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Abstract

This work aims to address an open prob-
lem in data valuation literature concerning
the efficient computation of Data Shapley
for weighted K nearest neighbor algorithm
(WKNN-Shapley). By considering the ac-
curacy of hard-label KNN with discretized
weights as the utility function, we reframe the
computation of WKNN-Shapley into a count-
ing problem and introduce a quadratic-time
algorithm, presenting a notable improvement
from O(NK), the best result from existing
literature. We develop a deterministic approx-
imation algorithm that further improves com-
putational efficiency while maintaining the
key fairness properties of the Shapley value.
Through extensive experiments, we demon-
strate WKNN-Shapley’s computational effi-
ciency and its superior performance in discern-
ing data quality compared to its unweighted
counterpart.

1 INTRODUCTION

Data is the backbone of machine learning (ML) mod-
els, but not all data is created equally. In real-world
scenarios, data often carries noise and bias, sourced
from diverse origins and labeling processes Northcutt
et al. (2021). Against this backdrop, data valuation
emerges as a growing research field, aiming to quantify
the quality of individual data sources for ML training.
Data valuation techniques are critical in explainable
ML to diagnose influential training instances and in
data marketplaces for fair compensation. The impor-
tance of data valuation is highlighted by legislative
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efforts (Warner, 2019) and vision statements from lead-
ing tech companies (OpenAI, 2023). For instance, Ope-
nAI listed “how to fairly distribute the benefits the
AI systems generate” as an important question to be
explored.

Data Valuation via the Shapley Value. Drawing
on cooperative game theory, the technique of using
the Shapley value for data valuation was pioneered
by Ghorbani and Zou (2019); Jia et al. (2019b). The
Shapley value is a renowned solution concept in game
theory for fair profit attribution (Shapley, 1953). In
the context of data valuation, individual data points
or sources are regarded as “players” in a cooperative
game, and Data Shapley refers to the suite of data
valuation techniques that use the Shapley value as the
contribution measure for each data owner.

KNN-Shapley. Despite offering a principled approach
to data valuation with a solid theoretical foundation,
the exact calculation of the Shapley value has the time
complexity of O(2N ) in general (Deng and Papadim-
itriou, 1994), where N refers to the number of data
points/sources. Fortunately, Jia et al. (2019a) discov-
ered an efficient O(N logN) algorithm to compute the
exact Data Shapley for unweighted K-Nearest Neigh-
bors (KNN), one of the oldest yet still popular ML
algorithms. KNN-Shapley refers to the technique of
assessing data value for any learning algorithms based
on KNN’s Data Shapley score. Here, KNN serves
as a proxy model for the original, perhaps compli-
cated learning algorithm. KNN-Shapley can be applied
to large, high-dimensional datasets by calculating the
value scores on the features extracted from neural net-
work embeddings. Due to its superior efficiency and
effectiveness in discerning data quality, KNN-Shapley
has become one of the most popular data valuation
techniques (Pandl et al., 2021).

Open question from Jia et al. (2019a): efficient
computation of weighted KNN-Shapley. While
Jia et al. (2019a) showed unweighted KNN-Shapley can
be computed efficiently, they did not develop a practical
algorithm for the more general weighted KNN-Shapley
(WKNN-Shapley). Despite presenting a polynomial-
time algorithm, its computational complexity of O(NK)
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becomes impractical even for modest K, such as 5. Clos-
ing this efficiency gap is important, especially given the
inherent advantages and wider application of weighted
KNN. Compared with the unweighted counterpart,
weighted KNN considers the distance between data
points, assigning varying levels of importance to neigh-
bors based on their proximity to the query. Conse-
quently, the Data Shapley of weighted KNN can poten-
tially better discriminate between low and high-quality
data points. Moreover, weighted KNN is applied more
widely in practice. For example, recent research discov-
ered weighted KNN’s capability to improve language
model’s performance (Khandelwal et al., 2019).

Our contributions are summarized as follows:

Making KNN Configurations “Shapley-friendly”
(Section 3). Our preliminary investigations suggest
that improving the computational efficiency of WKNN-
Shapley for soft-label KNN classifiers with continu-
ous weight values (the setting considered in Jia et al.
(2019a)), poses considerable challenges. Consequently,
we make necessary modifications to the specific KNN
classifiers’ configuration and shift our focus to hard-
label KNN classifiers with discrete weight values. The
justification for these changes and their practical rele-
vance is detailed in Section 3. In particular, discretizing
weights does not change the data value score signifi-
cantly even with few bits. We emphasize that making
proper tweaks to the problem setup is important for
developing an efficient Shapley computation algorithm,
a strategy frequently adopted in literature (Dall’Aglio
et al., 2019).

A quadratic-time algorithm for computing exact
WKNN-Shapley (Section 4.1). Given the adjusted
“Shapley-friendly” configurations of the weighted KNN,
we can reframe the Shapley value computation as a
counting problem. We develop an algorithm with a
quadratic runtime for solving the counting problem and
computing the exact WKNN-Shapley, which greatly
improves the baseline O(NK) algorithm.

A subquadratic-time deterministic approxima-
tion algorithm that preserves fairness properties
(Section 4.2). To further improve the computational
efficiency, we propose a deterministic approximation al-
gorithm by making minor changes to the exact WKNN-
Shapley implementation. In particular, our approxima-
tion algorithm retains the crucial fairness properties of
the original Shapley value.

Empirical Evaluations (Section 5). We experiment
on benchmark datasets and assess the efficiency and
efficacy of our exact and approximation algorithms
for WKNN-Shapley. Here are the key takeaways: (1)
Our exact and approximation algorithm for WKNN-
Shapley significantly improves computational efficiency

compared to the baseline exact algorithm and Monte
Carlo approximation, respectively. (2) WKNN-Shapley
outperforms the unweighted KNN-Shapley in discern-
ing data quality for critical downstream tasks such
as detecting mislabeled or noisy data. Remarkably,
the approximated WKNN-Shapley matches the perfor-
mance of the exact WKNN-Shapley on many bench-
mark datasets, attributable to its deterministic nature
and the preservation of fairness properties.

Overall, with proper changes to KNN configurations,
we show that WKNN-Shapley can be efficiently calcu-
lated and approximated. This facilitates its wider adop-
tion, offering a more effective data valuation method
compared to unweighted KNN-Shapley.

2 PRELIMINARIES

In this section, we formalize the setup of data valuation
for ML, and revisit relevant techniques.

Setup & Goal. Given a labeled dataset D := {zi}Ni=1

where each data point zi := (xi, yi), data valuation
aims to assign a score to each training data point zi,
reflecting its importance for the trained ML model’s
performance. Formally, we seek a score vector (φzi)

N
i=1

where each φzi ∈ R represents the “value” of zi.

2.1 Data Shapley

The Shapley value (SV) (Shapley, 1953), originating
from game theory, stands out as a distinguished method
for equitably distributing total profit among all partici-
pating players. Before diving into its definition, we first
discuss a fundamental concept: the utility function.

