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Abstract

Even if a model is not globally sparse, it is possi-
ble for decisions made from that model to be accu-
rately and faithfully described by a small number
of features. For instance, an application for a large
loan might be denied to someone because they
have no credit history, which overwhelms any evi-
dence towards their creditworthiness. In this work,
we introduce the Sparse Explanation Value (SEV),
a new way of measuring sparsity in machine learn-
ing models. In the loan denial example above, the
SEV is 1 because only one factor is needed to
explain why the loan was denied. SEV is a mea-
sure of decision sparsity rather than overall model
sparsity, and we are able to show that many ma-
chine learning models – even if they are not sparse
– actually have low decision sparsity, as measured
by SEV. SEV is defined using movements over
a hypercube, allowing SEV to be defined consis-
tently over various model classes, with movement
restrictions reflecting real-world constraints. We
propose algorithms that reduce SEV without sacri-
ficing accuracy, providing sparse and completely
faithful explanations, even without globally sparse
models.

1 Introduction

As machine learning is increasingly leveraged in business
and societal contexts to make important decisions, there is
an increasing need for insight into why these decisions were
made. One classical important measure of interpretability is
sparsity; famously, humans can handle only 7± 2 cognitive
entities at once (Miller, 1956). Traditionally, sparsity is a
property of the entire model, which we call global sparsity,
for instance, the total number of terms in linear models,
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the total number of parameters in neural networks, or the
number of leaves in decision trees (Murdoch et al., 2019).
In this work, we argue that this notion of sparsity, while
undeniably useful, may be overly restrictive. This is because
we do not need the model to be globally sparse in order to
generate a sparse explanation for use in decision-making.
A far more relevant desideratum for users is that the ex-
planation for each individual prediction is sparse. By this,
we mean that the local explanation for a specific prediction
depends only on a small number of features, which may
differ across units. Since individuals care only about deci-
sions made about themselves, we should consider aiming
for sparse explanations – and not necessarily sparse mod-
els. That is, having an explanation for each prediction that
does not necessarily contain all factors used by the model.
Having sparse explanations, where we might faithfully ex-
plain a given prediction using only 1-3 features, allows for
increased transparency in model-assisted decision-making
processes, even if the model is not globally sparse.

To this end, we introduce a new metric for measuring the
decision sparsity of classification models: the Sparse Expla-
nation Value (SEV). The SEV is defined by moving features
from their values to the population commons (we call this
our reference) or vice versa; the number of features that
must be aligned (i.e., equate) to (or from) the reference in
order to change the sign of the prediction is the SEV of
the observation. SEV explains how many features change
for predictions to switch from one class to another. SEV
is easily explained and understood, and as we will see, the
decision sparsity from SEV can be much sparser for each in-
stance than the number of terms in a globally sparse model.

For example, consider a scenario where a loan applicant is
denied a large loan due to their lack of credit history. This
denial might occur even though the applicant has several
positive factors, such as having a bank account, being em-
ployed, and not having a criminal record. In this case, the
SEV is 1, which means that simply changing from having
no credit history to having a credit history can flip the pre-
diction, despite the other factors, and regardless of the total
number of features in the model. If most of the feature val-
ues are 0 for a given individual (perhaps most people do not
have complicated financial histories), or if most predictions
depend only on a small set of factors (where important fac-
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tors can differ across predictions), the global sparsity of the
model is essentially irrelevant. Hence, SEV is an alternative
way of measuring sparsity for these cases.

This work introduces the SEV and discusses its properties.
SEV (as well as global sparsity) are most relevant for tabular
datasets where each feature is meaningful. We show that de-
cision sparsity, as measured by SEV, is naturally low in most
common types of machine learning models already, without
modification. This means that despite the complexity of
these models, their decisions are often based only on a
few factors. While SEV is useful as a post-hoc explanation
method, it begs the question of whether models with better
prediction-level sparsity can be created. In other words, if
we care about sparse explanations, we should target them
directly instead of obtaining globally sparse models and
hoping they give the sparsest explanations. Our second
contribution is to create models that are optimized to
yield sparse (i.e., low-SEV) explanations. We do this by in-
troducing SEV loss terms that can be used with a variety of
models (linear, boosted trees, multi-layer perceptrons, etc.).
Using real-world datasets, we show that SEV optimization
is effective in improving decision sparsity.

2 Related Works

The concept of SEV revolves around finding models that
are simple, in that the explanations for their predictions are
sparse, while recognizing that different predictions can be
simple in different ways (i.e., involving different features).
In this way, it relates to (i) globally sparse models, (ii) lo-
cal classification methods, which predict the outcomes of
different units using local models, and (iii) black box ex-
planation methods, which seek to explain predictions of
complex models. We further comment on these below.

Global Model Sparsity. Loosely, globally sparse models
(e.g., Rudin et al., 2022; Filzmoser et al., 2012; Tibshirani,
1996; Bach et al., 2012; Zhang et al., 2015) do not have many
“components,” such as non-zero coefficients for additive
models or leaves of a decision tree. Our focus in this paper
is not overall model complexity, but rather the complexity
of the individual predictions. These two notions of sparsity
— global and local — are undoubtedly related. Even if
every variable in a sparse model is used in every prediction,
each explanation is necessarily sparse. However, non-sparse
models can yield lower SEVs, as shown in Section 5.1.

Local Regression and Classification Methods. Such meth-
ods (e.g., Cleveland and Grosse, 1991; Bevilacqua and
Marini, 2014; Dulac-Arnold et al., 2011) fit separate models
for each data point, giving more weight to nearby points,
and then possibly combining these models for final predic-
tions. It is problematic to use numerous models instead of
a single global model for applications like loan decisions
since we do not want each person to be assigned their own
credit scoring model; i.e., it is problematic that these models

are not globally consistent.

Instance-wise Explainability and Interpretability

There has been a large push to develop methods to ex-
plain the predictions of black boxes (e.g., Guidotti et al.,
2018; Ribeiro et al., 2016, 2018; Lundberg and Lee, 2017;
Baehrens et al., 2010). Those methods evaluate the contri-
bution of features to the final outcome of the model. Some
works are limited to particular domains and data types, such
as images (e.g., Apicella et al., 2019, 2020; Boreiko et al.,
2022), or text (e.g., Lei et al., 2016; Li et al., 2016; Treviso
and Martins, 2020; Bastings et al., 2019; Yu et al., 2019,
2021). Chen et al. (2018) provides a subset features selec-
tion algorithm called Learning to Explain (L2X), but with
an entirely different premise – that sparsity values are fixed
by the user and not adaptive. A more detailed comparison
can be found in Appendix G.

Counterfactual explanations and algorithmic recourse study
what could have happened if input to a model had been
changed. Some methods are limited to text (Martens and
Provost, 2014), or specific model classes, like linear mod-
els (Ustun et al., 2019), tree ensembles (Cui et al., 2015;
Tolomei et al., 2017; Lucic et al., 2022), support vector
machines (Gupta et al., 2019), or neural networks (Zhang
et al., 2018). Most research in counterfactual explanations
or algorithmic recourse focuses on minimizing ℓ2 distance
(Ross et al., 2021), ℓ1 distance (Wachter et al., 2017; Zhang
et al., 2018; McGrath et al., 2018; Russell, 2019; Joshi et al.,
2019), cosine distance (Ramon et al., 2020), the overall
cost of changing features by various amounts, a combina-
tion of distances (Laugel et al., 2018; Dhurandhar et al.,
2018; Van Looveren and Klaise, 2021; Cheng et al., 2020)
or model function outputs (Lash et al., 2017a,b) between
the instance’s x value and the closest point across the deci-
sion boundary. An important distinction is that we use ℓ0
distance between explanations to measure sparsity. The only
paper we know of that uses ℓ0 distance is that of Fernández-
Loría et al. (2022), which is a special case of our SEV−;
Fernández-Loría et al. (2022) does not discuss sparsity as
an evaluation metric for explanations. As discussed, pre-
diction sparsity is important: a classic counterfactual ex-
planation might involve many changes to someone’s credit
and lifestyle since the shortest path to crossing the decision
boundary generally involves changes to many variables. Our
explanations are sparse (e.g., “you have no credit history”),
so they are easier to understand.

Additionally, there is ample evidence from human studies
that the counterfactual explanations generated by most meth-
ods are not interpretable to humans because they aim only
to cross the decision boundary, where the decision made by
the model is not obvious to a human. Extensive experiments
of Delaney et al. (2023) indicate that minimal changes to
an observation that alter the predicted class are not natural
for humans because the decision boundary is crossed in a
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low-density part of the space where the observation is not
clearly one class or the other. Our best competitor (counter-
factual explanation method DiCE) has precisely this prob-
lem, shown in Section 5.4. By framing SEV with respect to
a population attribute reference (i.e., typical values of fea-
tures), it provides explanations that humans are more likely
to understand. Importantly, Delaney et al. (2023) show that
counterfactual explanations created by humans are not close
to the decision boundary; people create counterfactuals that
appear to be class-specific prototypes.

3 Sparse Explanation Values

Let us define SEV. We are in the setting of classifica-
tion, where we have observations (units) with features
x ∈ X ⊆ Rp and an outcome of interest. Here, we consider
binary outcomes {0, 1}, though the extension to multi-class
outcomes is straightforward. We predict the outcome using
a classifier f : X → {0, 1} that maps the input x to a binary
prediction ŷ. We consider explanations for only one class;
to consider explanations for the other class, one would use
a completely symmetric procedure (defining a reference
for the other class). Without loss of generality, we assume
class 1 is the class of interest (positive) and we focus on
explaining the predictions of a unit (which we call a query,
denoted xquery) that is classified as positive (f(xquery) = 1).
As shown by human studies (Delaney et al., 2023), it is
natural to compare a query with a reference; for example, a
unit representative of the population as a whole or of neg-
atively predicted (predicted to be class 0) units. Therefore,
we define explanation sparsity with respect to the reference
x̃ ∈ Rp, where x̃j is the reference value of feature j, e.g.,
the population mean or median of that feature in the dataset.
We will consider aligning the observed values of the query
xquery
j with the corresponding reference feature values x̃j to

see whether predictions change. Thinking of these adjust-
ments as binary moves, it is convenient to represent all 2p

possible different feature sets as vertices of on a Boolean
hypercube. The hypercube is defined below:

Definition 1 (SEV hypercube) An SEV hypercube Lf,query

for a model f , reference x̃, and query xquery, such that
f(xquery) = 1, is a graph with 2p vertices, where each
vertex v is represented by a p-dimensional Boolean vector
bv ∈ {0, 1}p. Vertices u and v are adjacent when their
Boolean vectors differ by one bit: ∥bu − bv∥0 = 1. 0’s
in bv indicate the reference value x̃ of the corresponding
feature, while 1’s indicate the true feature value of the query.
Thus, the actual feature vector represented by the vertex
v is xv := bv ⊙ xquery + (1 − bv) ⊙ x̃, where ⊙ is the
Hadamard product. The score of vertex v is f(xv), also
denoted as Lf,query(bv).

