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Abstract

The problem of minimizing the sum of n func-
tions in d dimensions is ubiquitous in ma-
chine learning and statistics. In many appli-
cations where the number of observations n
is large, it is necessary to use incremental or
stochastic methods, as their per-iteration cost
is independent of n. Of these, Quasi-Newton
(QN) methods strike a balance between the
per-iteration cost and the convergence rate.
Specifically, they exhibit a superlinear rate
with O(d2) cost in contrast to the linear rate
of first-order methods with O(d) cost and
the quadratic rate of second-order methods
with O(d3) cost. However, existing incremen-
tal methods have notable shortcomings: In-
cremental Quasi-Newton (IQN) only exhibits
asymptotic superlinear convergence. In con-
trast, Incremental Greedy BFGS (IGS) offers
explicit superlinear convergence but suffers
from poor empirical performance and has a
per-iteration cost of O(d3). To address these
issues, we introduce the Sharpened Lazy Incre-
mental Quasi-Newton Method (SLIQN) that
achieves the best of both worlds: an explicit
superlinear convergence rate, and superior em-
pirical performance at a per-iteration O(d2)
cost. SLIQN features two key changes: first,
it incorporates a hybrid strategy of using both
classic and greedy BFGS updates, allowing it
to empirically outperform both IQN and IGS.
Second, it employs a clever constant multi-
plicative factor along with a lazy propagation
strategy, which enables it to have a cost of
O(d2). Additionally, our experiments demon-
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strate the superiority of SLIQN over other in-
cremental and stochastic Quasi-Newton vari-
ants and establish its competitiveness with
second-order incremental methods.

1 INTRODUCTION

We consider the finite sum minimization problem,

x⋆ = arg min
x∈Rd

1

n

n∑
i=1

fi(x), (P)

where each fi is µ-strongly convex, L-smooth and has
a Lipschitz continuous Hessian. The canonical example
of (P) is the empirical risk minimization problem in
supervised learning, where x denotes model parameters,
n is the number of training samples, and fi denotes the
loss incurred by the ith sample. Other instances of this
problem arise in maximum likelihood estimation (Li
et al. (2021, 2020)), control theory (Wu et al. (2018)),
and unsupervised learning (Song and Ermon (2020)).
In many applications, (P) is both high-dimensional
(large d) and data-intensive (large n).

When n is large, it becomes infeasible to process the en-
tire dataset at every iteration, thus making classical al-
gorithms such as gradient descent or Newton’s method
impractical. Consequently, stochastic and incremental
variants of these algorithms have been widely adopted
for such problems, because their per-iteration complex-
ity is independent of n. While first-order methods
like stochastic gradient descent (SGD) enjoy a low per-
iteration complexity of O(d), their convergence rates,
even with enhancements like variance reduction or ac-
celeration (Defazio et al. (2014); Johnson and Zhang
(2013)), remain linear at best. In contrast, second-order
methods like Newton Incremental Method (NIM) by
Rodomanov and Kropotov (2016), achieve a superlin-
ear rate but at a O(d3) cost, which is prohibitively
large for high-dimensional problem settings.

*Equal Contribution
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Stochastic and incremental Quasi-Newton (QN) meth-
ods strike a balance between the computational ef-
ficiency of SGD and the fast convergence rate of
NIM. Specifically, the Incremental Quasi-Newton (IQN)
method from Mokhtari et al. (2018), was the first
QN method to achieve a superlinear convergence rate
with a per-iteration complexity of O(d2). However,
the analysis presented in Mokhtari et al. (2018) was
asymptotic and did not include an explicit rate of con-
vergence. Typically, explicit rates are preferred over
asymptotic ones as they enable a more fine-grained com-
parison among algorithms. For instance, with ρ ∈ (0, 1),

both O(ρt2) and O(ρt ln(t)) qualify as superlinear rates.

However, the former, O(ρt2), is faster than the latter,
O(ρt ln(t)). Furthermore, the mathematical expression
of ρ helps determine the rate’s dependence on problem
parameters like condition number and dimension.

The Incremental Greedy BFGS (IGS) method by Gao
et al. (2020) aimed to address this issue by incorporat-
ing the greedy updates, first introduced in Rodomanov
and Nesterov (2021a), into the IQN framework. While
IGS achieves an explicit superlinear convergence rate
of O(e−t2/n2

), it suffers from several major drawbacks:
First, like NIM, it has a large per-iteration cost of
O(d3). This stems from IGS’s Hessian updates not be-
ing low ran, which precludes an efficient evaluation of
the Hessian inverse. Since this complexity mirrors that
of NIM, it undermines the computational advantages of
incorporating QN updates. Second, the empirical per-
formance of IGS was not studied in Gao et al. (2020),
and our experiments (ref. Figure 2) indicate that on
multiple datasets, IGS severely underperforms com-
pared to IQN. Finally, IGS lacked theoretical analysis
to support its lemmas and theorems. In this light, we
ask the following question:

Can we devise an incremental QN method with a
per-iteration complexity of O(d2), achieving the best-

known incremental convergence rate of O(e−t2/n2

), and
demonstrating superior empirical performance?

We put forth the Sharpened Lazy IQN (SLIQN) method
that meets all these objectives. SLIQN is inspired by
the recent work of Jin et al. (2022), which showcased
the superior performance of sharpened updates over
greedy updates in the non-incremental setting. We first
show that a direct incorporation of sharpened updates
into the IQN framework does not work because the
Hessian update matrices corresponding to sharpened
updates are not low rank, and therefore the resulting
Sharpened IQN (SIQN) method incurs a per-iteration
cost of O(d3). We then propose our novel Sharpened
Lazy IQN (SLIQN) algorithm that overcomes this limi-
tation by modifying the updates of SIQN using a clever
constant multiplicative factor and incorporating a lazy
propagation strategy. The resulting algorithm incurs a

per-iteration complexity of O(d2) and achieves a con-

vergence rate of O(ρt2/n2

), where ρ := 1−µ/dL, which
is the best-known rate in the incremental setting. We
also establish an explicit linear rate of convergence of
the Hessian approximation to the true Hessian. More-
over, in contrast to IGS, we provide a comprehensive
theoretical analysis. Furthermore, we demonstrate the
superior empirical performance of SLIQN as compared
to IQN, IGS, and other state-of-the-art incremental
and stochastic QN methods.* Notably, SLIQN demon-
strates performance competitive to NIM, which is a
second-order algorithm that utilizes the full Hessian
information when taking the descent step.

2 RELATED WORK

In recent decades, several works have developed first-
order, QN, and second-order methods for stochastic
or incremental settings. Typically, the goal for first-
order methods is to achieve a linear rate at a O(d)
cost, while for QN and second-order methods, the goals
are to achieve superlinear rates at costs of O(d2) and
O(d3), respectively. These methods cater to different
objectives: first-order methods are preferred for low-
precision solutions, due to their lower computational
cost, whereas higher-order methods are more effective
for high-precision solutions, due to their faster rate.

Early works like Mokhtari and Ribeiro (2014, 2015);
Byrd et al. (2016) were only successful in developing
QN methods with sub-linear convergence guarantees.
Subsequent works like Moritz et al. (2016); Chang et al.
(2019); Derezinski (2023) employed various acceleration
and variance reduction techniques to recover a linear
rate. IQN by Mokhtari et al. (2018) was the first QN
algorithm to achieve an asymptotic superlinear rate
of convergence. IGS by Gao et al. (2020) employed
greedy updates, introduced in Rodomanov and Nes-
terov (2021a), within the IQN framework to derive a
explicit superlinear rate, albeit at a large O(d3) per-
iteration cost. Another recent work, Chen et al. (2022),
put forth a QN style algorithm with a cost of O(d)
for Generalized Linear Models (GLMs). However, the
method only enjoys a linear rate of convergence, and
is inefficient for general functions with a cost of O(d3).

Other works have focused on developing first-order and
second-order methods for stochastic or incremental set-
tings. First order methods like Defazio et al. (2014);
Johnson and Zhang (2013) have employed variance
reduction techniques to derive methods with a linear
rate of convergence. On the second-order front, recent
works include the Newton Incremental method (NIM)
by Rodomanov and Kropotov (2016) and Stochastic

*The code for the experiments is available on the reposi-
tory: https://github.com/aakashlahoti/sliqn.
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Newton (SN) by Kovalev et al. (2019). While SN and
NIM are both Newton-like methods with a per-iteration
complexity of O(d3), NIM has a fast superlinear con-
vergence rate while SN only enjoys a linear rate of
convergence. The only setting under which SN has
been shown to converge superlinearly is with a full
batch of size n. We have consolidated the memory
usage, computational cost, and convergence rates of
principal-related algorithms in Table 1.

In a different line of work, Newton-LESS from Derezin-
ski et al. (2021) utilized sketching algorithms like New-
ton Sketch Pilanci and Wainwright (2016, 2017) to at-
tain a local linear convergence rate. Additional works
such as Gonen et al. (2016); Liu et al. (2019) have used
second-order information to accelerate SVRG, which is
a first-order method. However, both methods were only
able to attain an improved linear rate of convergence.

3 NOTATION AND
PRELIMINARIES

Vectors (matrices) are denoted by lowercase (uppercase)
bold alphabets. The i-th standard basis vector of Rd is
denoted by ei ∈ Rd for i ∈ [d] := {1, . . . , d}. We define
the index function it := 1+(t−1) mod n. The symbol 0
denotes the all-zero matrix or vector, whose size can be
inferred from the context. We use X ⪰ 0 and X ≻ 0
to denote that the symmetric matrixX is positive semi-
definite and positive definite, respectively. Likewise,
the notation X ⪰ Y (X ≻ Y ) denotes X − Y ⪰ 0
(X − Y ≻ 0). For vectors u,v ∈ Rd, we denote the in-
ner product by ⟨u,v⟩ := uTv and the Euclidean norm
by ∥u∥ :=

√
⟨u,u⟩. For matrices X,Y ∈ Rd×d, we de-

fine ⟨X,Y ⟩ := Tr(XTY ), and we let ∥X∥ denote the
spectral norm of the matrix. Given a convex function
f : Rd → R, we define the norm of the vector y with
respect to ∇2f(x) as ∥y∥x :=

√
⟨y,∇2f(x)y⟩. For a

function f , we denote µ as the strong convexity param-
eter, L as the smoothness parameter, L̃ as the Hessian
Lipschitz continuity parameter, and M = L̃µ− 3

2 as the
strong self-concordance parameter.

3.1 Quasi-Newton (QN) Methods

We introduce QN methods as an iterative algorithm
to optimize the problem (P) with n = 1. At iteration
t ∈ Z+, given the current iterate xt and the positive
definite Hessian approximation Bt of ∇2f(xt), the
next iterate xt+1 is computed as,

xt+1 = xt − (Bt)−1∇f(xt). (1)

The Hessian approximation for the next iteration Bt+1,
is obtained by applying a constant rank update to Bt.
The precise update distinguishes the exact type of QN

algorithm, such as BFGS, DFP, or SR1 (Nocedal and
Wright (1999)). The efficiency of QN methods, O(d2),
over second-order methods, O(d3), stems from the fact
that the Bt update is low rank, which allows us to use
Sherman-Morrison formula (Appendix A) to efficiently
evaluate (Bt+1)−1 from (Bt)−1 in O(d2) cost.

Though in the remainder of the paper, we are pri-
marily concerned with BFGS updates, all the follows
can also be extended to the entire restricted Broyden
class (Appendix H). Given a matrix K and its approx-
imation B, the generalized BFGS update refines this
approximation along direction u ∈ Rd as,

BFGS(B,K,u) = B+ := B − Buu
TB

⟨u,Bu⟩
+
KuuTK

⟨u,Ku⟩
.

(2)

Setting Kt =
∫ 1

0
∇2f(xt + τ(xt+1 − xt))dτ , and ut =

st := xt+1 − xt yields the classical BFGS update,

Bt+1 = BFGS(Bt,Kt,ut)

= Bt − B
tst(st)TBt

⟨st,Btst⟩
+
yt(yt)T

⟨st,yt⟩
, (3)

where yt :=K
tst = ∇f(xt+1)−∇f(xt). This update

seeks to approximate the Hessian along the Newton
direction st and has been shown by Jin and Mokhtari
(2022); Rodomanov and Nesterov (2021c,b) to achieve
a superlinear convergence rate. Furthermore, since
BFGS makes a rank 2 update to Bt, we can use the
Sherman-Morrison formula twice to evaluate (Bt+1)−1

from (Bt)−1 in O(d2) cost.

In contrast to classical BFGS update, the greedy BFGS
update by Rodomanov and Nesterov (2021a) setsKt =
∇2f(xt), and defines the greedy vector,

ū(Bt,Kt) := argmax
u∈{ei}d

i=1

⟨u,Btu⟩
⟨u,Ktu⟩ , (4)

which results in Bt+1 = BFGS(Bt,Kt, ūt(Bt,Kt)).
Greedy BFGS, similar to classic BFGS, exhibits a su-
perlinear rate of convergence. However, unlike classic
BFGS, it can guarantee convergence in the σ sense.
Specifically, the Hessian approximation error,

σ(Bt,Kt) := ⟨(Kt)−1,Bt −Kt⟩, (5)

decays linearly with t. In practice, a trade-off exists be-
tween the two updates. Greedy BFGS dedicates initial
iterations to construct a reliable Hessian approximation.
In contrast, classic BFGS gains an initial advantage
because it updates along the Newton direction. Greedy
BFGS only outperforms classic BFGS if it has enough
time to build an accurate approximation before conver-
gence. Sharpened BFGS proposed by Jin et al. (2022)
incorporated both classic and greedy BFGS updates, to
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Algorithm Memory Computation cost Convergence Rate Limit
SN O(d2) O(d3) Linear Non-asymptotic
NIM O(nd+ d2) O(d3) Superlinear Non-asymptotic
IQN O(nd2) O(d2) Superlinear Asymptotic
IGS O(nd2) O(d3) Superlinear Non-asymptotic

SIQN(This work) O(nd2) O(d3) Superlinear Non-asymptotic
SLIQN(This work) O(nd2) O(d2) Superlinear Non-asymptotic

Table 1: Comparison of the maximum memory requirement, computation cost (per iteration), convergence rate,
and the limit of attainment of the convergence rate for different algorithms.

achieve the best of both updates: an explicit superlin-
ear convergence of xt, a linear convergence of Bt and
no initial “ramp-up” phase to build the approximation.

3.2 Incremental Quasi-Newton (IQN)

We now introduce IQN by Mokhtari et al. (2018). For
each iteration t ≥ 1, IQN maintains tuples of the form
(zti ,∇fi(zti),Bt

i ) for each index i ∈ [n]. Here zti ∈ Rd is
the iterate corresponding to the function fi, ∇fi(zti) is
the gradient of fi at z

t
i , and B

t
i is the positive definite

Hessian approximation of ∇2fi(z
t
i).

IQN begins by constructing a second-order Taylor ap-
proximation gti of each fi, centered at zt−1

i and using
the Hessian approximation Bt−1

i as,

gti(x) := fi(z
t−1
i ) + ⟨∇fi(zt−1

i ),x− zt−1
i ⟩+

1

2
⟨x− zt−1

i ,Bt−1
i (x− zt−1

i )⟩. (6)

The iterate xt is then calculated as,

xt = argmin
x

1

n

n∑
i=1

gti(x)

= (B̄t−1)−1

( n∑
i=1

Bt−1
i zt−1

i −∇fi(zt−1
i )

)
, (7)

where B̄t−1 =
∑n

i=1B
t−1
i . In every iteration t, IQN

only updates the tuple whose index is given by it =
1 + (t− 1) mod n, using the following scheme:

1. ztit = x
t, ∇fit(ztit) = ∇fit(x

t).

2. ztj = z
t−1
j , ∇fj(ztj) = ∇fj(z

t−1
j ), andBt

j = B
t−1
j ,

for all j ̸= it.

3. Bt
it
= BFGS(Bt−1

it
,Kt, ztit − z

t−1
it

), where Kt =∫ 1

0
∇2fit(z

t−1
it

+ τ(ztit − z
t−1
it

))dτ .

The per-iteration complexity of IQN: the cost of gra-
dient evaluation in (1) is O(d), the no-operation step
in (2) incurs no cost, and the BFGS step (3) has a
O(d2) cost as it is a constant rank update to B̄t

it
. To

compute the iterate xt+1, we first evaluate the inverse
of B̄t = B̄t−1 +Bt

it
−Bt−1

it
from (B̄t−1)−1 using the

Sherman-Morrison formula at a cost of O(d2). Then,
we calculate

∑n
i=1B

t
iz

t
i −∇fi(zti) from the memoized

value of
∑n

i=1B
t−1
i zt−1

i − ∇fi(zt−1
i ) in O(d2) cost.

Therefore, the overall per-iteration cost of IQN is O(d2).
Please refer to Appendix C for details.

