Popescu,
2008) (more detail in the Appendix A.1), and Node
Harvest (Meinshausen, 2010) that merges the bene-
fits of individual trees and tree ensembles, producing
sparse, interpretable results, particularly in low signal-
to-noise situations. Most rule-based models do not na-
tively handle missing values at test time, but there are
notable exceptions, such as XGBoost, described ear-

lier. Node Harvest handles missing values at test time
by letting observations be “members” of a node only
if all of the characterizing features of the node are ob-
served. This strategy is reminiscent of MINTY, in which
rule activations are affected only by observed features.

6 DISCUSSION

We have proposed MINTY, a generalized linear rule
model that mitigates reliance on missing values by a)
using disjunctive rules whose values can be computed
as long as one of its literals is observed and true, and
b) regularizing the inclusion of rules whose values can
frequently not be determined. We demonstrated in ex-
periments on real-world data that MINTY often has sim-
ilar accuracy to black-box estimators and outperforms
competitive baselines while maintaining interpretabil-
ity and minimizing the reliance on missing values.

MINTY’s design takes inspiration from the widely-used
structure of risk scores, with rules defined by disjunc-
tions of literals. If a disjunction includes literals that
are often missing, and the value of the rule cannot be
determined, its coefficient may be smaller than that
of a rarely missing rule. Thus, coefficients may re-
flect patterns of missingness more than the association
of the features with the outcome itself. We acknowl-
edge this challenge of interpreting MINTY’s coefficients
as causal effects, however, this issue is not unique to
MINTY. Similar challenges arise in all (generalized) lin-
ear models when faced with model misspecification or
the presence of unobserved variables, whether due to
selection biases or data generation processes. Specifi-
cally, if there is a correlation between an observed and
an unobserved variable, it may affect the observed vari-
able’s coefficient, causing it to increase or decrease.

Limitations in our work include the heuristic approxi-
mation algorithm used to solve the column generation
problem in MINTY—an optimal solution could yield dif-
ferent rules and coefficients. Although our code is
equipped to utilize an exact solver, this option was not
used in real-world experiments due to time and com-
putational resource constraintsFurthermore, we eval-
uated methods on Housing and Life only using syn-
thetic MCAR missingness; only ADNI data set holds
natural missingness. Future work on prediction with
test-time missingness would do well to establish chal-
lenging benchmarks with natively missing values. Fi-
nally, although the examples in our paper were all from
healthcare, MINTY has potential uses in various fields,
such as finance for fraud detection or e-commerce for
recommendations. While the linear parameterization
may be limiting, future work could explore applying
the same principle of mitigating reliance on missing
values in other model classes, such as decision trees.
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wan Scornet, and Gaël Varoquaux. Neumiss net-
works: differentiable programming for supervised
learning with missing values. Advances in Neural In-
formation Processing Systems, 33:5980–5990, 2020a.

Marine Le Morvan, Julie Josse, Thomas Moreau, Er-
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Checklist

Please do not modify the questions. Note that the
Checklist section does not count towards the page
limit. Not including the checklist in the first submis-
sion won’t result in desk rejection, although in such
case we will ask you to upload it during the author
response period and include it in camera ready (if ac-
cepted).

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes, the setting is described in Section 2 and
the algorithm in Section 3.]

(b) An analysis of the properties and complex-
ity (time, space, sample size) of any algo-
rithm. [No, we have not performed a formal
time/space complexity analysis as this is not
relevant to our contributions. We comment
very briefly on the complexity of our beam
search column generation in Section 3]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes, we have included a
reference to a repository]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes/No/Not Applica-
ble]

(b) Complete proofs of all theoretical results.
[Yes. A proof of proposition 1 is included
in the Appendix.]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Code to run the algorithm is included
in the supplement. The data is either public
(and can be found in links provided) or not
permitted to be shared (ADNI).]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes,
splits are determined by the random seeds in
the code. Their sizes are described. Hyper-
parameters are described as well.]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastruc-
ture used. (e.g., type of GPUs, internal clus-
ter, or cloud provider). [Yes. We used up
to 50 non-GPU compute nodes with 2x In-
tel Xeon Gold 6130 CPUs and used around
25000 CPU hours. ]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Yes]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to par-
ticipants and screenshots. [Not Applicable.
The ADNI consortium collected all the hu-
man subjects data and informed them in this
process.]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Applica-
ble. No additional IRB approval was needed
beyond the approval for the original ADNI
data collection.]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]
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Appendix

A Additional experimental details

A.1 Baseline models

The baselines are trained by the following parameters. The best values for these hyperparameters are chosen
based on the validation test set.