The SEV hypercube definition can also be extended from a
hypercube to a Boolean lattice as they have the same geomet-
ric structure. Based on this definition of SEV hypercubes,

we define two variants of the Sparse Explanation Value:
one is the smallest number of features that, starting from
the reference (corresponding to the origin of the hypercube
b = 0), need to be aligned with the query’s feature values
to make the prediction flip from negative to positive (called
SEV+). The other (called SEV−) is the counterfactual case:
it is the minimal number of features, starting from the query
(corresponding to b = 1) that need to be aligned with the
reference’s feature values to make the prediction flip from
positive to negative. Formally:

Definition 2 (SEV Plus, denoted SEV+) For a query pre-
dicted as positive (f(xquery) = 1), the Sparse Explanation
Value Plus (SEV+) is the length of the shortest path from
the reference vertex to any positively predicted vertex, i.e.,

min
b∈{0,1}p

∥b∥0 s.t. Lf,query(b) = 1. (1)

Definition 3 (SEV Minus, denoted SEV−) For a query
predicted as positive (f(xquery) = 1), the Sparse Expla-
nation Value Minus (SEV−) is the length of the shortest path
from the query to any negatively predicted vertex,

min
b∈{0,1}p

∥1− b∥0 s.t. Lf,query(b) = 0. (2)

SEV− is similar to a counterfactual explanation in which we
use the length of the path on the SEV hypercube to measure
the counterfactual change (see also Section 5.4). Figure 1a,
1b and Table 1c, 1d show examples of how SEV+= 1 and
SEV−= 2 are calculated in a loan credit evaluation decision
involving three features: housing = renting, loan amount ≥
10k, and education level = high school level, where we need
an SEV hypercube with 23 = 8 vertices. The red vertex in
Figure 1a is encoded as (1, 1, 1), which represents the query;
the dark blue vertex is encoded as (0, 0, 0), representing the
negatively-predicted reference value; the orange vertices
are positively-predicted vertices; and the light blue ones are
negatively predicted vertices. To compute SEV+, we start
from the reference (0, 0, 0) and find the shortest path to any
positive (red/orange) nodes. Here, the two shortest paths end
at (0, 1, 0), which means that if we change the loan amount
from 5-10k to more than 10k, then the model will evaluate
it as high risk. Since we are changing only one feature (loan
amount), SEV+ equals 1, and the feature vector that (0, 1, 0)
represents is called an SEV+ explanation. For SEV−, we
start from the query (1, 1, 1), and find the shortest path to
any blue node. Here the shortest paths have length 2 (e.g.,
(1, 1, 1) → (0, 1, 1) → (0, 0, 1)), which means that if we
changed the housing status of the renter from renting to
managing and the loan amount from greater than 10k to
5-10k, then the credit risk will be evaluated as low instead
of high. Moreover, there also exists other shortest paths
like (1, 1, 1) → (1, 1, 0) → (1, 0, 0) which means we can
also align the loan amount and the education level with
their reference values to obtain a low-risk prediction. This
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alternative path to a negative vertex shows that we are able
to provide multiple sparse explanations through the SEV
hypercube. The feature vector that (1, 0, 0) represents is
called an SEV− explanation.

Figures 1e and 1f show how SEV is distributed in 2D cases.
The blue line is the decision boundary. The orange hori-
zontal and vertical lines are where the decision boundary
intersects one of the reference’s two feature values. If the
query’s feature values are in the yellow area of the SEV+

figure (Figure 1e), it means that for both features, the refer-
ence feature value must be changed to the query’s feature
values in order to be predicted positive. In the yellow region
of Figure 1f (SEV− case), for both features, the query’s
feature values must be aligned with the reference values in
order to be predicted as negative.

(a) SEV+=1 calculation in SEV
Hypercube

(b) SEV−=2 calculation in SEV
Hypercube

(c) SEV+=1 example
Location Housing Loan Education Credit Risk

Reference (0,0,0) Mortgage 5-10k Bachelor Low
SEV+

Explanation (0,1,0) Mortgage >$10k Bachelor High

Query (1,1,1) Rent >$10k High School High

(d) SEV−=2 example
Location Housing Loan Education Credit Risk

Query (1,1,1) Rent >$10k High School High
(0,1,1) Mortgage >$10k High School High

SEV−

Explanation (0,0,1) Mortgage 5-10k High School Low

Reference (0,0,0) Mortgage 5-10k Bachelor Low

(e) SEV+ in linear classifier (f) SEV− in linear classifier

Figure 1: Visual illustrations of SEV definitions

In real-world applications, some features might be im-
mutable or should not contribute to explanations for legal
or ethical reasons. Suppose a bank uses a machine learning

model for making credit loan decisions. The bank may want
to ensure that the explanation for a denied loan does not
involve age since no one can adjust their age. We can accom-
modate this via a straightforward extension of SEV−, which
we call the Restricted Sparse Explanation Value (SEV®):

Definition 4 (Restricted SEV, denoted SEV®) For a
query, predicted as positive (f(xquery) = 1), and a set
of restricted features Sr ⊆ {1, 2, . . . , p}, the Restricted
Sparse Explanation Value (SEV®) is the length of the
shortest pathway from the sample’s feature values to a
negatively predicted vertex, considering only non-restricted
features, i.e.,

min
b∈{0,1}p

∥1− b∥0

s.t. Lf,query(b) = 0, where bj = 1 ∀j ∈ Sr.
(3)

SEV+, SEV−, and SEV® can all be computed by a breadth-
first search along the SEV hypercube. Since we care about
sparse and faithful explanations (i.e., no more than 5-7 fea-
tures) we can set up search depth limits, which also have the
effect of lowering the computational time. SEVs are usually
very low in practice, and thus can generally be computed
in milliseconds. Detailed results are shown in Section 5.1.
Appendix D also shows that SEV requires equal or less time
to generate explanations than other methods.

4 Optimizing Sparse Explanation Values

In this section, we describe how to obtain classifiers that
optimize the average SEV− or SEV+. As we mentioned,
calculating SEVs is theoretically a combinatorial problem.
Thus directly optimizing it is intractable. Therefore, we
propose some easy-to-optimize surrogate objectives that
obtain classifiers with very low SEVs in practice.

4.1 Volume-based SEV+ Optimization for Linear
Models

Consider a linear classifier, f(x) := 1[(β0+
∑p

j=1 βjxj) >
0]. In this case, there exists an analytical surrogate objective
for optimizing SEV+. Given this classifier, the positively
classified region of the space {x ∈ Rp|f(x) = 1} can
be partitioned into regions with SEV+= 1, SEV+= 2, ...,
SEV+= p. Approximating the data to be uniformly dis-
tributed, we can minimize the average SEV+ by minimizing
the volume of the regions with SEV+ ≥ 2.

Theorem 5 Consider a linear classifier, f(x) := 1[(β0 +∑p
j=1 βjxj) > 0], where ∀j, βj ̸= 0, and for reference x̃,

we have f(x̃) = 0 (i.e., reference predicted as negative). Let
gref(β) = β0+

∑p
j=1 βj x̃j be the raw score of the classifier

f at reference x̃. For all k ∈ {2, 3, · · · , p}, the volume of
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region Vk in the input space Rp with SEV+ = k is:

Vk = ck ·
p∏

j=1

∣∣∣∣gref(β)

βj

∣∣∣∣ , (4)

where ck is a finite constant unrelated to the β’s.

See the proof in Appendix F.

If some βj’s are zero, we can either calculate volume on
the subspace where the βj’s are non-zero, or add an ϵ to
the terms in the denominator. According to Theorem 5, the
volume of the region with SEV+ ≥ 2 is proportional to
the volume of a hyperrectangle, given by

∏p
j=1 |

gref(β)
βj

|.
Therefore, to minimize the expected SEV in the region,
we minimize the volume of this hyperrectangle. For better
optimization stability, we optimize the logarithm of the
volume, i.e.,

min
β0,β1,··· ,βp

1

p

p∑
j=1

log

(
min

(∣∣∣∣gref(β)

βj

∣∣∣∣ , ϵ)) (5)

where ϵ is used to ensure numerical stability.

This volume-based SEV loss, which we call Vol-Opt, is a
simple and theoretically justified method that is effective for
optimizing the SEV+ of linear models. However, it is lim-
ited to linear models and cannot be applied to more complex
models. In the next subsection, we introduce individual-
based SEV loss, which can be applied to other types of
models as well.

4.2 Individual-based SEV Optimization

The volume-based SEV loss above approximates queries as
arising uniformly over X , which might not be true. Mak-
ing the less restrictive assumption that the distribution of
a training dataset is close to that of test data, we can in-
stead focus on minimizing the average training SEV. The
difficulty here lies in the combinatorial number of steps re-
quired to calculate SEV. However, we have found that most
trained classifiers yield low average SEVs (roughly < 3) on
real datasets. With the majority of training data having low
SEV, we can design the optimization objective to penalize
queries with SEV+ not equal to 1. On the other hand, we
maximize the fraction of points where SEV+ is exactly 1.
Given a class F of classification models that output the
probability of belonging to the positive class, the loss term
for minimizing SEV+ on a training set is:

ℓSEV_All_Opt+(g) :=

− 1

n+

n+∑
i=1

min

(
max

j=1,...,p
g(ej ⊙ xi + (1− ej)⊙ x̃), T

)
(6)

where xi is the i-th query in the training data, n+ represents
the number of positively predicted queries in the dataset, and

ej denotes the vector with a 1 in the jth coordinate and 0’s
elsewhere, and g : Rp → [0, 1] is the continuous estimator
associated with classifier f (e.g., in logistic regression, g
is a sigmoid function), and T is the threshold value for
classification, which is usually 0.5 for balanced data. Here,
we consider all vertices 1 step away from the reference and
see whether at least one of them is predicted as positive (i.e.,
SEV+=1). The min operation taken with the threshold T is
used to fix the value of the objective when the prediction
is positive since we do not care where on the positive side
of the decision boundary a prediction is, as long as it is
positive. Similarly, we propose the following loss term for
minimizing SEV−:

ℓSEV_All_Opt−(g) :=

1

n+

n+∑
i=1

max

(
min

j=1,...,p
g((1− ej)⊙ xi + ej ⊙ x̃), T

)
(7)

We call these individual-based SEV losses All-Opt+ and
All-Opt−. The All-Opt− loss can also be used to target
SEV® by replacing the minimization over j = 1, . . . , p
with a minimization over j ∈ Sr, which we denote as All-
Opt®. The experiments section will show that these losses
are not only effective in shrinking the average SEV but often
result in attaining the minimum possible SEV value of 1 for
most or all queries.

