
Sampling-based Safe Reinforcement Learning for
Nonlinear Dynamical Systems

Wesley A. Suttle Vipul K. Sharma Krishna C. Kosaraju
U.S. Army Research

Laboratory
Purdue University Clemson University

S. Sivaranjani Ji Liu Vijay Gupta Brian M. Sadler
Purdue University Stony Brook University Purdue University U.S. Army Research

Laboratory

Abstract

We develop provably safe and convergent
reinforcement learning (RL) algorithms for
control of nonlinear dynamical systems,
bridging the gap between the hard safety
guarantees of control theory and the con-
vergence guarantees of RL theory. Recent
advances at the intersection of control and
RL follow a two-stage, safety filter approach
to enforcing hard safety constraints: model-
free RL is used to learn a potentially unsafe
controller, whose actions are projected onto
safe sets prescribed, for example, by a con-
trol barrier function. Though safe, such ap-
proaches lose any convergence guarantees en-
joyed by the underlying RL methods. In this
paper, we develop a single-stage, sampling-
based approach to hard constraint satisfac-
tion that learns RL controllers enjoying clas-
sical convergence guarantees while satisfying
hard safety constraints throughout training
and deployment. We validate the efficacy
of our approach in simulation, including safe
control of a quadcopter in a challenging ob-
stacle avoidance problem, and demonstrate
that it outperforms existing benchmarks.

1 INTRODUCTION

Learning-based methods for safe control of physi-
cal systems have been gaining increasing attention

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

(Brunke et al., 2022). RL is especially powerful for the
control of systems where performance feedback in the
form of a scalar reward is available, but the dynamics
are unknown (Sutton and Barto, 2018). In such set-
tings, RL methods can learn a controller maximizing
reward through direct interaction with the environ-
ment. However, due to physical realities such as the
need to guarantee safety, practical application of RL
to control of physical systems requires constraints on
the control policies throughout training (Garcıa and
Fernández, 2015). While directly constraining the ac-
tion space to a static, narrowly defined set of “safe” ac-
tions is frequently employed in practice, this can lead
to learning highly suboptimal policies and more nu-
anced methods are therefore required. Furthermore,
in most physical systems it is non-trivial to directly
translate complex safety constraints on the states into
allowable actions.

A variety of RL approaches to the problem of safe
learning for control have been proposed in the litera-
ture (see Brunke et al. (2022) for a comprehensive sur-
vey), including RL methods for safety-focused prob-
lems formulated as constrained Markov decision pro-
cesses (CMDPs) (Altman, 2021), methods for learning
to achieve safety through stability (Berkenkamp et al.,
2017), and projection-based – also known as “safety
filter” – RL methods for maintaining hard safety con-
straints, typically achieved through the use of control
barrier functions (CBFs) (Cheng et al., 2019). Though
CMDP-based methods enjoy convergence guarantees,
they encourage safety without guaranteeing it, and
cannot provide guarantees for hard safety constraints
commonly required in physical systems. Likewise,
methods like Berkenkamp et al. (2017) do better by
offering high-probability safety assurances, but stop
short of guaranteeing safety. In systems where safety
is critical, methods like Cheng et al. (2019) that prov-

Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical Systems

ably guarantee hard constraint satisfaction are neces-
sary. However, the interaction between imposition of
hard constraints and optimality of the resulting control
policies is a subtle issue in RL. While projection-based
safety-filter approaches (Wabersich et al., 2023) prov-
ably guarantee safety, the projection procedure under-
mines any convergence guarantees enjoyed by the un-
derlying RL methods.

In this work, we develop a class of model-free policy
gradient methods that maintain safety or other sta-
bility properties by sampling directly from the set of
state-dependent safe actions. The key to our approach
is that we consider truncated versions of commonly
used stochastic policies, allowing us to sample directly
from the safe action set at each state. This allows us
to recover convergence guarantees by extending exist-
ing results for policy gradient methods to truncated
policies. Our approach is applicable to a wide class
of safety constraints including control barrier func-
tions (CBFs), that enforce forward invariance of a set
characterized by nonlinearly coupled states and ac-
tions (Ames et al., 2019, 2016), and reachability-type
constraints (Wabersich et al., 2023). In addition to
our theoretical results, we experimentally validate the
practical utility of sampling-based safety-preservation
methods by considering a special case: Beta policies
with state-dependent, control barrier function (CBF)-
constrained action sets. This novel approach ex-
tends the Beta policies in Chou et al. (2017) to the
state-dependent action constraint setting. Finally, we
train the resulting CBF-constrained Beta policies us-
ing PPO to solve a safety-constrained inverted pendu-
lum problem as well as a quadcopter navigation and
obstacle avoidance problem, and compare the latter to
a safety filter-based benchmark.1 These case studies
illustrate that our method simultaneously guarantees
safety throughout training and guarantees optimality,
even where existing benchmarks fail.

1.1 Related Work

Safety and stability have seen a great deal of interest
in recent years at the intersection of the RL and con-
trol communities (see Brunke et al. (2022); Garcıa and
Fernández (2015) for overviews). We are interested in
safety definitions that impose hard constraints on the
states and control actions (rather than, e.g., those used
in robust RL (Wiesemann et al., 2013; Aswani et al.,
2013) or RL for CMDPs (Achiam et al., 2017; Pater-
nain et al., 2019; Ma et al., 2021; Bai et al., 2022)).
Model-based methods for guaranteeing stability using
RL controllers in systems with known or learnable
dynamics have been developed in Berkenkamp et al.

1Our implementation is publicly available at https://
github.com/sharma1256/cbf-constrained_ppo.

(2017); Fazel et al. (2018); Zhang et al. (2021). Re-
cently, techniques leveraging control barrier functions
to maintain safety (Cheng et al., 2019) and dissipativ-
ity (Kosaraju et al., 2021) have been developed.

Our work lies in the model-free RL setting. The two
dominant approaches in model-free RL are value func-
tion and policy gradient-based methods (Sutton and
Barto, 2018). We focus on the latter in this paper.
Since their origins early in the development of RL (Sut-
ton et al., 2000; Borkar, 2005; Bhatnagar et al., 2009),
policy gradient methods have become the model-free
algorithms of choice for complex problems with contin-
uous, high-dimensional state and action spaces (Lilli-
crap et al., 2015; Schulman et al., 2017; Haarnoja et al.,
2018). Recent works have improved our understanding
of gradient estimation procedures, global optimality
properties, and convergence rates of these algorithms
(Agarwal et al., 2020; Zhang et al., 2020; Suttle et al.,
2023). Popular approaches for safety in model-free RL
include using bounds resulting from Gaussian process
models (Schreiter et al., 2015; Rasmussen, 2003; Sui
et al., 2015), reward-shaping, constrained policy op-
timization (Achiam et al., 2017; Wachi et al., 2018),
and teacher advice (Abbeel and Ng, 2004). Our work
is most closely related to those approaches that use a
hard safe set specification and constraints on control
inputs, e.g., control barrier functions (Cheng et al.,
2019; Fisac et al., 2018; Li et al., 2018; Kosaraju et al.,
2021). In particular, our key contribution is a model-
free safe RL algorithm with convergence guarantees
and provable safety guarantees under hard constraints
like CBFs, even during training.

2 PROBLEM SETTING

Consider a discounted MDP (X ,U ,P, r, γ), where X ⊆
Rm is the state space, U ⊆ Rn is the action space,
P(·|x, u) is the transition probability function given
action u is taken in state x, r : X × U → R is the
reward function, and γ ∈ [0, 1] is the discount fac-
tor. The MDP, which can be used to model a wide
array of discrete-time systems, proceeds as follows: at
time k, the system is in state xk; a control input uk is
applied to the system; a reward r(xk, uk) is received;
the system transitions into state xk+1 according to the
distribution P (·|xk, uk). The goal in this problem for-
mulation is to maximize the expected discounted re-
ward, which we define in (3) below. Note that de-
terministic dynamics can be recovered by imposing
that, for each x ∈ X , u ∈ U , there exists x′ ∈ X
such that P(x′|x, u) = 1. This is useful for mod-
eling discretizations of continuous-time control prob-
lems, for example. We assume throughout this pa-
per that the dynamics are deterministic in this way,
which is a common setting in safe control problems.

W. A. Suttle, V. K. Sharma, K. C. Kosaraju, S. Sivaranjani, J. Liu, V. Gupta, B. M. Sadler

Let T : X × U → X represent the dynamics of the
MDP, i.e., given state x and control input u, T (x, u)
denotes the state the system transitions into when in-
put u is applied while in state x.

Letting ∆(U) denote the set of all probability distribu-
tions over the set U , a stochastic policy π : X → ∆(U)
is a function mapping states to probability distribu-
tions over the action space U . In other words, given a
state x, an agent using policy π will choose a control
action u ∈ U by sampling u ∼ π(·|s). For our purposes
it will be useful to consider policies πθ parameterized
by θ ∈ Θ ⊆ Rk, for some k ≪ |X | · |U| = m · n, where
Θ is a compact set of permissible parameters.