4 PROPOSED ALGORITHM

We first introduce the SIQN method, which incorpo-
rates the sharpened updates into the IQN framework.
However, this direct incorporation results in an inef-
ficient O(d3) method. This is because, ensuring the
positive semi-definiteness of the Hessian approximation
with respect to the true Hessian results in Hessian up-
dates which are not low rank. And consequently, the
Hessian inversion incurs a large O(d3) cost. We then
propose the SLIQN algorithm that overcomes this prob-
lem by modifying the SIQN updates using a constant
corrective multiplicative factor based on the theoretical
analysis of SIQN. It then utilizes a novel lazy prop-
agation strategy to implement this factor correction
efficiently with a per-iteration cost of O(d2).

4.1 Sharpened Incremental Quasi-Newton
(SIQN)

Similar to IQN, SIQN also maintains tuples of the form
(zti ,∇fi(zti),Bt

i ) for each iteration t ≥ 1 and each index
i ∈ [n]. The iterate xt is calculated as,

xt = (B̄t−1)−1

( n∑
i=1

Bt−1
i zt−1

i −∇fi(zt−1
i )

)
, (8)

where B̄t−1 =
∑n

i=1B
t−1
i . The tuples are updated in

a deterministic cyclic order as follows:

1. ztit = x
t, ∇fit(ztit) = ∇fit(x

t).

2. ztj = z
t−1
j , ∇fj(ztj) = ∇fj(z

t−1
j ), andBt

j = B
t−1
j ,

for all j ̸= it.

To update Bt
it
, SIQN first performs the classic BFGS

update followed by the greedy update,
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Algorithm 1 Sharpened Incremental Quasi-Newton

1: Initialize: {z0i = x0}ni=1, {B0
i }ni=1 such that for

all i ∈ [n], B0
i ⪰ ∇2fi(zi)

0

2: while not converged:
3: Set current index it = (t− 1) mod n+ 1;
4: Update xt as per (8);
5: Update ztit = x

t and Bt
it
as per (3);

6: Update the tuples with index j ̸= it as ztj =

zt−1
j ,Bt

j = B
t−1
j ;

7: Increment the iteration counter t;
8: end while

3. Qt = BFGS((1+βt)
2Bt−1

it
, (1+βt)K

t, ztit−z
t−1
it

),

Bt
it
= BFGS(Qt,∇2fit(z

t
it
), ū(Qt,∇2fit(z

t
it
))),

where, Kt :=
∫ 1

0
∇2fit(z

t−1
it

+ τ(ztit − z
t−1
it

))dτ and

the scaling factor βt := M
2

∥∥ztit − zt−1
it

∥∥
zt−1
it

ensures

that before the classical BFGS update, the Hessian
approximation is positive semi-definite with respect to
the corresponding Hessian, (1+βt)

2Bt−1
it
⪰ (1+βt)K

t.
For technical details, please refer to Lemma E.1. The
pseudo-code for SIQN is provided in Algorithm 1.

We now consider the per-iteration complexity of SIQN:
the cost of gradient evaluation is O(d), the no-operation
step incurs no cost and the BFGS step can be computed
in O(d2) cost. To compute xt+1, we need to calculate
the inverse of B̄t = B̄t−1 +Bt

it
−Bt−1

it
,

Bt
it −B

t−1
it

= BFGS(Qt,∇2fit(z
t
it),

ū(Qt,∇2fit(z
t
it)))−B

t−1
it

,

= Qt − Q
tūt(ūt)TQt

⟨ūt,Qtūt⟩

+
∇2fit(z

t
it
)ūt(ūt)T∇2fit(z

t
it
)

⟨ūt,∇2fit(z
t
it
)ūt⟩

−Bt−1
it

,

= ((1 + βt)
2 − 1)Bt−1

it

− (1 + βt)
2
Bt−1

it
stits

t
it

T
Bt−1

it

⟨stit ,B
t−1
it
stit⟩

+ (1 + βt)
yt
it
yt
it

T

⟨yt
it

T
, stit⟩

− Q
tūt(ūt)TQt

⟨ūt,Qtūt⟩

+
∇2fit(z

t
it
)ūt(ūt)T∇2fit(z

t
it
)

⟨ūt,∇2fit(z
t
it
)ūt⟩

, (9)

where ūt = ū(Qt,∇2fit(z
t
it
)), stit = ztit − z

t−1
it

and

yt
it

= ∇fit(ztit) − ∇fit(z
t−1
it

). Observe that the ex-
pression (9) is generally not a matrix of constant rank,
since the rank of ((1+βt)

2−1)Bt−1
it

may be as large as

d. Therefore, it is not possible to compute the inverse
of B̄t by using the inverse of B̄t−1 in O(d2) cost.

4.2 Sharpened Lazy Incremental
Quasi-Newton (SLIQN)

We now present the SLIQN method as a solution to the
aforementioned issues. We observe that the primary
reason for the update of B̄t in SIQN not being low-rank,
is the presence of the scaling factor βt. To resolve this
issue, we begin by noting that the convergence analysis
of SIQN (ref. Appendix E) indicates that there exists
a factor α⌈t/n−1⌉, such that βt ≤ α⌈t/n−1⌉ and using
α⌈t/n−1⌉ instead of βt preserves the convergence prop-
erties of SIQN. Since α⌈t/n−1⌉ is constant throughout

an epoch, rather than multiplying α⌈t/n−1⌉ to Bt−1
it

at
iteration t, we instead pre-multiply α⌈t/n−1⌉ to each
Hessian approximation at the start of every epoch.
This enables us to compute the inverse of B̄t trivially
by dividing the old inverse by α⌈t/n−1⌉. However, this
pre-multiplication step is a O(nd2) operation and it
undermines the utility of incremental algorithms. To
address this issue, we employ a lazy propagation strat-
egy, wherein we scale the individual Hessian approxi-
mations just before they are updated in their respective
iterations, but treat all memoized quantities as if the
approximations are already scaled. These key changes
enable SLIQN to achieve an O(d2) per-iteration cost
along with an explicit superlinear rate.

In what follows, we will denote the Hessian approxi-
mations by {Dt

i}ni=1 instead of {Bt
i}ni=1 to distinguish

SLIQN updates from SIQN updates. We now formally
present the SLIQN algorithm.

Initialization: At t = 0, we initialize the iterates
{z0i }ni=1 as z0i = x0 and their corresponding hessian
approximations {D0

i }ni=1 as D0
i = (1 + α0)

2I0i , where
x0, α0, {I0i }ni=1 satisfy the the premise of Lemma 2.

Iterative Updates: For each iteration t ≥ 1, we set
the iterate xt as,

xt =
(
D̄t−1

)−1
( n∑

i=1

Dt−1
i zt−1

i −∇fi(zt−1
i )

)
, (10)

where D̄t−1 =
∑n

i=1D
t−1
i . The scheme to update each

tuple is as follows:

1. ztit = x
t, ∇fit(ztit) = ∇fit(x

t).

2. zti = zt−1
i ,Dt

i = ωtD
t−1
i , ∀i ∈ [n]\{it}, where

ωt := (1+α⌈t/n⌉)
2 if t mod n = 0 and 1 otherwise.

3. Qt = BFGS(Dt−1
it

, (1 + α⌈t/n−1⌉)K
t, ztit − z

t−1
it

),

Dt
it
= ωtBFGS(Qt,∇2fit(z

t
it
), ūt(Qt,∇2fit(z

t
it
))).
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Algorithm 2 provides the pseudo-code for SLIQN. We
now consider its per-iteration complexity. Observe
that in the j + 1th epoch, the updates (2) and (3) are
carried out differently for t mod n = 0 and t mod n ≠ 0.
Specifically, for t ∈ {nj + 1, . . . , nj + n − 1}, we can
carry out the update (10) in O(d2) cost using Sherman-
Morrison formula (ref. Appendix F.1) and can compute
other iterative updates in O(d2) cost as they consist
of a constant number of matrix-vector multiplications.
However, for t = nj + n, each Dt

i is multiplied with
the scaling factor of (1 + αj+1)

2, which incurs a large
O(nd2) overhead. Instead, we implement this step
by lazily scaling the Hessian approximations at the
iteration in which they are updated while treating
all memoized quantities as if the approximations are
already scaled. The details of the lazy strategy are
provided in Appendix F.2

Algorithm 2 Sharpened Lazy IQN

1: Initialization: Initialize the iterates {z0i }ni=1 as
z0i = x0 and their corresponding hessian approxi-
mations {D0

i }ni=1 as D0
i = (1 + α0)

2I0i
2: while not converged:
3: Update xt as per (10);
4: Update ztit as ztit = x

t;
5: Update Qt and Dt

it
as per (3);

6: Update the tuples with index i ̸= it as per (2);
7: Increment the iteration counter t;
8: end while

Remark 1 We remark that both IQN and SLIQN ex-
hibit a per-iteration cost of O(d2) which is in contrast
to the O(nd2) cost for QN methods. However, this effi-
ciency comes with an increased memory cost of O(nd2).
To address this issue we propose a pipelining scheme in
Appendix D, in which we leverage a much larger disk
to augment the main memory by prefetching the data
and processing the updates in parallel.

5 THEORETICAL ANALYSIS OF
ALGORITHM 2

5.1 Assumptions

We analyze SLIQN under the assumptions of smooth-
ness, strong convexity, and Lipschitz continuity of the
Hessian. These assumptions are commonly used in the
analysis of Quasi-Newton methods.

A1 (Strong convexity and smoothness) The func-
tions {fi}ni=1 are µ-strongly convex and L-smooth, that

is µ
2 ∥y − x∥

2 ≤ fi(y) − fi(x) − ⟨∇fi(x),y − x⟩, and
fi(y)− fi(x)− ⟨∇fi(x),y − x⟩ ≤ L

2 ∥y − x∥
2
hold for

all x,y ∈ Rd, and for all i ∈ [n].

A2 (Lipschitz continuous Hessian) The Hes-
sians {∇2fi}ni=1 are L̃-Lipschitz continuous, that is,∥∥∇2fi(y)−∇2fi(x)

∥∥ ≤ L̃ ∥y − x∥, for all x,y ∈ Rd,
and for all i ∈ [n].

The above assumptions also imply that the functions
{fi}ni=1 are M -strongly self-concordant, which is de-
fined as, ∇2fi(y) − ∇2fi(x) ⪯ M ∥y − x∥z∇2fi(w),

∀x,y, z,w ∈ Rd with M := L̃µ− 3
2 (Rodomanov and

Nesterov, 2021a, Ex 4.1).

5.2 Convergence Lemmas

We establish the convergence guarantees in three steps:
Lemma 1 establishes a one-step inequality that bounds
the residual ∥xt − x⋆∥ in terms of the previous residuals∥∥zt−1

i − x⋆
∥∥ and the norm error in the Hessian approx-

imation
∥∥Dt−1

i −∇2fi(z
t−1
i )

∥∥, ∀i ∈ [n]. Lemma 2 uses
the result of Lemma 1 to inductively show that both
the residual ∥xt − x⋆∥ and the Hessian approximation
error in the σ sense, i.e., σ(Dt

it
,∇2fit(z

t
it
)), decrease

linearly with ⌈t/n⌉. Using the result of Lemma 1 and
Lemma 2, Lemma 3 establishes a mean-superlinear
convergence result. We finally show in Theorem 1 that
the residuals can be upper bounded by a superlinearly
convergent sequence.

Lemma 1 If Assumptions A1 and A2 hold, the se-
quence of iterates generated by Algorithm 2 satisfy

∥∥xt − x⋆
∥∥ ≤ L̃Γt−1

2

n∑
i=1

∥∥zt−1
i − x⋆

∥∥2
+Γt−1

n∑
i=1

∥∥Dt−1
i −∇2fi(z

t−1
i )

∥∥∥∥zt−1
i − x⋆

∥∥ , (11)

for all t ≥ 1, where Γt :=
∥∥∥(∑n

i=1D
t
i

)−1
∥∥∥.

The proof of this result can be found in Appendix G.1.
It is important to note that our bound in (11) differs
from a similar result presented in (Mokhtari et al., 2018,
Lemma 2), where they utilize

∥∥Dt−1
i −∇2fi(x

⋆)
∥∥

instead of
∥∥Dt−1

i −∇2fi(z
t−1
i )

∥∥. This modification
helps connect the approximation error in the norm
sense, i.e.,

∥∥Dt−1
i −∇2fi(z

t−1
i )

∥∥ with the error in the

σ sense, i.e., σ(Dt−1
i ,∇2fi(z

t−1
i )). This connection is

crucial for quantifying the improvements achieved by
the greedy updates.

Lemma 2 If Assumptions A1 and A2 hold, for any
ρ such that 0 < ρ < 1 − µ

dL , there exist positive
constants ϵ and σ0 such that if

∥∥x0 − x⋆
∥∥ ≤ ϵ and

σ(I0i ,∇2fi(x
0)) ≤ σ0 for all i ∈ [n], the sequence of

iterates generated by Algorithm 2 satisfy∥∥xt − x⋆
∥∥ ≤ ρ⌈ t

n ⌉ ∥∥x0 − x⋆
∥∥ . (12)
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Further, it holds that

σ(ω−1
t Dt

it ,∇
2fit(z

t
it)) ≤

(
1− µ

dL

)⌈ t
n ⌉
δ, (13)

where δ := e
4M

√
Lϵ

1−ρ
(
σ0 + ϵ 4Md

√
L

1− ρ

1− µ
dL

)
,M = L̃/µ

3
2 , ωt =

(1+α⌈t/n⌉)
2 if t is a multiple of n and 1 otherwise, and

the sequence {αk} is defined as αk :=M
√
Lϵρk,∀k ≥ 0.

The proof of Lemma 2 can be found in Appendix G.2.
Under the hood, the proof uses induction to show that
if the initialized x0 is close to x⋆ and D0

i is close to
∇2fi(x

0), then the iterate xt converges linearly to x⋆

and Dt
it

converges linearly to ∇2fi(z
t
it
). Our result

is stronger than (Mokhtari et al., 2018, Lemma 3) as
we establish the linear convergence of Dt

i , whereas
Mokhtari et al. (2018) were only able to establish that∥∥Dt

i −∇2fi(x
⋆)
∥∥ does not grow with t. Moreover,

Mokhtari et al. (2018) did not guarantee convergence
of Dt

i . Also, there is no equivalent convergence result
presented in the analysis of IGS.

Lemma 3 If Assumptions A1, A2 hold, then there ex-
ist positive constants ϵ and σ0 such that if

∥∥x0 − x⋆
∥∥ ≤

ϵ and σ(I0i ,∇2fi(x
0)) ≤ σ0 for all i ∈ [n], the sequence

of iterates generated by Algorithm 2 satisfy∥∥xt − x⋆
∥∥ ≤ (

1− µ

dL

)⌈ t
n ⌉ 1

n

n∑
i=1

∥∥xt−i − x⋆
∥∥ .

The proof of Lemma 3 can be found in Appendix G.3.
The main idea behind the proof is to substitute the
linear convergence results, specifically (12) and (13)
from Lemma 2, back into the result from Lemma 1.
By doing so, the first term on the right-hand side of
(11) converges quadratically, while the second term
converges superlinearly, which proves the result.

Our result is markedly different from (Mokhtari et al.,
2018, Theorem 6) which proves asymptotic superlinear
convergence of IQN. Their proof is based on a variant
of the Dennis-Moré theorem to show that superlinear
convergence kicks asymptotically. Since their proof is
existential, unlike Lemma 3, it cannot be used to derive
an explicit rate of superlinear convergence.

Theorem 1 If Assumptions A1, A2 hold, then
there exist positive constants ϵ and σ0 such that if∥∥x0 − x⋆

∥∥ ≤ ϵ and σ(I0i ,∇2fi(x
0)) ≤ σ0 for all i ∈ [n],

and for the sequence of iterates generated by Algo-
rithm 2, there exists a sequence {ζk}, k ≥ 1 such that

∥xt − x⋆∥ ≤ ζ⌊ t−1
n ⌋ for all t ≥ 1 and {ζk} satisfies,

ζk ≤ ϵ
(
1− µ

dL

) (k+2)(k+1)
2 . (14)

The proof of Theorem 1 involves the construction of a
sequence that provides an upper bound on the residual
∥xt − x⋆∥, and can be found in Appendix G.4.

Remark 2 It is instructive to compare our conver-
gence rate with that of IGS (Gao et al., 2020, The-
orem 3). According to their result, the rate is given

as ∥xt − x⋆∥ ≤
(
1− µ

dL

) k(k+1)
2 rk0 ||x0 − x⋆||, ∀t ≥ 1,

r ∈ (0, 1), k =
⌊
t−1
n

⌋
+1− k0 and k0 is a constant such

that
(
1− µ

dL

)k0
D ≤ 1. The parameter D depends on

the underlying objective function. Observe that their
superlinear rate only takes effect after

⌊
t−1
n

⌋
≥ k0 − 1,

and k0 could potentially be large, though it is not possi-
ble to infer the bounds on k0 from Gao et al. (2020). In
contrast, our convergence rate guarantees superlinear
convergence right from the first iteration.