One thing to note is that both All-Opt and Vol-Opt assume
that the reference is predicted negative; that is, Lf,query(0) =
0. Thus, if the reference is predicted as positive, then
optimization for SEV+ leads to a trivial solution where
SEV+= 0 for all samples. Similarly SEV− would not find
a shortest path (or any path for that matter) from the obser-
vation to the negative class, since the reference is positive.
Thus, to ensure the reference is predicted to be negative, we
add a term that penalizes the reference receiving a positive
prediction:

ℓPos_base := max(g(x̃), T − θ) (8)

where θ > 0 is a margin parameter, for example, θ = 0.05.
This term is (T − θ) as long as the reference is predicted
negative. As soon as it exceeds that amount, it is penalized
(increasing linearly in g(x̃)).

Combining the loss terms above, we optimize a linear com-
bination of them,

min
f∈F

ℓBCE + C1ℓSEV + C2ℓPos_base (9)

where ℓBCE is the Binary Cross Entropy Loss to control
the accuracy of the training model. ℓSEV can be any of the
SEV-based terms we introduced, and ℓPos_base is for ensur-
ing the reference is predicted as negative. C1 and C2 are
the strengths of the terms and can be tuned through cross-
validation. Minimizing (9) gives a low-SEV model.
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5 Experiments

We present experiments on six real-world datasets: (i) the
UCI Adult Income dataset for predicting income levels
(Becker and Kohavi, 1996; Dua and Graff, 2017), (ii) the
FICO Home Equity Line of Credit Dataset for assessing
credit risk, used for the Explainable Machine Learning Chal-
lenge (FICO, 2018), (iii) the UCI German Credit dataset
for determining creditworthiness (Hofmann, 1994; Dua
and Graff, 2017), (iv) the MIMIC-III dataset for predict-
ing patient outcomes in intensive care units (Johnson et al.,
2016a,b), (v) the COMPAS dataset (Jeff Larson and Angwin,
2016; Wang et al., 2022) for predicting recidivism, and (vi)
the Diabetes dataset (Strack et al., 2014; Dua and Graff,
2017) for predicting if patients will be re-admitted within
two years. Additional details on data and preprocessing are
in Appendix A.

We train four reference binary classifiers: (i, ii) Logistic
Regression classifiers with ℓ1 (L1 LR) and ℓ2 (L2 LR)
penalties, (iii) a Gradient Boosting Decision Tree classifier
(GBDT), and (iv) a 2-layer Multi-Layer Perceptron (MLP).
In addition, we train “optimized” variants of these models, in
which the SEV penalties described in the previous sections
are implemented. Details on training the methods are in
Appendix B. Below, we report the average test SEV; i.e.
averaged across queries in the test set.

5.1 Most models already have low SEVs.

We first compute SEV+ and SEV− for our four reference
classifiers. We emphasize that these models are not opti-
mized for SEV, they were created with standard machine-
learning algorithms. All algorithms were run for 10 different
train-test splits and the mean and standard deviation across
these splits of the average test accuracy, AUC, SEV+ and
SEV− on the German Credit data are shown in Table 1.
Results for the other datasets are listed in Appendix C.

Table 1: SEV for reference classifiers in German Credit

Model L1 LR L2 LR MLP GBDT
Acc 0.74± 0.02 0.73± 0.03 0.76± 0.03 0.75± 0.03
AUC 0.77± 0.03 0.76± 0.03 0.77± 0.08 0.78± 0.02

SEV+ 1.00± 0.00 1.00± 0.00 1.04± 0.08 1.10± 0.24
SEV− 1.29± 0.14 1.74± 0.16 1.58± 0.22 1.58± 0.22

Even though the German Credit models for L2LR, MLP
and GBDT used up to all 20 features (they are not sparse),
we observe from Table 1 that most of the queries need
only to align one reference feature value with the query
value to change to a positive prediction (SEV+), and we
need to align fewer than 2 feature values from the query to
the reference for a negative prediction (SEV−). Thus, even
without optimization for SEV at all, most models already
have sparse explanations. However, there is still room for
improvement, as we now show.

5.2 SEV can be reduced with no loss in performance.

While existing models already have low SEVs on real
datasets, our SEV optimization algorithm proposed in the
previous section can further decrease SEVs – creating ac-
curate models with extreme decision sparsity. To illustrate,
Figure 2 shows the impact on SEV+ of All-Opt and Vol-Opt
on a reference linear classifier trained on the Adult dataset.
Figure 2a shows the SEV distribution across queries; while
L1 LR and L2 LR have reasonably low SEVs (per the dis-
cussion in the previous subsection), both of the proposed
optimization algorithms are able to find models for which
the SEV+ of all queries is 1 (the minimum possible SEV).
Table 7 in the Appendix shows that this incurs negligible
performance loss. Figure 2b shows how the optimization
affects the SEV+ of each query. Its biggest impact on the
mean is from reducing the explanations of many queries
from involving 2 to 5 terms to a single one, with no query’s
explanation becoming more complicated. Additionally, the
predicted class distribution is comparable, and the impact of
the optimization is not simply to predict a greater number of
negative labels; it actually targets the explanation sparsity.

(a) SEV+ counts across methods (b) SEV+ Optimization Result

Figure 2: SEV+ performance for linear classifiers in Adult

All-Opt+ and All-Opt− can also be applied to nonlinear
models. To illustrate, we apply them to baseline MLP and
GBDT classifiers, again using the Adult data. For GBDT,
we use our methods to fine-tune the weights for each tree
generated by the original method. Both are optimized by
Stochastic Gradient Descent. Figure 3 shows that across
both model classes, and for both SEV− and SEV+, All-
Opt− and All-Opt+ are able to reduce the SEV of all queries
to 1, as in the linear case. Appendix C has other performance
metrics, as well as results for other datasets, showing that
we can consistently reduce SEV with negligible loss in
accuracy, across various model classes and datasets.

Moreover, to evaluate the time consumption of our methods,
we have tried different dataset sizes. The detailed informa-
tion for each dataset is shown in Appendix A. To better
compare the training time consumption, we have used MLP
as the baseline model and compared its running time with
and without All-Opt for different datasets. All the models
were run 10 times and we report the mean and standard
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(a) All-Opt+ in MLP (b) All-Opt− in MLP

(c) All-Opt+ in GBDT (d) All-Opt− in GBDT

Figure 3: Performance of All-Opt+ and All-Opt− in Adult

deviation in Table 2.

Dataset Baseline All-Opt+ All-Opt−
COMPAS 10.5± 0.69 26.9± 1.06 21.7± 0.03

Adult 61.1± 0.15 164± 1.56 136± 1.22
MIMIC III 78.2± 1.09 207± 2.71 167± 2.42

German Credit 1.81± 0.01 5.01± 0.01 4.08± 0.04
FICO 16.9± 0.78 47.6± 0.34 37.4± 1.30

Diabetes 188± 3.08 606± 3.65 517± 3.31

Table 2: The training time (seconds) comparison with and
without All-Opt in MLP

Based on the run time results shown above, we can observe
that even when optimizing a complex black box model, the
increase in time consumption associated with optimizing
SEV is quite low.

5.3 It is unnecessary to have global sparsity to have
sparse explanations.

In this section, we discuss whether global sparsity is needed
for sparse local explanations. We use the proportion of zero
coefficients for linear models as a global sparsity measure.
We will use the Adult income dataset as an example to see
how the model distributes coefficients.

Table 3: SEV and zero-coefficient % of LR in Adult

Methods L1 LR L2 LR All-Opt+
LR

Vol-Opt
LR

Mean
SEV+ 1.95±0.01 2.30±0.08 1.00±0.00 1.00±0.00

% of Zero
Coefficients 87.9±0.00 0.09±0.00 0.00±0.00 0.00± 0.00

The L1 LR, L2 LR, All-Opt+ LR, and Vol-Opt LR meth-
ods are all compared in Table 3. L1 LR has already attained
low SEVs, possibly because its models are globally sparse.
Nevertheless, even without global sparsity, L2 penalized
linear regression also generates a low SEV model. This sug-
gests that if our objective is to construct models with low

SEVs, we should not just focus on producing globally sparse
models, as this may be unnecessarily restrictive. Moreover,
after SEV+ optimization, neither the All-Opt+ LR nor the
Vol-Opt LR optimization approaches produce sparse models
and yet have perfect SEV’s. Thus, it is not necessary to have
global sparsity to achieve sparse explanations.

5.4 Explaining a fixed model: comparing SEV to other
local explanation methods

Here, we use GBDT to generate a model on the COMPAS
dataset, and compare SEV− with various post hoc explana-
tion methods, specifically: SHAP-C (using treeSHAP and
kernelSHAP) (Lundberg and Lee, 2017; Ramon et al., 2020),
LIME-C (Ribeiro et al., 2016; Ramon et al., 2020), and Di-
verse Counterfactual Explanations (DiCE) (Mothilal et al.,
2020). LIME and SHAP are post-hoc explainers that provide
local feature importance scores to the prediction. The idea of
SHAP-C and LIME-C is to order the features by importance,
and based on that ordering, progressively (from the most
important feature to less important ones) align the queries’
features with the reference values. We then calculate the
number of alignments needed for the point to change from
being positively predicted to negatively predicted (shown
as Flip Number in Figure 4). We also compare our methods
to DiCE, counting the number of features it modifies to
generate a counterfactual explanation.

Figure 4 shows that, on average, LIME-C and SHAP-C
flip about half of the features in the model (which uses
7 features in total) and do not induce sparse explanations.
This conclusion aligns with Fernández-Loría et al. (2022)’s
observation that high locally important features may not
always influence model decisions.

Even though DiCE applies backward feature selection af-
ter generating explanations to control sparsity (Mothilal
et al., 2020), Figure 4 shows that SEV− provides sparser
explanations than DiCE. Moreover, DiCE provides less in-
terpretable explanations than SEV−. Recall that DiCE uses
minimal edit distance to generate counterfactual explana-
tions, whereas we find a minimal number of flips between
original values and reference values. As we discussed in
Related Works, the edit-distance-based counterfactual ex-
planations may not be as interpretable to humans (Delaney
et al., 2023) because the counterfactual often ends up in a
low-density region where one cannot determine the class
with certainty. The counterfactual explanations generated by
DiCE can even lead away from the general direction of the
other class. For instance, we found that on a criminal recidi-
vism dataset, DiCE stated that a high-risk criminal offender
who commits more crimes would be classified as lower risk,
which is paradoxical. This unreasonable explanation arises
because DiCE can reference any negatively-predicted point,
including outliers. In contrast, the reference point for SEV
is the center of the negative population, thus the direction of
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(a) Flip Numbers and Mean Explanation Time
Consumption

(b) Flip Number Distributions

Figure 4: Local Explanation Methods’ Performance Com-
parison in COMPAS

the SEV is generally meaningful: towards the negatives. For
example, the reference value used in our approach for the
number of prior misdemeanors is 0, which is more natural.