Let S ⊂ X denote some “safe” or stable set within
which we wish to keep the system. Furthermore, let
P(S) denote the powerset of a set S, and consider a
set-valued function C : X → P(U) given by

C(x) = {u ∈ U | T (x, u) ∈ S}. (1)

Intuitively, C(x) is the set of all control inputs which
when applied at state x keep the system within the
safe set at the next time step. We assume throughout
that, for a given x ∈ X , C(x) is known. Since our
primary focus is resolving the open problem of simul-
taneously guaranteeing convergence and hard safety
constraint satisfaction, we leave the issue of learning
or approximating C(x) while maintaining these guar-
antees to future work. The general formulation can be
used to accommodate a variety of notions of safety, in-
cluding forward invariance, stability, and dissipativity
enforced by, for example, CBFs and exponential CBFs
(ECBFs), and control Lyapunov functions (CLFs) (see
the supplementary material for an overview and Ames
et al. (2019) for a comprehensive survey). As we will
demonstrate in the case studies below, the use of our
method in conjunction with (E)CBFs is particularly
natural to provide guarantees in problems with hard
safety constraints. To ensure that we can sample from
C(x) and integrals over C(x) are well-defined, we make
the following assumption. Let µ denote the Lebesgue
measure.

Assumption 1. There exist m,M > 0 such that m ≤
µ(C(x)) ≤M , for all x ∈ X . Furthermore, ∪x∈XC(x)
is compact.

Given a policy πθ, consider the distribution πC
θ (·|x)

obtained by truncating πθ(·|x) to the set C(x). More
precisely:

πC
θ (u|x) =

{
πθ(u|x)

πθ(C(x)|x) u ∈ C(x)
0 u /∈ C(x),

(2)

where πθ(C(x)|x) =
∫
C(x)

πθ(u|x)du. As long as we

can check membership in C(x) for any given u ∈ U ,

and assuming that the volume of C(x) is strictly pos-
itive, for all x ∈ X , we can generate from this dis-
tribution by using rejection sampling, i.e. repeatedly
sampling u ∼ πθ(·|x) until we obtain u ∈ C(x). Note
that, depending on the structure of parametrized poli-
cies πC

θ , if C(x) has a particularly nice form, such as
an interval or hyperrectangle, there may be more ef-
ficient methods than rejection sampling for sampling
from the truncated distribution πC

θ (·|x) directly. We
exploit this fact when leveraging Beta policies in the
experimental results of Section 4 below.

With this setup in mind, and given a fixed start state
x0, we propose a policy gradient-based algorithm max-
imizing the objective function

J(θ) = EπC
θ

[∞∑
k=0

γkr(xk, uk)
∣∣∣ x0] , (3)

the expected discounted reward under policy πC
θ . Be-

fore proceeding with describing and analyzing the algo-
rithm, we first need to identify conditions that ensure
that, for each policy parameter θ, taking expectations
with respect to πC

θ is well-defined and thus meaning-
ful. In order for (3) to be well-defined, we need to
know that, for each policy parameter θ, the occupancy
measure of the Markov chain induced by πC

θ on S is
irreducible and satisfies certain ergodicity conditions.
Once these are proven, we will be justified in perform-
ing gradient ascent on the objective function (3).

3 THEORETICAL RESULTS

In this section we develop the theory underlying our
sampling-based method for RL with hard safety con-
straints. Our key contributions include proving that
(3) is well-defined (§3.1), obtaining gradient expres-
sions for it from which we can sample (§3.2), and de-
veloping and establishing the convergence of a policy
gradient algorithm for optimizing (3) (§3.3 and §3.4).
All proofs are deferred to the supplementary material.
It is important to note that, though we assumed the
deterministic dynamics common to safe control in §2,
all our theoretical results go through in the stochastic
dynamics case under standard ergodicity assumptions.
Our key theoretical contribution in what follows is to
show that, even in the deterministic dynamics case,
we can ensure that the objective is well-defined (§3.1)
and obtain convergence (§3.4).

3.1 Discounted Return is Well-defined

First, we show that the objective (3) is well-defined
when using truncated policies, even in continuous
spaces systems with deterministic dynamics. Our key
contribution in this setting is to ensure that, given

Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical Systems

reasonable conditions on the policies under considera-
tion, important ergodicity properties of their induced
Markov chains hold. This fact, established in Proposi-
tion 1 and Corollary 1, is nontrivial and its proof relies
on a careful analysis of the propagation of probability
mass through the transition dynamics and an interest-
ing application of the Lebesgue-Radon-Nikodym The-
orem (Folland, 1999, §3.2). As in the previous section,
let S ⊂ Rm denote the “safe” set within which the sys-
tem remains so long as all control inputs are selected
from C(x). Though we leave open the possibility that
S satisfies a more specific stability conditions rather
than a generic notion of “safety”, we will typically use
the term “safe” for ease of presentation. Let µ denote
Lebesgue measure. We make the following definition:

Definition 1. The Markov chain {xk}k∈N induced by
πC
θ on X is µ-irreducible on S if, for any µ-measurable
B ⊂ S, if µ(B) > 0, then

∑
k∈N P (xk ∈ B | x0 = x) >

0, for all x ∈ S.

This means that, for a Markov chain to be (µ-
)irreducible on the safety set, all safe subsets with pos-
itive volume must be reachable from any initial safe
state with positive probability. Notice that {xk}k∈N is
in fact a Markov chain on the safe set S since, by the
definition of C(x), only those control inputs keeping
the system within S are allowed. In the sequel, we will
prove that, for each θ, under suitable conditions the
Markov chain induced by πC

θ on S is irreducible and
the objective (3) is thus well-defined, which is a prereq-
uisite for developing policy gradient methods based on
it. See (Konda, 2002, §2.3) for details on irreducibility
in this setting.

Given an element x ∈ S and dynamics T , let R(x) ⊂ S
consisting of all elements reachable in one step from x
under T . Furthermore, for A ⊂ S, define R(A) =
∪x∈AR(x). Also, given ε > 0 and x ∈ Rm, let Bε(x)
denote the open ball of radius ε centered at x. Finally,
for A ⊂ S, define T −1

x (A) := {u ∈ U | T (x, u) ∈ A}.
Intuitively, T −1

x (A) is the set of all control inputs that,
when taken in state x, drive the system into A. The
following assumptions are needed in what follows.

Assumption 2. For any x ∈ S and any µ-measurable
set A ⊂ R(x), µ(A) > 0 if and only if µ(T −1

x (A)) > 0.

Assumption 2 ensures the system dynamics map pos-
itive volume subsets of control inputs to positive vol-
ume subsets of the state space and vice versa, which is
important for our application of the Lebesgue-Radon-
Nikodym Theorem in Proposition 1. It is satisfied by
systems where control inputs have a measurable effect
on each entry in the next state vector and thus encom-
passes a wide array of potentially nonlinear systems.

Assumption 3. For any θ ∈ Θ, where Θ is the set of
permissible policy parameters, for any element in the

safe set x ∈ S, and for any set A ⊂ C(x) satisfying
µ(A) > 0, the policy πC

θ (·|x) assigns positive probabil-
ity to A, i.e.

∫
A π

C
θ (a|x)da > 0.

Assumption 3, which is standard in the RL literature,
ensures that any set of allowable control inputs that
has strictly positive volume will be sampled from with
strictly positive probability.

Assumption 4. For each x ∈ S, µ(R(x)) > 0, and,
given B ⊂ S, there exists n ∈ N such that B is reach-
able in n steps from x.

The conditions imposed in Assumption 4 guarantee
that, for any state x ∈ X: (i) the set of states reach-
able from x in one step has strictly positive volume;
(ii) any subset of the safe set S is reachable in at most
n steps from x. These conditions are closely related to
the familiar notion of controllability of control theory.
Under these conditions, we have the following propo-
sition and its immediate corollary.

Proposition 1. Under Assumptions 2, 3, 4, for given
θ and any subset B ⊂ S satisfying µ(B) > 0, the
Markov chain induced by πC

θ on S enters B with
strictly positive probability.

Corollary 1. {xn} is µ-irreducible on S.

Now that we are assured that the objective function
(3) is well-defined, we are justified in attempting to
perform gradient ascent on it. In order to accomplish
this, however, we need access to gradient estimates.
This is the subject of the next section.

3.2 Policy Gradients

Despite the presence of C in πC
θ , under mild as-

sumptions on the underlying policy πθ, we can ap-
ply the classic policy gradient theorem of Sutton
et al. (2000) to (3) to obtain a gradient expression
from which we can sample. Let dCθ (·) := (1 −
γ)

∑∞
k=0 γ

tP (xk ∈ · | πC
θ) denote the discounted

state occupancy measure of the Markov chain induced

by policy πC
θ on S. Furthermore, let QπC

θ (x, u) =
EπC

θ

[∑∞
k=0 γ

kr(xk, uk) | x0 = x, u0 = u
]
. We make

the following assumption:

Assumption 5. πθ(u|x) > 0 and πθ(u|x) is differen-
tiable in θ, for all x ∈ X , u ∈ U .

Recall from (2) that πC
θ (·|x) is simply the proba-

bility density function πθ(·|x) truncated to the set
C(x). Note, since the value of C(x) at a given x
is independent of θ, we can take the derivative in-
side the integral sign in the latter expression to ob-
tain ∇πθ(C(x)|x) =

∫
C(x)
∇πθ(u|x)du, so πC

θ (C(x)|x)
is differentiable. Given these facts, combined with As-
sumption 5, the above expression for πC

θ implies that,

W. A. Suttle, V. K. Sharma, K. C. Kosaraju, S. Sivaranjani, J. Liu, V. Gupta, B. M. Sadler

for any x ∈ S, the policy πC
θ (u|x) is differentiable with

respect to θ, for any u ∈ C(x). In short, πC
θ satisfies

its own version of Assumption 5, which we formalize
in the following:

Lemma 1. πC
θ (u|x) > 0 and πC

θ (u|x) is differentiable
in θ, for all x ∈ S and u ∈ C(x).