LASSO: The values of alpha indicating a ℓ1 regularization term on weights range within [0.01, 0.4], where increas-
ing this value will make model more conservative. We allow to fit an intercept and set the precompute parameter
to TRUE to get the precomputed Gram matrix to speed up calculations (Buitinck et al., 2013). LASSO is trained
with zero and MICE imputation and chosen based on the validation performance.

XGB: In XGB we range the learning rate (η) between [0.001, 0.01, 0.1, 0.2, 0.3, 0.5] where the shrinking step size
is used in the update to prevent overfitting. After each boosting step, we can get the weights of new features
directly, and η shrinks the feature weights to make the boosting process more conservative. The maximum depth
of the trees is from [4, 6, 10] while increasing this value will make the model more complex and more likely to
overfit (Chen and Guestrin, 2016). The hyperparameters λ represent the ℓ2 regularization term on weights and
α indicates the ℓ1 regularization term. We choose λ from [0.01, 0.1, 0.5, 1] and α values between [0, 0.1, 0.2, 0.3].
Increasing this value will make a model more conservative. XGB does not rely on imputation and chooses a default
direction for missing values learned during training.

DT: For DT we set the criterion to measure the quality of a split using the ’squared error’ and used ’best’ as the
strategy to choose the split at each node. The minimum number of samples per leaf can range between [10, 20,
50]. A node will be split if this split induces a decrease of the impurity greater than or equal to 0.1. Complexity
parameter ’ccp alpha’ is used for Minimal Cost-Complexity Pruning where the subtree with the largest cost
complexity that is smaller than 0.005 will be chosen (Buitinck et al., 2013). We use zero imputation for all DTs.

NEUMISS: For NEUMISS models we define the dimension of inputs and outputs of the NeuMiss block (n-features),
choose the number of layers (Neumann iterations) in the NeuMiss block (depth) between [2, 3, 4, 5, 6, 7, 8, 10] and
range the number of hidden layers in the MLP (mlp depth) between [3,5,6,7,9,10] and set the width of the MLP
(mlp width) to the number of covariates for each data set (Le Morvan et al., 2020a).

RULEFIT The RULEFIT algorithm, proposed by (Friedman and Popescu, 2008), blends tree-based decisions and
linear modeling to predict outcomes from input data. It starts by generating a tree ensemble through gradient
boosting and then converts the decision paths into binary rules reflecting input feature influences. These rules,
along with input variables, are included in a Lasso linear model, which evaluates rule impacts on the target
variable and applies L1-regularization to simplify the model by reducing many coefficients to zero, enhancing
interpretability. Used hyperparameters were the maximum number of rules between [7, 15, 20, 30, 100] indicating
the total number of terms included in the final model (both linear and rules) and the tree size varying between
[5, 10, 15] considering interpretablity objectives. We also allowed for lin standardise=True, indicating the linear
terms will be standardized by multiplying the winsorized variable by 0.4/standard deviation and exp rand tree
size=True we set that each boosted tree will have a different maximum number of terminal nodes based on an
exponential distribution of tree size.

B Real-world data sets
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ADNI The data is obtained from the publicly available Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database. ADNI collects clinical data, neuroimaging, and genetic data (Weiner et al., 2010). The regression
task aims to predict the outcome of the ADAS13 (Alzheimer’s Disease Assessment Scale) (Mofrad et al., 2021)
cognitive test at a 2-year follow-up based on available data at baseline.

Life The data set related to life expectancy, has been collected from the WHO data repository web-
site(Organization et al., 2021), and its corresponding economic data was collected from the United Nations
website. The data can be publicly accessed trough (Roser et al., 2013). In a regression task, we aim to predict
the life expectancy in years from 193 countries considering data from the years 2000-2025. The final dataset
consists of 20 columns and 2864 samples where all predicting variables were then divided into several broad
categories: immunization factors, mortality factors, economic factors, and social factors.