Table 4 shows counterfactual explanations for two different
queries. For the first, DiCE suggests that the number of ju-
venile crimes should go from 1 to 5 to change the prediction
from ‘will recidivate’ to ‘won’t recidivate.’ This is nonsensi-
cal, as the number of crimes should be positively correlated
with the propensity to recidivate. In contrast, SEV− sug-
gests that the number of prior crimes should go from 2 to 1,
which makes sense. Similarly, for the second query, DiCE
suggests that the number of juvenile crimes should go from
3 to 7 and the number of juvenile misdemeanors from 2 to
11 in order to change the prediction from ‘will recidivate’
to ‘won’t recidivate.’ Again, this explanation is nonsensical.
In contrast, SEV− provides two possible explanations: (i)
that the number of prior crimes should go from 3 to 1 or (ii)
that the number of juvenile misdemeanors should go from 2
to 0. Again, this makes more sense. Given that DiCE uses
a random initialization to find a counterfactual explanation
whereas SEV− provides the minimum number of feature
alignments to cross the decision boundary, we would expect

SEV− to be more stable and to generate useful explanations.

In addition, SEV has shown competitive speed in generating
local explanations. Figure 4a shows that DiCE takes more
time to generate stable sparse counterfactual explanations
than SEV−. Table 5 shows the detailed time required to
generate a local explanation for our method and baselines
SHAP, LIME, and DiCE, for several datasets. We use GBDT
as a baseline model and evaluate the median explanation
runtime on queries in the test set. The table shows that SEV−

has a reasonable running time for black-box models on most
datasets. We can observe that the explanation time is better
than DiCE in all the datasets since it only flips from feature
values to the reference. The reason why the FICO Dataset
takes a long time is that its average SEV− is about 4, which
means that the search in the SEV hypercube starting from
the query is too deep. However, if the time consumption
for generating explanations is too long, it means that this
model cannot be sparsely explained, but we can use All-Opt
or Vol-Opt methods to optimize our model. Importantly,
other types of explanations (SHAP, LIME, DiCE) do not
have optimization methods such as All-Opt or Vol-Opt. The
detailed comparison between KernelSHAP and SEV− is
shown in Appendix D.

5.5 Restricted SEV in practice

In real applications, some features are not changeable, such
as race, gender, or age. To evaluate SEV® and our opti-
mization algorithm under restricted feature sets, we apply
our loss function to COMPAS and set gender and age as
restricted features when training a linear classifier.

(a) SEV® Difference before and after optimization
Before

Optimization
After

Optimization
Test Acc 0.68± 0.01 0.65± 0.01
Test AUC 0.73± 0.01 0.72± 0.01
Mean SEV® 3.20± 0.26 1.28± 0.38
Unexplained (%) 34.40± 4.40 3.35± 6.20

(b) Feature Prevalence in Explanations

Figure 5: The performance of All-Opt® on COMPAS data

In this restricted setting, there may exist queries whose pre-
dictions do not flip even if all nonrestricted features are
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Explanations Sex Age Juv fel
counts

Juv misd
count

Juvenile
crimes

Priors
counts

Current Charge
Degree

Predicted
Label

Query 1 Male 23 0 1 1 2 Not Felony 1
DiCE – – – – 5 – – 0
SEV− – – – – – 1 – 0

Query 2 Male 19 1 2 3 3 Felony 1
DiCE – – – 11 7 – – 0
SEV− – – – 0 – – – 0

– – – – – 1 – 0

Table 4: DiCE and SEV− explanations for two different queries in COMPAS

Dataset TreeSHAP KernelSHAP LIME DiCE SEV−

Adult 1.08± 0.00 4.82± 0.01 20.27± 0.22 43.41± 0.16 1.39± 0.00
COMPAS 0.50± 0.01 0.22± 0.00 2.68± 0.10 20.86± 0.39 0.19± 0.02
MIMIC 1.13± 0.01 17.30± 0.10 6.10± 0.05 Crashed 0.45± 0.03
German
Credit 0.53± 0.00 9.70± 0.17 7.11± 0.07 26.70± 0.91 1.37± 0.05

FICO 0.56± 0.02 8.25± 0.27 6.05± 0.14 27.82± 0.05 15.75± 1.01
Diabetes 0.55± 0.01 9.42± 0.10 22.49± 0.26 34.66± 1.33 2.24± 0.01

Table 5: The median explanation runtime (in 10−2 s) for query units predicted as positive. The values in the table differ from
those in Figure 4a since Figure 4a reports the mean runtime instead of median.

flipped. We call these queries “unexplainable.” Figure 5a
shows the proportion of unexplainable queries in the re-
stricted setting and their relevant SEV® before and after
restriction and optimization of the All-Opt® objective. Fig-
ure 5b shows the proportion of queries using each feature for
sparse explanations before (Red) and after restriction and
optimization (Blue). After introducing restricted features,
over one-third of the queries are unable to be explained by
the baseline model. However, after All-Opt® is applied, the
percentage of unexplainable queries decreases to 3% with-
out much performance loss. Moreover, Figure 5b shows that
after applying All-Opt® with age and sex=female as
restricted features, prior_count becomes the most im-
portant factor for explanations for almost all queries, which
is more actionable. In real cases, we might want to replace
this feature with a dynamic feature, e.g., the number of pri-
ors over the last 5 years, to allow individuals to reduce that
feature over time through their actions. In that case, one’s
explanation would often be simply: you are predicted as
high risk because you committed a crime in the last 5 years.
More results on the performance of All-Opt® are shown
in Appendix E. These results demonstrate that All-Opt®

works well in restricted cases.

6 Discussion and Limitations

In this work, we introduce the Sparse Explanation Value
(SEV) as a new way to measure and optimize interpretabil-
ity in machine learning models. SEV measures decision
sparsity, which focuses on how simply predictions can be
explained, instead of global sparsity. Because users care
about explanations for their individual predictions (rather
than everyone else’s predictions), SEV better connects mod-

els to their real-world applications. Crucially, we have found
(i) that many current models naturally have low SEV, (ii)
that global sparsity is not necessary for decision sparsity,
and (iii) that SEV can be directly optimized without sacrific-
ing accuracy. The use of interpretable reference values and
the development of optimization algorithms (Vol-Opt and
All-Opt) further highlight SEV’s potential in applications.

There are several limitations to our approach. One is that
causal relationships may exist among features, invalidating
certain transitions across the SEV hypercube. This can be
addressed by adapting the definition of vertices to change
features in tandem, though it requires knowledge of the
causal graph. Another practical consideration is choosing
an appropriate reference and SEV variant. However, the
flexibility in reference and variant choice actually helps
tailor analyses to specific problems. For example, individu-
als or businesses might consider SEV+ to understand how
they can make their profiles more appealing to lenders. In
contrast, examining SEV− can help lenders understand the
fragility of their approvals and can provide useful infor-
mation about important variables. Lastly, SEV®, which
excludes unchangeable characteristics, offers more action-
able explanations to users. However, restricting explanations
may obscure biases inherent in the model since the excluded
features cannot contribute to explanations.

Ultimately, SEV shifts the burden for interpretability in
machine learning models from prioritizing sparse models
to prioritizing sparse decisions. SEV is distinct from exist-
ing black-box explanation methods, can be computed for
pre-trained models, and can be optimized via efficient opti-
mization algorithms. These qualities make it a candidate for
real-world modeling pipelines.
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(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical results,
check if you include:

(a) The code, data, and instructions needed to repro-
duce the main experimental results (either in the
supplemental material or as a URL). [Yes]

(b) All the training details (e.g., data splits, hyperpa-
rameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or statis-
tics and error bars (e.g., with respect to the random
seed after running experiments multiple times).
[Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or cloud
provider). [Yes]

4. If you are using existing assets (e.g., code, data, mod-
els) or curating/releasing new assets, check if you in-
clude:

(a) Citations of the creator If your work uses existing
assets. [Yes]

(b) The license information of the assets, if applicable.
[Yes]

(c) New assets either in the supplemental material or
as a URL, if applicable. [Yes]

(d) Information about consent from data providers/cu-
rators. [Not Applicable]
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(e) Discussion of sensible content if applicable, e.g.,
personally identifiable information or offensive
content. [Not Applicable]

5. If you used crowdsourcing or conducted research with
human subjects, check if you include:

(a) The full text of instructions given to participants
and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks, with
links to Institutional Review Board (IRB) ap-
provals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to participants
and the total amount spent on participant compen-
sation. [Not Applicable]
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A Datasets Description

All datasets were partitioned into training and test subsets according to an 80-20 stratified split. Numeric features were
linearly rescaled to have mean zero and variance one. Categorical features with k unique levels were one-hot encoded into k
dummy variables. Binary features were one-hot encoded into a single dummy variable. Dataset sizes pre- and post-encoding
are displayed in Table 6. The reference for features is given by the feature mean for continuous features and the mode for
binary and categorical features.

Observations
Pre-Encoded

Features
Post-Encoded

Features

COMPAS 6,907 7 7
Adult 32,561 14 107

MIMIC-III 48,786 14 14
Diabetes 101,766 33 101
German
Credit 1,000 20 59

FICO 10,459 23 23

Table 6: Training Dataset Sizes

COMPAS

The COMPAS dataset consists of data on criminal recidivism in Broward County, Florida (Jeff Larson and Angwin, 2016).
The objective is to predict two-year recidivism using the following features: sex, age, number of priors, number of juvenile
felonies/misdemeanors/crimes, and whether the current charge is a felony.

Adult

The Adult data is based on U.S. census data including demographics, education and job information, marital status, and
capital gain/loss (Becker and Kohavi, 1996; Dua and Graff, 2017). The target outcome is whether an individual’s salary is
above $50,000.

MIMIC-III

MIMIC-III is a database containing a variety of medical information for patients during ICU stays in the Beth Israel
Deaconess Medical Center (Johnson et al., 2016a,b). We take the ‘hospital expires flag’, a binary indicator of whether
or not a patient died in the given hospitalization, to be the outcome of interest and select the following subset of
variables as features: age, preiculos (pre-ICU length of stay), gcs (Glasgow Coma Scale), heartrate_min,
heartrate_max, meanbp_min (min blood pressure), meanbp_max (max blood pressure), resprate_min,
resprate_max, tempc_min, tempc_max, urineoutput, mechvent (whether the patient is on mechanical venti-
lation), and electivesurgery (whether the patient had elective surgery).

Diabetes

The Diabetes dataset is derived from 10 years (1999-2008) of clinical care at 130 US hospitals and integrated delivery
networks (Strack et al., 2014; Dua and Graff, 2017). It comprises over 50 features representing patient and hospital out-
comes. The dataset includes attributes such as race, gender, age, admission type, time in hospital, the
medical specialty of the admitting physician, number of lab tests performed, number
of medications, etc. We take whether the patient will revisit the hospital in 2 years as a binary indicator.

German Credit

The German Credit data (Hofmann, 1994; Dua and Graff, 2017) uses financial and demographic markers (checking account
status, credit history, employment/marital status, etc.) to predict whether an individual is at risk for defaulting on a loan.
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FICO

The FICO Home Equity Line of Credit (HELOC) dataset used for the Explainable Machine Learning Challenge contains a
variety of financial markers (number of inquiries into a user’s account, max delinquency, number of satisfactory trades, etc.)
for various loan applicants (FICO, 2018). The target outcome is whether a consumer was ever 90+ days past due in any
2-year period since they opened their account.