The policy gradient theorem (Konda, 2002) implies

∇J(θ) = 1

1− γ
EπC

θ

[
QπC

θ (x, u)∇ log πC
θ (u|x)

]
. (4)

In order to carry out gradient updates based on
this expression, we first need to be able to estimate
∇θ log π

C
θ (u|x) = ∇θπ

C
θ (u|x)/πC

θ (u|x), for arbitrary

u, x. We will discuss how to estimate QπC
θ (x, u) in

an unbiased manner in the following section. Since
we already have access to πC

θ (u|x), we can focus on
estimating ∇θπ

C
θ (u|x). Based on (2), the gradient of

πC
θ (u|x) with respect to θ is

∇πC
θ (u|x) = ∇

[
πθ(u|x)

πθ(C(x)|x)

]
(5)

=
∇πθ(u|x)
πθ(C(x)|x)

− πθ(u|x)
[πθ(C(x)|x)]2

∇πθ(C(x)|x) (6)

=
1

πθ(C(x)|x)
[∇πθ(u|x)− πθ(u|x)∇ log πθ(C(x)|x)] .

(7)

To estimate πθ(C(x)|x), we need to be able to estimate∫
C(x)

πθ(u|x)du. Given access to πθ(·|x) and C(x), we
can use numerical integration or Monte Carlo tech-
niques to approximate this integral. The standard
Monte Carlo approach is to uniformly sample M el-
ements ui ∼ U(C(x)) from C(x), then estimate

π̂θ(C(x)|x) = µ(C(x))
1

M

M∑
i=1

πθ(ui|x), (8)

where µ(C(x)) is the volume of C(x). This estimate
is based on the fact that

πθ(C(x)|x) =
∫
C(x)

πθ(u|x)du (9)

= µ(C(x))

∫
C(x)

πθ(u|x)
µ(C(x))

du (10)

= µ(C(x))Eu∼U(C(x))[πθ(u|x)] (11)

= µ(C(x)) lim
M→∞

1

M

M∑
i=1

πθ(ui|x), (12)

where the last equality holds by the law of large
numbers. Since C(x) is fixed given x, gradient esti-

mates ∇̂ log πθ(C(x)|x) and ultimately ∇̂ log πC
θ (u|x)

can also be obtained by estimating the integral∫
C(x)
∇πθ(u|x)du. In the Monte Carlo situation, this

can be obtained from (8) by differentiating each term
with respect to θ.

3.3 Algorithm

In this section, we present a hard safety-constrained
random-horizon policy gradient (Safe-RPG) algo-
rithm. Our algorithm is based on the random-horizon
policy gradient (RPG) scheme developed in Zhang
et al. (2020), which uses a random rollout horizon
and recent advances in non-convex optimization to
obtain unbiased policy gradient estimates and ensure
finite-time convergence to approximately locally op-
timal policies. As discussed in the following section,
our convergence results ensure asymptotic convergence
of Algorithm 2 to a stationary point of (3), but can
likely be strengthened to prove finite-time convergence
to approximately locally optimal policies. The main
algorithm is presented in Algorithm 2, which depends
on the action-value function estimation subroutine in
Algorithm 1.

3.4 Convergence

In this section we show asymptotic convergence of Al-
gorithm 2 to the set of stationary points of (3). The
key challenge in this result revolves around the need to
establish that the policies we consider satisfy impor-
tant differentiability and continuity properties, which
necessitates a careful analysis of the Lipschitz proper-
ties of the score functions of our truncated policies in
the proof of Lemma 2. To proceed, we need the fol-
lowing assumption on the reward function r and un-
derlying, untruncated policy class {πθ}θ∈Θ.

Assumption 6. The reward function r and parame-
terized policy class {πθ}θ∈Θ satisfy the following:

1. The absolute value of the reward r is uniformly
bounded, i.e., there exists Ur such that 0 ≤
sup(x,u)∈X×U |r(x, u)| ≤ Ur.

2. For all x ∈ X , u ∈ U , ∇ log πθ(u|x) exists, and
there exist LΘ ≥ 0 and BΘ ≥ 0 such that, for all
x ∈ X , u ∈ U ,

(a) ∥∇ log πθ(u|x)−∇ log πθ′(u|x)∥≤LΘ ∥θ − θ′∥,
for all θ, θ′ ∈ Θ

(b) ∥∇ log πθ(u|x)∥ ≤ BΘ, for all θ ∈ Θ.

Assumptions 5 and 6 were used to prove asymptotic
convergence of the RPG algorithm with untruncated
policies to stationary points in (Zhang et al., 2020,
Theorem 4.4). For an analogous result to apply to the
truncated policies we consider, it must be shown that
the Lipschitz and differentiability conditions in part
2 of Assumption 6 hold for the constrained policies
{πC

θ }θ∈Θ. It turns out that, under the same conditions
on the untruncated policy {πθ}θ∈Θ, these properties
are automatically satisfied for {πC

θ }θ∈Θ.

Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical Systems

Algorithm 1: EstQ: Unbiasedly Estimating Q

Data: x, u, θ.

Result: Unbiased estimate of QπC
θ (x, u).

1 Initialization: Sample T ∼ Geom(1− γ1/2) and
initialize Q̂← 0, x0 ← x, u0 ← u.

2 for t = 0, . . . , T − 1 do

3 Q̂← Q̂+ γt/2r(xt, ut)
4 xt+1 ∼ P(·|xt, ut)
5 ut+1 ∼ πC

θk
(·|xt+1)

6 end

7 Q̂← Q̂+ γT/2r(xT , uT)

8 return Q̂

Algorithm 2: Safe-RPG: Hard safety-
constrained Random-horizon Policy Gradient

Data: x0, θ0, Monte Carlo sample size M .
Result: Locally optimal policy

1 Initialization: Set k ← 0.
2 repeat
3 Sample Tk+1 ∼ Geom(1− γ), u0 ∼ πC

θk
(·|x0).

4 for t = 0, . . . , Tk+1 − 1 do
5 xt+1 ∼ P(·|xt, ut)
6 ut+1 ∼ πC

θk
(·|xt+1)

7 end

8 Q̂πC
θk (xTk+1

, uTk+1
) = EstQ(xTk+1

, uTk+1
, θk)

9 Uniformly sample {ul}l=1,...,M from C(xTk+1
),

then use them to compute
̂∇ log πC

θk
(uTk+1

|xTk+1
)

10 θk+1 ← θk +
αk

1−γ Q̂
πC
θk (xTk+1

, uTk+1
) ̂∇ log πC

θk
(uTk+1

|xTk+1
)

11 k ← k + 1

12 until convergence;

Lemma 2. Under Assumptions 1, 5, and 6,
∇ log πC

θ (u|x) exists, for all x ∈ X , u ∈ U . Further-
more, there exist constants LC

Θ ≥ 0 and BC
Θ ≥ 0 such

that, for all x ∈ X , u ∈ U ,
(i)

∥∥∇ log πC
θ (u|x)−∇ log πC

θ′(u|x)
∥∥ ≤ LC

Θ ∥θ − θ′∥,
for all θ, θ′ ∈ Θ, and
(ii)

∥∥∇ log πC
θ (u|x)

∥∥ ≤ BC
Θ , for all θ ∈ Θ.

With Lemma 2 in hand, we have the following result.

Theorem 1. Let Assumptions 3, 4, 5, and 6 hold. Let
{θk}k∈N be the sequence generated by Algorithm 2 with
stepsize sequence {αk}k∈N satisfying

∑∞
k=0 αk = ∞

and
∑∞

k=0 α
2
k < ∞. Then limk θk ∈ Θ∗, where Θ∗ is

the set of stationary points of (3).

Remark 1. By arguments analogous to those in the
proof of (Zhang et al., 2019, Thm. 3), it can also be
shown that, under the same assumptions as in Theo-

rem 1 and appropriate stepsize selection, Algorithm 2
achieves ε-approximate first-order stationarity with a
finite-time sample complexity of O(ε−2).

Given Lemma 2, the proof of the theorem follows di-
rectly from that of (Zhang et al., 2020, Theorem 4.4).
With suitable modifications to Algorithm 2 incorpo-
rating periodically increasing stepsizes, these results
can likely be strengthened to obtain finite-time con-
vergence to an ε-locally optimal policy using the ma-
chinery developed in Zhang et al. (2020). We leave
this to future work.

4 EXPERIMENTAL RESULTS

We now experimentally demonstrate the effectiveness
of our sampling-based safe RL approach. Specifically,
we evaluate the use of CBF-constrained Beta poli-
cies combined with the popular Proximal Policy Op-
timization (PPO) (Schulman et al., 2017) algorithm
on safety-constrained inverted pendulum and quad-
copter navigation environments. The use of Beta poli-
cies with variable action space constraints allows us to
directly sample from a CBF-constrained action space
at each timestep. In addition to providing a practical
example of how truncated policies can be used to en-
sure safety, this method extends the work Chou et al.
(2017) on the use of Beta policies for deep RL from
constant to state-dependent action space constraints.

4.1 CBF-Constrained Beta Policies

When actions must be restricted to lie within fixed,
predetermined bounds due to physical or numerical
constraints, the common practice of simply clipping
policies with infinite support (e.g., Gaussian poli-
cies) can cause bias and performance issues. Chou
et al. (2017) propose and leverage finite-support Beta
distribution-based policies to overcome these issues.
We extend this approach to obtain policies that sam-
ple directly from the safe control actions prescribed by
the CBF at a given state.