Utility Function. A utility function maps an input
dataset to a score indicating the utility of the dataset
for model training. Often, this function is chosen as
the validation accuracy of a model trained on the given
dataset. That is, given a training set S, the utility
function v(S) := ValAcc(A(S)), where A represents
a learning algorithm that trains a model on dataset
S, and ValAcc(·) is a function assessing the model’s
performance, e.g., its accuracy on a validation set.
Definition 1 (Shapley value (Shapley, 1953)). Let v(·)
denote a utility function and D represent a training
set of N data points. The Shapley value, φz (v),
assigned to a data point z ∈ D is defined as φz (v) :=
1
N

∑N
k=1

(
N−1
k−1

)−1∑
S⊆D−z,|S|=k−1 [v(S ∪ {z})− v(S)]

where D−z = D \ {z}.

In simple terms, the Shapley value is a weighted aver-
age of the marginal contribution v(S ∪{z})− v(S), i.e.,
the utility change when the point z is added to different
Ss. For simplicity, we often write φz when the utility
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function is clear from the context. The Shapley value
uniquely satisfies several important axioms, including
key fairness requirements like the null player and sym-
metry axioms, lending justification to its popularity.
See Appendix A for detailed axiom definitions.

2.2 KNN-Shapley

A well-known challenge of using the Shapley value is
that its exact calculation is computationally infeasible
in general, as it usually requires evaluating v(S) for
all possible subsets S ⊆ D. A surprising result in Jia
et al. (2019a) showed that when the learning algorithm
A is unweighted KNN, there exists a highly efficient
algorithm for computing its exact Data Shapley score.

K Nearest Neighbor Classifier. Given a validation
data point z(val) = (x(val), y(val)) and a distance metric
d(·, ·), we sort the training set D = {zi = (xi, yi)}Ni=1

according to their distance to the validation point
d(xi, x

(val)) in non-descending order. Throughout the
paper, we assume that d(xi, x

(val)) ≤ d(xj , x
(val)) for

any i ≤ j unless otherwise specified. A KNN classi-
fier makes a prediction for the query x(val) based on
the (weighted) majority voting among x(val)’s K near-
est neighbors in the training set. Weight of data
point: in KNN, each data point zi is associated with a
weight wi. The weight is usually determined based on
the distance between xi and the query x(val). For
example, a popular weight function is RBF kernel
wi := exp(−d(xi, x

(val))). If wi is the same for all
zis, it becomes unweighted KNN.

Jia et al. (2019a) considers the utility function for the
weighted, soft-label KNN:

v(S; z(val)) :=

∑min(K,|S|)
j=1 w

α
(S,j)

x(val)

1

[
y
α

(S,j)

x(val)

= y(val)
]

∑min(K,|S|)
j=1 w

α
(S,j)

x(val)

(1)

where α(S,j)

x(val) denotes the index (among D) of jth closest
data point in S to x(val). “Soft-label” refers to the classi-
fiers that output the confidence scores. The main result
in Jia et al. (2019a) shows that for unweighted KNN, we
can compute the exact Shapley value φzi

(
v(·; z(val))

)
for all zi ∈ D within a total runtime of O(N logN)
(see Appendix B for details).
Remark 1. In practice, the model performance is
assessed based on a validation set D(val). After com-
puting φzi

(
v(·; z(val))

)
for each z(val) ∈ D(val), one can

compute the Shapley value corresponding to the util-
ity function on the full validation set v(S;D(val)) :=∑

z(val)∈D(val) v(S; z(val)) by simply taking the sum
φzi

(
v(·;D(val))

)
=
∑

z(val)∈D(val) φzi

(
v(·; z(val))

)
due

to the linearity property of the Shapley value.

Remark 2. In alignment with the existing literature
(Jia et al., 2019a; Wang et al., 2023), our discussion
of the time complexity of KNN-Shapley refers to the
total runtime needed to calculate all data value scores(
φz1(v(·; z(val))), . . . , φzN (v(·; z(val)))

)
, given that stan-

dard applications of data valuation, such as profit al-
location and bad data detection, all require computing
the data value scores for all data points in the training
set. Furthermore, the stated runtime is with respect
to v(·; z(val)), and the overall runtime with respect to
v(·;D(val)) will be multiplied by the size of validation set
D(val). Runtime is typically presented this way because
SV computations with respect to different v(·; z(val)) are
independent, readily benefit from parallel computing.

Since its introduction, KNN-Shapley has rapidly gained
popularity in data valuation for its efficiency and effec-
tiveness, and is being advocated as the ‘most practical
technique for effectively evaluating large-scale data’ in
recent studies (Pandl et al., 2021; Karlaš et al., 2022).

2.3 Baseline Algorithm for Computing and
Approximating WKNN-Shapley

Jia et al. (2019a) developed an efficient O(N logN)
algorithm to calculate the exact unweighted KNN-
Shapley. However, when it comes to the more general
weighted KNN-Shapley, only an O(NK) algorithm is
given. While still in polynomial time (if K is considered
a constant), the runtime is impractically large even for
small K (e.g., 5). Here, we review the high-level idea
of the baseline algorithms from Jia et al. (2019a).

An O(NK) algorithm for exact WKNN-Shapley
computation. From Definition 1, the Shapley value
for zi is a weighted average of the marginal contribution
(MC) v(S ∪ {zi})− v(S); hence, we only need to study
those S whose utility might change due to the inclusion
of zi. For KNN, those are the subsets S where zi is
within the K nearest neighbors of x(val) after being
added into S. Note that for KNN, the utility of any
S only depends on the K nearest neighbors of x(val)

in S. Given that there are only
∑K

j=0

(
N
j

)
unique sub-

sets of size ≤ K, we can simply query the MC value
v(S ∪{zi})− v(S) for all S of size ≤ K. For any larger
S, the MC must be the same as its subset of K nearest
neighbors. We can then compute the Shapley value
as a weighted average of these MC values by counting
the number of subsets that share the same MC values
through simple combinatorial analysis. Such an algo-
rithm results in the runtime of

∑K
j=0

(
N
j

)
= O(NK).

The algorithm details can be found in Appendix B.

Monte Carlo Approximation. Given the large run-
time of this exact algorithm, Jia et al. (2019a) further
proposes an approximation algorithm based on Monte
Carlo techniques. However, Monte Carlo-based approx-
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imation is randomized and may not preserve the fair-
ness property of the exact Shapley value. Additionally,
the sample complexity of the Monte Carlo estimator is
derived from concentration inequalities, which, while
suitable for asymptotic analysis, may provide loose
bounds in practical applications.

3 MAKING KNN
CONFIGURATIONS
SHAPLEY-FRIENDLY

We point out the major challenges associated with
directly improving the computational efficiency for the
soft-label KNN configuration considered in Jia et al.
(2019a), and propose proper changes that enable more
efficient algorithms for computing WKNN-Shapley.