Housing The Ames housing data set was obtained from (http://www.kaggle.com) and describes the selling
price of individual properties, various features, and details of each home in Ames, Iowa, USA from 2006 to
2010 (De Cock, 2011). We selected 51 variables on the quality and quantity of physical attributes of a property
such as measurements of area dimensions for each observation, including the sizes of lots, rooms, porches, and
garages or some geographical categorical features related to profiling properties and the neighborhood. In a
regression task, we used 1460 observations.

C Additional results

Table 4: Performance results for Synthetic data of 500 samples and 15 covariates over 10 seeds using Gurobi or
beam-search as a solver for the optimization. λ0 = 0.01 and λ1 = 0.01 were chosen.

Synthetic (MNAR), ILP Synthetic (MNAR), beam search
Model R2 MSE ρ̄ R2 MSE ρ̄

MINTYγ=0 0.72 (0.20) 1.32 (0.31) 0.36 0.73 (0.2) 1.30 (0.32) 0.36
MINTYγ=0.01 0.72 (0.21) 1.32 (0.32) 0.34 0.73 (0.2) 1.29 (0.39) 0.26
MINTYγ=10000 -0.00 (0.20) 4.71 (0.31) 0.03 -0.01 (0.2) 4.74 (0.63) 0.00

We show in Table 4 the comparison between the optimal solution found by the Gurobi (Gurobi Optimization,
LLC, 2023) solver (left in table), and the approximate solutions using a heuristic beam search algorithm. We
see that when using beam-search, we achieve almost the same results as with Gurobi.

Complexity vs. predictiveness Results are shown in Figure 3, comparing the R2s with estimator-specific
complexity measurements. We observe that MINTYγ=0.1 balances the trade-off between good predictive perfor-
mance with a small number of non-zero coefficients which in turn ensures lower model complexity (15 coefficients).
One reason why MINTYγ=0.10 performs better than MINTYγ=0 (essentially zero-imputation) is that it can choose
from a bigger set of rules. However, this also increases the reliance on imputed values and some level of bias
in the model. NEUMISS which shows the lowest complexity, however, depends on imputation, and cannot be
interpreted due to its black-box nature. Similary for DT, which performs the best on the ADNI data but perhaps
lacks some interpretability with almost 40 numbers of leaves. In a DT, neighboring leaves are similar to each
other as they share the path in the tree. As the number of leaves increases, variance in the performance increases
and perhaps compromises interpretability. XGB achieves consistent performance across estimators, but could be
difficult to interpret with a larger number of estimators (and an even larger number of parameters). While LASSO
is the simplest model, its performance is the lowest.

Customized Rules We use simulated data Xsim by sampling n× d independent binary input features. How-
ever, we add some conditional dependence between columns 0 and 4 to illustrate the process of generating
replacement variables focusing on predictive performance and interpretability. Each element of Xsim is ran-
domly set to 0 or 1 based on whether a random value drawn from a standard normal distribution is greater than
0. The outcome Y is based on the values in columns 0 and 4 of Xsim, adding a constant term of 1 and some
random noise drawn from a standard normal distribution.

http://www.kaggle.com
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Table 5: Performance results for synthetic data with 10 iterations and 7000 samples and 15 columns. The
missingness proposition of 0.1 together with 0.1 for replacement disagreement probability, as described in 7 for
three different missingness mechanisms.

Synthetic data
MAR, λ0 = 0.001, λ1 = 0.01 MNAR, λ0 = 0.01, λ1 = 0.01 MCAR, λ0 = 0.01, λ1 = 0.01