In order to describe these CBF-constrained Beta poli-
cies, let us first recall the probability density function
(p.d.f.) of a one-dimensional Beta distribution:

f(u;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
uα−1(1− u)β−1, (13)

where u ∈ [0, 1], α, β > 0, and Γ(z) =
∫∞
0
uz−1e−udu

is the Gamma function defined for z ∈ C with Re(z) >
0. A Beta policy sampling from the fixed interval
[0, 1] is given by f(u;αθ(x), βθ(x)), where αθ, βθ :
X → R+ are parameterized functions (e.g., neural net-
works) mapping states to the parameters α, β of the
Beta distribution. When the action space U ⊂ Rn

W. A. Suttle, V. K. Sharma, K. C. Kosaraju, S. Sivaranjani, J. Liu, V. Gupta, B. M. Sadler

(a) Initial exploration. (b) Discovering goal direction. (c) Reaching the goal.

Figure 1: Safety and convergence of CBF-Constrained Beta policies: Agent was trained with PPO on
the quadrotor navigation problem with an obstacle. Safety was maintained and goal was eventually reached.

(a) No obstacle. (b) Distant obstacle. (c) Interfering obstacle.

Figure 2: Failure of benchmark safety-filtered Gaussian policies: Agents were trained with PPO using
three different obstacle configurations. When the obstacle is distant or non-existent, the method succeeds. When
the obstacle is in the way, the resulting policy is suboptimal. In all cases, safety is maintained.

is of dimension n ≥ 2 and the CBF constraint set
(or an inner approximation of it), C(x), can be ex-
pressed as a hyperrectangle with lower and upper
bounds a(x), b(x) ∈ Rn, respectively, we maintain in-
dependent Beta distributions, f i(·;αi

θ(x), β
i
θ(x)), over

each dimension i of the unit box [0, 1]n, and sam-
ples from these distributions are shifted and rescaled
to lie within the bounds given by a(x), b(x). Specifi-
cally, our CBF-constrained Beta policies, denoted πθ,
sample u ∼ πθ(·|x) from C(x) by first sampling ûi ∼
f i(·;αi

θ(x), β
i
θ(x)), then performing the simple trans-

formation u = a(x) + diag(û1, . . . , ûn)(b(x) − a(x)),
where diag(û1, . . . , ûn) denotes the diagonal matrix
with elements û1, . . . , ûn along the diagonal.

4.2 Implementation

We now describe the implementation details of our
Beta policies. For a given state x, the parame-
ter vectors α(x), β(x) are outputted by a two-layer,
fully connected neural network. Control inputs at
state x were obtained by first creating an indepen-
dent PyTorch (Paszke et al., 2019) Beta distribution
object with parameters αi

θ(x), β
i
θ(x), for each dimen-

sion i ∈ {1, . . . , n} of the action space, then sampling
u = [u1 . . . un]T from these distributions, and finally
scaling and translating to lie within the current CBF

set C(x). Similarly, the Gaussian policies we used for
comparison used distribution parameters outputted by
a two-layer, fully connected neural network. Control
inputs were then selected from the corresponding dis-
tribution by sampling, then following the standard
practice (Chou et al., 2017) of clipping to a fixed set of
permissible controls. The PPO implementation used
in the experiments was adapted with minor modifica-
tions from Stable Baselines 3 (Raffin et al., 2021).

4.3 Case study 1 : Quadcopter Navigation

Experiment Setup. For this experiment, we con-
sider the problem of learning to safely navigate a
quadcopter around an obstacle to a goal location. In
this section, we present an overview of the dynami-
cal model that we use for this quadcopter, which was
previously considered in Xu and Sreenath (2018), and
describe our derivation of a hyperrectangular inner ap-
proximation of the safe control set, satisfying the CBF
condition, that is amenable to sampling using our Beta
policies. We finally briefly describe the reward func-
tion. See the supplementary material for a detailed ex-
position of the environment and sampling procedure.

We denote quadcopter and obstacle position by r =
(rx, ry, rz) and robs = (rox , roy , roz), respectively, and
the quadcopter’s relative position with respect to the

Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical Systems

obstacle as ∆r = r − robs. The quadrotor dynamics
are then given by

ẋ = Ax+Bu, x =

[
r
ṙ

]
, A =

[
03×3 I3
03×3 03×3

]
, B =

[
03×3

13×3

]
,

with input u consisting the desired accelerations in
each x, y, and z dimensions. For the obstacle avoid-
ance problem, we characterize the safe set as S = {r :
h(r) ≥ 0}, where

h(r) = (∆rx/a)
4
+ (∆ry/b)

4
+ (∆rz/c)

4 − rs, (14)

a, b, c > 0 parameterize the obstacle’s shape, which
is assumed to be elliptical, and rs represents the de-
sired safety margin. Given the quadcopter dynamics
and (14), the first time derivative ḣ(r) does not ex-
plicitly contain the control input u. We therefore use
the standard ECBF formulation Ames et al. (2019) to
develop our safety condition using ḧ(r), which explic-
itly contains u. This ECBF condition is expressed as
ḧ + K · [h ḣ]T ≥ 0, where K = [K1 K2]

T ,K1 =
6,K2 = 8, are application-specific design parame-
ters, and can be rewritten as Aru ≤ br, where Ar

is a matrix and br is a vector, both depending on r.
Then, the state-dependent safe control set is given by
C(r) = {u : Aru ≤ br} (see the supplementary for
details). The dynamics (and consequently the ECBF
conditions) are discretized with time step dt = 0.1.

We consider navigation in the x, y dimension as in Xu
and Sreenath (2018), resulting in a two-dimensional
action space. We take the actuator constraint to be
defined by the hyperrectangle H := {umin, umax},
where umin := (uxmin, u

y
min) ∈ R2 and umax :=

(uxmax, u
y
max) ∈ R2 are the minimum and maximum

input values. In order to sample from the safe control
set C(r) at a given r with our Beta policies, we need a
hyperrectangular inner approximation. We obtain this
inner approximation by formulating and solving a con-
vex optimization problem yielding the highest volume
hyperrectangle, Hc(r), contained within C(r).

Finally, we designed a reward providing an ℓ2 penalty
based on agent distance from the goal, as well as a
sizeable bonus for reaching the goal and a significant
penalty for approaching the edge of the map. See the
supplementary for details.

Results. The experiments we conducted illustrate
that safety-filter based approaches like those consid-
ered in Cheng et al. (2019) fail on simple cases of
our safety-constrained quadcopter problem (see Figure
2), while our CBF-constrained Beta policy succeeds
(Figure 1). For illustration purposes, Figures 1 and 2
present trajectories generated over the course of train-
ing. The corresponding learning curves are included
in the supplementary material. As illustrated in Fig-
ure 2, the safety-filter approach is effective at ensuring

safety and also learns to successfully reach the goal
when the obstacle is nonexistent or distant. However,
it ultimately fails to reach the goal when the obsta-
cle lies directly between the start and goal positions.
We hypothesize that this is due to the fact that the
projection-based approach attempts to learn an opti-
mal policy for the unconstrained navigation problem,
while projection causes it to deviate from its learned
policy to maintain safety. Furthermore, the resulting
safety-filtered policy cannot recover from these pro-
jections without an additional control layer (such as a
derivative or PID controller) due to the repeated per-
turbation from the projection procedure. Our method,
on the other hand, learns to successfully solve the
problem as shown in Figure 1 while maintaining safety
throughout training, since we directly learn policies for
the CBF-constrained problem.

4.4 Case study 2: Inverted pendulum

Experiment Setup. For the second set of exper-
iments, we considered a safety-constrained inverted
pendulum environment building on the baseline Gym
implementation (Brockman et al., 2016). The goal in
this environment is to swing an inverted pendulum up-
right while maintaining it within a fixed safe set. We
tested PPO with the two different policies on this envi-
ronment for two different safe sets: S0.5 = {θ | −0.5 ≤
θ ≤ 0.5} and S1.0 = {θ | − 1.0 ≤ θ ≤ 1.0}. Due to
space limitations, we include the experiments with S0.5
in Figure 3 and the experiments with S1.0 with the sup-
plementary material. As a baseline, we compare the
proposed method to PPO with unconstrained Gaus-
sian policies. This comparison highlights the effective-
ness of the proposed method in guaranteeing safety as
well as accelerating learning.

Results. Our experiments are summarized in Figure
3. There are two main points to be drawn from these
results. First, the top panel shows that incorporating
prior knowledge about properties such as safety can en-
courage learning and accelerate convergence by forcing
the Beta policy agent to concentrate on higher-value
subsets of the state space. The Gaussian agent, on the
other hand, is unable to benefit from this prior knowl-
edge and convergence suffers as it spends a greater
portion of its time exploring lower-value regions of the
state space. Second, the bottom panel illustrates that
Beta policies are highly effective at maintaining safety
throughout training, while Gaussian policies without
safety constraints naturally fail to remain inside the
safe set. This is expected, but illustrates the need
to use constraint-aware policies such as Beta policies
when prior knowledge is available.

W. A. Suttle, V. K. Sharma, K. C. Kosaraju, S. Sivaranjani, J. Liu, V. Gupta, B. M. Sadler

Figure 3: CBF-constrained Beta vs. unconstrained
Gaussian on inverted pendulum environment with safe
set S0.5 = {θ | −0.5 ≤ θ ≤ 0.5}. “Safety Rate” denotes
percentage of time spent in safe set. Curves present
mean and 95% confidence intervals over 5 replications.