Challenge #1: weights normalization term. The
key principle behind the O(N logN) algorithm for un-
weighted KNN-Shapley from Jia et al. (2019a) is that,
the MC can only take few distinct values. For exam-
ple, for any |S| ≥ K, we have v(S ∪ {zi}) − v(S) =

1
K

(
1[yi = y(val)]− 1[y

α
(S,K)

x(val)

= y(val)]

)
. To avoid the

task of evaluating v(S) for all S ⊆ D, one can just
count the subsets S ⊆ D \ {zi} such that zi is among
the K nearest neighbors of x(val) in S ∪ {zi}, as well
as the subsets share the same Kth nearest neighbor to
z(val). However, for weighted soft-label KNN with the
utility function in (1), there is little chance that any
of two v(S1 ∪ {zi}) − v(S1) and v(S2 ∪ {zi}) − v(S2)
can have the same value due to the weights normal-

ization term
(∑K

j=1 wα
(S,j)

x(val)

)−1

(note that this term

is 1/K, a constant, for unweighted setting). Solution
#1: hard-label KNN. In this work, we instead con-
sider the utility function for weighted hard-label KNN.
“Hard-label” refers to the classifiers that output the
predicted class instead of the confidence scores (see
(2) in Section 4). In practice, user-facing applications
usually only output a class prediction instead of the
entire confidence vector. More importantly, hard-label
KNN’s prediction only depends on the weight com-
parison between different classes, and hence its utility
function does not have a normalization term.

Challenge #2: continuous weights. If the weights
are on the continuous space, there will be infinitely
many possibilities of weighted voting scores of the K
nearest neighbors. This makes it difficult to analyze
which pairs of S1, S2 share the same MC value. Solu-
tion #2: discretize weights. Therefore, we consider
a more tractable setting where the weights lie in a
discrete space. Such a change is reasonable since the
weights are stored in terms of finite bits (and hence
in the discrete space) in practice. Moreover, rounding

is a deterministic operation and does not reverse the
original order of weights. In Appendix C, we show
that the Shapley value computed based on the discrete
weights has the same ranking order compared with
the Shapley value computed on the continuous weights
(it might create ties but will not reverse the original
order). In Appendix G.2, we empirically verify that
weight discretization does not cause a large deviation
in the Shapley value.

We emphasize that, proper adjustments to the underly-
ing utility function are important for efficient Shapley
computation, and such a strategy is frequently applied
in game theory literature (Dall’Aglio et al., 2019).

4 DATA SHAPLEY FOR
WEIGHTED KNN

In this section, we develop efficient solutions for com-
puting and approximating Data Shapley scores for
weighted, hard-label KNN binary classifiers, where the
weight values used in KNN are discretized. Without
loss of generality, in this paper we assume every weight
wi ∈ [0, 1].1 We use W to denote the discretized space
of [0, 1], where we create 2b equally spaced points within
the interval when we use b bits for discretization. We
denote W := |W| = 2b the size of the weight space.

Utility Function for Weighted Hard-Label KNN
Classifiers. The utility function of weighted hard-
label KNN, i.e., the correctness of weighted KNN on
the queried example z(val), can be written as

v(S; z(val)) = 1

[
y(val) ∈ argmax

c∈C

min(K,|S|)∑
j=1

w
α

(S,j)

x(val)

× 1[y
α

(S,j)

x(val)

= c]

]
(2)

where C = {1, . . . , C} is the space of classes, and C is
the number of classes.2 We omit the input of z(val) and
simply write v(S) when the validation point is clear
from the context. For KNN binary classifier, we can
rewrite the utility function in a more compact form:

v(S) = 1

min(K,|S|)∑
j=1

w̃
α

(S,j)

x(val)

≥ 0

 where w̃j :=

{
wj yj = y(val)

−wj yj 6= y(val)

(3)
For ease of presentation, we present the algorithms for
KNN binary classifier here, and defer the extension to
multi-class classifier to Appendix E.

1If it does not hold one can simply normalize the weights
to [0, 1] and the KNN classifier remains the same.

2If multiple classes have the same top counts, we take the
utility as 1 as long as y(val) is among the majority classes.
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4.1 Exact WKNN-Shapley Calculation

4.1.1 Computing SV is a Counting Problem

Given that the Shapley value is a weighted average of
the marginal contribution v(S ∪ {zi})− v(S), we first
study the expression of v(S ∪ {zi})− v(S) for a fixed
subset S ⊆ D \ {zi} with the utility function in (3).
Theorem 2. For any data point zi ∈ D and any
subset S ⊆ D \ {zi}, the marginal contribution has the
expression as follows:

v(S ∪ {zi})− v(S) =


1 if yi = y(val), CondKNN, Cond0to1

−1 if yi 6= y(val), CondKNN, Cond1to0

0 Otherwise
(4)

where
CondKNN := zi is within K nearest neighbors of x(val) among S ∪ {zi}

Cond0to1 :=


∑

zj∈S w̃j ∈ [−w̃i, 0) if |S| ≤ K − 1∑K−1
j=1 w̃

α
(S,j)

x(val)

∈
[
−wi,−w̃

α
(S,K)

x(val)

)
if |S| ≥ K

Cond1to0 :=


∑

zj∈S w̃j ∈ [0,−w̃i) if |S| ≤ K − 1∑K−1
j=1 w̃

α
(S,j)

x(val)

∈
[
−w̃

α
(S,K)

x(val)

,−wi

)
if |S| ≥ K

In words, the condition CondKNN means that zi should
be among the K nearest neighbors to the query sample
when it is added to S. The conditions Cond0to1 and
Cond1to0 cover situations where adding zi to the set
S changes the prediction of the weighted KNN classi-
fiers. In greater detail, Cond0to1 captures the condition
for which incorporating zi shifts the “effective sum of
signed weights w̃” from a negative to a non-negative
value, thereby incrementing the utility from 0 to 1.
Cond1to0 can be interpreted similarly. From Theorem
2 and the formula of the Shapley value (Definition 1),
we can reframe the problem of computing hard-label
WKNN-Shapley as a counting problem. Specifically,
this involves counting the quantity defined as follows:
Definition 3. Let Gi,` denote the count of subsets
S ⊆ D \ zi of size ` that satisfy (1) CondKNN, and (2)
Cond0to1 if yi = y(val), or Cond1to0 if yi 6= y(val).
Theorem 4. For a weighted, hard-label KNN binary
classifier using the utility function given by (3), the
Shapley value of a data point zi can be expressed as:

φzi =
21[yi = y(val)]− 1

N

N−1∑
`=0

(
N − 1

`

)−1

Gi,` (5)

Figure 1 illustrates the counting problem we try to
solve here.