6 NUMERICAL EXPERIMENTS

6.1 Quadratic Function Minimization

We begin with a comparative analysis of the empir-
ical performance of SLIQN, IQN, Sharpened BFGS
(SBFGS) Jin et al. (2022), and IGS on a synthetic
quadratic minimization problem.

Problem Definition: We consider the function
f(x) = 1

n

∑n
i=1

(
1
2 ⟨x,Aix⟩ + ⟨bi,x⟩

)
, where Ai ≻ 0,

and bi ∈ Rd, ∀i ∈ [n]. The detailed generation scheme
for Ai, bi can be found in Appendix I.1.

Experiments and Inference: We study the perfor-
mance of the algorithms on two extreme cases: d≫ n
(Fig. 1a), and n≫ d (Fig. 1b). In each case, we plot
the normalized error ∥xt − x⋆∥ /

∥∥x0 − x⋆
∥∥ against the

number of effective passes or epochs. We see that in
both these cases, SLIQN outperforms IGS, IQN, and
SBFGS. We also observe that in the case where n≫ d,
IGS outperforms IQN, whereas in the case where d≫ n,
IQN surpasses IGS. This is because IGS devotes the
initial O(d) iterations to constructing a precise Hes-
sian approximation, after which its fast convergence
phase kicks in. On the other hand, since IQN takes
the descent step in the Newton direction, its Hessian
approximation is never precise and therefore its nor-
malized error decreases at more or less a “consistent”
rate. SLIQN combines the strengths of both IQN and
IGS: during the initial iterations when its Hessian ap-
proximation is not accurate enough, the classical BFGS
updates are responsible for the progress made. In the
later iterations, when the Hessian has been sufficiently
well approximated, its fast convergence phase kicks in.

6.2 Regularized Logistic Regression

We now compare the performance of SLIQN against
IQN, IGS, NIM, and SN on the regularized logistic
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(a) n = 20, d = 500

(b) n = 50000, d = 10

Figure 1: Normalized error vs. number of effective
passes for the quadratic minimization problem

regression task given by

min
x
f(x) :=

1

N

N∑
i=1

(
yi log(1 + e−⟨x,zi⟩)

+ (1− yi) log(1 + e⟨x,zi⟩)
)
+
λ

2
∥x∥p , (15)

where {zi}Ni=1 are the training samples, {yi}Ni=1 are
their corresponding binary labels and p is set at 2.1. It
is easy to observe that f(x) is smooth, strongly convex
and has a Lipschitz continuous Hessian, thereby satisfy-
ing Assumptions A1, A2. We compare the algorithms
across 9 datasets with a large variation in the values
of n and d. Each algorithm is initialization with the
same iterate and the regularization parameter is set as
λ = 1/N . For SN, we set the mini-batch size τ = N
since that is the regime it works best in. Please refer
to Appendix I for a complete experimental setup. We
observe in Figure 2 that SLIQN outperforms IGS, IQN,
and SN on each of the 9 datasets from LIBSVM by
Chang and Lin (2011). This supports our claim that
SLIQN offers the best of both, IQN and IGS. Further-
more, we observe that while NIM outperforms SLIQN,
their performance remains comparable. It is important
to note that NIM utilizes the full Hessian information
for the descent step and is an O(d3) algorithm, while
SLIQN has a per-iteration complexity of O(d2). Thus,
these results underscore the superiority of SLIQN over
other incremental QN style methods.

Figure 2: Normalized error vs. number of effective
passes for regularized logistic loss minimization

7 CONCLUSION AND FUTURE
WORK

We introduced the SLIQN method for minimizing finite-
sum problems. SLIQN enjoys the best known incremen-
tal rate of O((1− µ

dL )
t2/n2

), has a O(d2) per-iteration
cost, an explicit superlinear convergence rate, and ex-
hibits a superior empirical performance compared to
several other incremental and stochastic QN methods.
The key novelty is the construction of modified update
rules using a clever multiplicative factor and a lazy
propagation strategy. We back up our empirical results
with a comprehensive theory that explains the superior
performance of SLIQN. The convergence rate of SLIQN
is locally superlinear; analyzing the global convergence
of the proposed algorithm remains as a future work.
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vided]

2. For any theoretical claim, check if you include:
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(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [The error measure of nor-
malized error is well defined. SLIQN is a

deterministic algorithm, so error bars are not
applicable.]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster,
or cloud provider). [We have used a personal
computer for all experiments]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]
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SUPPLEMENTARY MATERIAL

A ESTABLISHED RESULTS

Lemma A.1 (Banach’s Lemma) Let A ∈ Rd×d be a matrix such that its norm satisfies ∥A∥ < 1. Then the
matrix (I +A) is invertible and

1

1 + ∥A∥
<

∥∥(I +A)−1
∥∥ < 1

1− ∥A∥
.

Proposition A.1 (Sherman-Morrison Formula) Let A ∈ Rd×d be an invertible matrix. Then, for all vectors
u,v ∈ Rd, we have

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + ⟨v,A−1u⟩
. (16)

Lemma A.2 (Lemma 2.1, Lemma 2.2 Rodomanov and Nesterov (2021c)) Consider positive definite
matrices A,G ∈ Rd×d and suppose G+ := BFGS(G,A,u), where u ̸= 0. Then, the following results hold:

1. For any constants ξ, η ≥ 1, we have

1

ξ
A ⪯ G ⪯ ηA =⇒ 1

ξ
⪯ G+ ⪯ ηA.

2. If A ⪯ G, then we have

σ(A,G) ≥ σ(A,G+).

Lemma A.3 (Lemma 4.2 Rodomanov and Nesterov (2021a)) Suppose an objective function f(x) is

strongly self-concordant with constant M > 0. Consider x,y ∈ Rd, r := ∥y − x∥x, and K :=
∫ 1

0
∇2f(x +

τ(y − x))dτ . Then, we have that

∇2f(x)

1 +Mr
⪯ ∇2f(y) ⪯ (1 +Mr)∇2f(x),

∇2f(x)

1 + Mr
2

⪯K ⪯ (1 +
Mr

2
)∇2f(x),

∇2f(y)

1 + Mr
2

⪯K ⪯ (1 +
Mr

2
)∇2f(y).

Lemma A.4 (Theorem 2.5 Rodomanov and Nesterov (2021a)) Consider positive definite matrices
A,G ∈ Rd×d such that A ⪯ G and µI ⪯ A ⪯ LI for constants µ,L > 0. Suppose G+ := BFGS(G,A, ū(G,A)),
where ū(G,A) (4) is the greedy vector of G with respect to A. Then, the following holds:

σ(G+,A) ≤
(
1− µ

dL

)
σ(G,A).
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B SUPPORTING LEMMAS

Lemma B.1 For all positive definite matrices A,G ∈ Rd×d, if A ⪯ LI and A ⪯ G, then

∥G−A∥ ≤ Lσ(G,A).

Proof: For any positive definite matrix X ∈ Rd×d, let λmax(X) denote its maximum eigenvalue and let∑d
i=1 λi(X) denote the sum of all of its eigenvalues. We can bound 1

L ∥G−A∥ as

1
L ∥G−A∥

def
= 1

Lλmax(G−A) ≤ 1
L

d∑
i=1

λi(G−A)
def
= 1

LTr(G−A).

Recall from the premise, we have A ⪯ LI, which implies that I ⪯ LA−1. Therefore,

σ(G,A) = ⟨A−1,G−A⟩ ≥ 1
L ⟨I,G−A⟩ =

1
LTr(G−A) ≥ 1

L ∥G−A∥ .

This completes the proof. □

Lemma B.2 Let f : Rd → R be a real valued function that is µ-strongly convex, L-smooth, and M -strongly self-
concordant. Let x,x+ ∈ Rd\{0} and B be a matrix such that B ⪰ ∇2f(x). Define the constant r := ∥x+ − x∥x
and the matrix P := (1 + Mr

2 )2B. Consider the following BFGS updates:

Q := BFGS(P , (1 + Mr
2 )K,x+ − x),

B+ := BFGS(Q,∇2f(x+), ū(Q,∇2f(x+))).

Here, the matrix K :=
∫ 1

0
∇2f(x+ τ(x+ − x))dτ and the vector ū(Q,∇2f(x+)) is the greedy vector 4. Then,

B+ ⪰ ∇2f(x+) and

σ(B+,∇2f(x+)) ≤
(
1− µ

dL

)((
1 + Mr

2

)4
σ(B,∇2f(x)) + d

(
1 + Mr

2

)4 − d).
Proof: We begin by analyzing the first BFGS update. Since B ⪰ ∇2f(x), we have the following:

B ⪰ ∇2f(x)
def
=⇒ P ⪰

(
1 +

Mr

2

)2
f(x)

Lem.A.3
⪰

(
1 +

Mr

2

)
K.

Since P ⪰
(
1 + Mr

2

)
K, the metric σ

(
P , (1 + Mr

2 )K
)
is well defined. Applying Lemma A.2, we obtain

Q = BFGS(P ,
(
1 +

Mr

2

)
K,x+ − x) ⪰

(
1 +

Mr

2

)
K.

Applying Lemma A.3 to relate K and ∇2f(x+), we obtain

Q ⪰
(
1 +

Mr

2

)
K

Lem.A.3
⪰ ∇2f(x+).

We now begin analyzing the second BFGS update. Since Q ⪰ ∇2f(x+), applying Lemma A.2, we obtain

B+ = BFGS(Q,∇2f(x+), ū(Q,∇2f(x+)) ⪰ ∇2f(x+),

which completes the proof of the first part. Applying Lemma A.4, we obtain

σ(B+,∇2f(x+)) ≤
(
1− µ

dL

)
σ(Q,∇2f(x+)).

Define c :=
(
1− µ

dL

)
for brevity. We are now ready to show the second result. Observe that

σ(B+,∇2f(x+)) ≤ (1− c)σ(Q,∇2f(x+)),

= (1− c)(⟨∇2f(x+)
−1,Q⟩ − d),

(a)

≤ (1− c)
((
1 + Mr

2

)
⟨K−1,Q⟩ − d

)
,

(b)
= (1− c)

((
1 + Mr

2

)2⟨K̃−1,Q⟩ − d
)
, (17)
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where (a) follows since

(
1 + Mr

2

)
∇2f(x+)

Lem.A.3
⪰ K ⇐⇒ ∇2f(x+)

−1 ⪯
(
1 +

Mr

2

)
K−1.

In (b), we have defined K̃ :=
(
1 + Mr

2

)
K. Recall that we have already established P ⪰ K̃. Applying Lemma

A.2, we obtain

σ(Q, K̃) ≤ σ(P , K̃) ⇐⇒ σ(Q,K) ≤ σ(P ,K).

Continuing from (17), we obtain

σ(B+,∇2f(x+)) ≤ (1− c)
((
1 + Mr

2

)2⟨K̃−1,P ⟩ − d
)
,

= (1− c)
((
1 + Mr

2

)4⟨K̃−1,B⟩ − d
)
,

= (1− c)
((
1 + Mr

2

)3⟨K−1,B⟩ − d
)
,

(a)

≤ (1− c)
((
1 + Mr

2

)4⟨∇2f(x)
−1
,B⟩ − d

)
, (18)

where (a) follows from K−1 ⪯
(
1 + Mr

2

)
∇2f(x)−1 (∵ Lemma A.3). Finally, setting ⟨∇2f(x)

−1
,B⟩ =

σ(B,∇2f(x)) + d completes the proof. □

Corollary B.1 Under the notation established in Lemma B.2, let α ∈ R+ be an upper bound on r. Then, we
have the following:

σ(B+,∇2f(x+)) ≤ (1− µ
dL )e

2Mα
(
σ(B,∇2f(x)) + 2Mdα

)
.

Proof: From Lemma B.2, we have

σ(B+,∇2f(x+)) ≤
(
1− µ

dL

)(
1 + Mα

2

)4(
σ(B,∇2f(x)) + d

(
1− 1(

1+
Mα
2

)4 )),

(a)

≤
(
1− µ

dL

)
e2Mα

(
σ(B,∇2f(x)) + d(1− e−2Mα)

)
,

(b)

≤
(
1− µ

dL

)
e2Mα

(
σ(B,∇2f(x)) + 2Mdα

)
,

where (a) follows by the inequality 1 + x ≤ ex,∀x ∈ R and (b) follows from the inequality 1− e−x ≤ x,∀x > 0.
This completes the proof. □

Lemma B.3 Let f : Rd → R be a real valued function that is µ-strongly convex, L-smooth, and M-strongly
self-concordant. Let x̃ ∈ Rd be some fixed vector and 0 ≤ γ < 1 be some fixed constant such that the sequence
{xk}, for all k ∈ [T ] satisfies ∥∥xk − x̃

∥∥ ≤ γk ∥∥x0 − x̃
∥∥ .

Define the constant rk :=
∥∥xk − xk−1

∥∥
xk−1 for every k. Let B0 be a matrix such that it satisfies B0 ⪰ ∇2f(x0).

Consider the following BFGS updates:

Qk := BFGS(P k−1, (1 + Mrk
2 )Kk,xk − xk−1),

Bk := BFGS(Qk,∇2f(xk), ū(Qk,∇2f(xk))),

where P k−1 :=
(
1 + Mrk

2

)2
Bk−1, Kk :=

∫ 1

0
∇2f(xk−1 + τ(xk − xk−1))dτ , and ū(Qk,∇2f(xk)) is the greedy

vector 4. Then, the following holds for all k ∈ [T ]:

σ(Bk,∇2f(xk)) ≤ (1− µ
dL )

ke
4M

√
L||x0−x̃||
1−γ

(
σ(B0,∇2f(x0)) +

∥∥x0 − x̃
∥∥ 4Md

√
L

1−(1− µ
dL )−1γ

)
. (19)
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Proof: From Lemma B.2, it can be shown that Bk ⪰ ∇2f(xk) for k = 1, . . . , T . Therefore, σ(Bk,∇2f(xk)) is
well defined. We introduce the notation σk := σ(Bk,∇2f(xk)), dk :=

∥∥xk − x̃
∥∥, and c := µ

dL for simplicity.

To apply Corollary B.1, we need an upper bound on rk. This is trivial via the Triangle inequality

rk =
∥∥xk − xk−1

∥∥
xk−1

∆
≤

∥∥xk − x̃
∥∥
xk−1 +

∥∥xk−1 − x̃
∥∥
xk−1

(a)

≤
√
L
( ∥∥xk − x̃

∥∥+
∥∥xk−1 − x̃

∥∥ ) ≤ 2
√
Lγk−1

∥∥x0 − x̃
∥∥ ,

where (a) follows since ∇2f(x) ⪯ LI. Therefore αk = 2
√
Lγk−1

∥∥x0 − x̃
∥∥ is an upper bound on rk. Applying

Corollary B.1, we obtain

σk ≤ (1− c)e2Mαk(σk−1 + 2Mdαk)

≤ (1− c)e4M
√
Ld0γ

k−1

(σk−1 + 4Md
√
Ld0γ

k−1). (20)

We solve the recursion (20) as follows:

σk ≤ (1− c)e4M
√
Ld0γ

k−1

(σk−1 + 4Md
√
Ld0γ

k−1),

≤ (1− c)2e4M
√
Ld0(γ

k−1+γk−2)σk−2 + 4Md
√
Ld0

(
γk−2(1− c)2e4M

√
Ld0(γ

k−1+γk−2)

+ γk−1(1− c)e4M
√
Ld0γ

k−1)
,

≤ (1− c)ke4M
√
Ld0

∑k−1
j=0 γj

σ0 + 4Md
√
Ld0

( k−1∑
j=0

γj(1− c)k−je4M
√
Ld0

∑k−j
i=1 γk−i)

,

≤ (1− c)ke4M
√
Ld0

∑∞
j=0 γj

σ0 + 4Md
√
Ld0e

4M
√
Ld0

∑∞
i=0 γi

k−1∑
j=0

γj(1− c)k−j ,

≤ (1− c)ke
4M

√
Ld0

1−γ
(
σ0 +

4Md
√
Ld0

1− γ
1−c

)
.

This completes the proof. □

Remark 3 It can be concluded from the proof of Lemma B.3 that redefining rk := 2
√
Lγk−1d0 (which is an upper

bound on
∥∥xk − xk−1

∥∥
xk−1), the results of Lemma B.3 remain unchanged.
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C EFFICIENT IMPLEMENTATION OF IQN

Recall that, that at time t, IQN updates

Bt
it = BFGS(Bt−1

it
,Kt, ztit − z

t−1
it

).