B Model Training

Baseline models were fit using sklearn (Pedregosa et al., 2011) implementations in Python. The logistic regression
models L1 LR and L2 LR were fit using regularization parameter C = 0.01. The 2-layer MLP used ReLU activation and
consisted of two fully-connected layers with 128 nodes each. It was trained with early stopping. The gradient-boosted
classifier used 200 trees with a max depth of 3.

The optimized models were trained by adding the SEV losses from Section 4 to the standard loss term for the models. For
GBDT, the training goal is to reweight the trees from the reference GBDT model. The resulting loss was minimized via
gradient descent in PyTorch (Paszke et al., 2019), with a batch size of 128, a learning rate of 0.1, and the Adam optimizer.
To maintain high accuracy, the first 70 training epochs are warm-up epochs optimizing just Binary Cross Entropy Loss for
classification (BCELoss). The next 30 epochs add the All-Opt and Vol-Opt terms and the reference positive penalty term to
encourage low SEV values.
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C Model Results

In this section, we compare our optimized classifiers to the reference classifiers in terms of accuracy/AUC and SEV+/SEV−.

C.1 Results Overview

Here we report training and testing accuracy, AUC, mean SEV+, and mean SEV−. Table entries are means and standard
deviations across 10 random train-test splits for each dataset. The optimized mean SEV+ and SEV− are marked in red
from Table 7 to Table 24. More detailed SEV counts for each dataset before and after optimization are shown in Appendix
C.2. Blank entries are caused by incompatible loss functions and objectives (e.g., All-Opt+, designed to target SEV+, and
SEV−). From these tables, we observe that with the application of All-Opt+ and Vol-Opt methods for SEV+ and All-Opt−

for SEV−, we can obtain models with lower SEV+ or SEV− without significant performance loss. This means that we are
able to find models with sparse explanations for more queries, without reducing the predictive power of the model.

Train Test

Accuracy AUC Accuracy AUC Mean SEV+ Mean SEV−

L2 0.85± 0.00 0.90± 0.00 0.85± 0.02 0.90± 0.00 2.27± 0.11 1.18± 0.15
L1 0.85± 0.00 0.90± 0.00 0.85± 0.01 0.90± 0.00 1.96± 0.07 1.13± 0.01
All-Opt+ 0.85± 0.00 0.90± 0.00 0.85± 0.01 0.90± 0.01 1.10± 0.26
All-Opt− 0.85± 0.00 0.90± 0.00 0.84± 0.01 0.90± 0.00 1.03± 0.02
Vol-Opt 0.84± 0.01 0.90± 0.02 0.84± 0.01 0.89± 0.02 1.01± 0.00

Table 7: SEV Optimization Performance of linear classifiers on Adult

Train Test

Accuracy AUC Accuracy AUC Mean SEV+ Mean SEV−

MLP 0.87± 0.00 0.93± 0.00 0.86± 0.00 0.92± 0.00 2.97± 0.01 1.21± 0.04
All-Opt+ 0.86± 0.01 0.92± 0.01 0.84± 0.00 0.90± 0.00 1.01± 0.01
All-Opt− 0.86± 0.00 0.92± 0.00 0.85± 0.00 0.93± 0.00 1.03± 0.03

Table 8: SEV Optimization Performance of multi-layer perceptrons on Adult

Train Test

Accuracy AUC Accuracy AUC Mean SEV+ Mean SEV−

GBDT 0.88± 0.00 0.93± 0.00 0.87± 0.00 0.93± 0.00 2.66± 0.17 1.21± 0.02
All-Opt+ 0.88± 0.00 0.93± 0.01 0.87± 0.00 0.90± 0.00 1.03± 0.01
All-Opt− 0.87± 0.01 0.93± 0.01 0.85± 0.02 0.91± 0.01 1.00± 0.03

Table 9: SEV Optimization Performance of gradient boosting decision trees on Adult
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Train Test

Accuracy AUC Accuracy AUC Mean SEV+ Mean SEV−

L2 0.68± 0.00 0.73± 0.01 0.68± 0.01 0.73± 0.02 1.04± 0.01 1.25± 0.03
L1 0.68± 0.00 0.73± 0.00 0.68± 0.01 0.73± 0.02 1.06± 0.01 1.25± 0.03
All-Opt+ 0.67± 0.01 0.72± 0.01 0.66± 0.01 0.71± 0.02 1.03± 0.03
All-Opt− 0.65± 0.01 0.72± 0.01 0.65± 0.02 0.72± 0.01 1.05± 0.07
Vol-Opt 0.65± 0.01 0.72± 0.02 0.65± 0.01 0.71± 0.02 1.03± 0.05

Table 10: SEV Optimization Performance of linear classifiers on COMPAS

Train Test

Accuracy AUC Accuracy AUC Mean SEV+ Mean SEV−

MLP 0.68± 0.01 0.74± 0.00 0.68± 0.01 0.73± 0.02 1.01± 0.01 1.53± 0.27
All-Opt+ 0.68± 0.01 0.73± 0.00 0.68± 0.01 0.73± 0.01 1.00± 0.00
All-Opt− 0.68± 0.00 0.73± 0.00 0.68± 0.00 0.74± 0.01 1.24± 0.14

Table 11: SEV Optimization Performance of multi-layer perceptrons on COMPAS

Train Test

Accuracy AUC Accuracy AUC Mean SEV+ Mean SEV−

GBDT 0.70± 0.00 0.76± 0.00 0.68± 0.00 0.73± 0.00 1.12± 0.03 1.13± 0.03
All-Opt+ 0.70± 0.01 0.76± 0.01 0.66± 0.01 0.70± 0.01 1.01± 0.01
All-Opt− 0.70± 0.01 0.77± 0.01 0.66± 0.01 0.70± 0.01 1.01± 0.01

Table 12: SEV Optimization Performance of gradient boosting decision trees on COMPAS

Train Test

Accuracy AUC Accuracy AUC Mean SEV+ Mean SEV−

L2 0.89± 0.00 0.80± 0.00 0.89± 0.01 0.80± 0.02 4.27± 0.04 1.16± 0.02
L1 0.89± 0.00 0.80± 0.00 0.89± 0.00 0.80± 0.01 4.36± 0.01 1.14± 0.03
All-Opt+ 0.89± 0.00 0.78± 0.01 0.89± 0.00 0.78± 0.01 3.58± 0.33
All-Opt− 0.89± 0.00 0.78± 0.01 0.89± 0.00 0.78± 0.01 1.06± 0.06
Vol-Opt 0.88± 0.02 0.76± 0.01 0.88± 0.03 0.76± 0.01 3.70± 0.71

Table 13: SEV Optimization Performance of linear classifiers on MIMIC III

Train Test

Accuracy AUC Accuracy AUC Mean SEV+ Mean SEV−

MLP 0.90± 0.00 0.86± 0.01 0.90± 0.00 0.85± 0.01 4.27± 0.10 1.21± 0.03
All-Opt+ 0.89± 0.00 0.81± 0.01 0.89± 0.00 0.81± 0.01 2.34± 0.77
All-Opt− 0.89± 0.00 0.82± 0.01 0.89± 0.00 0.82± 0.01 1.02± 0.01

Table 14: SEV Optimization Performance of multi-layer perceptrons on the MIMIC III
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Train Test

Accuracy AUC Accuracy AUC Mean SEV+ Mean SEV−

GBDT 0.91± 0.00 0.87± 0.00 0.90± 0.00 0.85± 0.01 5.26± 0.08 1.19± 0.03
All-Opt+ 0.90± 0.00 0.87± 0.00 0.89± 0.01 0.83± 0.01 3.27± 0.02
All-Opt− 0.90± 0.00 0.87± 0.00 0.89± 0.01 0.83± 0.01 1.02± 0.02

Table 15: SEV Optimization Performance of gradient boosting decision trees on MIMIC III

Train Test

Accuracy AUC Accuracy AUC Mean SEV+ Mean SEV−

L2 0.79± 0.01 0.85± 0.00 0.73± 0.03 0.76± 0.03 1.00± 0.00 1.75± 0.16
L1 0.76± 0.01 0.80± 0.01 0.73± 0.02 0.77± 0.03 1.00± 0.00 1.13± 0.01
All-Opt+ 0.79± 0.01 0.83± 0.01 0.75± 0.05 0.77± 0.05 1.00± 0.00
All-Opt− 0.78± 0.01 0.83± 0.01 0.75± 0.05 0.77± 0.05 1.04± 0.05
Vol-Opt 0.77± 0.01 0.83± 0.01 0.70± 0.05 0.75± 0.05 1.00± 0.00

Table 16: SEV Optimization Performance of linear classifiers on German Credit

Train Test

Accuracy AUC Accuracy AUC Mean SEV+ Mean SEV−

MLP 0.80± 0.00 0.86± 0.02 0.76± 0.03 0.79± 0.03 1.04± 0.08 1.58± 0.22
All-Opt+ 1.00± 0.03 1.00± 0.03 0.73± 0.02 0.80± 0.04 1.00± 0.00
All-Opt− 1.00± 0.01 1.00± 0.02 0.76± 0.04 0.81± 0.05 1.18± 0.12

Table 17: SEV Optimization Performance of multi-layer perceptrons on German Credit

Train Test

Accuracy AUC Accuracy AUC Mean SEV+ Mean SEV−

GBDT 0.96± 0.00 0.99± 0.00 0.74± 0.03 0.78± 0.02 1.10± 0.24 1.50± 0.06
All-Opt+ 1.00± 0.00 1.00± 0.00 0.73± 0.02 0.76± 0.02 1.01± 0.01
All-Opt− 1.00± 0.00 1.00± 0.00 0.74± 0.02 0.76± 0.03 1.17± 0.07

Table 18: SEV Optimization Performance of gradient boosting decision trees on German Credit

Train Test

Accuracy AUC Accuracy AUC Mean SEV+ Mean SEV−

L2 0.72± 0.00 0.78± 0.00 0.71± 0.01 0.78± 0.01 1.28± 0.02 2.76± 0.08
L1 0.71± 0.00 0.78± 0.00 0.71± 0.01 0.78± 0.01 1.12± 0.01 2.46± 0.07
All-Opt+ 0.71± 0.00 0.77± 0.00 0.70± 0.01 0.77± 0.01 1.03± 0.02
All-Opt− 0.68± 0.01 0.75± 0.01 0.68± 0.01 0.75± 0.01 1.14± 0.04
Vol-Opt 0.70± 0.02 0.77± 0.01 0.69± 0.01 0.76± 0.02 1.04± 0.04

Table 19: SEV Optimization Performance of linear classifiers on FICO
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Train Test