4.1.2 Dynamic Programming Solution for
Computing Gi,`

The multiple, intricate conditions wrapped within Gi,`’s
definition can pose a formidable challenge for direct

Figure 1: Illustration of the subsets targeted in the
counting problem. When K = 3, both S1 and S2 have
a utility of 0 as both of them contain 2 dogs and 1 cat.
Adding zi to S1 and S2 alters the 3 nearest neighbors
to the query image x(val), which now contains 1 dog
and 2 cats, raising the utility to 1. In contrast, S3’s
utility remains unchanged with the addition of zi since
it solely contains cat images. To compute WKNN-
Shapley of zi, we count the subsets S where adding zi
changes its utility, as seen with S1 and S2.

and efficient counting. The main rationale behind
our solution is to break down the complex counting
problems into smaller, more manageable subproblems,
thereby making them amenable to algorithmic solutions
like dynamic programming. Before delving into the
specifics of the algorithm, we introduce an intermediary
quantity, Fi, that becomes the building block of our
dynamic programming formulation.
Definition 5. Let Fi [m, `, s] denote the count of sub-
sets S ⊆ D \ {zi} of size ` that satisfy (1) CondKNN,
as well as the following conditions: (2) Within S, the
data point xm is the min(`,K)-th closest to the query
example x(val), (3)

∑min(`,K−1)
j=1 w̃

α
(S,j)

x(val)

= s.

We can relate this auxiliary quantity to our desired Gi,`

as follows:
Theorem 6 (Relation between Gi,` and Fi). For yi =
y(val), we can compute Gi,` from Fi as follows:

Gi,` =

{∑
m∈[N ]\i

∑
s∈[−w̃i,0)

Fi [m, `, s] for ` ≤ K − 1,∑
m∈[N ]\i

∑
s∈[−w̃i,−w̃m) Fi [m, `, s] for ` ≥ K.

(6)
For yi 6= y(val), we have:

Gi,` =

{∑
m∈[N ]\i

∑
s∈[0,−w̃i)

Fi [m, `, s] for ` ≤ K − 1,∑
m∈[N ]\i

∑
s∈[−w̃m,−w̃i)

Fi [m, `, s] for ` ≥ K.

(7)

The auxiliary quantity Fi thus serves as a pivot, allow-
ing us to explore the search space of possible subsets
S more systematically. We next exploit the compu-
tational advantage of Fi. Specifically, Fi can be con-
veniently computed with (recursive) formulas, which
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further enables us to compute Gi,` with reduced com-
putational demand.
Theorem 7 (simplified version). For ` ≤ K − 1,
Fi[m, `, s] can be computed from Fi[t, `, ·] with t ≤
m − 1. For ` ≥ K, Fi[m, `, s] can be computed from
Fi[t,K − 1, ·] with t ≤ m− 1.

Leveraging the results from Theorem 7, a direct method
for calculating Gi,` for all ` ≥ 1 is as follows: we first use
a recursive formula to compute Fi[·, `, ·] for ` ≤ K − 1,
and then use an explicit formula to compute Fi[·, `, ·] for
` ≥ K. With Fi being computed, we apply Theorem
6 to compute Gi,`. This direct approach renders an
O(N3) runtime, as it necessitates computing Fi[m, `, ·]
for each of i,m, and ` in the range of 1, . . . , N .

Further Improvement of Efficiency Through
Short-cut Formula. While the above direct approach
offers a clear path, there exists a more optimized algo-
rithm to expedite computational efficiency by circum-
venting the explicit calculations of Fi[·, `, ·] for ` ≥ K.
Specifically, we discover a short-cut formula that allows
us to directly calculate the summation

∑N−1
`=K

Gi,`(N−1
`

)
from Theorem 4 once we obtain Fi[·,K − 1, ·].
Theorem 8. For a weighted, hard-label KNN binary
classifier using the utility function given by (3), the
Shapley value of data point zi can be expressed as:

φzi = sign(wi)

 1

N

K−1∑
`=0

Gi,`(
N−1
`

) + N∑
m=max(i+1,K+1)

Ri,m

m
(
m−1
K

)


where

Ri,m :=

{∑m−1
t=1

∑
s∈[−w̃i,−w̃m) Fi[t,K − 1, s] for yi = y(val)∑m−1

t=1

∑
s∈[−w̃m,−w̃i)

Fi[t,K − 1, s] for yi 6= y(val)

Crucially, the Ri,m quantity in the above expression can
be efficiently calculated using a clever caching technique.
Based on the above findings, we can eliminate a factor
of N in the final time complexity, thereby obtaining a
quadratic-time algorithm to compute the exact WKNN-
Shapley. The comprehensive pseudocode for the full
algorithm can be found in Appendix D.2.
Theorem 9. Algorithm 2 (in Appendix D.2) computes
the exact WKNN-Shapley φzi for all i = 1, . . . , N and
achieves a total runtime of O(WK2N2).
Remark 3 (Runtime Dependency with K and W ).
While the time complexity in Theorem 9 also depends
on K and W , these variables can be effectively treated
as constants in our context. In our ablation study, we
found that the error caused by weights discretization
reduces quickly as the number of bits b for discretization
grows. Hence, across all experiments in Section 5, we
set the number of bits for discretization as b = 3 and
therefore W = 2b = 8. Additionally, the selection of K

in KNN-Shapley literature commonly stabilizes around
values of 5 or 10, irrespective of the dataset size (Jia
et al., 2019a; Wang et al., 2023). This stability arises
because, in the context of KNN classifiers, increasing K
can easily result in underfitting even when N is large.
Throughout our experiments, we fix K at 5. A detailed
ablation study examining different choices of K and W
is available in Appendix G.
Remark 4 (Novelty in the derivation of WKNN-
Shapley). Our derivation of WKNN-Shapley starts sim-
ilarly to Jia et al. (2019a) by examining the marginal
contribution, but the methodologies significantly
differ afterward. Unweighted KNN-Shapley benefits
from the simplicity of its utility function, allowing for
a relatively straightforward derivation. Specifically, Jia
et al. (2019a) plugs unweighted KNN’s utility func-
tion into the formula of the difference of the Shapley
values between two data points, and then simplifies
the expression using known equalities in combinatorial
analysis. In contrast, the same approach does not apply
to WKNN-Shapley due to the complexity introduced
by weights. Therefore, we develop a novel dynamic
programming solution, which marks a substantial de-
parture from the techniques used in Jia et al. (2019a).
We would like to clarify that there is no correlation
between the “recursion” in Jia et al. (2019a)
and our paper. In Jia et al. (2019a), each φzj is
recursively computed from φzj+1

. On the contrary, the
computation of different data points’ WKNN-Shapley
scores φzj is independent of each other. In our method,
recursion is a fundamental component of dynamic pro-
gramming to solve complex counting problems.

4.2 Deterministic Approximation for
Weighted KNN-Shapley

While the algorithm introduced in Section 4.1 for calcu-
lating the exact WKNN-Shapley achieves O(N2) run-
time, a huge improvement from the original O(NK)
algorithm from Jia et al. (2019a), there remains room
for further improving the efficiency if we only require
an approximation of the Shapley value. Contrary to
the prevalent use of Monte Carlo techniques in existing
literature, in this section, we develop a deterministic
approximation algorithm for WKNN-Shapley.