Define ϕt :=
∑n

i=1B
t
iz

t
i −

∑n
i=1∇fi(zti). At time t, since IQN only updates the tuple with index it, we have

ϕt = ϕt−1 +
(
Bt

itz
t
it −B

t−1
it
zt−1
it

)
−

(
∇fit(ztit)−∇fit(z

t−1
it

)
)
. (21)

Therefore, given access to ϕt−1, we can compute ϕt in O(d2) time. This updating scheme can be implemented
iteratively, where we only evaluate ϕ0 explicitly and evaluate ϕt, for all t ≥ 1 by (21). It only remains to compute(
B̄t

)−1
, where B̄t :=

(∑n
i=1B

t
i

)
. This can be done by applying the Sherman-Morrison formula (16) twice to

the matrix on the right (22).

B̄t = B̄t−1 +Bt
it −B

t−1
it

= B̄t−1 +
yt
it
yt
it

T

⟨yt
it
, stit⟩

−
Bt−1

it
stits

t
it

T
Bt−1

it

⟨stit ,B
t−1
it
stit⟩

, (22)

where yt
it
= ztit − z

t−1
it

, stit = ∇fit(z
t
it
)−∇fit(zt−1

it
). Applying(16) twice, we get (23) and (24)

(B̄t)−1 = Zt +
Zt(Bt−1

it
stit)(B

t−1
it
stit)

TZt

⟨stit ,B
t−1
it
stit⟩ − ⟨(B

t−1
it
stit),Z

t(Bt−1
it
stit)⟩

, (23)

where Zt is given by

Zt = (B̄t−1)−1 −
(B̄t−1)−1yt

it
yt
it

T
(B̄t−1)−1

⟨yt
it
, stit⟩+ ⟨y

t
it
, (B̄t−1)−1yt

it
⟩
. (24)

By iteratively implementing this scheme, we only need to compute (B̄0)−1 explicitly and (B̄t)−1, for all t ≥ 1 by
the Sherman-Morrison formula.
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D LOW MEMORY IMPLEMENTATION OF INCREMENTAL METHODS

In this section, we illustrate how incremental methods can be effectively implemented for large-scale real-world
scenarios which are characterized by substantial memory requirements of O(nd2). Our solution leverages the
disk, which offers significantly larger storage capacity compared to main memory but comes with an increased
load-store latency. To mitigate this latency issue, we employ a pipelining scheme. In this scheme, we partition the
data into blocks and simultaneously run compute operations on one block while performing load-store operations
on the blocks adjacent to it. This parallelization effectively extends the main memory capacity to the available
the disk size, all the while avoiding its larger latency.

Formally, let the available main memory capacity be g GB, the number of data samples be n, the dimensionality
of the data be d, and the space requirement for each sample be s. We assume that the disk is sufficiently large to
store the data for all samples, that it the size of the disk is greater than ns. We divide the data into m = 2ns

g

blocks, denoted as bi for i ∈ [m]. This choice of m ensures that two blocks can be accommodated in memory
simultaneously. The processing proceeds as follows:

1. We assume that the memory holds blocks b1 and b2, along with the global memoized quantities for SLIQN.
All data blocks are also stored on the disk.

2. At iteration t = 1, we process the block b1 by executing the corresponding algorithm updates on it.

3. At any iteration t > 1, we execute the algorithm updates on bi%n+1 while concurrently storing the already
processed block bi back into the disk and loading the block b(i+1)%n+1 into memory to be processed next.

In practice, modern disks have access speeds of around 500 MBps, making processing the bottleneck in this
parallel architecture, rather than disk access. For example, in our implementation of SLIQN with g = 1200 MB,
n = 20, 000, d = 123, s = 0.1117 MB, and m = 4, we observed that processing one block took 7.8 seconds, while
the load-store operation required only 3.8 seconds.
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E CONVERGENCE ANALYSIS OF SIQN

In this section, we provide the convergence analysis of SIQN, as the convergence analysis motivates the replacement
of βt with α⌈ t

n−1⌉. We begin by showing that at each time t, the matrix Qt obtained after the first BFGS update

satisfies Qt ⪰ ∇2fit(z
t
it
). Using this, we show that the updated Hessian approximation satisfies Bt

it
⪰ ∇2fit(z

t
it
).

These observations are essential in order ensure that σ(Qt,∇2fit(z
t
it
)) and σ(Bt,∇2fit(z

t
it
)) are well defined.

Lemma E.1 For all t ≥ 1 the following hold true:

Qt ⪰ ∇2fit(z
t
it), (25)

Bt
i ⪰ ∇2fi(z

t
i), (26)

for all i ∈ [n].

Proof: The proof follows by induction on t.

Base case: At t = 0, (26) holds due to the initialization.

Induction Hypothesis (IH): Assume that (25) and (26) hold for t = m− 1, for some m ≥ 1. We prove that
(25) and (26) hold for t = m in the Induction step.

Induction step: Since Bm−1
im

⪰ ∇2fim(zm−1
im

), we have the following:

(
1 + βm

)2
Bm−1

im
⪰

(
1 + βm

)2∇2fim(zm−1
im

)
Lem.A.3
⪰

(
1 + βm

)
Km,

where recall that βm = M
2

∥∥zmim − zm−1
im

∥∥
zm−1
im

. Applying Lemma A.2, we obtain

Qm = BFGS(
(
1 + βm

)2
Bm−1

im
,
(
1 + βm

)
Km, zmim − z

m−1
im

)
Lem.A.2
⪰

(
1 + βm

)
Km.

Applying Lemma A.3 to relate Km and ∇2fim(zmim), we obtain

Qm ⪰
(
1 + βm

)
Km

Lem.A.3
⪰ ∇2fim(zmim).

Therefore, (25) holds for t = m. Since Qm ⪰ ∇2fim(zmim), applying Lemma A.2, we obtain

Bm
im = BFGS(Qm,∇2fim(zmim), ū(Qm,∇2fim(zmim))

Lem.A.2
⪰ ∇2fim(zmim).

Therefore, (26) holds for t = m. This completes the induction step. The proof is hence complete by induction. □

Key steps: We establish the convergence guarantees in three steps: Lemma E.2 establishes a one-step inequality
that bounds the residual ∥xt − x⋆∥ in terms of the previous residuals

∥∥zt−1
i − x⋆

∥∥ and the norm error in the

Hessian approximation
∥∥Bt−1

i −∇2fi(z
t−1
i )

∥∥, for all i ∈ [n]. Lemma E.3 uses the result of Lemma E.2 to
inductively show that both the residual ∥xt − x⋆∥ and the Hessian approximation error σ(Bt

it
,∇2fit(z

t
it
)),

decrease linearly with ⌈t/n⌉. Using the result of Lemma E.2 and Lemma E.3, Lemma E.4 establishes a mean-
superlinear convergence result. We finally show in Theorem 1 that the residuals can be upper bounded by a
superlinearly convergent sequence.

We now present our one-step inequality. A similar inequality with Bt−1
i replaced with Dt−1

i also appears in
Lemma 1 (for SLIQN). Since the proofs are identical, we refer Appendix G.1 directly for the proof of Lemma E.2.

Lemma E.2 If Assumptions A1 and A2 hold, the sequence of iterates generated by SIQN satisfy

∥∥xt − x⋆
∥∥ ≤ L̃Γt−1

2

n∑
i=1

∥∥zt−1
i − x⋆

∥∥2 + Γt−1
n∑

i=1

∥∥Bt−1
i −∇2fi(z

t−1
i )

∥∥∥∥zt−1
i − x⋆

∥∥ , (27)

for all t ≥ 1, where Γt :=
∥∥∥(∑n

i=1B
t
i

)−1
∥∥∥.
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Proof: Refer Appendix G.1. □

Lemma E.3 If Assumptions A1 and A2 hold, for any ρ such that 0 < ρ < 1− µ
dL , there exist positive constants

ϵsiqn and σsiqn
0 such that if

∥∥x0 − x⋆
∥∥ ≤ ϵsiqn and σ(B0

i ,∇2fi(x
0)) ≤ σsiqn

0 for all i ∈ [n], the sequence of iterates
generated by SIQN satisfy ∥∥xt − x⋆

∥∥ ≤ ρ⌈ t
n ⌉ ∥∥x0 − x⋆

∥∥ . (28)

Further, it holds that

σ(Bt
it ,∇

2fit(z
t
it)) ≤

(
1− µ

dL

)⌈ t
n ⌉
δsiqn, (29)

where δsiqn := e
4M

√
Lϵsiqn

1−ρ
(
σsiqn
0 + ϵsiqn 4Md

√
L

1− ρ

1− µ
dL

)
,M = L̃/µ

3
2 .

Proof: For a given ρ that satisfies 0 < ρ < 1− µ
dL , let the variables ϵsiqn, σsiqn

0 be chosen to satisfy

L̃ϵsiqn

2 + Lδsiqn

µ
≤ ρ

1 + ρ
< 1. (30)

Remark 4 Indeed there exists positive constants ϵsiqn, σsiqn
0 that satisfy (30). Recall from the premise that δ is a

function of ϵsiqn, σsiqn
0 , and we can define the left-hand-side of (30) as a function g(ϵsiqn, σsiqn

0 ) as

g(ϵsiqn, σsiqn
0 ) :=

L̃ϵsiqn

2 + Lδsiqn

µ
=

L̃ϵsiqn

2 + Le
4M

√
Lϵsiqn

1−ρ
(
σsiqn
0 + ϵsiqn 4Md

√
L

1− ρ

1− µ
dL

)
µ

.

Fix σsiqn
0 = µ

2L (
ρ

1+ρ ) > 0. It is easy to see that g(ϵsiqn, σsiqn
0 ) is continuous and monotonically increasing in ϵsiqn.

Also, note that g(0, µ
2L (

ρ
1+ρ )) =

ρ
2(1+ρ) and limϵ→∞ g(ϵ, µ

2L (
ρ

1+ρ )) =∞. We can therefore apply the Intermediate

Value Theorem (IVT) to guarantee that there exists ϵ > 0 such that g(ϵ, µ
2L (

ρ
1+ρ )) ≤

ρ
1+ρ .

Base case: At t = 1, applying Lemma E.2, we have∥∥x1 − x⋆
∥∥ ≤ L̃Γ0

2

n∑
i=1

∥∥z0i − x⋆
∥∥2 + Γ0

n∑
i=1

∥∥B0
i −∇2fi(z

0
i )
∥∥ ∥∥z0i − x⋆

∥∥ .
Since B0

i ⪰ ∇2fi(z
0
i ) and ∇2fi(z

0
i ) ⪯ LI, applying Lemma B.1, we have σ(B0

i ,∇2fi(z
0
i )) ≥ 1

L

∥∥B0
i −∇2fi(z

0
i )
∥∥.

This gives ∥∥x1 − x⋆
∥∥ ≤ nΓ0

( L̃ϵsiqn
2

+ Lσsiqn
0

) ∥∥x0 − x⋆
∥∥ ,

where we have used z0i = x0 and
∥∥x0 − x⋆

∥∥ ≤ ϵsiqn, σ(B0
i ,∇2fi(z

0
i )) ≤ σ

siqn
0 .

We now bound Γ0. Define X0 := 1
n

∑n
i=1B

0
i ,Y

0 := 1
n

∑n
i=1∇2fi(z

0
i ). We have the following:

1

n

n∑
i=1

∥∥B0
i −∇2fi(z

0
i )
∥∥ ∆
≥

∥∥X0 − Y 0
∥∥ =

∥∥(Y 0)((Y 0)−1X0 − I)
∥∥ (a)

≥ µ
∥∥(Y 0)−1X0 − I

∥∥ ,
where (a) follows since Y 0 = 1

n

∑n
i=1∇2fi(z

0
i ) ⪰ µI (∵ Assumption A1). This gives us

∥∥(Y 0)−1X0 − I
∥∥ ≤ Lσsiqn

0

µ
≤ Lδsiqn

µ

(30)
<

ρ

1 + ρ
.

We can now upper bound Γ0 using Banach’s Lemma A.1. Consider the matrix (Y 0)−1X0 − I and note that it
satisfies the requirement of A.1 from the above result. Therefore, we have∥∥(X0)−1Y 0

∥∥ =
∥∥∥(I + ((Y 0)−1X0)− I)

)−1
∥∥∥ Lem.A.1
≤ 1

1− ∥(Y 0)−1X0 − I∥
≤ 1 + ρ.
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Recall that µI ⪯ Y 0. Using this and the previous result, we can upper bound
∥∥(X0)−1

∥∥ as µ
∥∥(X0)−1

∥∥ ≤∥∥(X0)−1Y 0
∥∥ ≤ 1 + ρ. This gives us, Γ0 = 1

n

∥∥(X0)−1
∥∥ ≤ 1+ρ

nµ . Therefore, we have the following bound on∥∥x1 − x⋆
∥∥:

∥∥x1 − x⋆
∥∥ ≤ L̃ϵsiqn

2 + Lσsiqn
0

µ
(1 + ρ)

∥∥x0 − x⋆
∥∥ ≤ L̃ϵsiqn

2 + Lδsiqn

µ
(1 + ρ)

∥∥x0 − x⋆
∥∥ (30)

≤ ρ
∥∥x0 − x⋆

∥∥ .
By the updates performed by Algorithm 1, we have z11 = x1 and z1i = x0 for i ̸= 1. Applying Lemma B.3, we
obtain

σ(B1
1 ,∇2f1(z

1
1)) ≤

(
1− c

)
e

4M
√

Lϵsiqn

1−ρ
(
σ(B0

1 ,∇2f1(z
0
1))︸ ︷︷ ︸

≤σsiqn
0

+ϵsiqn
4Md

√
L

1− ρ
1−c

)
≤ (1− c)δsiqn.

This completes the proof for t = 1.

Induction Hypothesis (IH): Let (28) and (29) hold for t ∈ [jn+m], where j ≥ 0, 0 ≤ m < n.

Induction step: We then prove that (28) and (29) also hold for t = jn +m + 1. Recall that the tuples are
updated in a deterministic cyclic order, and at the current time t, we are in the jth cycle and have updated the
mth tuple. Therefore, it is easy to note that zjn+m

i = xjn+i, for all i ∈ [m], which refer to the tuples updated

in this cycle, and zjn+m
i = xjn−n+i for all i ∈ [n]\[m], which refer to the tuples updated in the previous cycle.

From the induction hypothesis, we have

∥∥∥zjn+m
i − x⋆

∥∥∥ ≤ {
ρ⌈

jn+i
n ⌉

∥∥x0 − x⋆
∥∥ i ∈ [m],

ρ⌈
(j−1)n+i)

n ⌉
∥∥x0 − x⋆

∥∥ i ∈ [n]\[m].
(31)

Step 1

Applying Lemma E.2 on updating zm+1, we have∥∥∥zjn+m+1
m+1 − x⋆

∥∥∥ ≤ L̃Γjn+m

2

n∑
i=1

∥∥∥zjn+m
i − x⋆

∥∥∥2 +
Γjn+m

n∑
i=1

∥∥∥Bjn+m
i −∇2fi(z

jn+m
i )

∥∥∥∥∥∥zjn+m
i − x⋆

∥∥∥ ,
=
L̃Γjn+m

2

( m∑
i=1

∥∥∥zjn+m
i − x⋆

∥∥∥2 + n∑
i=m+1

∥∥∥zjn+m
i − x⋆

∥∥∥2 )+
Γjn+m

( m∑
i=1

∥∥∥Bjn+m
i −∇2fi(z

jn+m
i )

∥∥∥∥∥∥zjn+m
i − x⋆

∥∥∥ )+
Γjn+m

( n∑
i=m+1

∥∥∥Bjn+m
i −∇2fi(z

jn+m
i )

∥∥∥∥∥∥zjn+m
i − x⋆

∥∥∥ ).
From the induction hypothesis, we have

∥∥∥zjn+m
i − x⋆

∥∥∥≤{
ρ⌈

jn+i
n ⌉

∥∥x0 − x⋆
∥∥ i ∈ [m],

ρ⌈
(j−1)n+i)

n ⌉
∥∥x0 − x⋆

∥∥ i ∈ [n]\[m],
(32)

Since Bjn+m
i ⪰ ∇2fi(z

jn+m
i ) (Lemma E.1), applying Lemma B.1 and the induction hypothesis for σ, we have

the following bound on
∥∥∥Bjn+m

i −∇2fi(z
jn+m
i )

∥∥∥:
∥∥∥Bjn+m

i −∇2fi(z
jn+m
i )

∥∥∥ Lem.B.1
≤ Lσsiqn(Bjn+m

i ,∇2fi(z
jn+m
i )) ≤

{
Lδsiqn(1− c)⌈

jn+i
n ⌉ i ∈ [m],

Lδsiqn(1− c)⌈
(j−1)n+i

n ⌉ i ∈ [n]\[m].
(33)
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Therefore, the bound on
∥∥∥zjn+m+1

m+1 − x⋆
∥∥∥ simplifies to

∥∥∥zjn+m+1
m+1 − x⋆

∥∥∥ (32)(33)

≤ Γjn+m
(
m
L̃ϵsiqn

2
ρ2j+2 + (n−m)

L̃ϵsiqn

2
ρ2j +mLδsiqn(1− c)j+1ρj+1 (34)

+ (n−m)Lδsiqn(1− c)jρj
) ∥∥x0 − x⋆

∥∥ , (35)

≤ Γjn+mρj(n
L̃ϵsiqn

2
ρj︸︷︷︸
≤1

+mLδsiqn (1− c)j+1ρ︸ ︷︷ ︸
≤1

+(n−m)Lδsiqn (1− c)j)︸ ︷︷ ︸
≤1

∥∥x0 − x⋆
∥∥ ,

≤ Γjn+mρj
(
n
L̃ϵsiqn

2
+ nLδsiqn

) ∥∥x0 − x⋆
∥∥ . (36)

We now bound Γjn+m. Define Xjn+m := 1
n

∑n
i=1B

jn+m
i and Y jn+m := 1

n

∑n
i=1∇2fi(z

jn+m
i ). We follow the

same recipe to bound Γ0 in the base case. Observe that

1

n

n∑
i=1

∥∥∥Bjn+m
i −∇2fi(z

jn+m
i )

∥∥∥ ∆
≥

∥∥Xjn+m − Y jn+m
∥∥ (a)

≥ µ
∥∥(Y jn+m)−1Xjn+m − I

∥∥ .
The inequality (a) follows from Assumption A1 which implies that µI ⪯ 1

n

∑n
i=1∇2fi(z

jn+m
i ) = Y jn+m. By

tracking steps (35)-(36), we can establish that

1

n

n∑
i=1

∥∥∥Bjn+m
i −∇2fi(z

jn+m
i )

∥∥∥ ≤ Lδsiqn.
From the above two chain of inequalities, we deduce

∥(Y jn+m)−1Xjn+m − I∥ ≤ Lδsiqn

µ

(30)
<

ρ

1 + ρ
.