5 CONCLUSION

We have developed a sampling-based approach to
learning policies ensuring hard constraint satisfaction
in RL. Unlike existing, projection-based methods that
ensure safety but lack convergence guarantees, our
scheme provably does both. In addition to our theoret-
ical contributions, we have also presented a practical
solution method that leverages CBF-constrained Beta
policies to ensure safety, and experimentally demon-
strated its effectiveness on safe quadcopter navigation
and inverted pendulum environments. Interesting di-
rections for future work including extensions to the
case where the constraint set must be estimated and
application of our CBF-constrained Beta policies to
real-world robotics problems.

Acknowledgements

The authors would like to thank the anonymous re-
viewers for their helpful comments and Mostafa Mo-
hamed Fa Abdelnaby of Purdue University for point-
ing out Remark 1. The work of W. A. Suttle was
supported by a Distinguished Postdoctoral Fellow-
ship with the U.S. Army Research Laboratory. V.
K. Sharma was partially funded by a grant from the
Purdue Engineering Initiative on Autonomous and
Connected Systems. The work of J. Liu was sup-
ported in part by the National Science Foundation
(NSF) under grant 2230101, by the Air Force Office

of Scientific Research (AFOSR) under award number
FA9550-23-1-0175, and by U.S. Air Force Task Order
FA8650-23-F-2603. The work of K. C. Kosaraju and
V. Gupta was partially supported by Army Research
Office grants W911NF2310111, W911NF2310266, and
W911NF-23-1-0316, AFOSR grant F.10052139.02.005,
Office of Naval Research grants F.10052139.02.009 and
F.10052139.02.012, and NSF grant 2300355.

References

Pieter Abbeel and Andrew Y Ng. Apprenticeship
learning via inverse reinforcement learning. In Pro-
ceedings of the 21st International Conference on
Machine learning, 2004.

Joshua Achiam, David Held, Aviv Tamar, and Pieter
Abbeel. Constrained policy optimization. In In-
ternational Conference on Machine Learning, pages
22–31. PMLR, 2017.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and
Gaurav Mahajan. Optimality and approximation
with policy gradient methods in markov decision
processes. In Conference on Learning Theory, pages
64–66. PMLR, 2020.

Ayush Agrawal and Koushil Sreenath. Discrete con-
trol barrier functions for safety-critical control of
discrete systems with application to bipedal robot
navigation. In Robotics: Science and Systems, vol-
ume 13, pages 1–10, 2017.

Eitan Altman. Constrained Markov Decision Pro-
cesses. Routledge, 2021.

Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and
Paulo Tabuada. Control barrier function based
quadratic programs for safety critical systems. IEEE
Transactions on Automatic Control, 62(8):3861–
3876, 2016.

Aaron D Ames, Samuel Coogan, Magnus Egerstedt,
Gennaro Notomista, Koushil Sreenath, and Paulo
Tabuada. Control barrier functions: Theory and
applications. In 2019 18th European Control Con-
ference, pages 3420–3431, 2019.

Anil Aswani, Humberto Gonzalez, S Shankar Sas-
try, and Claire Tomlin. Provably safe and robust
learning-based model predictive control. Automat-
ica, 49(5):1216–1226, 2013.

Qinbo Bai, Amrit Singh Bedi, Mridul Agarwal, Alec
Koppel, and Vaneet Aggarwal. Achieving zero con-
straint violation for constrained reinforcement learn-
ing via primal-dual approach. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 36, pages 3682–3689, 2022.

Felix Berkenkamp, Matteo Turchetta, Angela Schoel-
lig, and Andreas Krause. Safe model-based rein-

Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical Systems

forcement learning with stability guarantees. In Ad-
vances in Neural Information Processing Systems,
pages 908–918, 2017.

Shalabh Bhatnagar, Richard Sutton, Mohammad
Ghavamzadeh, and Mark Lee. Natural actor-critic
algorithms. Automatica, 45(11):2471–2482, 2009.

Vivek S Borkar. An actor-critic algorithm for con-
strained Markov decision processes. Systems & Con-
trol Letters, 54(3):207–213, 2005.

Greg Brockman, Vicki Cheung, Ludwig Pettersson,
Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym. arXiv preprint
arXiv:1606.01540, 2016.

Lukas Brunke, Melissa Greeff, Adam W Hall, Zhao-
cong Yuan, Siqi Zhou, Jacopo Panerati, and An-
gela P Schoellig. Safe learning in robotics: From
learning-based control to safe reinforcement learn-
ing. Annual Review of Control, Robotics, and Au-
tonomous Systems, 5:411–444, 2022.

Richard Cheng, Gábor Orosz, Richard M Murray,
and Joel W Burdick. End-to-end safe reinforce-
ment learning through barrier functions for safety-
critical continuous control tasks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 3387–3395, 2019.

Po-Wei Chou, Daniel Maturana, and Sebastian
Scherer. Improving stochastic policy gradients in
continuous control with deep reinforcement learning
using the beta distribution. In International Confer-
ence on Machine Learning, pages 834–843. PMLR,
2017.

Steven Diamond and Stephen Boyd. CVXPY: A
python-embedded modeling language for convex op-
timization. The Journal of Machine Learning Re-
search, 17(1):2909–2913, 2016.

Maryam Fazel, Rong Ge, Sham Kakade, and Mehran
Mesbahi. Global convergence of policy gradient
methods for the linear quadratic regulator. In In-
ternational Conference on Machine Learning, pages
1467–1476. PMLR, 2018.

Jaime F Fisac, Anayo K Akametalu, Melanie N
Zeilinger, Shahab Kaynama, Jeremy Gillula, and
Claire J Tomlin. A general safety framework for
learning-based control in uncertain robotic systems.
IEEE Transactions on Automatic Control, 64(7):
2737–2752, 2018.

Gerald B Folland. Real Analysis: Modern Techniques
and Their Applications, volume 40. John Wiley &
Sons, 1999.

Javier Garcıa and Fernando Fernández. A compre-
hensive survey on safe reinforcement learning. Jour-
nal of Machine Learning Research, 16(1):1437–1480,
2015.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a
stochastic actor. In International Conference on
Machine Learning, pages 1861–1870. PMLR, 2018.

Cherie* Ho, Katherine* Shih, Jaskaran Grover,
Changliu Liu, and Sebastian Scherer. “Provably
safe” in the wild: testing control barrier functions
on a vision-based quadrotor in an outdoor environ-
ment. In RSS 2020 Workshop in Robust Auton-
omy, 2020. URL https://openreview.net/pdf?

id=CrBJIgBr2BK.

V. Konda. Actor-Critic Algorithms. PhD thesis, Mas-
sachusetts Institute of Technology, 2002.

Krishna Chaitanya Kosaraju, Seetharaman Sivaran-
jani, Wesley Suttle, Vijay Gupta, and Ji Liu. Rein-
forcement learning based distributed control of dis-
sipative networked systems. IEEE Transactions on
Control of Network Systems, 9(2):856–866, 2021.

Zhaojian Li, Uroš Kalabić, and Tianshu Chu. Safe
reinforcement learning: Learning with supervision
using a constraint-admissible set. In 2018 An-
nual American Control Conference, pages 6390–
6395, 2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander
Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Haitong Ma, Jianyu Chen, Shengbo Eben, Ziyu Lin,
Yang Guan, Yangang Ren, and Sifa Zheng. Model-
based constrained reinforcement learning using gen-
eralized control barrier function. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), pages 4552–4559, 2021.

Daniel Mellinger, Nathan Michael, and Vijay Kumar.
Trajectory generation and control for precise aggres-
sive maneuvers with quadrotors. The International
Journal of Robotics Research, 31(5):664–674, 2012.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in Neu-
ral Information Processing Systems, 32, 2019.

Santiago Paternain, Luiz Chamon, Miguel Calvo-
Fullana, and Alejandro Ribeiro. Constrained rein-
forcement learning has zero duality gap. Advances
in Neural Information Processing Systems, 32, 2019.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kan-
ervisto, Maximilian Ernestus, and Noah Dormann.
Stable-baselines3: Reliable reinforcement learning

W. A. Suttle, V. K. Sharma, K. C. Kosaraju, S. Sivaranjani, J. Liu, V. Gupta, B. M. Sadler

implementations. The Journal of Machine Learn-
ing Research, 22(1):12348–12355, 2021.

Carl Edward Rasmussen. Gaussian processes in ma-
chine learning. In Summer School on Machine
Learning, pages 63–71. Springer, 2003.

Jens Schreiter, Duy Nguyen-Tuong, Mona Eberts,
Bastian Bischoff, Heiner Markert, and Marc Tou-
ssaint. Safe exploration for active learning with
gaussian processes. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 133–149. Springer, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

Vipul K Sharma, Wesley A Suttle, and Krishna C
Kosaraju. https://github.com/sharma1256/

cbf-constrained_ppo, 2024.

Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas
Krause. Safe exploration for optimization with gaus-
sian processes. In International Conference on Ma-
chine Learning, pages 997–1005. PMLR, 2015.

Wesley A Suttle, Amrit Bedi, Bhrij Patel, Brian M
Sadler, Alec Koppel, and Dinesh Manocha. Be-
yond exponentially fast mixing in average-reward
reinforcement learning via multi-level Monte Carlo
actor-critic. In International Conference on Ma-
chine Learning, pages 33240–33267. PMLR, 2023.

Richard S Sutton and Andrew G Barto. Reinforcement
Learning: An Introduction. MIT Press, 2018.

Richard S Sutton, David A McAllester, Satinder P
Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approx-
imation. In Advances in Neural Information Pro-
cessing Systems, pages 1057–1063, 2000.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant,
Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, et al. Scipy 1.0:
fundamental algorithms for scientific computing in
python. Nature Methods, 17(3):261–272, 2020.