Accuracy AUC Accuracy AUC Mean SEV+ Mean SEV−

MLP 0.73± 0.01 0.81± 0.01 0.72± 0.01 0.79± 0.01 1.01± 0.01 2.83± 0.22
All-Opt+ 0.68± 0.01 0.78± 0.01 0.67± 0.01 0.78± 0.02 1.01± 0.04
All-Opt− 0.77± 0.00 0.85± 0.00 0.67± 0.01 0.75± 0.01 1.52± 0.44

Table 20: SEV Optimization Performance of multi-layer perceptrons on FICO

Train Test

Accuracy AUC Accuracy AUC Mean SEV+ Mean SEV−

GBDT 0.77± 0.00 0.85± 0.00 0.73± 0.03 0.80± 0.01 1.00± 0.00 3.58± 0.13
All-Opt+ 0.80± 0.00 0.98± 0.01 0.70± 0.01 0.75± 0.01 1.00± 0.00
All-Opt− 0.80± 0.01 0.89± 0.01 0.69± 0.01 0.75± 0.01 1.84± 0.10

Table 21: SEV Optimization Performance of gradient boosting decision trees on FICO

Train Test

Accuracy AUC Accuracy AUC Mean SEV+ Mean SEV−

L2 0.62± 0.00 0.67± 0.00 0.62± 0.00 0.67± 0.00 1.00± 0.00 1.53± 0.01
L1 0.62± 0.00 0.67± 0.00 0.62± 0.00 0.67± 0.00 1.00± 0.00 1.49± 0.01
All-Opt+ 0.56± 0.00 0.63± 0.00 0.56± 0.00 0.63± 0.00 1.00± 0.00
All-Opt− 0.56± 0.00 0.63± 0.00 0.56± 0.00 0.63± 0.00 1.00± 0.00
Vol-Opt 0.57± 0.04 0.62± 0.03 0.57± 0.03 0.61± 0.03 1.00± 0.00

Table 22: SEV Optimization Performance of linear classifiers on Diabetes

Train Test

Accuracy AUC Accuracy AUC Mean SEV+ Mean SEV−

MLP 0.73± 0.01 0.81± 0.01 0.72± 0.01 0.79± 0.01 1.01± 0.01 2.83± 0.22
All-Opt+ 0.68± 0.01 0.78± 0.01 0.67± 0.01 0.78± 0.02 1.01± 0.04
All-Opt− 0.77± 0.00 0.85± 0.00 0.67± 0.01 0.75± 0.01 1.52± 0.44

Table 23: SEV Optimization Performance of multi-layer perceptrons on Diabetes

Train Test

Accuracy AUC Accuracy AUC Mean SEV+ Mean SEV−

GBDT 0.77± 0.00 0.85± 0.00 0.73± 0.03 0.80± 0.01 1.00± 0.00 3.58± 0.13
All-Opt+ 0.80± 0.00 0.98± 0.01 0.70± 0.01 0.75± 0.01 1.00± 0.00
All-Opt− 0.80± 0.01 0.89± 0.01 0.69± 0.01 0.75± 0.01 1.84± 0.10

Table 24: SEV Optimization Performance of gradient boosting decision trees on Diabetes
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C.2 Detailed SEV Distributions Plots

In this section, we will display the SEV+ and SEV− counts distributions for optimized and unoptimized models for a
single train-test split of each dataset. The distribution of the SEV+ and SEV− counts are shown in subfigures (a), while the
accompanying Sankey plot shows how counts change due to optimization. The red on the left side of the Sankey Plots shows
the distribution of the SEV before optimization, while the red on the right shows the SEV distribution after optimization.v

(a) SEV+ counts across methods (b) L2 LR SEV+ to All-Opt+ LR

(c) L1 LR SEV+ to All-Opt+ LR (d) L2 LR SEV+ to Vol-Opt LR

Figure 6: SEV+ Optimization performance for linear classifiers on Adult
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(a) SEV− counts across methods (b) L2 LR SEV− to All-Opt− LR (c) L1 LR SEV− to All-Opt− LR

Figure 7: SEV− optimization performance for linear classifiers on Adult

(a) SEV+ counts across methods (b) MLP to All-Opt+ MLP

Figure 8: SEV+ optimization performance for multi-layer perceptions on Adult

(a) SEV− counts across methods (b) MLP to All-Opt− MLP

Figure 9: SEV− optimization performance for multi-layer perceptions on Adult
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(a) SEV+ counts across methods (b) GBDT to All-Opt+ GBDT

Figure 10: SEV+ optimization performance for gradient boosting trees on Adult

(a) SEV− counts across methods (b) GBDT to All-Opt− GBDT

Figure 11: SEV− optimization performance for gradient boosting trees on Adult

(a) SEV+ counts across methods (b) L2 LR SEV+ to All-Opt+ LR

Figure 12: SEV+ Optimization performance for linear classifiers on COMPAS
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(a) L1 LR SEV+ to All-Opt+ LR (b) L2 LR SEV+ to Vol-Opt LR

Figure 13: SEV+ Optimization performance for linear classifiers on COMPAS(cont.)

(a) SEV− counts across methods (b) L2 LR SEV− to All-Opt− LR (c) L1 LR SEV− to All-Opt− LR

Figure 14: SEV− optimization performance for linear classifiers on COMPAS

(a) SEV+ counts across methods (b) MLP to All-Opt+ MLP

Figure 15: SEV+ optimization performance for multi-layer perceptions on COMPAS
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(a) SEV− counts across methods (b) MLP to All-Opt− MLP

Figure 16: SEV− optimization performance for multi-layer perceptions on COMPAS

(a) SEV+ counts across methods (b) GBDT to All-Opt+ GBDT

Figure 17: SEV+ optimization performance for gradient boosting trees on COMPAS

(a) SEV− counts across methods (b) GBDT to All-Opt− GBDT

Figure 18: SEV− optimization performance for gradient boosting trees on COMPAS
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(a) SEV+ counts across methods (b) L2 LR SEV+ to All-Opt+ LR

Figure 19: SEV+ Optimization performance for linear classifiers on MIMIC

(a) L1 LR SEV+ to All-Opt+ LR (b) L2 LR SEV+ to Vol-Opt LR

Figure 20: SEV+ Optimization performance for linear classifiers on MIMIC(cont.)

(a) SEV− counts across methods (b) L2 LR SEV− to All-Opt− LR (c) L1 LR SEV− to All-Opt− LR

Figure 21: SEV− optimization performance for linear classifiers on MIMIC
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(a) SEV+ counts across methods (b) MLP to All-Opt+ MLP

Figure 22: SEV+ optimization performance for multi-layer perceptions on MIMIC

(a) SEV− counts across methods (b) MLP to All-Opt− MLP

Figure 23: SEV− optimization performance for multi-layer perceptions on MIMIC

(a) SEV+ counts across methods (b) GBDT to All-Opt+ GBDT

Figure 24: SEV+ optimization performance for gradient boosting trees on MIMIC
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(a) SEV− counts across methods (b) GBDT to All-Opt− GBDT

Figure 25: SEV− optimization performance for gradient boosting trees on MIMIC

(a) SEV+ counts across methods (b) L2 LR SEV+ to All-Opt+ LR

Figure 26: SEV+ Optimization performance for linear classifiers on German Credit

(a) L1 LR SEV+ to All-Opt+ LR (b) L2 LR SEV+ to Vol-Opt LR

Figure 27: SEV+ Optimization performance for linear classifiers on German Credit (cont.)
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(a) SEV− counts across methods (b) L2 LR SEV− to All-Opt− LR (c) L1 LR SEV− to All-Opt− LR

Figure 28: SEV− optimization performance for linear classifiers on German Credit

(a) SEV+ counts across methods (b) MLP to All-Opt+ MLP

Figure 29: SEV+ optimization performance for multi-layer perceptions on German Credit

(a) SEV− counts across methods (b) MLP to All-Opt− MLP

Figure 30: SEV− optimization performance for multi-layer perceptions on German Credit
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(a) SEV+ counts across methods (b) GBDT to All-Opt+ GBDT

Figure 31: SEV+ optimization performance for gradient boosting trees on German Credit

(a) SEV− counts across methods (b) GBDT to All-Opt− GBDT

Figure 32: SEV− optimization performance for gradient boosting trees on German Credit

(a) SEV+ counts across methods (b) L2 LR SEV+ to All-Opt+ LR

Figure 33: SEV+ Optimization performance for linear classifiers on FICO
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(a) L1 LR SEV+ to All-Opt+ LR (b) L2 LR SEV+ to Vol-Opt LR

Figure 34: SEV+ Optimization performance for linear classifiers on FICO (cont.)

(a) SEV− counts across methods (b) L2 LR SEV− to All-Opt− LR (c) L1 LR SEV− to All-Opt− LR

Figure 35: SEV− optimization performance for linear classifiers on FICO

(a) SEV+ counts across methods (b) MLP to All-Opt+ MLP

Figure 36: SEV+ optimization performance for multi-layer perceptions on FICO
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(a) SEV− counts across methods (b) MLP to All-Opt− MLP

Figure 37: SEV− optimization performance for multi-layer perceptions on FICO

(a) SEV+ counts across methods (b) GBDT to All-Opt+ GBDT

Figure 38: SEV+ optimization performance for gradient boosting trees on FICO

(a) SEV− counts across methods (b) GBDT to All-Opt− GBDT

Figure 39: SEV− optimization performance for gradient boosting trees on FICO
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(a) SEV+ counts across methods (b) L2 LR SEV+ to All-Opt+ LR

Figure 40: SEV+ Optimization performance for linear classifiers on Diabetes

(a) L1 LR SEV+ to All-Opt+ LR (b) L2 LR SEV+ to Vol-Opt LR

Figure 41: SEV+ Optimization performance for linear classifiers on Diabetes(cont.)

(a) SEV− counts across methods (b) L2 LR SEV− to All-Opt− LR (c) L1 LR SEV− to All-Opt− LR

Figure 42: SEV− optimization performance for linear classifiers on Diabetes
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(a) SEV+ counts across methods (b) MLP to All-Opt+ MLP

Figure 43: SEV+ optimization performance for multi-layer perceptions on Diabetes

(a) SEV− counts across methods (b) MLP to All-Opt− MLP

Figure 44: SEV− optimization performance for multi-layer perceptions on Diabetes

(a) SEV+ counts across methods (b) GBDT to All-Opt+ GBDT

Figure 45: SEV+ optimization performance for gradient boosting trees on Diabetes
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(a) SEV− counts across methods (b) GBDT to All-Opt− GBDT

Figure 46: SEV− optimization performance for gradient boosting trees on Diabetes
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C.3 Local Explanations Comparison

In this section, we show how LIME-C, SHAP-C, DiCE, and SEV− each explain a fixed GBDT reference classifier across
different datasets. These plots are analogous to those in Figure 4b. These figures do not include models optimized for SEV.