We can now upper bound Γjn+m using Banach’s Lemma by exactly following the procedure laid out in the base
case. We get that Γjn+m = ∥

∑n
i=1B

jn+m
i )−1∥ ≤ 1+ρ

nµ . Therefore, we obtain

∥∥∥zjn+m+1
m+1 − x⋆

∥∥∥ ≤ L̃ϵsiqn

2 + Lδsiqn

µ
(1 + ρ)ρj

∥∥x0 − x⋆
∥∥ (30)

≤ ρj+1
∥∥x0 − x⋆

∥∥ . (37)

Since zjn+m+1
m+1 = xjn+m+1, (28) holds for t = jn+m+ 1.

Step 2

Next, we prove that σ(Bjn+m+1
m+1 ,∇2fm+1(z

jn+m+1
m+1 )) ≤ (1 − c)j+1δsiqn. We define the sequence {yk}, for

k = 0, . . . , j + 1, such that {yk} = {x0, zm+1
m+1 , . . . ,z

jn+m+1
m+1 }. The sequence {yk}j+1

k=1 comprises of the updated
value of zm+1 till the current cycle j. Since {yk} comes about from the application of BFGS updates as described
in the statement of Lemma B.3, therefore {yk} satisfies the conditions of Lemma B.3. This implies that

∥yk − x⋆∥ ≤ ρ⌈
(k−1)n+m+1

n ⌉ ∥∥x0 − x⋆
∥∥ = ρk

∥∥x0 − x⋆
∥∥ ,

for k ∈ [j + 1]. Since yj+1 = zjn+m+1
m+1 , we have proved (29) for t = jn+m+ 1. The proof is hence complete via

induction. □

Corollary E.1 If Assumptions A1 and A2 hold, the following holds true for all t ≥ 1:∥∥ztit − zt−1
it

∥∥
zt−1
it

≤ 2Ut, (38)

where Ut :=
√
Lρ⌈

t
n−1⌉ϵsiqn.
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Proof: We can bound
∥∥ztit − zt−1

it

∥∥
zt−1
it

in the following manner:

∥∥ztit − zt−1
it

∥∥
zt−1
it

(a)

≤
√
L
∥∥ztit − zt−1

it

∥∥ ∆
≤
√
L(

∥∥ztit − x⋆
∥∥+

∥∥zt−1
it
− x⋆

∥∥),
≤
√
L
(
ρ⌈

t
n ⌉ + ρ⌈

t−n
n ⌉)ϵsiqn ≤ 2

√
Lρ⌈

t
n−1⌉ϵsiqn,

where (a) follows since ∇2fit(z
t−1
it

) ⪯ LI (∵ Assumption A1). Therefore, the correction term βt =
M
2

∥∥ztit − zt−1
it

∥∥
zt−1
it

≤M
√
Lρ⌈

t
n−1⌉ϵsiqn = 2Ut, which establishes (38). □

Remark 5 (βt can be bounded by a quantity that remains constant in a cycle) Recall that the correc-
tion factor βt =

M
2

∥∥ztit − zt−1
it

∥∥
zt−1
it

in SIQN was introduced to ensure that (1 + βt)
2Bit

t−1 ⪰ (1 + βt)K
t (we

formalized this in Lemma E.1). Intuitively, executing SIQN with a higher correction factor βnew
t = MUt ≥

M
2

∥∥ztit − zt−1
it

∥∥
zt−1
it

(follows from Corollary E.1) which remains constant in a cycle, it should continue to hold

that (1 + βnew
t )2Bt−1

it
⪰ (1 + βnew

t )Kt. We skip the proof for the sake of brevity as it is similar to the analysis
SIQN.

Next, we present our mean superlinear convergence result for the iterates of SIQN. The main idea behind the
proof is to substitute the linear convergence results, specifically (28) and (29) from Lemma E.3, back into the
result from Lemma E.2. By doing so, the first term on the right-hand side of (27) converges quadratically, while
the second term converges superlinearly. This combination leads to the desired result.

Lemma E.4 If Assumptions A1 and A2 hold, for any ρ such that 0 < ρ < 1− µ
dL , there exist positive constants

ϵsiqn and σsiqn
0 such that if

∥∥x0 − x⋆
∥∥ ≤ ϵsiqn and σ(B0

i ,∇2fi(x
0)) ≤ σsiqn

0 for all i ∈ [n], the sequence of iterates
produced by SIQN satisfy ∥∥xt − x⋆

∥∥ ≤ (
1− µ

dL

)⌈ t
n ⌉ 1

n

n∑
i=1

∥∥xt−i − x⋆
∥∥ .

Proof: Let t = jn+m+ 1, where 0 ≤ j and 0 ≤ m < n. From the proof of Lemma E.3, we have an uniform

upper bound on Γjn+m =
∥∥∥(∑n

i=1B
jn+m
i

)−1
∥∥∥, given by

Γjn+m ≤ 1 + ρ

nµ
,

and the following upper bound on
∥∥∥Bjn+m

i −∇2fi(z
jn+m
i )

∥∥∥:
∥∥∥Bjn+m

i −∇2fi(z
jn+m
i )

∥∥∥ Lem.B.1
≤ Lσ(Bjn+m

i ,∇2fi(z
jn+m
i )) ≤

{
Lδsiqn(1− c)⌈

jn+i
n ⌉ i ∈ [m],

Lδsiqn(1− c)⌈
(j−1)n+i

n ⌉ i ∈ [n]\[m].

This gives
∥∥∥Bjn+m

i −∇2fi(z
jn+m
i )

∥∥∥ ≤ Lδsiqn(1− c)j , for all i ∈ [n].

Further, from LemmaE.3, we also have
∥∥∥zjn+m

i − x⋆
∥∥∥ ≤ ρj+1

∥∥x0 − x⋆
∥∥, for all i ∈ [n] and

∥∥∥zjn+m
i − x⋆

∥∥∥ ≤
ρj

∥∥x0 − x⋆
∥∥, for all i ∈ [n]\[m]. This clearly implies

∥∥∥zjn+m
i − x⋆

∥∥∥ ≤ ρj ∥∥x0 − x⋆
∥∥, for i = 1, . . . , n.

Applying Lemma E.2 at t = jn+m+ 1 and upper bounding Γjn+m, we obtain∥∥xjn+m+1 − x⋆
∥∥ ≤ 1 + ρ

nµ

n∑
i=1

( L̃
2

∥∥∥zjn+m
i − x⋆

∥∥∥+
∥∥∥Bjn+m

i −∇2fi(z
jn+m
i )

∥∥∥ ) ∥∥∥zjn+m
i − x⋆

∥∥∥ ,
(a)

≤ 1 + ρ

nµ

( L̃ϵ
2

+ Lδsiqn
)
(1− c)j

n∑
i=1

∥∥∥zjn+m
i − x⋆

∥∥∥ ,
≤ ρ(1− c)j 1

n

n∑
i=1

∥∥∥zjn+m
i − x⋆

∥∥∥ (b)

≤ (1− c)⌈ t
n ⌉ 1

n

n∑
i=1

∥∥xt−i − x⋆
∥∥ ,
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where (a) follows from the bounds
∥∥∥zjn+m

i − x⋆
∥∥∥ ≤ ρj ∥∥x0 − x⋆

∥∥ and
∥∥∥Bjn+m

i −∇2fi(z
jn+m
i )

∥∥∥ ≤ Lδsiqn(1− c)j
discussed above and ρ < 1− c. Also (b) follows since zjn+m

i = xjn+i, for all i ∈ [m] and zjn+m
i = xjn−n+i, for

all i ∈ [n]\[m], which implies
∑n

i=1

∥∥∥zjn+m
i − x⋆

∥∥∥ =
∑n

i=1

∥∥xt−i − x⋆
∥∥. This completes the proof. □

The mean superlinear convergence result of Lemma E.4 ultimately gives a superlinear rate for SIQN. Note that
an identical result as Lemma E.4 is given by Theorem 1(SLIQN). Therefore, we directly provide the proof of
Lemma E.4 in Appendix G.4 while proving Theorem 1 for SLIQN.

Lemma E.5 If Assumptions A1 and A2 hold, for any ρ such that 0 < ρ < 1− µ
dL , there exist positive constants

ϵsiqn and σsiqn
0 such that if

∥∥x0 − x⋆
∥∥ ≤ ϵsiqn and σ(B0

i ,∇2fi(x
0)) ≤ σsiqn

0 for all i ∈ [n], for the sequence of

iterates {xt} generated by SIQN, there exists a sequence {ζk} such that ∥xt − x⋆∥ ≤ ζ⌊
t−1
n ⌋ for all t ≥ 1 and the

sequence {ζk} satisfies

ζk ≤ ϵ
(
1− µ

dL

) (k+2)(k+1)
2 , (39)

forall k ≥ 0.

Proof: Refer Appendix G.4. □
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F EFFICIENT IMPLEMENTATION OF SLIQN

We begin by showing that the update of xt in the SLIQN algorithm (Algorithm 2) can be carried out in O(d2)
cost.

F.1 Carrying out (10) in Algorithm 2 in O(d2) cost

We begin by defining the following variables that track the summands in (10)

D̄t :=

n∑
i=1

Dt
i ,ϕ

t :=

n∑
i=1

Dt
iz

t
i , g

t :=

n∑
i=1

∇fi(zti). (40)

The update (10) (for time t+ 1) can be expressed in terms of the defined variables as

xt+1 =
(
D̄t

)−1(
ϕt − gt

)
. (41)

From the updates performed by Algorithm 2 at time t, we have

gt = gt−1 +
(
∇fit(ztit)−∇fit(z

t−1
it

)
)
. (42)

Further, we can express ϕt in terms of ϕt−1 as follows:

ϕt =

n∑
i=1,i̸=it

ωtD
t−1
i zt−1

i +Dt
itz

t
it = ωtϕ

t−1 − ωtD
t−1
it
zt−1
it

+Dt
itz

t
it . (43)

This updating scheme can be implemented iteratively, where we only evaluate ϕ0, g0 explicitly and evaluate ϕt in
O(d2) cost, for all t ≥ 1 by (43) and gt in O(d) cost, for all t ≥ 1 by (42).

Next, we demonstrate the method for updating (D̄t)−1. We begin by expressing
(
D̄t

)−1
in terms of

(
D̄t−1

)−1

in the following manner:

(D̄t)−1 =

( n−1∑
i=1,i̸=it

ωtD
t−1
i +Dt

it

)−1

=
(
ωt

(
D̄t−1 −Dt−1

it

)
+Dt

it

)−1
,

= ω−1
t

(
D̄t−1 + ω−1

t Dt
it −D

t−1
it

)−1
. (44)

Expanding the BFGS update (3), we can express ω−1
t Dt

it
as

ω−1
t Dt

it

(3)
= Qt − Q

tūt(Qtūt)T

⟨ūt,Qtūt⟩
+
∇2fit(z

t
it
)ūt(∇2fit(z

t
it
)ūt)T

⟨ūt,∇2fit(z
t
it
)ūt⟩

, (45)

where we have used the shorthand ūt for ū(Qt,∇2fit(z
t
it
)). Further, Qt can be expressed as

Qt (3)
= Dt−1

it
+
yt
it
yt
it

T

⟨yt
it
, stit⟩

−
Dt−1

it
stit(D

t−1
it
stit)

T

⟨stit ,D
t−1
it
stit⟩

, (46)

where stit = z
t
it
− zt−1

it
,yt

it
= (1 + α⌈t/n−1⌉)K

tstit = (1 + α⌈t/n−1⌉)(∇fit(ztit)−∇fit(z
t−1
it

)).

Adding (45) and (46), we obtain

ω−1
t Dt

it −D
t−1
it

=
yt
it
yt
it

T

⟨yt
it
, stit⟩

−
Dt−1

it
stit(D

t−1
it
stit)

T

⟨stit ,D
t−1
it
stit⟩

− Q
tūt(Qtūt)T

⟨ūt,Qtūt⟩
+

∇2fit(z
t
it
)ūt(∇2fit(z

t
it
)ūt)T

⟨ūt,∇2fit(z
t
it
)ūt⟩

. (47)
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Continuing from (44), we obtain

(
D̄t

)−1
= ω−1

t

(
D̄t−1 +

yt
it
yt
it

T

⟨yt
it
, stit⟩

−
Dt−1

it
stit(D

t−1
it
stit)

T

⟨stit ,D
t−1
it
stit⟩

− Q
tūt(Qtūt)T

⟨ūt,Qtūt⟩

+
∇2fit(z

t
it
)ūt(∇2fit(z

t
it
)ūt)T

⟨ūt,∇2fit(z
t
it
)ūt⟩

)−1

.

Next, we define the following matrix:

ψ1 := D̄t−1 +
yt
it
yt
it

T

⟨yt
it
, stit⟩

−
Dt−1

it
stit(D

t−1
it
stit)

T

⟨stit ,D
t−1
it
stit⟩

− Q
tūt(Qtūt)T

⟨ūt,Qtūt⟩
.

Expressing
(
D̄t

)−1
in terms of ψ−1

1 we get the following:

(
D̄t

)−1
= ω−1

t

(
ψ1 +

∇2fit(z
t
it
)ūt(∇2fit(z

t
it
)ūt)T

⟨ūt,∇2fit(z
t
it
)ūt⟩

)−1

,

(16)
= ω−1

t

(
ψ−1 −

ψ−1
1 ∇2fit(z

t
it
)ūt(∇2fit(z

t
it
)ūt)Tψ−1

1

⟨ūt,∇2fit(z
t
it
)ūt⟩+ ⟨∇2fit(z

t
it
)ūt,ψ−1

1 ∇2fit(z
t
it
)ūt⟩

)
. (48)

Define the following matrix:

ψ2 := D̄t−1 +
yt
it
yt
it

T

⟨yt
it
, stit⟩

−
Dt−1

it
stit(D

t−1
it
stit)

T

⟨stit ,D
t−1
it
stit⟩

=⇒ ψ1 = ψ2 −
Qtūt(Qtūt)T

⟨ūt,Qtūt⟩
.

Expressing ψ−1
1 in terms of ψ−1

2 we get

ψ−1
1

(16)
= ψ−1

2 +
ψ−1

2 Qtūt(Qtūt)Tψ−1
2

⟨ūt,Qtūt⟩ − ⟨Qtūt,ψ−1
2 Qtūt⟩

. (49)

Define the following matrix:

ψ3 := D̄t−1 +
yt
it
yt
it

T

⟨yt
it
, stit⟩

=⇒ ψ2 = ψ3 −
Dt−1

it
stit(D

t−1
it
stit)

T

⟨stit ,D
t−1
it
stit⟩

.