Kim P Wabersich, Andrew J Taylor, Jason J Choi,
Koushil Sreenath, Claire J Tomlin, Aaron D Ames,
and Melanie N Zeilinger. Data-driven safety fil-
ters: Hamilton-Jacobi reachability, control barrier
functions, and predictive methods for uncertain sys-
tems. IEEE Control Systems Magazine, 43(5):137–
177, 2023.

Akifumi Wachi, Yanan Sui, Yisong Yue, and Masahiro
Ono. Safe exploration and optimization of con-
strained mdps using gaussian processes. In Proceed-
ings of the AAAI Conference on Artificial Intelli-
gence, volume 32, 2018.

Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem.
Robust Markov decision processes. Mathematics of
Operations Research, 38(1):153–183, 2013.

Bin Xu and Koushil Sreenath. Safe teleoperation of
dynamic uavs through control barrier functions. In
2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 7848–7855, 2018.

Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer
Başar. Convergence and iteration complexity of pol-
icy gradient method for infinite-horizon reinforce-
ment learning. In 2019 58th Conference on Decision
and Control, pages 7415–7422, 2019.

Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer
Başar. Global convergence of policy gradient meth-
ods to (almost) locally optimal policies. SIAM Jour-
nal on Control and Optimization, 58(6):3586–3612,
2020.

Kaiqing Zhang, Bin Hu, and Tamer Başar. Policy opti-
mization for H2 linear control with H∞ robustness
guarantee: Implicit regularization and global con-
vergence. SIAM Journal on Control and Optimiza-
tion, 59(6):4081–4109, 2021.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes: see §§2-3]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes: see Theorem 1]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes: see Sharma et al.
(2024)]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes: see appendix]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes: see Sharma et al. (2024)]

Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical Systems

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes:
see §4 and appendix]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes: see figure captions]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes: see appendix]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes: see Brockman et al.
(2016); Paszke et al. (2019); Raffin et al.
(2021)]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental ma-
terial or as a URL, if applicable. [Yes: see
Sharma et al. (2024)]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

W. A. Suttle, V. K. Sharma, K. C. Kosaraju, S. Sivaranjani, J. Liu, V. Gupta, B. M. Sadler

Supplementary Material

A Proofs

Proof of Proposition 1. We construct a sequence of ε-balls, each reachable from the previous element of
the sequence, that leads from x0 to B, then show that the head of the Markov chain lies inside this sequence
with positive probability. Fix ε > 0 and let {y0, y1, . . . , yN} ⊂ S be such that Bε(yk+1) ⊂ R(Bε(yk)), for
k = 1, . . . , N − 1, and Bε(yN) ∩ B ≠ ∅ (see Figure 1 for an illustration). For a given θ, let {xn} be the Markov
chain induced on S by πC

θ such that x0 = y0. We show that the trajectory (x0, x1, . . . , xN) is contained within
the set {y0}×Bε(y1)× . . .×Bε(yN) with strictly positive probability, which will imply that {xn} enters B with
strictly positive probability. For each k = 1, . . . , N , consider the probability measure νk defined as

νk(S) = P (x ∈ S | xk−1) =

∫
T −1
xk−1

(S)

πC
θ (a|xk−1) da,

for any µ-measurable subset S of S. Note that νk is absolutely continuous with respect to µ, written νk ≪ µ,
since µ(S) > 0 if and only if T −1

xk−1
(S) > 0, by Assumption 2. The Lebesgue-Radon-Nikodym Theorem implies

that there exists a µ-integrable function fk : S → R, called the Radon-Nikodym derivative of νk, such that
νk(S) =

∫
S
fk(x)dx (see Folland (1999) for details). To make the link between fk and νk perfectly clear, let us

write

fk(x) =

∫
T −1
xk−1

(x)

πC
θ (a|xk−1) da,

νk(S) =

∫
S

∫
T −1
xk−1

(x)

πC
θ (a|xk−1) da dx.

By Assumptions 2 and 3, we also have µ≪ νk. Since both νk ≪ µ and µ≪ νk, the two measures are said to be
equivalent, meaning that they agree on which sets have measure zero. Since µ and νk are equivalent, a standard
result from real analysis allows us to take the Radon-Nikodym derivative fk to be strictly positive µ-almost
everywhere. As a first consequence, notice that

P
(
(x0, x1, x2) ∈ {y0} ×Bε(y1)×Bε(y2) | x0 = y0

)
= P

(
(x1, x2) ∈ Bε(y1)×Bε(y2) | x0 = y0

)
· P (x0 = y0)

= P
(
(x1, x2) ∈ Bε(y1)×Bε(y2) | x0 = y0

)
=

∫
Bε(y1)

∫
T−1
x1

(Bε(y2))

πC
θ (a1|x1)f1(x1) da1 dx1 (15)

=

∫
Bε(y1)

∫
T−1
x1

(Bε(y2)

πC
θ (a1|x1)

[∫
T−1
x0

(x1)

πC
θ (a0|x0) da0

]
da1 dx1.

Given Assumption 3, equation (15) is strictly positive, since f1 is strictly positive almost everywhere and the
integrals are taken over sets of positive volume.

Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical Systems

Building on equation (15), we have

P
(
(x1, . . . , xN−1, xN) ∈ (16)

Bε(y1)× . . .×Bε(yN−1)× (Bε(yN) ∩ B) | x0 = y0
)

(17)

=

∫
Bε(y1)

∫
T−1
x1

(Bε(y2))

πC
θ (a1|x1) ·

∫
Bε(y2)

∫
T−1
x2

(Bε(y3))

πC
θ (a2|x2) · . . .

. . . ·
∫
Bε(yN−1)

∫
T−1
xN−1

(Bε(yN)∩B)

πC
θ (aN−1|xN−1) fN−1(xN−1) daN−1 dxN−1 · . . .

. . . · f2(x2) da2 dx2 · f1(x1) da1 dx1.

Note in the innermost integral that µ(Bε(yN) ∩ B) > 0, since both sets are open and their intersection is non-
empty by hypothesis. Finally, given Assumption 3, we have that (17) is strictly positive, since all integrals are
taken over sets of positive volume and fi is strictly positive almost everywhere, for each i ∈ {1, . . . N − 1}. □

Proof of Lemma 2. Recalling the definition of πC
θ (u|x) in (2),

∇ log πC
θ (u|x) = ∇ log πθ(u|x)−∇ log

∫
C(x)

πθ(w|x)dw

= ∇ log πθ(u|x)−

∫
C(x)
∇πθ(w|x)dw∫

C(x)
πθ(w|x)dw

. (18)

To see that, for all x ∈ X , u ∈ U , ∇ log πC
θ (u|x) exists, for all θ ∈ Θ, we simply need to verify that

(
∫
C(x)

πθ(w|x)dw)−1 is always finite. But this follows immediately from Assumption 3 and the fact that

µ(C(x)) ≥ m > 0 by Assumption 1.

We next prove part 1) of the Lemma. The claim holds for the first term in (18) by part 2a) of Assumption 6, so
we just need to show that it holds for the second term. To do this, we prove that, for a given x ∈ X , this term is
Lipschitz in θ, then argue that the largest minimal Lipschitz constant over all x ∈ X is finite. We know by part
2b) of Assumption 6 that, for all x ∈ X , u ∈ U , ∥∇πθ(u|x)∥ ≤ ∇ log πθ(u|x) ≤ BΘ, for all θ ∈ Θ. This means
that, for all x ∈ X , ∣∣∣ ∫

C(x)

πθ(w|x)dw −
∫
C(x)

πθ′(w|x)dw
∣∣∣

=
∣∣∣ ∫

C(x)

(πθ(w|x)− πθ′(w|x)) dw
∣∣∣

≤
∫
C(x)

|πθ(w|x)− πθ′(w|x)|dw

≤
∫
C(x)

BΘ ∥θ − θ′∥ dw = BΘµ(C(x)) ∥θ − θ′∥

≤ BΘM ∥θ − θ′∥ ,

for all θ, θ′ ∈ Θ. So
∫
C(x)

πθ(w|x)dw is Lipschitz in θ, for each x ∈ X , and the largest Lipschitz constant over X
is finite. In addition,

∫
C(x)

πθ(w|x)dw is clearly uniformly bounded.

Notice that infx∈X µ(C(x)) ≥ m > 0, by Assumption 1. Thus, by Assumption 3, infx∈X
∫
C(x)

πθ(w|x)dw > 0,

for all θ ∈ Θ. Since Θ is compact, this means infθ∈Θ infx∈X
∫
C(x)

πθ(w|x)dw > 0. This implies that

(
∫
C(x)

πθ(w|x)dw)−1 is uniformly bounded. Since
∫
C(x)

πθ(w|x)dw is Lipschitz, (
∫
C(x)

πθ(w|x)dw)−1 is there-

fore Lipschitz and bounded in θ ∈ Θ, for all x ∈ X . We also know that, for each x ∈ X ,
∫
C(x)
∇πθ(w|x)dw is

Lipschitz and bounded in θ ∈ Θ, by Assumption 6, part 2a). Fix x ∈ X . Since the product of Lipschitz, bounded
functions is Lipschitz and bounded, the function

∫
C(x)
∇πθ(w|x)dw/

∫
C(x)

πθ(w|x)dw is Lipschitz and bounded

in θ. Since this function is uniformly bounded over x ∈ X , θ ∈ Θ, there therefore exists L > 0 such that, for all
x ∈ X , ∥∥∥∥∥

∫
C(x)
∇πθ(w|x)dw∫

C(x)
πθ(w|x)dw

−

∫
C(x)
∇πθ′(w|x)dw∫

C(x)
πθ′(w|x)dw

∥∥∥∥∥ ≤ L ∥θ − θ′∥ ,

W. A. Suttle, V. K. Sharma, K. C. Kosaraju, S. Sivaranjani, J. Liu, V. Gupta, B. M. Sadler

for all θ, θ′ ∈ Θ. Combined with part 2a) of Assumption 6, this implies that, for all x ∈ X , u ∈ U ,∥∥∇ log πC
θ (u|x)−∇ log πC

θ′(u|x)
∥∥ ≤ (LΘ + L) ∥θ − θ′∥, for all θ, θ′ ∈ Θ. This completes the proof of part 1).