Intuition. From Theorem 7, we know that in order to
compute Fi[m, `, ·] with ` ≤ K−1, we only need to know
Fi[t, `−1, ·] with t ≤ m−1. Moreover, observe that the
building blocks for Gi,` (or Ri,m),

∑
s∈[−w̃i,0)

Fi[t, `, s]

(or
∑

s∈[−w̃i,−w̃m) Fi[t,K − 1, s]), can be quite small
as it only takes the summation over a small range of
the weight space. Hence, we can use F̂i[m, ·, ·] = 0
as an approximation for Fi[m, ·, ·] for all m ≥ M? + 1
with some prespecified threshold M?. Similarly, we
can use R̂i,m = 0 as an approximation for Ri,m for all
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m ≥ M? + 1. The resultant approximation for the
Shapley value φzi is stated as follows:

Definition 10. We define the approximation φ̂
(M?)
zi as

φ̂(M?)
zi := sign(wi)

 1

N

K−1∑
`=0

G̃
(M?)

i,`(
N−1
`

) + M?∑
m=max(i+1,K+1)

Ri,m

m
(
m−1
K

)


where

G̃
(M?)

i,` :=

{∑M?

m=1

∑
s∈[−w̃i,0)

Fi [m, `, s] for yi = y(val)∑M?

m=1

∑
s∈[0,−w̃i)

Fi [m, `, s] for yi 6= y(val)

To calculate φ̂
(M?)
zi , we only need to compute Fi[m, ·, ·]

and Ri,m for m from 1 to M? instead of N , thereby
reducing the runtime of Algorithm 2 to O(NM?) with
minimal modification to the exact algorithm’s imple-
mentation.
Theorem 11. Algorithm 3 (in Appendix D.3) computes
the approximated WKNN-Shapley φ̂

(M?)
zi for all zi ∈ D

and achieves a total runtime of O(WK2NM?).

In particular, when M? =
√
N , we can achieve the

runtime of O(N1.5). The selection of M? is discussed in
Remark 5. In the following, we derive the error bound
and point out two nice properties of this approximation.
Theorem 12. For any zi ∈ D, the approximated Shap-
ley value φ̂

(M?)
zi (1) shares the same sign as φzi , (2)

ensures
∣∣∣φ̂(M?)

zi

∣∣∣ ≤ |φzi |, and (3) has the approximation

error bounded by
∣∣∣φ̂(M?)

zi − φzi

∣∣∣ ≤ ε(M?) where

ε(M?) :=

N∑
m=M?+1

(
1

m−K
− 1

m

)
+

K−1∑
`=1

(
N
`

)
−
(
M?

`

)
N
(
N−1
`

) = O (K/M?)

Leveraging the error bound ε(M?) alongside the addi-
tional nice properties of φ̂(M?)

zi stated in Theorem 12,
we can obtain a deterministic interval within which φzi

always resides. Specifically, when yi = y(val), we have
φzi ∈

[
φ̂
(M?)
zi , φ̂

(M?)
zi + ε(M?)

]
, and when yi 6= y(val),

we have φzi ∈
[
φ̂
(M?)
zi − ε(M?), φ̂

(M?)
zi

]
. Unlike the

commonly used Monte Carlo method for approximating
the Shapley value, which only offers a high-probability
interval and allows for a failure possibility that the
exact value might fall outside of it, our deterministic
approximation ensures that the exact value is always
within the corresponding interval.

The approximated WKNN-Shapley preserves
the fairness axioms. The Shapley value’s axiomatic
properties, particularly the symmetry and null player
axioms, are of great importance for ensuring fairness
when attributing value to individual players (see Ap-
pendix A for the formal definitions of the two axioms).

These fundamental axioms have fostered widespread
adoption of the Shapley value. An ideal approximation
of the Shapley value, therefore, should preserve at least
the symmetry and null player axioms to ensure that
the principal motivations for employing the Shapley
value—fairness and equity—are not diminished. The
prevalent Monte Carlo-based approximation techniques
give randomized results and necessarily muddy the clar-
ity of fairness axioms. In contrast, our deterministic
approximation preserves both important axioms.
Theorem 13. The approximated Shapley value
{φ̂(M?)

zi }zi∈D satisfies symmetry and null player ax-
iom.
Remark 5 (Selection of M?). Ideally, we would like
to pick the smallest M? such that ε(M?) is significantly
smaller than |φzi | for a significant portion of zis. How-
ever, determining a universally applicable heuristic for
setting M? is challenging due to the varying magnitude
of φzi across different datasets, which are difficult to
anticipate. For example, in a case where all but one
data point are “null players”, that single data point will
possess a value of v(D), while all others will be valued
at 0. On the other hand, if all data points are identical,
each will receive a value of v(D)/N . Therefore, we sug-
gest to select M? in an adaptive way. Specifically, for
each M? ∈ {K + 1, . . . , N}, we calculate (φ̂

(M?)
zi )i∈[N ],

halting the computation when the magnitude of ε(M?)
is substantially smaller than (e.g., < 10%) the mag-
nitude of φ̂(M?)

zi for a majority of zis. This approach
does not increase the overall runtime since φ̂

(M?+1)
zi

can be easily computed from φ̂
(M?)
zi and the additionally

computed Fi[M
? + 1, ·, ·]. Details of this approach are

in Appendix D.4. Furthermore, we highlight that our
deterministic approximation algorithm maintains the
fairness properties of exact WKNN-Shapley. Hence, in
practice, we can potentially use a smaller M? and still
get satisfactory performance in discerning data quality.
Throughout our experiments in Section 5, we find that
setting M? =

√
N consistently works well across all

benchmark datasets.

5 NUMERICAL EXPERIMENTS

We systematically evaluate the performance of our
WKNN-Shapley computation and approximation al-
gorithms. Our experiments aim to demonstrate the
following assertions: (1) Our exact and deterministic
approximation algorithm for WKNN-Shapley signifi-
cantly improves computational efficiency compared to
the baseline O(NK) algorithm and Monte Carlo approx-
imation, respectively. (2) Compared to unweighted
KNN-Shapley, WKNN-Shapley (2-1) achieves a bet-
ter performance in discerning data quality in several
important downstream tasks including mislabeled and



Efficient Data Shapley for Weighted Nearest Neighbor Algorithms

noisy data detection, and (2-2) demonstrates more
stable performance against different choices of Ks. (3)
The approximated WKNN-Shapley, while being more
efficient, consistently achieves performance comparable
to the exact WKNN-Shapley on most of the benchmark
datasets.

5.1 Runtime Comparison

We empirically assess the computational efficiency of
our exact and deterministic approximation algorithms
for WKNN-Shapley, comparing them to the O(NK)
exact algorithm and the Monte Carlo approximation
presented in Jia et al. (2019a). We examine various
training data sizes N and compare the execution clock
time of different algorithms at each N . In data size
regimes where the baseline algorithms from Jia et al.
(2019a) are infeasible to execute (> 10 hours), we fit a
polynomial curve to smaller data size regimes and plot
the predicted extrapolation for larger sizes.