Expressing ψ−1
2 in terms of ψ−1

3 we get the following:

ψ−1
2

(16)
= ψ−1

3 +
ψ−1

3 Dt−1
it
stit(D

t−1
it
stit)

Tψ−1
3

⟨stit ,D
t−1
it
stit⟩ − ⟨D

t−1
it
stit ,ψ

−1
3 Dt−1

it
stit⟩

. (50)

Finally, using (16) to evaluate ψ−1
3 , we obtain

ψ−1
3 =

(
D̄t−1

)−1 −
(
D̄t−1

)−1
yt
it
yt
it

T(
D̄t−1

)−1

⟨yt
it
, stit⟩+ ⟨y

t
it
,
(
D̄t−1

)−1
yt
it
⟩
. (51)

Therefore, given access to
(
D̄t−1

)−1
, we can evaluate ψ−1

3 in O(d2) time. Similarly, given access to ψ−1
3 , we can

evaluate ψ−1
2 in O(d2) time. Continuing similarly, we can evaluate ψ−1

1 and
(
D̄t

)−1
in O(d2) time. This scheme

can be enumerated iteratively where we only compute
(
D̄0

)−1
explicitly and evaluate

(
D̄t

)−1
,∀t ≥ 1 by the

steps (51), (50), (49), and (48). Therefore, the update (10) in Algorithm 2 can be performed in O(d2) time.

F.2 Efficient Implementation of Algorithm 2 in O(d2) cost

By lazily carrying out the scaling of theD’s, i.e., only scaling when they are used, we can improve the per-iteration
complexity of SLIQN to O(d2). The resulting algorithm is specified by the following pseudo code:
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Algorithm 3 Sharpened Lazy Incremental Quasi-Newton (SLIQN)

1: Function {Sherman-Morrison} {A−1,u,v}
2: return A−1 − A−1uvTA−1

1+⟨v,A−1u⟩
3: EndFunction

4: Initialize: Initialize {zi,Di}ni=1 similar to Algorithm F.2;

5: Evaluate D̄ :=
(∑n

i=1Di

)−1
,ϕ :=

∑n
i=1Dizi, and g :=

∑n
i=1∇fi(zi);

6: Maintain running auxiliary variables x, ū,y, s,Q,Dold,K; // x keeps a track of xt, ū keeps a track
of the greedy vector, y keeps a track of ∇fit(ztit)−∇fit(z

t−1
it

), s keeps a track of ztit − z
t−1
it

,
whereas Q,Dold,K keep track of the intermediate matrices

7: while not converged:
8: Current index to be updated is it ← (t− 1) mod n+ 1;
9: Update x as x←

(
D̄
)(
ϕ− g

)
;

10: Update s← x− zit ;
11: Update y ← ∇fit(xt)−∇fit(zit);
12: Compute ωt; // ωt = (1 + α⌈t/n⌉)

2 if t mod n = 0 and 1 otherwise
13: Update Q as Q← BFGS((1 + α⌈t/n−1⌉)

2Dit , (1 + α⌈t/n−1⌉)K, s), where // Lazy Step

K ←
∫ 1

0

∇2fit(zit + τ(xt − zit))dτ.

14: Update ū as ū← argmaxu∈{ei}d
i=1

⟨u,Qu⟩
⟨u,∇2fit (x

t)u⟩ ;

15: Update Dold as Dold ←Dit ;
16: Update Dit as Dit ← BFGS(Q,∇2fit(x

t), ū);
17: Update ϕ as ϕ← ωt(ϕ−Doldzit) +Ditx

t;
18: Update g as g ← g +

(
∇fit(xt)−∇fit(zit)

)
;

19: Update D̄ as D̄ ← Sherman-Morrison(D̄,y, 1
⟨y,s⟩y);

20: Update D̄ as D̄ ← Sherman-Morrison(D̄,−Dolds, 1
⟨s,Dolds⟩D

olds);

21: Update D̄ as D̄ ← Sherman-Morrison(D̄,−Qū, 1
⟨ū,Qū⟩Qū);

22: Update D̄ as D̄ ← ω−1
t Sherman-Morrison(D̄,∇2fit(zit)ū,

1
⟨ū,∇2fit (zit )ū⟩∇

2fit(zit)ū);

23: Update zit as zit ← x;
24: Increment the iteration counter t;
25: end while
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G CONVERGENCE ANALYSIS OF SLIQN

G.1 Proof of Lemma 1

For all t ≥ 0, we define Ht :=
(∑n

i=1D
t
i

)−1
. From the update for xt (8), we have

xt − x∗ =Ht−1

( n∑
i=1

Dt−1
i zt−1

i −
n∑

i=1

∇fi(zt−1
i )

)
− x∗,

(a)
= Ht−1

( n∑
i=1

Dt−1
i (zt−1

i − x⋆)−
n∑

i=1

∇fi(zt−1
i )

)
,

(b)
= Ht−1

( n∑
i=1

Dt−1
i (zt−1

i − x⋆)−
n∑

i=1

(∇fi(zt−1
i )−∇fi(x⋆))

)
,

(c)
= Ht−1

( n∑
i=1

Dt−1
i (zt−1

i − x⋆)−
n∑

i=1

∫ 1

0

∇2f(x∗ + (zt−1
i − x⋆)v)(zt−1

i − x⋆)dv

)
,

(d)
= Ht−1

( n∑
i=1

(
Dt−1

i −∇2fi(z
t−1
i )

)
(zt−1

i − x⋆)+

n∑
i=1

∫ 1

0

(∇2fi(z
t−1
i )−∇2f(x∗ + (zt−1

i − x⋆)v))(zt−1
i − x⋆)dv

)
.

The equality (a) follows from the definition Ht−1 =
(∑n

i=1D
t−1
i

)−1
. The equality (b) uses the fact that

∇f(x∗) = 1
n

∑n
i=1∇fi(x⋆) = 0. The equality (c) follows from the Fundamental Theorem of Calculus, and the

equality (d) follows by adding and subtracting
∑n

i=1∇2fi(z
t−1
i )(zt−1

i − x⋆). Taking norm on both sides and
applying the Triangle inequality, we obtain

∥∥xt − x∗∥∥ ∆
≤

∥∥Ht−1
∥∥( n∑

i=1

∥∥(Dt−1
i −∇2fi(z

t−1
i )

)∥∥ ∥∥zt−1
i − x⋆

∥∥+
n∑

i=1

∥∥∥∥∫ 1

0

(∇2fi(z
t−1
i )−∇2f(x∗ + (zt−1

i − x⋆)v))(zt−1
i − x⋆)dv

∥∥∥∥),
(a)

≤
∥∥Ht−1

∥∥( n∑
i=1

∥∥(Dt−1
i −∇2fi(z

t−1
i )

)∥∥ ∥∥zt−1
i − x⋆

∥∥+
n∑

i=1

∫ 1

0

∥∥(∇2fi(z
t−1
i )−∇2f(x∗ + (zt−1

i − x⋆)v))(zt−1
i − x⋆)

∥∥ dv),
≤

∥∥Ht−1
∥∥( n∑

i=1

∥∥(Dt−1
i −∇2fi(z

t−1
i )

)∥∥ ∥∥zt−1
i − x⋆

∥∥+
n∑

i=1

∫ 1

0

∥∥(∇2fi(z
t−1
i )−∇2f(x∗ + (zt−1

i − x⋆)v))
∥∥ ∥∥(zt−1

i − x⋆)
∥∥ dv),

(b)

≤
∥∥Ht−1

∥∥( n∑
i=1

∥∥(Dt−1
i −∇2fi(z

t−1
i )

)∥∥ ∥∥zt−1
i − x⋆

∥∥+ L̃

∫ 1

0

(1− v)dv
n∑

i=1

∥∥zt−1
i − x∗∥∥2 ),

≤
∥∥Ht−1

∥∥( n∑
i=1

∥∥(Dt−1
i −∇2fi(z

t−1
i )

)∥∥ ∥∥zt−1
i − x⋆

∥∥+
L̃

2

n∑
i=1

∥∥zt−1
i − x∗∥∥2 ).

The inequality (a) follows from the known result that if g : R→ Rd is a continuous function, then
∥∥∥∫ 1

0
g(v) dv

∥∥∥ ≤∫ 1

0
∥g(v)∥ dv, and the inequality (b) follows from the assumption that the Hessian of fi is L̃− Lipschitz (A2), i.e.∥∥∇2fi(z

t−1
i )−∇2f(x∗ + (zt−1

i − x⋆)v)
∥∥ ≤ L̃(1− v)∥∥zt−1

i − x⋆
∥∥. This completes the proof.
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G.2 Proof of Lemma 2

For a given ρ that satisfies 0 < ρ < 1− µ
dL , we choose ϵ, δ > 0 such that they satisfy

1
µ

(
L̃ϵ
2 + Lδ(1 +M

√
Lϵ)2 + L

3
2Mϵ(2 +M

√
Lϵ)

)
≤ ρ

1 + ρ
< 1. (52)

Remark 6 Indeed, there exists positive constants ϵ, δ > 0 that satisfy 52. Recall from the premise that δ is a
function of ϵ, σ0, and we can define the left-hand-side of 52 as a function h(ϵ, σ0) as

h(ϵ, σ0) :=
1
µ

(
L̃ϵ
2 + Le

4M
√

Lϵ
1−ρ

(
σ0 + ϵ 4Md

√
L

1−ρ(1− µ
dL )−1

)
(1 +M

√
Lϵ)2 + L

3
2Mϵ(2 +M

√
Lϵ)

)
.

Fix σ0 = µ
2L (

ρ
1+ρ ) > 0. It is easy to see that h(ϵ, σ0) is continuous and monotonically increasing in ϵ. Also, note

that h(0, µ
2L (

ρ
1+ρ )) = ρ

2(1+ρ) and limϵ→∞ h(ϵ, µ
2L (

ρ
1+ρ )) = ∞. We can therefore apply the Intermediate Value

Theorem (IVT) to guarantee that there exists ϵ > 0 such that h(ϵ, µ
2L (

ρ
1+ρ )) ≤

ρ
1+ρ .

Similar to Lemma E.3, we use Induction on t to prove the result.

Base case: At t = 1, from Lemma 1, we have∥∥x1 − x⋆
∥∥ ≤ L̃Γ0

2

n∑
i=1

∥∥z0i − x⋆
∥∥2 + Γ0

n∑
i=1

∥∥D0
i −∇2fi(z

0
i )
∥∥∥∥z0i − x⋆

∥∥ .
From the initialization, we have that D0

i = (1 + α0)
2I0i and z0i = x0, for all i ∈ [n], and

∥∥x0 − x⋆
∥∥ ≤ ϵ.

Substituting these in the above expression, we obtain∥∥x1 − x⋆
∥∥ ≤ Γ0

(
n L̃ϵ

2 +

n∑
i=1

∥∥(1 + α0)
2I0i −∇2fi(z

0
i )
∥∥)∥∥x0 − x⋆

∥∥ , (53)

(a)

≤ Γ0

(
n L̃ϵ

2 + (1 + α0)
2

n∑
i=1

∥∥I0i −∇2fi(z
0
i )
∥∥+ α0(α0 + 2)

n∑
i=1

∥∥∇2fi(z
0
i )
∥∥︸ ︷︷ ︸

≤L

)∥∥x0 − x⋆
∥∥ ,

(b)

≤ Γ0

(
n L̃ϵ

2 + nL(1 + α0)
2σ0 + nLα0(α0 + 2)

)∥∥x0 − x⋆
∥∥ ,

≤ Γ0

(
n L̃ϵ

2 + nL(1 +M
√
Lϵ)2σ0 + nL

3
2Mϵ(M

√
Lϵ+ 2)

)∥∥x0 − x⋆
∥∥ ,

≤ Γ0

(
n L̃ϵ

2 + nL(1 +M
√
Lϵ)2δ + nL

3
2Mϵ(M

√
Lϵ+ 2)

)∥∥x0 − x⋆
∥∥ , (54)

where (a) follows by adding and subtracting (1 + α0)
2∇2fi(z

0
i ) to (1 + α0)

2I0i − ∇2fi(z
0
i ) and applying the

Triangle inequality. To see why inequality (b) is true, first recall from the initialization that σ(I0i ,∇2fi(z
0
i )) ≤ σ0

and I0i ⪰ ∇2fi(z
0
i ). Applying Lemma B.1, we have

∥∥I0i −∇2fi(z
0
i )
∥∥ ≤ Lσ(I0i ,∇2fi(z

0
i )) ≤ Lσ0.

We now upper bound Γ0. Define X0 := 1
n

∑n
i=1D

0
i and Y 0 := 1

n

∑n
i=1∇2fi(z

0
i ). Then, we have

1

n

n∑
i=1

∥∥D0
i −∇2fi(z

0
i )
∥∥ ∆
≥

∥∥X0 − Y 0
∥∥ =

∥∥(Y 0)((Y 0)−1X0 − I)
∥∥ (a)

≥ µ
∥∥(Y 0)−1X0 − I

∥∥ ,
where the inequality (a) follows from Assumption A1 which implies µI ⪯ 1

n

∑n
i=1∇2fi(z

0
i ) = Y

0. By tracking
the parts of steps (53)-(54) which bound

∥∥D0
i −∇2fi(z

0
i )
∥∥, we get

n∑
i=1

∥∥D0
i −∇2fi(z

0
i )
∥∥ ≤ nL(1 +M

√
Lϵ)2δ + nL

3
2Mϵ(M

√
Lϵ+ 2).

From the above two chain of inequalities, we obtain∥∥(Y 0)−1X0 − I
∥∥ ≤ 1

µ

(
L(1 +M

√
Lϵ)2δ + L

3
2Mϵ(M

√
Lϵ+ 2)

)
(52)
<

ρ

1 + ρ
.
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We can now upper bound Γ0 using Banach’s Lemma A.1. Consider the matrix (Y 0)−1X0 − I and note that it
satisfies the requirement of A.1 from the above result. Therefore, we have

∥∥(X0)−1Y 0
∥∥ =

∥∥∥(I + ((Y 0)−1X0)− I)
)−1

∥∥∥ Lem.A.1
≤ 1

1− ∥(Y 0)−1X0 − I∥
≤ 1 + ρ.

Recall that µI ⪯ Y 0. Using this and the previous result, we can upper bound
∥∥(X0)−1

∥∥ as µ
∥∥(X0)−1

∥∥ ≤∥∥(X0)−1Y 0
∥∥ ≤ 1 + ρ. This gives us, Γ0 = 1

n

∥∥(X0)−1
∥∥ ≤ 1+ρ

nµ .

Substituting this bound on Γ0 in 54, we obtain

∥∥x1 − x⋆
∥∥ ≤ 1+ρ

µ

(
L̃ϵ
2 + L(1 +M

√
Lϵ)2δ + L

3
2Mϵ(M

√
Lϵ+ 2)

) ∥∥x0 − x⋆
∥∥ (52)

≤ ρ
∥∥x0 − x⋆

∥∥ .
To complete the base step, we now upper bound σ(ω−1

1 D1
1,∇2f1(z

1
1)), where ω1 = 1 . Applying Lemma B.3 with

parameters as T = 1, x̃ = x⋆,P 0 = (1 + α0)
2I01 = D0

1 (refer to Remark 3 we made for Lemma B.3, where we
stated that the results of Lemma B.3 remain unchanged on redefining rk := 2

√
Lρk−1ϵ ≥ 2

√
Lρk−1

∥∥x0 − x⋆
∥∥),

we get

σ(D1
1,∇2f1(z

1
1)) ≤

(
1− c

)
e

4M
√

Lϵ
1−ρ

(
σ(I01 ,∇2f1(z

0
1))︸ ︷︷ ︸

≤σ0

+ϵ
4Md

√
L

1− ρ
1−c

)
≤ (1− c)δ.

Finally, as a technical remark, the proof of Lemma B.3 already shows that D1
1 ⪰ ∇2f1(z

1
1), and therefore

σ(D1
1,∇2f1(z

1
1)) is well defined. This completes the proof for for the base case.

We now prove that (12) and (13) hold for any t > 1 by induction.

Induction hypothesis (IH): Let (12) and (13) hold for all t ∈ [jn+m] for some j ≥ 0 and 0 ≤ m < n.

Induction step: We then prove that (12) and (13) also hold for t = jn +m + 1. Recall that the tuples are
updated in a deterministic cyclic order, and at the current time t, we are in the jth cycle and have updated the
mth tuple. Therefore, it is easy to note that zjn+m

i = xjn+i, for all i ∈ [m], which refer to the tuples updated

in this cycle, and zjn+m
i = xjn−n+i for all i ∈ [n]\[m], which refer to the tuples updated in the previous cycle.

From the induction hypothesis, we have

∥∥∥zjn+m
i − x⋆

∥∥∥ ≤ {
ρ⌈

jn+i
n ⌉

∥∥x0 − x⋆
∥∥ i ∈ [m],

ρ⌈
(j−1)n+i)

n ⌉
∥∥x0 − x⋆

∥∥ i ∈ [n]\[m].
(55)

We will execute the induction step in three distinct stages. In the first stage we will establish an upper bound
on

∑n
i=1 ∥D

jn+m
i −∇2fi(z

jn+m
i )∥. In the second stage, we will use the previous result and Lemma 1 to bound

∥zjn+m+1
m+1 − x⋆∥. In the final stage, we will prove the linear convergence of the updated Hessian approximation,

i.e., σ(ω−1
jn+m+1D

jn+m+1
m+1 ,∇2fm+1(z

jn+m+1
m+1 )) ≤ (1− c)j+1δ.