Part 2) follows from the fact that
∫
C(x)
∇πθ(w|x)dw/

∫
C(x)

πθ(w|x)dw is uniformly bounded and that, for all

x ∈ X , u ∈ U , ∥∇ log πθ(u|x)∥ ≤ BΘ, for all θ ∈ Θ, by part 2) of Assumption 6.

B Background: Barrier Functions

In this section, we provide an overview of barrier functions for convenience. The theory of barrier functions
revolve around controlled set invariance for dynamical systems. Safety can be represented through a set, say S,
defined as a level set of this barrier function, say h. Then, we write the condition on this barrier function to
guarantee the forward invariance of this safety set under the given dynamics.

B.1 Control Barrier Functions (CBF)

Consider the following nonlinear system

ṙ = f(r, u), (19)

where r ∈ D ⊂ Rn and u ∈ U ⊂ Rm denote the state and control input, and f is a locally Lipschitz function
that models the state transition. The following definition and the theorem follows the development in Ames
et al. (2019); Agrawal and Sreenath (2017).

Theorem 2. Consider a function h : Rn → R that is continuously differentiable. Define a closed set S as the
super-level set of this function as follows:

S ≜ {r ∈ Rn | h(r) ≥ 0} . (20)

The function h is a control barrier function, for (19) and with state s, if there exists an extended κ∞ function
α such that for all r ∈ S, t ∈ R+,

ḣ ≥ −α(h). (21)

Further, if we define the safe control set as

C(r) ≜
{
u ∈ Rm|ḣ(r, u) ≥ −α(h(r))

}
. (22)

then any input u ∈ C(r) will render the set S forward invariant.

When designing safe controller with control values u sampled from this safe control set, we need the time-
derivative of h i.e. ḣ to explicitly contain u. However, the above forward variance condition is restricted to
barrier function with relative degree dr = 1. At this point, we also note that for our quadcopter experiment, our
CBF has a relative degree dr = 2, since only the second time-derivative ḧ explicitly contains the control input
u. Therefore, for barrier functions with relative degree more than 1, which are often referred to as Exponential
Control Barrier Functions (ECBF), we need a seperate discussion on forward invariance conditions.

B.2 Exponential Control Barrier Functions

We now discuss exponential CBFs for control affine nonlinear dynamical system. Consider the following control
affine nonlinear dynamical system:

ṙ = f(r) + g(r)u, (23)

with f and g locally lipshitz, r ∈ D ⊂ Rn and u ∈ U ⊂ Rm. We suppose that the Lipschitz constant for f
and g are Lf and Lg respectively, and the vector containing the first dr − 1 time derivatives of h(r) including

h(r) is given as: ηb(r) =

h(r)

ḣ(r)

ḧ(r)
...

hdr−1(r)

. Further suppose that the matrices F,G, and C are defined as follows:

Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical Systems

F =

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

, G =

0
0
0
...
1

, and, C =
[
1 0 0 · · · 0

]
.

Theorem 3. Consider a function h : Rn → R that is continuously differentiable. Define a closed set S as the
super-level set of this function as follows:

S ≜ {r ∈ Rn | h(r) ≥ 0} . (24)

Then the function h is an ECBF, with relative degree dr, for system in (23), if there exist a row vector Kα ∈ Rr

such that
sup
u∈U

[Ldr

f h(r) + LgL
dr−1
f h(r)u] ≥ −Kαηb(r) (25)

∀r ∈ Int(S), implies h(r(t)) ≥ Ce(F−GKα)tηb(r)r(t0) ≥ 0, whenever h(r(t0)) ≥ 0. Further, if we define the safe
control set C(r) as

C(r) ≜ {u ∈ U |[Ldr

f h(r) + LgL
dr−1
f h(r)u] ≥ −Kαηb(r)}, (26)

then any input u ∈ C(r) will render the set S forward invariant.

C Experiments: Additional Details

In this section, we provide additional details regarding the experiments presented in §4.

C.1 Inverted Pendulum Experiments

The safety-constrained inverted pendulum environment that we considered in §4.4 was obtained by modifying the
standard implementation from Brockman et al. (2016) to include CBF-based safety constraints. In this section
we describe the dynamical model and CBF used to obtain these constraints, then present implementation details
and an additional experiment.

C.1.1 Dynamical Model

Consider the model of a simple inverted pendulum

[
θk+1

θ̇k+1

]
=

θk + δtθ̇k + δt2
(
3g

2l
sin θk +

3

ml2
uk

)
θ̇k + δt

(
3g

2l
sin θk +

3

ml2
uk

)
 , (27)

where θk, θ̇k denote the states (angle and angular velocity), uk denote the input (torque), m and l denotes the
mass and the length of the pendulum, respectively, g denotes the acceleration due to gravity and δt > 0 denotes
the discretization time. Denote the safe operating region by

S =

{
θ ∈ R|h(θ) :=

[
θ + 1
1− θ

]
≥ 0

}
. (28)

C.1.2 Control Barrier Function

The following corollary is a direct consequence of Theorem 2, presented in §B.
Corollary 2. Let

U(θk, θ̇k) =

{
uk ∈ R|

(
δtθ̇k + c(θk, uk)

)[
1
−1

]
+ η

[
θk + 1
1− θk

]
≥ 0

}
(29)

where c(θk, uk) := δt2
(
3g

2l
sin θk +

3

ml2
uk

)
, and 0 < η < 1. Consider system (27) with uk ∈ U(θk, θ̇k). Let

(θ0, θ̇0) ∈ S × R and assume U(θ0, θ̇0) is non-empty. The set S is forward invariant.

The safe set (29) is used to provide the state-dependent constraints to the Beta policies learned in our experiments.

W. A. Suttle, V. K. Sharma, K. C. Kosaraju, S. Sivaranjani, J. Liu, V. Gupta, B. M. Sadler

policy learning rate 0.0003
value learning rate 0.0003
entropy coefficient 0.0

clip range 0.2
weight decay 0.0
layer size 64
batch size 64
buffer size 300

number of epochs 10
rollout length 300
discount factor 0.99

(a) Gaussian hyperparameters.

policy learning rate 0.01
value learning rate 0.01
entropy coefficient 0.0

clip range 0.2
weight decay 0.0
layer size 64
batch size 64
buffer size 300

number of epochs 10
rollout length 300
discount factor 0.99

(b) Beta hyperparameters.

Figure 4: PPO hyperparameters for the inverted pendulum experiments.

C.1.3 Implementation Details

We next describe the implementation details of our experiments. As mentioned above, the environment was
adapted from the implementation of (Brockman et al., 2016), with modifications to compute the CBF safe set
(29). The reward function and other details are as in Brockman et al. (2016). The Beta and Gaussian policies
used the corresponding distributions from the PyTorch library (Paszke et al., 2019). As described in §4.2, for a
given state x, the parameters α(x), β(x) of the Beta distribution were outputted by a two-layer, fully connected
neural network. Control inputs were obtained by sampling from this distribution, then translating and rescaling
to lie within the current CBF set C(x) = [a(x), b(x)]. The Gaussian policy parameters were outputted by a
two-layer, fully connected neural network. Control inputs were subsequently selected from the corresponding
distribution by sampling, then, following standard practice (Chou et al., 2017), were clipped to a set of permissible
controls, which was chosen to be [−15.0, 15.0]. The hyperparameters used are presented in Figure 4.

C.1.4 Additional Results

Figure 5 presents an experiment providing additional support to the discussion presented in §4.4.

C.2 Quadcopter Experiments

In this section, we provide additional details regarding the environment and experiments presented in §4.3.

C.2.1 Dynamical Model

We summarize the dynamical model of the quadcopter derived in Xu and Sreenath (2018). We consider the
body frame, say Fb, and world frame, say Fw, and discuss the transformation between these two frames using
the rotation matrix Rwb defined as

Rwb :=

cosψ cos θ − sinϕ sinψ sin θ − cosϕ sinψ cosψ sin θ + cos θ sinϕ sinψ
cos θ sinψ + cosψ sinϕ sin θ cosϕ cosψ sinψ sin θ − cosψ cos θ sinϕ

− cosϕ sin θ sinϕ cosϕ cos θ

 , (30)

where ϕ, θ, and ψ denote the Z-X-Y Euler angles corresponding to the roll, pitch, and yaw of the quadcopter.
Suppose that the 3-dimensional position coordinates of the quadcopter along the x-,y-, and z-axis with respect
to its body frame Fb of and the world frame of reference Fw be given by xb := (xb, yb, zb) and r := (rx, ry, rz)
respectively, then r = Rwbxb.