Model R2 MSE ρ̄ R2 MSE ρ̄ R2 MSE ρ̄

LASSOI0 0.55 (0.04) 3.81 (0.23) 0.65 0.51 (0.17) 4.13 (0.23) 0.70 0.47 (0.04) 4.64 (0.21) 0.82
DTI0 0.43 (0.05) 4.94 (0.23) 0.23 0.41 (0.58) 5.18 (0.17) 0.29 0.36 (0.05) 5.60 (0.22) 0.44
XGB 0.80 (0.03) 1.64 (0.10) 0.92 0.79 (0.35) 1.76 (0.18) 0.96 0.76 (0.02) 2.04 (0.12) 0.99
RULEFIT 0.60 (0.03) 1.97 (0.06) 0.44 0.53 (0.03) 2.13 (0.07) 0.58 0.61 (0.03) 1.94 (0.08) 0.52
NEUMISS 0.81 (0.03) 1.52 (0.12) 0.92 0.75 (0.46) 1.97 (0.11) 0.96 0.75 (0.03) 2.07 (0.23) 0.99
MINTYγ=0 0.69 (0.04) 2.69 (0.18) 0.51 0.67 (0.41) 2.69 (0.24) 0.64 0.66 (0.03) 2.94 (0.24) 0.81
MINTYγ=0.01 0.69 (0.03) 2.69 (0.21) 0.49 0.66 (0.35) 2.89 (0.25) 0.64 0.66 (0.04) 2.99 (0.24) 0.80
MINTYγ=10000 0.25 (0.05) 6.60 (0.27) 0.00 -0.00 (-0.1) 8.81 (0.61) 0.00 -0.00 (0.06) 8.98 (0.26) 0.00

Table 6: Customized rule sets for predictions using ADNI data using γ = 0 (top) and γ = 0.01 (bottom). The
R2 for the two models were .64 and .63 respectively, but the latter had significantly smaller reliance on features
with missing values (ρ̄ = 0.28 vs ρ̄ = 0.40). The red rules in the top model are not present in the bottom and
have larger missingness in the data. The blue rules in the bottom model are not present in the top and have less
missingness.

Learned Rules by MINTYγ=0.1 Coeff.

LDELTOTAL ∈ [8− 12] OR LDELTOTAL ≥ 12 OR Cognitive normal diagnosis -0.81
LDELTOTAL ≤ 3.0 OR LDELTOTAL ∈ [8− 12] OR Alzheimer’s diagnosis +0.42
LDELTOTAL ≥ 12 OR MMSE ≤ 26 +0.13
AGE ≥ 78.5 OR MMSE ∈ [26− 28] OR Alzheimer’s diagnosis +0.35
MMSE ≤ 26 OR SEX = Male +0.17
AGE ∈ [73.5− 78.5] OR APOE4= 2.0 OR Alzheimer’s diagnosis +0.25
68.9 AGE ∈ [68.9− 73.5] OR MMSE ∈ [26− 28] OR Alzheimer’s diagnosis +0.22
MMSE ∈ [26− 28] OR MMSE ≥ 29.0 OR Race=Black -0.22
LDELTOTAL ≤ 3.0 OR APOE4 = 1.0 +0.14
MMSE ∈ [26− 28] OR MMSE ∈ [28− 29] OR Cognitive normal diagnosis OR EMCI diagnosis -0.15

Intercept -0.09

In Table 7, we compare a set of learned rules (right Table) to the ground truth rules (left Table) from generated
data. We interpret the results by saying that the model perfectly produces the correct rules, e.g. variable 1 and
variable 4. Moreover, the coefficients and intercept are also identical if rounded.
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Figure 3: Performance against complexity measurement on ADNI data. As a criterion for complexity, we use for
MINTY models and LASSO the number of non-zero coefficients achieved by regularisation. NEUMISS does not aim
at a sparse solution and therefore we give the complexity by the number of layers in the MLP network. Note,
that there might be more parameters to optimize for. The depth of the trees defines the complexity for XGB, and
for DT we describe the number of leaves.

Table 7: Customized rule sets for predictions based on the ground true rule set (Top table). Learned rules set
with corresponding coefficients in the bottom table are based on MINTY. The results are based on a generated
data set with n = 7000 samples and a pmiss = 0.1

True Rules Coeff.

Variable 1 OR Variable 4 2

Intercept +1

Learned Rules Coeff.

Variable 1 OR Variable 4 1.63
Intercept +1.14
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D Proof of Proposition 1

Proposition 1. Assume that an outcome Y is linear in X with noise of bounded conditional variance,

Y = β⊤X + ϵ(X), where E[ϵ | X] = 0,M[ϵ | X] ≤ σ2 ,

with β ∈ Rd and X ∈ {0, 1}d a multivariate binary variable with the following structure. For each Xi there is
a paired “replacement” variable Xj(i), with j(j(i)) = i, such that for δ ≥ 0, p(Xi = Xj(i)) ≥ 1 − δ, and that
whenever Xi is missing, Xj(i) is observed, Mi = 1 ⇒ Mj(i) = 0. Assume also that ∀i, k ̸∈ {i, j(i)} : Xi ⊥⊥ Xk.