(a) Adult Dataset (b) COMPAS Dataset (c) FICO Dataset

(d) German Credit Dataset (e) MIMIC Dataset* (f) Diabetes Dataset

Figure 47: The flip counts for different local explanations in different datasets (continued)

* Values for DiCE are not plotted for MIMIC, as after one week of running it still had not generated counterfactual
explanations. Additional details are shown in Table 5. Figure 47 shows that the local feature importance scores created by
LIME-C and SHAP-C do not lead to sparse explanations. Some of the explanations need more than 5 features to explain one
prediction. SEV− and DiCE, on the other hand, do generate sparse explanations.
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D Local Explanation Time Comparsion between Kernel SHAP and SEV−

Here, we compare the time required to generate a local explanation for our method and KernelSHAP. We use GBDT as the
baseline model and evaluate the median explanation runtime on queries in the test set.

Figure 48 and Table 25 give additional information on the runtime distribution across queries for KernelSHAP and SEV−.
We see that for 3 out of the 6 datasets in which KernelSHAP is faster than SEV− for explaining all queries, the total SEV−

runtime is skewed by a small number of queries. In all cases, with SEV−, a greater proportion of queries can be explained in
less than 0.1 seconds than with KernelSHAP.

Dataset Methods
max single

query
explanation time

% of query
explanation time

less than 0.1s

% of query
explanation time

less than 0.5s

% of query
explanation time

less than 1s

Adult SEV− 0.18 99.12 100.00 100.00
KernelSHAP 0.48 83.44 100.00 100.00

German SEV− 0.83 88.46 98.08 100.00
KernelSHAP 0.20 5.66 100.00 100.00

MIMIC SEV− 0.58 97.84 99.78 100.00
KernelSHAP 0.18 1.94 100.00 100.00

FICO∗ SEV− 69.05 45.34 61.78 63.05
KernelSHAP 0.19 0.00 100.00 100.00

COMPAS SEV− 0.01 100.00 100.00 100.00
KernelSHAP 0.00 100.00 100.00 100.00

Diabetes SEV− 103.03 74.70 94.25 94.93
KernelSHAP 0.20 11.26 100.00 100.00

Table 25: Time comparison between KernelSHAP and SEV−. The red parts emphasize that KernelSHAP has a smaller
proportion of queries explained less than 0.1s. (*) For the FICO dataset, we set the max depth for SEV− search to be 6, and
we observe that more than half (61.78%) of the queries take less than 0.5s to generate the SEV− explanations.
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(a) Adult Dataset (b) COMPAS Dataset

(c) FICO Dataset (d) German Dataset

(e) MIMIC Dataset (f) Diabetes Dataset

Figure 48: Time consumption distribution between KernelSHAP and SEV− less than 1 second
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E The performance of All-Opt®

This section will show that All-Opt® can be applied in different datasets. We use LR as the baseline model and compare the
SEV® distribution, and the proportion of unreachable queries between L2 LR and All-Opt® LR for the Adult, COMPAS,
MIMIC, and German Credit datasets. For Adult Dataset, age, marital-status, relationship, race, sex,
native-country and occupation are considered as restricted features. For MIMIC Dataset, age and preiculos
are considered restricted features. For COMPAS Dataset, gender=female and age are restricted features. For the
German Credit Dataset, Age, Personal-status-sex, and Job are considered restricted. The results for test Accuracy,
AUC, mean SEV®, and the proportion of unreachable cases in explanations are shown in Tables 49a, 50a, 51a, and 52a.
For unexplainable queries, we consider the sparse explanations as the number of features used in the model. Figures 49b,
50b, 51b, and 52b show the SEV distribution changes before and after optimization. Figures 49c, 50c, 51c, and 52c show
the proportion of features used in each query before optimization and the restricted usage of features after optimization
(restricted features are marked as red). All of the results show that All-Opt® performs well in avoiding unexplainable queries
and can still effectively lower SEV.

Before
Optimization

After
Optimization

Test Acc 0.85± 0.00 0.84± 0.00
Test AUC 0.90± 0.00 0.90± 0.00

Mean SEV® 2.04± 0.06 1.02± 0.01
Unexplainable

queries(%) 5.40± 0.95 0

(a) All-Opt® Summary Result (b) SEV® Distribution with and without All-Opt®

(c) Feature used in explanations( %)

Figure 49: All-Opt® performance on Adult Dataset
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Before
Optimization

After
Optimization

Test Acc 0.89± 0.00 0.89± 0.00
Test AUC 0.80± 0.01 0.74± 0.04

Mean SEV® 1.26± 0.0 1.05± 0.04
Unexplainable

queries(%) 0.35± 0.32 0

(a) All-Opt® Summary Result (b) SEV® Distribution with and withoutAll-Opt®

(c) Feautre used in explanations(%)

Figure 50: All-Opt® performance in MIMIC Dataset

Before
Optimization

After
Optimization

Test Acc 0.68± 0.01 0.65± 0.01
Test AUC 0.73± 0.01 0.72± 0.01

Mean SEV® 3.20± 0.26 1.28± 0.38
Unexplainable

queries(%) 34.4± 4.4 3.35± 6.2

(a) All-Opt® Summary Result (b) SEV® Distribution with and without All-Opt®

(c) Feautre used in explanations(%)

Figure 51: All-Opt® performance in COMPAS Dataset
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Before
Optimization

After
Optimization

Test Acc 0.74± 0.03 0.76± 0.03
Test AUC 0.79± 0.05 0.78± 0.04

Mean SEV® 1.27± 0.05 1.05± 0.06
Unexplainable

Queries(%) 0 0

(a) All-Opt® Summary Result (b) SEV® Distribution under All-Opt®

(c) Feautre used in explanations(%)

Figure 52: All-Opt® performance in German Credit Dataset
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F Proof of Theorem 5

Theorem 5

Consider a linear classifier, f(x) := 1[(β0 +
∑p

j=1 βjxj) > 0], where ∀j, βj ̸= 0, and for reference x̃, we have f(x̃) = 0

(i.e., reference predicted as negative). Let gref(β) = β0 +
∑p

j=1 βj x̃j be the raw score of the classifier f at reference x̃. For
all k ∈ {2, 3, · · · , p}, the volume of region Vk in the input space Rp with SEV+ = k is:

Vk = ck ·
p∏

j=1

∣∣∣∣gref(β)

βj

∣∣∣∣ , (10)

where ck is a finite constant unrelated to the β’s.

Proof:

Consider a simple linear classifier h(x) := 1[(−1+
∑p

j=1 xj) > 0]. Let x̃ be a reference where the reference feature values
are all 0, i.e., x̃ = 0. Consider a point x predicted as positive by the classifier h. The SEV+ of x is greater or equal to 2 if
and only if xj ≤ 1,∀j ∈ {1, · · · , p}. Let us show both directions.

If: If xj ≤ 1,∀j ∈ {1, · · · , p}, for any vertex on the SEV hypercube one step away from the origin, which can be
represented as x(j)

v = ej ⊙ xquery + (1− ej)⊙ x̃, we have h(x
(j)
v ) = 1[xj − 1 > 0] = 0. This suggests that any vertex

one step away from the origin fails to flip the prediction, which means SEV+≥ 2.

Only if: Suppose there exists k such that xk > 1, then for the vertex x
(k)
v = ek ⊙ xquery + (1 − ek) ⊙ x̃ in the SEV

hypercube, h(x(k)
v ) = 1[−1 + xk > 0] = 1, which flips the sign of prediction but with SEV+= 1.

Therefore, the region with SEV+≥ 2 is the polytope comprised by the hyperplanes (−1 +
∑p

j=1 xj) > 0, and
xj ≤ 1,∀j ∈ {1, · · · , p}. The volume of this polytope is 1 − 1

p! =
p!−1
p! (a unit hypercube whose volume is 1 with one

corner cut off, and the volume of the corner is 1
p! ).

As the corner represents a unit simplex, its volume is well known to be 1/p!. For completeness, however, we supply
a brief proof. Define the corner as a set S := {(x1, · · · , xp)

T |0 ≤ xi ≤ 1,
∑p

m=1 xm ≤ 1}. Consider another set
T := {(y1, · · · , yp)T |0 ≤ y1 ≤ y2 ≤ · · · ≤ yp ≤ 1}. There exists an invertible linear transformation, represented by
a matrix A := (amj), where amm = 1, amj = −1 for m = j + 1, and amj = 0 otherwise, that defines a one-to-one
mapping between points in S and points in T . To see this, consider a point y = (y1, · · · , yp)T ∈ T and its mapping
Ay = (y1, y2 − y1, · · · , yp − yp−1)

T . The monotonicity of the yj ensures that each of these entries lies in [0, 1]. And the
sum of the entries in Ay is simply

∑p
j=1 yj = yp ≤ 1. Therefore Ay ∈ S and Vol(S) = Det(A)Vol(T ). Vol(T ) = 1

p!

because the volume is the same as the probability that a random permutation is in sorted order, and Det(A) = 1 since A is
lower triangular with all diagonal elements equal to 1. Thus, Vol(S) = 1

p! .

Within this polytope (unit cube with one corner cut off), suppose the proportion of the region with SEV+= k is qk, then the
size of this region is qk(p!−1)

p! .

Define ck := qk(p!−1)
p! . For a linear classifier, f(x) := 1[(β0 +

∑p
j=1 βjxj) > 0], where for all j, and f(x̃) = 0, let gref(β)

as the raw output of the linear classifier f , we can apply change of variables: x′
j = −βj(xj−x̃j)

gref(β) for all j ∈ {1, · · · , p}.
Then, the classifier becomes 1[(−1 +

∑p
j=1 x

′
j) > 0] (the greater than sign remains because we assume f(x̃) = 0, i.e.,

gref(β) = β0 +
∑p

j=1 βj x̃j < 0), and the reference value x̃′
j becomes 0. This is the same as the setting of g mentioned

above. Hence, the volume of the region with SEV+= k after the change of variables is ck. Since the change of variable is a
linear transformation, the volume of the same region before transformation can be obtained by dividing the new volume
with the absolute value of the determinant of the transformation matrix, i.e.,
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Vk = ck/

∣∣∣∣∣∣
p∏

j=1

− βj

gref(β)

∣∣∣∣∣∣
= ck ·

p∏
j=1

∣∣∣∣gref(β)

βj

∣∣∣∣ ,
where, as mentioned above, ck = qk(p!−1)

p! is a finite constant unrelated to the β’s.
□
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G The difference between explanations of Chen et al. (2018) and sparse explanation value

The work of Chen et al. (2018) is fundamentally different from ours in several ways.

• First, they impose that each query has an explanation of size k (manually determined), whereas SEV varies across
queries and is often 1.

• Second, their explanations are designed (i.e., optimized) to set features outside the explanation to 0. Note that setting
many features to 0 is likely to be out of distribution. Thus, predictions made at these points are not meaningful. (For
instance, they would set all dummy categorical variables of a data point to 0, which means the point is no longer in any
category, which is nonsensical.) Our SEV− instead considers what would happen if we set positive features inside the
explanation to a reference value, leaving all other features the same; these points are more likely to be in distribution.
SEV+ starts from a reference (which, when chosen properly, is in distribution), and some features are set to the feature
value of the data point.