Figure 2 shows that the exact algorithm from Jia et al.
(2019a) requires ≥ 103 hours to run even for N = 100,
rendering it impractical for actual use. In contrast,
our exact algorithm for computing WKNN-Shapley
achieves a significantly better computational efficiency
(e.g., almost 106 times faster at N = 105). Our
deterministic approximation algorithm is compared to
the Monte Carlo approximation from Jia et al. (2019a).
For a fair comparison, both algorithms are aligned
for the same theoretical error bounds. Note that the
error bound for the Monte Carlo algorithm is a high-
probability bound, subject to a small failure probability.
In contrast, our error bound always holds, offering a
more robust guarantee compared to the Monte Carlo
technique. Nonetheless, from Figure 2 we can see that
our deterministic approximation algorithm not only
provides a stronger approximation guarantee but also
achieves significantly greater efficiency (e.g., also al-
most 106 times faster at N = 105). This showcases
the remarkable improvements of our techniques.

5.2 Discerning Data Quality

Due to the superior computational efficiency of our
newly developed algorithms, WKNN-Shapley has be-
come a practical data valuation technique for actual
use. In this section, we evaluate its effectiveness in
discerning data quality for common real-world appli-
cations. Tasks: we consider three applications that
are commonly used for evaluating the performance of
data valuation techniques in the prior works (Ghorbani
and Zou, 2019; Kwon and Zou, 2022; Wang and Jia,
2023a): mislabeled and noisy data detection. Due to
space constraints, we only present the results for mis-
labeled data detection here, and defer the results for

Figure 2: Runtime comparison between our exact and
approximation algorithms for WKNN-Shapley in Sec-
tion 4, and those from Jia et al. (2019a), across varying
training data sizes N . We set K = 5 and the weights
are discretized to 3-bit here. In Appendix G, we pro-
vide additional experiments on different Ks and bs.
For our deterministic approximation algorithm, we set
M? =

√
N (so that the time complexity is O(N1.5)).

For the Monte Carlo approximation from Jia et al.
(2019a), we align the error bounds to be the same as
ours for fair comparison; we set the failure probability
for Monte Carlo method as δ = 0.1. The plot shows
the average runtime based on 5 independent runs.

the other tasks to Appendix G. Mislabeled data usu-
ally detrimentally impacts model performance. Hence,
a reasonable data valuation technique should assign
low values to these data points. In our experiments
for mislabeled data detection, we randomly select 10%
of the data points to flip their labels. Baselines &
Settings & Hyperparameters: We evaluate the per-
formance of both the exact and approximated WKNN-
Shapley. We use `2 distance and the popular RBF ker-
nel wi = exp(−

∥∥xi − x(val)
∥∥) to determine the weights

of training points. We discretize the weights to 3 bits,
as we find this level of precision offers a balance between
good performance and computational efficiency, with a
weight space size, W , of merely 23 = 8. In Appendix
G, we conduct ablation studies on the choice of the
number of bits for discretization. For approximated
WKNN-Shapley, we set M? =

√
N . Our primary base-

line is the unweighted, soft-label KNN-Shapley from Jia
et al. (2019a). Since our WKNN-Shapley corresponds
to hard-label KNN, we also include unweighted, hard-
label WKNN-Shapley in comparison for completeness.
Note that it can be computed by simply setting the
weights of all data points as a constant.

Results. We use AUROC as the performance metric
on mislabeled data detection tasks. Unweighted vs
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Unweighted
KNN-Shapley

(Soft-label)

Unweighted
KNN-Shapley

(Hard-label, this work)

Exact
WKNN-Shapley

(this work)

Approximated
WKNN-Shapley

(this work)
2DPlanes 0.849 0.8 0.884 0.831

CPU 0.867 0.929 0.956 0.956
Phoneme 0.707 0.724 0.773 0.778

Fraud 0.556 0.547 0.751 0.596
Creditcard 0.698 0.676 0.842 0.747

Vehicle 0.689 0.724 0.8 0.813
Click 0.627 0.6 0.751 0.693
Wind 0.836 0.849 0.858 0.88

Pol 0.907 0.862 1 0.991
MNIST 0.724 0.471 0.831 0.836

CIFAR10 0.684 0.76 0.76 0.756
AGNews 0.953 0.978 0.991 0.988
DBPedia 0.968 0.902 1 1

Table 1: AUROC scores of different variants of KNN-
Shapley for mislabeled data detection on benchmark
datasets. The higher, the better.

Figure 3: AUROC scores of different variants of KNN-
Shapley for mislabeled data detection with different
Ks. The higher the curve is, the better the method is.

weighted KNN-Shapley: Table 1 shows the AU-
ROC scores across the 13 benchmark datasets we ex-
perimented on when K = 5. Notably, both exact
and approximated WKNN-Shapley markedly outper-
form the unweighted KNN-Shapley (either soft-label
or hard-label) across most datasets. This can likely
be attributed to WKNN-Shapley’s ability to more
accurately differentiate between bad and good data
based on the proximity to the queried example. In
Appendix G.6, we present a qualitative study high-
lighting why WKNN-Shapley outperforms unweighted
KNN-Shapley in discerning data quality. Exact vs
Approximated WKNN-Shapley: From Table 1, we
can see an encouraging result that the approximated
WKNN-Shapley achieves performance comparable to
(and sometimes even slightly better than) the exact
WKNN-Shapley across the majority of datasets. This is
likely attributable to its favored property in preserving
the fairness properties of its exact counterpart. Ro-
bustness to the choice of K: In Figure 3, we show
that, compared to unweighted KNN-Shapley, WKNN-
Shapley maintains notably stable performance across
various choices of K, particularly for larger values. This
is because those benign data points—though within
the K nearest neighbors of the query example and
possessing different labels—may not receive a very low
value due to their likely distant positioning from the
query example. Conversely, unweighted KNN-Shapley
tends to assign these benign points lower values.

6 CONCLUSION

In this study, we addressed WKNN-Shapley compu-
tation and approximation when using the accuracy of
hard-label KNN with discretized weights as the utility
function. Future work should explore polynomial time
computation of exact Data Shapley for other learning
algorithms. It is especially important to think about
whether we can make some modifications to more com-
plicated learning algorithms, e.g., neural networks, so
that their exact Data Shapley can be computed effi-
ciently.
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Checklist

1. For all models and algorithms presented, check
if you include:

(a) A clear description of the mathematical
setting, assumptions, algorithm, and/or
model. Yes, see Section 4.

(b) An analysis of the properties and com-
plexity (time, space, sample size) of any
algorithm. Yes, see Section 4.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions
of all theoretical results. Yes.

(b) Complete proofs of all theoretical results.
Yes.

(c) Clear explanations of any assumptions.
Yes.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed
to reproduce the main experimental re-
sults (either in the supplemental material
or as a URL). Yes.