Then, the quadcopter dynamics is given by ẋ = Ax + Bu, where the control input u comprises of the desired
acceleration of the quadcopter. The dynamics of this controller under small angle assumptions on the Euler
angles, that is sin ê ≈ ê, cos ê ≈ 1, ê ∈ {ϕ, θ, ψ}) evolves as Mellinger et al. (2012):

Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical Systems

Figure 5: Comparison of safety-constrained Beta policy and unconstrained Gaussian policy on the inverted
pendulum environment with constraint set S1.0 = {θ | −1.0 ≤ θ ≤ 1.0}. The top figure presents learning curves,
while the bottom figure presents the “safety rate”, i.e., the percentage of time spent in S1.0 over the course of
the episode. The curves represent means and 95% confidence intervals over five independent replications.

u =

r̈desx

r̈desy

r̈desz

 =

g(θdes cosψdes + ϕdes sinψdes),
g(θdes sinψdes − ϕdes cosψdes)∑4

i=1 Fdes
i

m
− g

 , (31)

where m, g are respectively the mass of the quadcopter and gravitational constant, and r̈desi , i ∈ {x, y, z} is the
desired acceleration component of the quadcopter in the x-,y-, and z-direction respectively, computed using the
desired specifications on the Euler angles ϕdes, θdes, and ψdes, and F des

i , i ∈ {1, 2, 3, 4} is the desired thrust on
the i-th rotor of the quadcopter. Lastly, the dynamical parameters for the quadcopter are setup as given in Ho
et al. (2020).

C.2.2 Exponential Control Barrier Function

Recall, that the objective of our controller to enable the quadcopter to learn how to reach a target position rgoal,
while avoiding an obstacle with position robs. For this obstacle avoidance, we now discuss our choice of CBF for
the quadcopter experiment, as defined in (14), and reason why this is an exponential control barrier function
(ECBF). We first derive expressions for ḣ and ḧ using dynamical equations as follows:

ḣ(r) = 4((∆rx/a)
3
ṙx + (∆ry/b)

3
ṙy + (∆rz/c)

3
ṙz), (32)

and

ḧ(r) = 12((∆rx/a)
2
ṙx + (∆ry/b)

2
ṙy + (∆rz/c)

2
ṙz) + 4((∆rx/a)

3
r̈x + (∆ry/b)

3
r̈y + (∆rz/c)

3
r̈z). (33)

These equations can be re-written in vector form as follows:

ḣ(r) =
[
4(∆r3x/a

4) 4(∆r3y/b
4) 4(∆r3z/c

4)
]
ṙ (34)

W. A. Suttle, V. K. Sharma, K. C. Kosaraju, S. Sivaranjani, J. Liu, V. Gupta, B. M. Sadler

and

ḧ(r) = ṙT

12(∆rx2/a4) 0 0
0 12(∆r2y/b

4) 0
0 0 12(∆r2z/c

4)

 ṙ + [
4(∆rx

3/a4) 4(∆r3y/b
4) 4(∆r3z/c

4)
]
r̈. (35)

Since u = r̈ from quadcopter dynamics, we can re-write the ḧ(r) as follows:

ḧ(r) = ṙTDr ṙ −Aru, (36)

where Dr :=

12(∆rx2/a4) 0 0
0 12(∆r2y/b

4) 0
0 0 12(∆r2z/c

4)

, and Ar := −
[
4(∆rx

3/a4) 4(∆r3y/b
4) 4(∆r3z/c

4)
]
.

Therefore, we note that ḧ(r) or the 2nd time-derivative of h(r) which explicitly depends on the control input u
and therefore our choice of CBF h(r) is an exponential CBF with a relative degree Ames et al. (2019) of 2.

Correspondingly, we use the following forward invariance condition for the set S = {r : h(r) ≥ 0} as given in Xu
and Sreenath (2018):

ḧ+K · [h ḣ]T ≥ 0, (37)

with K = [K1 K2]
T .

The above equation can be re-arranged as follows:

−ḧ ≤ K1h+K2ḣ,

and, using (34) and (36), we can re-write this equation as

Aru ≤ br, (38)

where br = ṙTDr ṙ +K1h−K2Ar ṙ. Thus, we can write the safe control set as C(r) = {u ∈ R3 : Aru ≤ br}. For
our quadcopter experiments, we consider navigation x−y dimensions, therefore set the z-dimension position and
velocity to be 0. Thus the control input only comprises the desired acceleration for x and y axes and therefore
our action space becomes two-dimensional, and we only consider the x and y components in the above CBF
calculations.

C.2.3 Maximal Inner Hyperrectangle Computation

We now describe the construction of the maximal inner hyperrectangle contained in the set C(r) under actuator
constraints H. These are the sets that our Beta policies will sample from. We use the following optimization
problem, with decision variables u = (ux, uy), to get the maximal inner hyper-rectangle inside the safe set:

PA :

max
u
A(u)

s.t. Aru ≤ br,
u ∈ H,

(39)

where A(u) is the area of a hyperrectangle inside C(r)∩H and the decision variables ux, uy are points on the line
Aru ≤ br. One of the corner points of this hyperrectangle is formed by ux, uy and the rest of corner points lie on
the boundary hyperrectangle formed by H. Suppose that (ux∗ , u

y
∗) are solutions to PA, then the definition of Area

A depends on how the line Aru ≤ br intersects with H, and therefore, leads to the following four possibilities:

• A = (ux − uxmin) ∗ (uy − uxmin) and Hc = {umin, (u
x
∗ , u

y
∗)}

• A = (ux − uxmin) ∗ (uymax − uy) and Hc = {(uxmin, u
y
∗), (u

x
∗ , u

y
max)}

• A = (uxmax − ux) ∗ (uxmax − uy) and Hc = {(ux∗ , u
y
∗), umax}

• A = (uxmax − ux) ∗ (uy − u
y
min) and Hc = {(ux∗ , u

y
min), (u

x
max, u

y
∗)}.

Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical Systems

policy learning rate 0.0004
value learning rate 0.0004
entropy coefficient 0.00000001

clip range 0.2
weight decay 0.0
layer size 256
batch size 256
buffer size 320

number of epochs 10
rollout length 320
discount factor 0.90

(a) Gaussian hyperparameters.

policy learning rate 0.0006
value learning rate 0.0006
entropy coefficient 0.0

clip range 0.2
weight decay 0.0
layer size 256
batch size 256
buffer size 180

number of epochs 10
rollout length 180
discount factor 0.90

(b) Beta hyperparameters.

Figure 6: PPO hyperparameters for the quadcopter experiments.

PA is, in general, a non-convex program. However, through change-of-variables, we can transform this problem
into a tractable problem through the following transformation. We perform a change of variables, with new
variables denoted by (ūx, ūy) defined by

• ūx = ux − uxmin and ūy = uy − uymin

• ūx = ux − uxmin and ūy = uymax − uy

• ūx = uxmax − ux and ūy = uymax − uy

• ūx = uxmax − ux and ūy = uy − uymin.

The corresponding objective function is given by Ā = ūxūy. So long as the entries corresponding to Ar and
br from (39) in the transformed problem are nonnegative, the resulting problem is a geometric program, which
can be further transformed to a convex problem by standard methods and efficiently solved. In our quadcopter
experiments, when Ar, br ≥ 0, we solved the transformed geometric program using CVXPY (Diamond and Boyd,
2016), and used non-linear solvers from SCIPY (Virtanen et al., 2020) otherwise. We observed in our experiments
that the transformation resulted in geometric programs in all but a handful of cases.

C.2.4 Reward

We now discuss reward shaping used in our quadcopter experiments.

Suppose that the rmin := [rxmin rymin]
T and rmax := [rxmax rymax]

T are environment boundaries, with x, y-axis
boundary repectively defined by [rxmin, r

x
max] and [rymin, r

y
max], that we employ for guiding exploration for both

the quadcopter experiments. Then the reward used in our environment is defined by

R(r) =

50 if ||r − rgoal||2 < ϵ,

−||r − rgoal||2 if rmax > r > rmin and ||r − rgoal||2 ≥ ϵ,
−||r − rgoal||2 − 400 if r ≥ rmax or r ≤ rmin,

where ϵ = 0.25 is the boundary around rgoal for which we give a constant positive reward of 50 to the agent,
and the inequalities in the reward definition are element-wise. Moreover, when the agent is inside the boundary
but outside the ϵ-neighborhood of the goal, then the reward is negative of the distance between the agent and
the goal. Lastly, we penalize the agent if it goes outside the boundary defined by rmin and rmax to encourage
exploration in the region around the goal.

C.2.5 Hyperparameters

The hyperparameters used in the experiments are presented in Figure 6.

W. A. Suttle, V. K. Sharma, K. C. Kosaraju, S. Sivaranjani, J. Liu, V. Gupta, B. M. Sadler

C.2.6 Learning Curves

Learning curves for the experiments illustrated in Figures 1 and 2c are presented in Figures 7a and 7b.

(a) Beta policy learning curve. (b) Projected Gaussian learning curve.

Figure 7: Learning curves corresponding to experiments pictures in Figures 1 and 2c. Curves show means and
95% confidence intervals over 6 independent replications. Our CBF-constrained Beta policies clearly learn to
improve reward and eventually find the goal, while the projection-based approach fails.

D Computing Resources

We ran our experiments on both a personal laptop and an HPC cluster. The laptop was configured with a 6-core
i7-8750H, 2.20GHz CPU, an NVIDIA GeForce RTX 2070 GPU, and 32GB RAM . The HPC server node was
configured with a 32-core Intel Xeon CPU , an 80GB Nvidia Tesla GPU, and 512 GB RAM .