Then, there is a GLRM h with two-variable rules {X̄i ∨ X̄j(i)}di=1, where X̄i = (1−Mi)Xi, with risk

R(h) ≤ δ∥β∥22 + δ2
∑

i,k ̸∈{i,j(i)}

|βiβk|+ σ2 .

under the squared error. Additionally, if βi ≥ 0 and E[XiMi] ≥ η for all i ∈ [d], using the ground truth β with
zero-imputed features X̄ yields a risk bounded from below as

R(β) ≥ η∥β∥22 + σ2 ,

and a greater missingness reliance than the GLRM, ρ̄(β) ≥ ρ̄(h).

Proof. Let µ(X) = E[Y | X]. The risk of any hypothesis h(X) can be decomposed as

R(h) = E[L(h(X), Y )] = E[(h(X)− Y )2] = E[(h(X)− µ(X))2] + E[ϵ2]︸ ︷︷ ︸
≤σ2

.

Now, consider a GRLM h where each variable pair i, j(i) is represented by a rule (X̄i ∨ X̄j(i)), used in place of

Xi and Xj in a linear model, and a coefficient β̃i = βi + βj(i). Then, for each i, define the bias variable

∆i = (X̄i ∨ X̄j(i))−Xi =

{
1, if X̄j(i) = 1 ∧Xi = 0
0, otherwise

.

In other words, bias is introduced, ∆i = 1, only if the zero-imputed replacement X̄j(i) is 1 but Xi is 0. X̄j(i) is
only equal to 1 if j(i) is observed. Thus, E[∆i] = p(Xj(i) = 1, Xi = 0) ≤ δ, by assumption. As a result,

E[(h(X)− µ(X))2] = E

( d∑
i=1

(βi(X̄i ∨ X̄j(i))− βiXi)

)2


= E

 d∑
i,j=1

βiβj∆i∆j


=

d∑
i,j=1

E[βiβj∆i∆j ]

=

d∑
i=1

E[β2
i ∆

2
i ] + E[βiβj(i) ∆i∆j(i)︸ ︷︷ ︸

=0

] +
∑

k ̸∈{i,j(i)}

E[βiβk∆i∆k]


=

d∑
i=1

E[β2
i ∆i] +

∑
k ̸∈{i,j(i)}

E[βi∆i]E[βk∆k]


≤

d∑
i=1

β2
i E[∆i] +

∑
k ̸∈{i,j(i)}

βiβkE[∆i]E[∆k]

 By independence, Xi ⊥⊥ Xk

≤ δ∥β∥2 + δ2
∑

k ̸∈{i,j(i)}

|βiβk| .
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We can generalize the result by placing a bound on the cross-moment of the replacement bias E[∆i∆k], rather
than assuming that Xi ⊥⊥ Xk.

There is also a lower bound for the ground-truth model applied to zero-imputed data with missingness. Its bias
is

B = E[(β⊤X − β⊤X̄)2]) = E[(β⊤(M ⊙X))2]

If all coefficiencts are positive, β ∈ Rd
+, and hence all terms in the bias,

B ≥
d∑

i=1

E[(βiMiXi)
2] =

d∑
i=1

β2
i E[MiXi]

By the assumption that E[MiXi] ≥ η for some η > 0, it follows that

B ≥ η∥β∥22 .

The reliance on features with missing values ρ̄(h) of the GLRM h is determined by events where a replacement
variable j(i) has the value 0 when the variable i is unobserved, ∃i : 1[Mi = 1, Xj(i) = 0)]. If this is true for
any i, ρ = 1. For the ground-truth model, it is sufficient that a variable is missing, ∃i : 1[Mi = 1]. Hence, the
expected reliance on features with missing values is greater for β⊤X̄ than for h.

In conclusion, the GLRM is preferred whenever

δ∥β∥2 + δ2
∑

i,k ̸∈{i,j(i)}

|βiβk| < η∥β∥2 .

Letting a = ∥β∥2/(
∑

i,k ̸∈{i,j(i)} |βiβk|) and solving for δ, we get

δ < (
√

a2 + 4η − a)/2 .
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