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
Yes.

(c) A clear definition of the specific measure
or statistics and error bars (e.g., with re-
spect to the random seed after running
experiments multiple times). Yes.

(d) A description of the computing infrastruc-
ture used. (e.g., type of GPUs, internal
cluster, or cloud provider). Yes.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check
if you include:

(a) Citations of the creator If your work uses
existing assets. Yes.

(b) The license information of the assets, if
applicable. Yes.

(c) New assets either in the supplemental ma-
terial or as a URL, if applicable. Not
Applicable.

(d) Information about consent from data
providers/curators. Not Applicable.

(e) Discussion of sensible content if applica-
ble, e.g., personally identifiable informa-
tion or offensive content. Not Applicable.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to par-
ticipants and screenshots. Not Applica-
ble.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. Not Appli-
cable.

(c) The estimated hourly wage paid to par-
ticipants and the total amount spent on
participant compensation. Not Applica-
ble.
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A EXTENDED RELATED WORKS

A.1 Data Shapley

Data Shapley is one of the first principled approaches to data valuation that became increasingly popular (Ghorbani
and Zou, 2019; Jia et al., 2019b). Data Shapley is based on the Shapley value, a famous solution concept from
game theory literature which is usually justified as the unique value notion satisfying the following four axioms:

(1) Null player: if v(S ∪ {zi}) = v(S) for all S ⊆ D \ {zi}, then φzi(v) = 0.

(2) Symmetry: if v(S ∪ {zi}) = v(S ∪ {zj}) for all S ⊆ D \ {zi, zj}, then φzi(v) = φzj (v).

(3) Linearity: For utility functions v1, v2 and any α1, α2 ∈ R, φzi(α1v1 + α2v2) = α1φzi(v1) + α2φzi(v2).

(4) Efficiency: for every v,
∑

zi∈D φzi(v) = v(D).

Since its introduction, numerous variants of Data Shapley have been developed (Jia et al., 2019a; Ghorbani
et al., 2020; Wang et al., 2020; Bian et al., 2021; Kwon and Zou, 2022; Lin et al., 2022; Wu et al., 2022; Karlaš
et al., 2022; Wang and Jia, 2023a,c; Liu et al., 2023; Wang et al., 2023), reflecting its effectiveness as a principled
approach for quantifying data point contributions to ML model training. However, not all axioms mentioned
above are considered necessary for a reasonable data valuation technique by the community. For example, Kwon
and Zou (2022) argue that (4) Efficiency is not necessarily required for data valuation, and Yan and Procaccia
(2021) argue that (3) Linearity is mainly a technical requirement and does not have a natural interpretation in
the context of machine learning. That said, the (1) Null player and (2) Symmetry axioms are often seen as the
“fairness axioms” and are deemed fundamental for any sound data valuation technique. Therefore, a reasonable
Shapley approximation should uphold these two axioms to ensure the Shapley value’s core advantages—fairness
and equity—are not diminished. The deterministic approximation algorithm we develop in Section 4.2 meets
these criteria.

A.2 KNN-Shapley

The computation of the Shapley value is notoriously resource-intensive. To the best of our knowledge, unweighted
KNN stands as the only frequently deployed ML model where the exact Data Shapley can be efficiently computed.
Due to its exceptional computational efficiency coupled with its capability to discern data quality, KNN-Shapley
has become one of the most popular and practical data valuation techniques. For instance, Ghorbani et al.
(2022) extends KNN-Shapley to active learning, Shim et al. (2021) applies it in a continual learning setting.
Additionally, studies such as Liang et al. (2020, 2021) have leveraged KNN-Shapley to eliminate ambiguous
samples in NLP tasks, and Courtnage and Smirnov (2021) has endorsed its use in semi-supervised learning data
valuation. Belaid et al. (2023) extends the analysis of KNN-Shapley to the calculation to the Shapley interaction
index. KNN-Shapley has also shown its practicality in real-world scenarios. For example, Pandl et al. (2021)
shows that KNN-Shapley is the only practical data valuation technique for valuing large amounts of healthcare
data. (Wang et al., 2023) considers a simple variant of unweighted KNN termed Threshold KNN, and develops an
alternative of KNN-Shapley that can be easily incorporated with differential privacy. Both Wang et al. (2023)
and our work demonstrate the importance of proper adjustments to the underlying KNN’s configuration (i.e., the
utility function) in developing new data valuation techniques with desired properties (computational efficiency,
privacy compatibility, etc.).

All the studies mentioned above focus on unweighted KNN. On the other hand, weighted KNN incorporates more
information about the underlying dataset. Consequently, the Data Shapley score derived from weighted KNN
might offer a better assessment of individual data point quality (as demonstrated in our experiments).

Finally, we note that some alternative data valuation techniques are as efficient as KNN-Shapley (Just et al., 2022;
Kwon and Zou, 2023). However, these methods lack a formal theoretical justification as the Shapley value-based
approaches.
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B ADDITIONAL BACKGROUND OF KNN-SHAPLEY

Notation Review. Recall that we use α
(S,j)

x(val) denotes the index (among D) of jth closest data point in S to
x(val).

B.1 Unweighted KNN-Shapley

The unweighted KNN-Shapley was originally proposed in Jia et al. (2019a) and was later refined in Wang and Jia
(2023b). Specifically, Wang and Jia (2023b) considers the utility function for unweighted, soft-label KNN on a
validation point z(val):

v(S; z(val)) :=

∑min(K,|S|)
j=1 1[y

α
(S,j)

x(val)

= y(val)]

min(|S|,K)
(8)

which is a special case of the utility function for weighted KNN in (1). It can be interpreted as the probability of
a soft-label KNN classifier in predicting the correct label for a validation point z(val) = (x(val), y(val)) ∈ D(val).
When |S| = 0, vz(val)(S) is set to the accuracy by random guessing (i.e., v(∅) = 1/#class). Here is the main
result of Wang and Jia (2023b):
Theorem 14 (KNN-Shapley (Wang and Jia, 2023b)). Consider the utility function in (8). Given a validation
data point z(val) = (x(val), y(val)) and a distance metric d(·, ·), if we sort the training set D = {zi = (xi, yi)}Ni=1

according to d(xi, x
(val)) in ascending order, then the Shapley value of each data point φzi corresponding to utility

function vz(val) can be computed recursively as follows:

φzN =
1[N ≥ 2]

N

(
1[yN = y(val)]−

∑N−1
i=1 1[yi = y(val)]

N − 1

)min(K,N)−1∑
j=1

1

j + 1

+
1

N

(
1[yN = y(val)]− 1

C

)

φzi = φzi+1
+

1[yi = y(val)]− 1[yi+1 = y(val)]

N − 1

min(K,N)∑
j=1

1

j
+

1[N ≥ K]

K

(
min(i,K) · (N − 1)

i
−K

)
where C denotes the number of classes for the classification task.

The computation of all unweighted KNN-Shapley (φz1 , . . . , φzN ) can be achieved in O(N logN) runtime in total,
as the runtime is dominated by the sorting data points in D.