Since Dt
it
is updated in a different manner for t mod n ̸= 0 and t mod n = 0, we split the first stage into two

cases corresponding to t mod n ̸= 0 and t mod n = 0.

Stage 1, Case 1: t mod n ̸= 0

Since t = jn +m + 1, this case is equivalent to considering 0 ≤ m < n − 1. From the structure of the cyclic
updates and the pre-multiplication of the scaling factor, it is easy to note that Djn+m

i =Djn+i
i , for all i ∈ [m],

Djn+m
i = (1 +M

√
Lϵρj)2Djn−n+i

i , for all i ∈ [n− 1]\[m], and Djn+m
i =Djn

i , for i = n.

We want to bound
∑n

i=1 ∥D
jn+m
i −∇2fi(z

jn+m
i )∥. For all i ∈ [m], from the induction hypothesis, we have

σ(Djn+m
i ,∇2fi(z

jn+m
i )) ≤ (1− c)⌈

jn+i
n ⌉δ,

Lem.B.1
=⇒

∥∥∥Djn+m
i −∇2fi(z

jn+m
i )

∥∥∥ =
∥∥∥Djn+i

i −∇2fi(x
jn+i)

∥∥∥ ≤ L(1− c)⌈ jn+i
n ⌉δ. (56)
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For all i ∈ [n− 1]\[m], we follow in the footsteps of 53-54 from the base case to get∥∥∥Djn+m
i −∇2fi(z

jn+m
i )

∥∥∥ =
∥∥∥(1 +M

√
Lϵρj)2Djn−n+i

i −∇2fi(x
jn−n+i)

∥∥∥ ,
≤ (1 +M

√
Lϵρj)2

∥∥∥Djn−n+i
i −∇2fi(x

jn−n+i)
∥∥∥+

M
√
Lϵρj(2 +M

√
Lϵρj)

∥∥∇2fi(x
jn−n+i)

∥∥︸ ︷︷ ︸
≤L

,

≤ (1 +M
√
Lϵρj)2

∥∥∥Djn−n+i
i −∇2fi(x

jn−n+i)
∥∥∥+ML

3
2 ϵρj(2 +M

√
Lϵρj),

(a)

≤ (1 +M
√
Lϵρj)2Lδ(1− c)j +ML

3
2 ϵρj(2 +M

√
Lϵρj). (57)

The inequality (a) follows from ∥Djn−n+i
i − ∇2fi(x

jn−n+i)∥ ≤ (1 − c)jδ, which can be established from the
induction hypothesis in a similar way as we did for the case with i ∈ [m]. Next, for i = n, we have∥∥∥Djn+m

i −∇2fi(z
jn+m
i )

∥∥∥ =
∥∥∥Djn

i −∇
2fi(z

jn
i )

∥∥∥ ,
=

∥∥∥ωjn(ω
−1
jnD

jn
i −∇

2fi(z
jn
i )) + (ωjn − 1)∇2fi(z

jn+m
i )

∥∥∥ ,
∆
≤ ωjn∥ω−1

jnD
jn
i −∇

2fi(z
jn
i )∥+ |ωjn − 1|∥∇2fi(z

jn
i )∥,

(a)

≤ (1 +M
√
Lϵρj)Lδ(1− c)j + |ωjn − 1|∥∇2fi(z

jn
i )∥,

(b)

≤ (1 +M
√
Lϵρj)Lδ(1− c)j +ML

3
2 ϵρj(2 +M

√
Lϵρj). (58)

To see the deduction (a), we follow in the footsteps of the case with i ∈ [m]. Concretely, from induction and
Lemma B.1, ∥ω−1

jnD
jn
i −∇2fi(z

jn
i )∥ ≤ Lσ(ω−1

jnD
jn
i ,∇2fi(z

jn
i )) ≤ Lδ(1− c)j . Inequality (b) uses the fact that

ωjn = 1 +M
√
Lϵρj and ∥∇2fi(z

jn
i )∥ ≤ L (∵ Assumption A1).

We can now bound the quantity
∑n

i=1 ∥D
jn+m
i −∇2fi(z

jn+m
i )∥ using(56), (57) and (58), as follows:

n∑
i=1

∥∥∥Djn+m
i −∇2fi(z

jn+m
i )

∥∥∥ ≤ mLδ(1− c)j+1 + (n−m)
(
(1 +M

√
Lϵρj)2Lδ(1− c)j

+ML
3
2 ϵρj(2 +M

√
Lϵρj)

)
,

≤ mLδ + (n−m)
(
(1 +M

√
Lϵ)2Lδ +ML

3
2 ϵ(2 +M

√
Lϵ)

)
,

(a)

≤ nLδ(1 +M
√
Lϵ)2 + nML

3
2 ϵ(2 +M

√
Lϵ), (59)

where (a) follows since mLδ + (n − m)(1 +M
√
Lϵ)2Lδ < mL(1 +M

√
Lϵ)2Lδ + (n − m)(1 +M

√
Lϵ)2Lδ =

nL(1 +M
√
Lϵ)2Lδ.

Stage 1, Case 2: t mod n = 0

Since t = jn+m+ 1, this case is equivalent to considering m = n− 1. This is a simpler case, as compared to the
previous case. Here, we have Djn

i = (1 +M
√
Lϵρj)2Djn−n+i

i , for all i ∈ [n− 1], and Djn
n would be used as it is.

We follow exactly the steps leading up to (57) and (58). For, i ∈ [n− 1], using the reasoning in the derivation of
(57), we get ∥∥∥Djn+m

i −∇2fi(z
jn+m
i )

∥∥∥ ≤ (1 +M
√
Lϵρj)2Lδ(1− c)j +ML

3
2 ϵρj(2 +M

√
Lϵρj),

For i = n, from equation (58), we get∥∥∥Djn+m
i −∇2fi(z

jn+m
i )

∥∥∥ ≤ (1 +M
√
Lϵρj)Lδ(1− c)j +ML

3
2 ϵρj(2 +M

√
Lϵρj).
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We can now bound the quantity
∑n

i=1

∥∥∥Djn+m
i −∇2fi(z

jn+m
i )

∥∥∥ in the following manner:

n∑
i=1

∥∥∥Djn+m
i −∇2fi(z

jn+m
i )

∥∥∥ ≤ n(1 +M
√
Lϵρj)Lδ(1− c)j + nML

3
2 ϵρj(2 +M

√
Lϵρj),

(a)

≤ nLδ(1 +M
√
Lϵ)2 + nML

3
2 ϵ(2 +M

√
Lϵ), (60)

where (a) follows by bounding the terms < 1.

Stage 2

We now use the result from Stage 1 to bound ∥zjn+m+1
m+1 − x⋆∥,

∥zjn+m+1
m+1 − x⋆∥

Lem.1
≤ L̃Γjn+m

2

n∑
i=1

∥zjn+m
i − x⋆∥2+

Γjn+m
n∑

i=1

∥∥∥Djn+m
i −∇2fi(z

jn+m
i )

∥∥∥ ∥zjn+m
i − x⋆∥,

(a)

≤ Γjn+m
(
n
L̃ϵ

2
ρj +

n∑
i=1

∥∥∥Djn+m
i −∇2fi(z

jn+m
i )

∥∥∥ ρj) ∥∥x0 − x⋆
∥∥ ,

(59),(60)

≤ Γjn+m
(
n
L̃ϵ

2
+ nLδ(1 +M

√
Lϵ)2 + nML

3
2 ϵ(2 +M

√
Lϵ)

)
ρj

∥∥x0 − x⋆
∥∥ .

The inequality (a) follows from the induction hypothesis that ∥zjn+m
i − x⋆∥ ≤ ρj

∥∥x0 − x⋆
∥∥, for all i ∈ [n]\[m]

and ∥zjn+m
i − x⋆∥ ≤ ρj+1∥x0 − x⋆∥, for all i ∈ [m]. Since ρ < 1, we can have a common upper bound,

∥zjn+m
i − x⋆∥ ≤ ρj∥x0 − x⋆∥, for all i ∈ [n].

We now bound Γjn+m. Define Xjn+m := 1
n

∑n
i=1D

jn+m
i and Y jn+m := 1

n

∑n
i=1∇2fi(z

jn+m
i ). We follow the

same recipe when we bound Γ0 in the base case. Observe that

1

n

n∑
i=1

∥∥∥Djn+m
i −∇2fi(z

jn+m
i )

∥∥∥ ∆
≥

∥∥Xjn+m − Y jn+m
∥∥ (a)

≥ µ
∥∥(Y jn+m)−1Xjn+m − I

∥∥ .
The inequality (a) follows from Assumption A1 that µI ⪯ 1

n

∑n
i=1∇2fi(z

jn+m
i ) = Y jn+m. Also, restating the

result from Stage 1, we have

1

n

n∑
i=1

∥∥∥Djn+m
i −∇2fi(z

jn+m
i )

∥∥∥ ≤ Lδ(1 +M
√
Lϵ)2 +ML

3
2 ϵ(2 +M

√
Lϵ)

From the above two chain of inequalities, we deduce

∥(Y jn+m)−1Xjn+m − I∥ ≤ 1
µ

(
Lδ(1 +M

√
Lϵ)2 +ML

3
2 ϵ(2 +M

√
Lϵ)

)
(52)
<

ρ

1 + ρ
.

We can now upper bound Γjn+m using Banach’s Lemma by exactly following the procedure laid out in the base
case. We get that Γjn+m = ∥(

∑n
i=1D

jn+m
i )−1∥ ≤ 1+ρ

nµ . Substituting this above, we get

∥zjn+m+1
m+1 − x⋆∥ ≤ 1 + ρ

nµ

(
n
L̃ϵ

2
+ nLδ(1 +M

√
Lϵ)2 + nML

3
2 ϵ(2 +M

√
Lϵ)

)
ρj

∥∥x0 − x⋆
∥∥ ,

(52)

≤ ρj+1
∥∥x0 − x⋆

∥∥ . (61)

This completes the induction step proof for (12) at t = jn+m+ 1.

Stage 3
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In this stage, we prove the linear convergence of the updated Hessian approximation, that is, we show that
σ(ω−1

jn+m+1D
jn+m+1
m+1 ,∇2fm+1(z

jn+m+1
m+1 )) ≤ (1−c)j+1δ. But first, we establish that the σ(·) metric is well defined,

by showing that

ω−1
jn+m+1D

jn+m+1
m+1 ⪰ ∇2fm+1(z

jn+m+1
m+1 ). (62)

We make two observations to establish 62. The first observation is that

ω−1
jn+mD

jn+m
m+1

(a)

⪰ ∇2fm+1(z
jn+m
m+1 )

(b)

⪰ (1 + 1
2Mrjn+m+1)

−1Kjn+m,

where (a) follows from the induction hypothesis and (b) follows from Lemma A.3. For convenience, we restate
that rt := ∥ztit − z

t−1
it
∥zt−1

it

.

For the next observation, we first bound rjn+m+1 as we did in Corollary E.1, in the following manner:

rjn+m+1 = ∥zjn+m+1
m+1 − zjn+m

m+1 ∥zjn+m
m+1

(a)

≤
√
L∥zjn+m+1

m+1 − zjn+m
m+1 ∥,

=
√
L∥zjn+m+1

m+1 − x⋆ − zjn+m
m+1 + x⋆∥,

∆
≤
√
L
(
∥zjn+m+1

m+1 − x⋆∥+ ∥zjn+m
m+1 − x⋆∥

)
,

(b)

≤
√
L
(
ρj+1 + ρj

)
ϵ ≤ 2

√
Lρjϵ =

2αj

M
,

where (a) follows from Assumption A1 which implies ∇2fm+1(z
jn+m
m+1 ) ⪯ LI, (b) follows from the induction

hypothesis and (61). Therefore, our second observation is that
Mrjn+m+1

2 ≤ αj .

We consider two cases depending on m (or equivalently t), similar to Stage 1.

Case 1: 0 ≤ m < n

Since all the Di’s were scaled by a factor (1 + αj)
2 at the end of the cycle j − 1, i.e., at t = jn, we have

Djn+m
m+1 = (1 + αj)

2D
(j−1)n+m+1
m+1 . Also, from the induction hypothesis, we have

ω−1
(j−1)n+m+1D

(j−1)n+m+1
m+1 ⪰ ∇2fm+1(z

(j−1)n+m+1
m+1 ).

Note that if (j − 1)n+m+ 1 < 0, we can simply assume those quantities to be super scripted/sub scripted (as
appropriate) with 0. For example, D−n+m+1

m+1 =D0
m+1, ω−n+m+1 = ω0, etc.

Since 0 ≤ m < n, we have ω(j−1)n+m+1 = 1. Further, zjn+m
m+1 = z

(j−1)n+m+1
m+1 . Therefore,

Djn+m
m+1 = (1 + αj)

2D
(j−1)n+m+1
m+1 ⪰ (1 + αj)

2∇2fm+1(z
jn+m
m+1 ),

Lem.A.2
⪰

(
1 + αj

)2(
1 +

Mrjn+m+1

2

)−1
Kjn+m+1,

⪰
(
1 + αj

)
Kjn+m+1.

Case 2: m = n− 1

Since the current index m+ 1 was last updated at time t = jn, we have Djn+m
m+1 = Djn

m+1 and zjn+m
m+1 = zjnm+1.

Further, the induction hypothesis yields ω−1
jnD

jn
m+1 ⪰ ∇2fm+1(z

jn
m+1). Also, ωjn = (1 + αj)

2 by definition.
Therefore,

Djn+m
m+1 = ωjn(ω

−1
jnD

jn
m+1) ⪰ (1 + αj)

2∇2fm+1(z
jn+m
m+1 ).

Lem.A.3
⪰

(
1 + αj

)2(
1 +

Mrjn+m+1

2

)−1
Kjn+m+1,

⪰
(
1 + αj

)
Kjn+m+1.

Summarizing, for both cases 0 ≤ m < n and m = n− 1, we have established that Djn+m
m+1 ⪰ (1 + αj)K

jn+m+1.
The next steps are common for both the cases.
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Since Djn+m
m+1 ⪰

(
1 + αj

)
Kjn+m+1, applying Lemma A.2, we obtain

Qjn+m+1 = BFGS(Djn+m,
(
1 + αj

)
Kjn+m+1, zjn+m+1

m+1 − zjn+m+1
m+1 ),

Lem.A.2
⪰

(
1 + αj

)
Kjn+m+1.

Applying Lemma A.3 to relate Kjn+m+1 and ∇2fm+1(z
jn+m
m+1 ), we obtain

Qjn+m+1 ⪰
(
1 + αj

)
Kjn+m+1 ⪰

(
1 +

Mrjn+m+1

2

)
Kjn+m+1

Lem.A.2
⪰ ∇2fim(zmim).

Since Qjn+m+1 ⪰ ∇2fm+1(z
jn+m+1
m+1 ), applying Lemma A.2, we obtain

ω−1
jn+m+1D

jn+m+1
m+1 = BFGS(Qjn+m+1,∇2fm+1(z

jn+m+1
m+1 ), ū(Qjn+m+1,∇2fm+1(z

jn+m+1
m+1 )),

Lem.A.2
⪰ ∇2fm+1(z

jn+m+1
m+1 ).

We can now prove the linear convergence of the Hessian approximation.

We define the sequence {yk}, for k = 0, . . . , j+1, such that {yk} = {x0, zm+1
m+1 , . . . ,z

jn+m+1
m+1 }. From the induction

hypothesis and Stage 2, we have that ∥yk − x⋆∥ ≤ ρk∥x0 − x⋆∥, for all k. Since {yk} comes about from the
application of BFGS updates with, rk := 2

√
Lρk−1ϵ, as described in the statement of Lemma B.3, therefore {yk}

satisfies the conditions of Lemma B.3. This implies that,

σ(ω−1
jn+m+1D

jn+m+1
m+1 ,∇2fm+1(yj+1)) ≤ (1− c)j+1δ.

Since yj+1 = zjn+m+1
m+1 , the proof is complete via induction.

G.3 Proof of Lemma 3

We prove the Lemma for a generic iteration t = jn+m+ 1, for some j ≥ 0 and 0 ≤ m < n. We restate a few

observations derived in the proof of Lemma 2. First, we proved an upper bound on Γjn+m = ∥
(∑n

i=1D
jn+m
i

)−1∥,
given by

Γjn+m ≤ 1 + ρ

nµ
. (63)

We also derived upper bounds (57), (58) on ∥Djn+m
i −∇2fi(z

jn+m
i )∥:∥∥∥Djn+m

i −∇2fi(z
jn+m
i )

∥∥∥ ≤ {
(1 +M

√
Lϵρj)2Lδ(1− c)j +ML

3
2 ϵρj(2 +M

√
Lϵρj) i ∈ [n]\[m],

Lδ(1− c)j+1 i ∈ [m].