• Third, SEV can be used for many different kinds of models, whereas their approach must be applied only to differentiable
models, such as neural networks. (It cannot be used for decision trees, for example.) Because they use a complex neural
network as their model, the computation within the explanation is a black box – we do not know how the features are
combined to form a prediction.

• Fourth, their approach requires optimization of their sparsity metric, which hurts accuracy (see Figure 53a to 54f). As
we show in Appendix C.1, SEV is already small for black box models as shown in Section 5.1, so optimizing it might
not even be necessary.

(a) The relationship between accuracy and k for L2X
Model in Adult

(b) The relationship between AUC and k for L2X
Model in Adult

(c) The relationship between accuracy and k for L2X
Model in German Credit

(d) The relationship between AUC and k for L2X
Model in German Credit

Figure 53: The relationship between model performance and k in L2X Model
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(a) The relationship between accuracy and k for L2X
Model in COMPAS

(b) The relationship between AUC and k for L2X
Model in COMPAS

(c) The relationship between accuracy and k for L2X
Model in MIMIC

(d) The relationship between AUC and k for L2X
Model in MIMIC

(e) The relationship between accuracy and k for L2X
Model in FICO

(f) The relationship between AUC and k for L2X Model
in FICO

Figure 54: The relationship between model performance and k in L2X Model (cont.)
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H Examples for SEV+ and SEV− explanations

In this section, we show some examples of SEV+ and SEV− explanations. Tables 26 to 29 show a few SEV+ and SEV−

calculations for various queries. For SEV+ explanations, we show the query, the reference, and values that are aligned to the
query (from the reference). For SEV−, we show the values aligned to the reference (from the query). For instance, taking
the first query of Table 26, the first row represents the query, and the second row is the reference. The following two rows
show different SEV+ explanations: if we start from the reference and change its 9.6 year education to the query’s 13 years,
and change the occupation from administrative clerical to executive manager, the income will be predicted as over 50K. Or,
if, starting from the reference, education year is changed to 13, and the marital status is changed to civilian spouse, then
income will be predicted as over 50K. The next three lines are the SEV− explanations: starting from the query, if we change
either the year of education, the hours worked per week, or the marital status from the query values to the reference values,
the income will be predicted as less than 50K.

Table 26: Examples of SEV+/SEV− Explanations for Adult Income Dataset

Type age education
year capital gain capital loss hour per week workclass marital status occupation relationship race

Query 29 13 0 0 55 Private Married-civ-spouse Exec-managerial Husband Black
Reference 36.78 9.6 148.75 53.14 38.84 Private Never-married Adm-clerical Not-in-family White

SEV+

Explanations — 13 — — — — — Exec-managerial — —

— 13 — — — — Married-civ-spouse — — —
SEV−

Explanations — 9.6 — — — — — — — —

— — — — — — Never-married — — —
— — — — 38.84 — — — — —

Query 50 9 3103 0 40 Private Married-civ-spouse Craft-repair Husband White
Reference 36.78 9.6 148.75 53.14 38.84 Private Never-married Adm-clerical Not-in-family White

SEV+

Explanation — — 3103 — — — Married-civ-spouse — — —

SEV−

Explanation 36.78 — — — — — — — — —

— — — — — — Never-married — — —
— — — — — — — — — —
— — 148.75 — — — — — — —

Query 30 13 0 1902 40 Private Married-civ-spouse Adm-clerical Husband White
Reference 36.78 9.6 148.75 53.14 38.84 Private Never-married Adm-clerical Not-in-family White

SEV+

Explanation — — — 1902 — — Married-civ-spouse — — —

SEV−

Explanation — — — — — — Never-married — — —

— — — 53.14 — — — — — —
Query 45 10 0 0 65 Federal-gov Married-civ-spouse Transport-moving Husband White

Reference 36.78 9.6 148.75 53.14 38.84 Private Never-married Adm-clerical Not-in-family White
SEV+

Explanation — — — — 65 Federal-gov Married-civ-spouse — — —

— — 0 — 65 — Married-civ-spouse — — —
SEV−

Explanation — — — — — — Never-married — — —

Query 41 13 0 0 12 Private Married-civ-spouse Sales Wife White
Reference 36.78 9.6 148.75 53.14 38.84 Private Never-married Adm-clerical Not-in-family White

SEV+

Explanation — 13 — — — — Married-civ-spouse — Wife —

SEV−

Explanation — 9.6 — — — — — — — —

— — — — — — Never-married — — —
— — — — — — — — Not-in-family —
— — 148.75 — — — — — — —



Sparse and Faithful Explanations Without Sparse Models

Table 27: Examples of SEV+/SEV− Explanations for MIMIC Dataset

Type age preiculos gcs heartrate
min

meanbp
min

resprate
min

resprate
max

tempc
min

tempc
max

urine
output mechvent

Query 59.2 0.4 3.0 49.0 54.0 9.0 16.0 34.3 36.3 240.0 1.0
Reference 72.8 2215.9 13.9 70.9 59.4 12.2 26.9 36.1 37.5 2024.1 0.0

SEV+

Explanation — — 3.0 — — — — 34.3 36.3 240.0 —

SEV−

Explanation — — 13.9 — — — — — — — —

— — — — — — — 36.1 — — —
— — — — — — — — 37.5 — —
— — — — — — — — — 2024.1 —
— — — — — — — — — — 0.0

Query 85.8 1.6 15.0 87.0 61.0 18.0 26.0 35.9 36.4 183.0 1.0
Reference 72.8 2215.9 13.9 70.9 59.4 12.2 26.9 36.1 37.5 2024.1 0.0

SEV+

Explanation 85.8 1.6 — — — 18.0 — — 36.4 183.0 1.0

SEV−

Explanation 72.8 — — — — — — — — — —

— — — — — 12.2 — — — — —
— — — — — — — — — 2024.1 —
— — — — — — — — — — 0.0

Query 87.4 6953.8 3.0 38.0 47.0 11.0 45.0 35.9 37.4 852.0 1.0
Reference 72.8 2215.9 13.9 70.9 59.4 12.2 26.9 36.1 37.5 2024.1 0.0

SEV+

Explanation 87.4 6953.8 3.0 38.0 — — 45.0 — — 852.0 —

87.4 — 3.0 38.0 — — 45.0 — — 852.0 1.0
SEV−

Explanation 72.8 — — — — — — — — — —

— — 13.9 — — — — — — — —
— — — 70.9 — — — — — — —
— — — — — — 26.9 — — — —
— — — — — — — — — 2024.1 —
— — — — — — — — — — 0.0

Query 78.7 0.5 15.0 17.0 21.0 20.0 35.0 32.3 35.2 8.0 1.0
Reference 72.8 2215.9 13.9 70.9 59.4 12.2 26.9 36.1 37.5 2024.1 0.0

SEV+

Explanation — — — 17.0 21.0 — — — — 8.0 —

— — — 17.0 — — — 32.3 35.2 — —
— — — 17.0 — — — 32.3 — 8.0 —
— — — 17.0 — — — — 35.2 8.0 —
— — — — 21.0 — — 32.3 — 8.0 —
— — — — 21.0 — — — 35.2 8.0 —
— — — — — 20.0 — 32.3 35.2 — —
— — — — — — — 32.3 35.2 8.0 —

SEV−

Explanation — — — — — — — 36.1 — 2024.1 0.0
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Table 28: Examples SEV+/SEV− Explanations for FICO Dataset

Type
External

RiskEstimate
MSinceMost

RecentTradeOpen
NumSatis-

factoryTrades
PercentTrades

NeverDelq
MaxDelq2Public

RecLast12M
PercentIn-
stallTrades

NumInq
Last6M

NumInqLast6
Mexcl7days

NetFraction
RevolvingBurden

NumRevolving
TradesWBalance

Query 79 138 1 100 7 100 0 0 Missing Missing
Reference 72.21 9.2 21.1 89.98 5.36 29.82 0.6 0.56 22.26 2.95

SEV+

Explanation — 138 — — — — — — — —

— — — — — 100 — — — —
SEV− Explanation — 9.2 — — — — — — — —

— — — — — 29.82 — — — —
Query 60 8 55 95 4 34 1 1 54 6

Reference 72.21 9.2 21.1 89.98 5.36 29.82 0.6 0.56 22.26 2.95
SEV+

Explanation — — — — — — — — 54 —

SEV−

Explanation 72.21 — — — — — — — — —

— — — — — — — — 22.26 —
Query 59 12 18 85 2 30 10 10 95 5

Reference 72.21 9.2 21.1 89.98 5.36 29.82 0.6 0.56 22.26 2.95
SEV+

Explanation — — — — — — 10 — — —

— — — — — — — — 95 —
SEV−

Explanation 72.21 — — — 5.36 — 0.6 0.56 22.26 —

Query 57 4 9 43 0 14 6 6 43 3
Reference 72.21 9.2 21.1 89.98 5.36 29.82 0.6 0.56 22.26 2.95

SEV+

Explanation — — — 43 — — — — — —

— — — — — — 6 — — —
SEV−

Explanation 72.21 — — 89.98 5.36 — 0.6 — 22.26 —

Query 82 61 3 100 7 33 0 0 50 1
Reference 72.21 9.2 21.1 89.98 5.36 29.82 0.6 0.56 22.26 2.95

SEV+

Explanation — 61 — — — — — — — —

SEV−

Explanation — 9.2 21.1 — — — — — — —

— 9.2 — — — — — — 22.26 —
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Table 29: Examples SEV+/SEV− Explanations for German Credit Dataset. 0DM in the Checking account status column
means that checking amount has no Deutsche marks (DM) in it, and 0-200DM means that the checking amount has 0-200
Deutsche marks (DM).

Type Duration Credit Amount Age Checking
account status Purpose Other debtors Housing

Query 18 4380 35 0DM car(new) none own

Reference 19.21 2985.46 36.22
no checking

account radio/television none own

SEV+

Explanation — — — 0DM — — —

— — — — car(new) — —
— 2985.46 — — — — —

SEV−

Explanation — — —
no checking

account — — —

— — — — radio/television — —
Query 24 2325 32 0DM car(new) none own

Reference 19.21 2985.46 36.22
no checking

account radio/television none own

SEV+

Explanation — — — 0DM — — —

24 — — — — — —
— — — — car(new) — —

SEV−

Explanation — — —
no checking

account radio/television — —

Query 12 585 20 0-200DM radio/television co-applicant rent

Reference 19.21 2985.46 36.22
no checking

account radio/television none own

SEV+

Explanation — 585 — — — — —

SEV−

Explanation — — — — — none —

— — 36.22 — — — —
— — — — — — own

Query 36 2323 24 0-200DM radio/television none rent

Reference 19.21 2985.46 36.22
no checking

account radio/television none own

SEV+

Explanation 36 — — — — — —

SEV−

Explanation 19.21 — — — — — —

— — 36.22 — — — —