A common larger upper bound for both the cases is given by∥∥∥Djn+m
i −∇2fi(z

jn+m
i )

∥∥∥ ≤ (1 +M
√
Lϵρj)2Lδ(1− c)j +ML

3
2 ϵρj(2 +M

√
Lϵρj), i ∈ [n]. (64)

Finally, we also established that,

∥zjn+m
i − x⋆∥ ≤ ρj+1∥x0 − x⋆∥ ≤ ρj∥x0 − x⋆∥, i ∈ [m]

∥zjn+m
i − x⋆∥ ≤ ρj∥x0 − x⋆∥, i ∈ [n]\[m]. (65)

We are now ready to prove the mean-superlinear convergence. From Lemma 1, we have

∥zjn+m+1
m+1 − x⋆∥ ≤ Γjn+m L̃

2

n∑
i=1

∥zjn+m
i − x⋆∥2 + Γjn+m

n∑
i=1

∥∥∥Djn+m
i −∇2fi(z

jn+m
i )

∥∥∥ ∥zjn+m
i − x⋆∥,

≤ Γjn+m
n∑

i=1

(
L̃
2 ∥z

jn+m
i − x⋆∥+

∥∥∥Djn+m
i −∇2fi(z

jn+m
i )

∥∥∥)∥zjn+m
i − x⋆∥,
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We now substitute the upper bounds from 63, 64, and 65 to get

≤ 1+ρ
nµ

(
L̃
2 ρ

jϵ+ (1 +M
√
Lϵρj)2Lδ(1− c)j +ML

3
2 ϵρj(2 +M

√
Lϵρj)

) n∑
i=1

∥zjn+m
i − x⋆∥,

≤ 1+ρ
nµ

(
L̃
2 ρ

jϵ+ (1 +M
√
Lϵ)2Lδ(1− c)j +ML

3
2 ϵρj(2 +M

√
Lϵ)

) n∑
i=1

∥zjn+m
i − x⋆∥,

(a)

≤ (1− c)j 1+ρ
µ

(
L̃
2 ϵ+ (1 +M

√
Lϵ)2Lδ +ML

3
2 ϵ(2 +M

√
Lϵ)

)(
1
n

n∑
i=1

∥zjn+m
i − x⋆∥

)
,

(52)

≤ ρ(1− c)j
(
1
n

n∑
i=1

∥zjn+m
i − x⋆∥

) (b)

≤ (1− c)j+1
(
1
n

n∑
i=1

∥∥xt−i − x⋆
∥∥ ),

where (a) and (b) follow since ρ < 1− c. This completes the proof.

G.4 Proof of Theorem 1

Define the sequence {ζt}, for all t ≥ 0, as ζt := maxj∈[n] ∥xnt+j − x⋆∥. Let the constant c be defined as c := µ
dL .

Then, from Lemma 3, we have

∥∥xnt+i − x⋆
∥∥ ≤ (1− c)t+1 1

n

n∑
j=1

∥xnt+i−j − x⋆∥ (66)

≤ (1− c)t+1 max
j∈[n]

∥xnt+i−j − x⋆∥. (67)

By induction on i, we prove the following first:∥∥xnt+i − x⋆
∥∥ ≤ (1− c)t+1 max

j=1,...,n

∥∥xnt+1−j − x⋆
∥∥ = (1− c)t+1ζt−1, (68)

for i = 1, . . . , n. Substituting i = 1 in (67) we get∥∥xnt+1 − x⋆
∥∥ ≤ (1− c)t+1 max

j=1,...,n

∥∥xnt+1−j − x⋆
∥∥ = (1− c)t+1ζt−1.

This proves the base step (i = 1). Assume, (68) holds for i = k. We prove that (68) holds for i = k + 1.
Substituting i = k + 1 in (67) we get∥∥xnt+k+1 − x⋆

∥∥ ≤ (1− c)t+1 max
j=1,...,n

∥∥xnt+k+1−j − x⋆
∥∥ ,

≤ (1− c)t+1 max
j=1,...,n+k

∥∥xnt+k+1−j − x⋆
∥∥ ,

= (1− c)t+1 max
( ∥∥xnt+k − x⋆

∥∥ , . . . ,∥∥xnt+1 − x⋆
∥∥ , max

j=1,...,n

∥∥xnt+1−j − x⋆
∥∥ ),

(a)

≤ (1− c)t+1 max
j=1,...,n

∥∥xnt+1−j − x⋆
∥∥ ,

where (a) follows since
∥∥xnt+1 − x⋆

∥∥ ≤ (1 − c)t+1 maxj=1,...,n

∥∥xnt+1−j − x⋆
∥∥ , . . . ,∥∥xnt+k − x⋆

∥∥ ≤ (1 −
c)t+1 maxj=1,...,n

∥∥xnt+1−j − x⋆
∥∥ by the induction hypothesis. Therefore (68) holds for i = k + 1. This proves

(68) for i = 1, . . . , n.

Since (67) holds for i = 1, . . . , n, we have

ζt ≤ (1− c)t+1ζt−1, (69)

for all t ≥ 1. Unrolling this recursion, we get

ζt ≤ (1− c)
∑t+1

j=2 jζ0
(a)

≤ (1− c)
t(t+3)

2 ρ
∥∥x0 − x⋆

∥∥ (b)

≤ ϵ(1− c)
(t+1)(t+2)

2 ,

where (a) follows from Lemma 2 and (b) follows since ρ < 1− c. This completes the proof.
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H GENERALIZED SHARPENED INCREMENTAL QUASI-NEWTON
METHOD (G-SLIQN)

In this section, we extend the SLIQN algorithm, whose Hessian approximation updates 3, 3 are built on the
BFGS operator, to the class of restricted Broyden operators. We refer to this class of algorithms as G-SLIQN.
First, we define the DFP operator

DFP(B,K, z) := B − Kzz
TB +BzzTK

⟨z,Kz⟩
+

(
1 +
⟨z,Bz⟩
⟨z,Kz⟩

)
KzzTK

⟨z,Kz⟩
,

for B,K ≻ 0 and z ∈ Rd\{0}. The restricted Broyden operator with parameter 0 ≤ τ ≤ 1 is defined as a convex
combination of DFP and BFGS as follows:

Broydresτ (B,K, z) := τDFP (B,K, z) + (1− τ)BFGS (B,K, z) ,

where BFGS(B,K, z) is given by (3).

H.1 The generalized algorithm G-SLIQN

As with SLIQN, we first present G-SLIQN with a maximum per-iteration cost of O(nd2) and an average O(d2)
cost per epoch. Similar to SLIQN, G-SLIQN can be implemented with a maximum per-iteration cost of O(d2) as
per Appendix F.1.

Hyperparameters: Choose τ1, τ2 ∈ [0, 1] as the restricted Broyd operator paramater for the classic and the
greedy updates respectively. Note that setting τ1 = τ2 = 0 reduces G-SLIQN to SLIQN.

We denote the Hessian approximation matrices at time t as {Gt
i}ni=1.

Initialize: At t = 0, we initialize {z0i }ni=1 as z0i = x0, ∀i ∈ [n], for a suitably chosen x0. We initialize {G0
i }ni=1

as G0
i = (1+α0)

2I0i , where {I0i }ni=1 are chosen such that I0i ⪰ ∇2fi(z
0
i ), ∀i ∈ [n]. Here {αk}, k ∈ N is as defined

in Lemma 2.

Algorithm: For any iteration t ≥ 1, just like the update in SLIQN 10, we update xt as

xt =

( n∑
i=1

Gt−1
i

)−1( n∑
i=1

Gt−1
i zt−1

i −
n∑

i=1

∇fi(zt−1
i )

)
. (70)

Next, we update ztit as ztit = x
t. To update Qt and Gt

it
, we use the chosen restricted Broyd operators in place of

the BFGS operators 3, 3:

Qt = Broydresτ1 (Gt−1
it

, (1 + α⌈t/n−1⌉)K
t, ztit − z

t−1
it

), (71)

Gt
it = ωtBroyd

res
τ2 (Qt,∇2fit(z

t
it), ū

t(Qt,∇2fit(z
t
it))), (72)

where ωt := (1 + α⌈t/n⌉)
2 if t is a multiple of n and 1 otherwise. For the indices i ̸= it, we update zti and Gt

i in
the following manner:

zti = z
t−1
i ,Gt

i = ωtG
t−1
i ,∀i ∈ [n]; i ̸= it. (73)

Finally, we update (
∑n

i=1G
t
i)

−1
,
∑n

i=1G
t
iz

t
i and

∑n
i=1∇fi(zti). Observe that the restricted Broyd operator

induces a correction of at-most 5 rank-1 matrices. We can therefore, carry out this update in O(d2) cost by
repeatedly applying Sherman-Morrison formula. This is similar to what was done for SLIQN in Appendix F.1.
All other updates are a constant number of matrix-vector multiplications which can be done in O(d2) cost.

H.2 Overview of the Convergence Analysis of G-SLIQN

The analysis of SLIQN can be readily extended to G-SLIQN. Since most of the results established for SLIQN
would continue to hold for G-SLIQN, we do not explictly state them here for the sake of brevity. However, we
discuss the mappings that allow us to conclude that similar results hold for SLIQN in this section.
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Algorithm 4 Generalized Sharpened Lazy Incremental Quasi-Newton (G-SLIQN)

1: Function {Sherman-Morrison} {A−1,u,v}
2: return A−1 − A−1uvTA−1

1+vTA−1u
3: EndFunction

4: Initialize: Initialize {zi,Gi}ni=1 as described in Section H.1;

5: Evaluate Ḡ :=
(∑

iGi

)−1
,ϕ :=

∑
iGizi, and g :=

∑
i∇fi(zi);

6: while not converged:
7: Current index to be updated is it ← (t− 1) mod n+ 1;
8: Update ωt as ωt ← 1 + α⌈t/n−1⌉;
9: if it = 1 then

10: Update Ḡ as Ḡ← Ḡ/ω2
t ;

11: Update ϕ as ϕ← ω2
tϕ;

12: end if
13: Update xt as xt ←

(
Ḡ
)(
ϕ− g

)
as per (70);

14: Update Git as Git ← ω2
tGit ;

15: Update v1 as v1 ← xt − zit ;
16: Update Qit as Qit ← Broydresτ1 (Git , ωtK

t,v1) as per (71);
17: Update v2 as v2 ← ūt(Qit ,∇2fit(x

t));
18: Update G̃it as G̃it ← Broydresτ2 (Qit ,∇2fit(x

t),v2) as per (72);

19: Update ϕ as ϕ← ϕ−Gitzit + G̃itx
t;

20: Update g as g ← g −∇fit(zit) +∇fit(xt);
21: Update Ḡ as Ḡ← Sherman-Morrison(Ḡ,− Kv1

vT
1 Kv1

,Gitv1);

22: Update Ḡ as Ḡ← Sherman-Morrison(Ḡ,−Gitv1,
Kv1

vT
1 Kv1

);

23: Update Ḡ as Ḡ← Sherman-Morrison(Ḡ, ωt

(
1 +

vT
1 Gitv1

ω2
tv

T
1 Kv1

)
Kv1

vT
1 Kv1

, Kv1

vT
1 Kv1

);

24: Update Ḡ as Ḡ← Sherman-Morrison(Ḡ,− Qitv2

vT
2 Qitv2

,Qitv2);

25: Update Ḡ as Ḡ← Sherman-Morrison(Ḡ,
∇2fit (x

t)v2

vT
2 ∇2fit (x

t)v2
,∇2fit(x

t)v2);

26: Update zit as zit ← xt;
27: Increment the iteration counter t;
28: end while
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Firstly, the result in Lemma A.2 holds even for the restricted Broyden operator as per (Rodomanov and Nesterov,
2021c, Lemma 2.1) and (Rodomanov and Nesterov, 2021c, Lemma 2.2), which are restated here for completeness.
Note that the results in Rodomanov and Nesterov (2021c) are for the Broyden operator, but as per Nocedal
and Wright (1999) the restricted Broyden operator is a subset of the Broyden operator, hence the results in
Rodomanov and Nesterov (2021c) are applicable for the restricted Broyden operator as well.

Lemma H.1 (Rodomanov and Nesterov, 2021c, Lemma 2.1) Let, G,A be positive definite matrices such that
1
ξA ⪯ G ⪯ A, where ξ, η ≥ 1. Then, for any u ̸= 0, and any τ ∈ [0, 1], we have

1

ξ
A ⪯ G+ := Broydresτ (G,A,u) ⪯ ηA.

Lemma H.2 (Rodomanov and Nesterov, 2021c, Lemma 2.2) Let G,A be positive definite matrices such that
A ⪯ G ⪯ ηA, for some η ≥ 1. Then, for any τ ∈ [0, 1] and any u ̸= 0, we have

σ(G,A)− σ(Broydresτ (G,A,u),A) ≥
(
τ

η
+ 1− τ

)
θ2(G,A,u),

where

θ(G,A,u) :=

(
⟨(G−A)u,A−1(G−A)u⟩

⟨Gu,A−1Gu⟩

) 1
2

.

Since τ ∈ [0, 1] and η ≥ 1, we have τ
η +1− τ ≥ 0 ⇐⇒ τ ≤ η

η−1 holds vacuously. Therefore, on taking a restricted

Broyden update, we get σ(G,A) ≥ σ(Broydresτ (G,A,u),A) under the assumptions of Lemma H.2.

Futher, the result in Lemma A.4 holds for the restricted Broyd operator as per (Rodomanov and Nesterov, 2021a,
Theorem 2.5) which is restated here for completeness.

Lemma H.3 (Rodomanov and Nesterov, 2021a, Theorem 2.5) Let G,A be positive definite matrices such that
A ⪯ G. Further, let µ,L > 0 be such that µI ⪯ A ⪯ LI. Then, for any τ ∈ [0, 1], we have

σ(Broydresτ (G,A, ū(G,A)),A) ≤
(
1− µ

dL

)
σ(G,A),

where ū(G,A) the greedy vector (4).

Using Lemma H.1, H.2, H.3, we can establish that the Lemma B.2 (with BFGS replaced by restricted Broyd),
Corollary B.1, and Lemma B.3 (with BFGS replaced by restricted Broyd) hold. Therefore, the supporting lemmas
in Appendix B hold even for the Broyden update.

Next, we discuss about the main results in Section 5. Firstly, observe that Lemma 1 remains the same for
G-SLIQN. This is because the proof of Lemma 1 hinges on the structure of update 10 and and abstracts out the
specific updates made to Dt

it
. Since the update 70 for G-SLIQN is the same as 10, the guarantees of the Lemma

and its proof carries through for G-SLIQN. Further, since the supporting lemmas in Appendix B hold for G-SLIQN,
using Lemma 1 and the supporting lemmas, we can establish that Lemma 2 holds even for G-SLIQN. Since the
proof of Lemma 3 leverages the result of Lemma 2, we can establish that the mean superlinear convergence result
given by Lemma 3 holds for G-SLIQN as well. Finally, using Lemma 3 we can show that Theorem 1 holds for
G-SLIQN.
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I NUMERICAL SIMULATIONS

As can be clearly observed, the proposed algorithm SLIQN requires the knowledge about ϵ, σ0 in order to tune
the correction factor αt. However, we observed that, empirically SLIQN outperforms a number of incremental
and stochastic QN methods without the correction factor, i.e., αt = 0. For IGS however, the performance is
quite sensitive to the correction factor, βt, and βt = 0 was not the best performing correction factor for all the
simulations. Therefore, SLIQN does not require hyper-parameter tuning, unlike IGS.

Initialization: For all our simulations, all algorithms start at the same initial x0 = αv, where v ∈ Rd is such
that each coordinate vi,j ∼ Unif[0, 1]. Since, all the algorithms considered for performance comparison are only
locally convergent, the parameter α affects the convergence of the algorithms.

Stopping Criterion: We stop the execution of each algorithm when the gradient norm of f is less than a
threshold. Formally, letting the threshold be gstop, the stopping condition can be expressed as

1

N

∥∥∥∥∥
N∑
i=1

∇fi(xt)

∥∥∥∥∥ < gstop.

Typical values of gstop used in our simulations range from 10−7 to 10−8.

I.1 Generating Scheme for Quadratic minimization

We follow the scheme proposed in Mokhtari et al. (2018) to generate {Ai, bi}ni=1. We set each matrix Ai :=

diag({ai}di=1), by sampling the diagonal elements as {ai}d/2i=1
i.i.d.∼ Unif[1, 10

ξ
2 ] and {ai}di=d/2+1

i.i.d.∼ Unif[10−
ξ
2 , 1].

The parameter ξ controls the condition number of the matrix Ai. Under the limit d→∞, the condition number
of Ai is given by 10ξ. Each coordinate bi,j of the vector bi is sampled as bi,j ∼ Unif[0, 1000].
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