B.2 Baseline Algorithm for Computing and Approximating WKNN-Shapley

Exact Computation Algorithm. Jia et al. (2019a) shows that the Data Shapley for weighted KNN can be
computed exactly with a runtime of O(NK). The high-level idea, as described in Section 2.3 in the maintext, is
that we only need to consider evaluating v(S) for those S where the addition of the target data point zi may
change the prediction of KNN. Moreover, there are at most O(NK) such Ss. For completeness, we state the
specific expression for computing the exact WKNN-Shapley from Jia et al. (2019a). We note that the original
theorem statement in Jia et al. (2019a) has minor errors and we also fix it here.
Theorem 15 (Jia et al. (2019a)). Consider the utility function in (1). Let Bk(i) = {S : |S| = k, zi /∈ S, S ⊆ D}.
Let r(·) be a function that maps the set of training data to their ranks of similarity to x(val). Then, the Shapley
value φzi of each training point zi can be calculated recursively as follows:

φzN =
1

N

K−1∑
k=0

1(
N−1
k

) ∑
S∈Bk(zN )

[v(S ∪ {zN})− v(S)] (9)

φzi = φzi+1
+

1

N − 1

N−2∑
k=0

1(
N−2
k

) ∑
S∈Di,k

Ai,k [v(S ∪ {zi})− v(S ∪ {zi+1})] (10)

where

Di,k =

{
Bk(zi) ∩Bk(zi+1) 0 ≤ k ≤ K − 2

BK−1(zi) ∩BK−1(zi+1) K − 1 ≤ k ≤ N − 2
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and

Ai,k =

1 0 ≤ k ≤ K − 2(N−max
(
i+1,α

(S,|S|)
x(val)

)
k−K+1

)
K − 1 ≤ k ≤ N − 2

Proof. The proof proceeds by standard combinatorial analysis and we refer readers to Appendix E.2. in Jia et al.
(2019a) for details. We note that α

(S,|S|)
x(val) means the index of the farthest data point to x(val) in S.

Remark 6. While Jia et al. (2019a) state the above results for soft-label weighted KNN, this algorithm is in fact
fairly general and also applies to hard-label weighted KNN.

Monte Carlo Algorithm. The Monte Carlo approximation algorithm for WKNN-Shapley from Jia et al.
(2019a) is a simple adaptation of the famous permutation sampling algorithm (Maleki, 2015). We refer the reader
to Section 5 of Jia et al. (2019a) for the detailed description and error analysis.
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C ADDITIONAL DISCUSSION OF WEIGHTS DISCRETIZATION

Value Rank Preservation. We show that the Shapley value computed based on the discrete weights has the
same ranking order compared with the Shapley value computed on the continuous weights (it might create ties
but will not reverse the original order).

Here, we consider the binary classification setting since our approach for computing WKNN-Shapley for multi-class
classification (in Appendix E) makes a reduction to the binary classification setting. We make a very mild
assumption that if d(xi, x

(val)) ≤ d(xj , x
(val)), then wi ≥ wj . That is, the closer the training point is to the query,

the higher the weight the training point will have. This is natural for any reasonable weighting scheme for KNN.
Lemma 16. Under the assumption of weight function stated above, for any weight assignment function and any
two data points zi, zj , if φzi(v) ≥ φzj (v), then we have φzi(v

disc) ≥ φzj (v
disc) where vdisc refers to the new utility

function after weights discretization.

Proof. The following cases will result in φzi(v) ≥ φzj (v):

Case 1: if yi = y(val), yj 6= y(val), it is easy to see that for any S ⊆ D we have v(S ∪ zi) ≥ v(S) while
v(S ∪ zj) ≤ v(S), and hence we have φzi ≥ 0 while φzi ≤ 0, regardless of the specific magnitude of the weights.
Hence, we still have φzi(v

disc) ≥ 0 and φzj (v
disc) ≤ 0 after weights discretization.

Case 2: if yi = yj = y(val), then φzi(v) ≥ φzj (v) implies that d(xi, x
(val)) ≤ d(xj , x

(val)) and wi ≥ wj . This is
because for any S ⊆ D \ {zi, zj}, if v(S ∪ {zj}) − v(S) = 1, we must also have v(S ∪ {zi}) − v(S) = 1. Since
weight discretization does not change the rank order of weights wi and wj , we still have φzi(v

disc) ≥ φzj (v
disc).

Case 3: if yi = yj 6= y(val), then φzi(v) ≥ φzj (v) implies that d(xi, x
(val)) ≥ d(xj , x

(val)) and wi ≤ wj . This is
because for any S ⊆ D\{zi, zj}, if v(S∪{zi})−v(S) = −1, we must also have v(S∪{zj})−v(S) = 1. Since weight
discretization does not change the rank order of weights wi and wj , we still have φzi(v

disc) ≥ φzj (v
disc).

Value Deviation and Performance on Downstream Tasks. It is difficult to analytically derive or upper
bound the deviation of WKNN-Shapley score caused by weight discretization. Therefore, in Appendix G.2, we
empirically investigate such value deviation. We also evaluate the impact of weight discretization on WKNN-
Shapley’s performance on downstream tasks such as mislabeled/noisy data detection. Overall, we conclude that
the impact from weight discretization is very small even when the number of discretization bits b is as small as 3.
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D ADDITIONAL DETAILS FOR EXACT AND APPROXIMATION
ALGORITHM FOR WKNN-SHAPLEY

We state the full version of Theorem 7 here, and defer the proof to Appendix F.

Theorem 17 (Full version of Theorem 7). When K > 1,3 for ` = 1 we have Fi[m, 1, s] =

{
1 s = wm

0 s 6= wm

. We can

then compute Fi[m, `, s] for ` ≥ 2 with the following relations:

If ` ≤ K − 1, we have

Fi[m, `, s] =

m−1∑
t=1

Fi[t, `− 1, s− wm] (11)

and if ` ≥ K, we have

Fi[m, `, s] =

{
0 m < i∑m−1

t=1 Fi[t,K − 1, s]
(
N−m
`−K

)
m > i

(12)

Note that we set Fi[i, ·, ·] = 0 for mathematical convenience.

In the following, we present the pseudocode for our exact computation and approximation algorithm for WKNN-
Shapley. For the clarity of presentation, we first show a reader-friendly version but inefficient version of the
pseudo-code for the exact computation algorithm from Section 4.1 in Appendix D.1. We then show the pseudo-
code that optimizes the runtime (but less readable) in Appendix D.2. We further show the pseudo-code for our
deterministic approximation algorithm in Appendix D.3.

Notation. Recall that we use W to denote the discretized space of [0, 1], where we create 2b equally spaced
points within the interval when we use b bits for discretization. We denote W := |W| = 2b the size of the weight
space. Furthermore, we use W(K) to denote the discretized space of [0,K] (where we create K2b equally spaced
points within the interval).

3Since Jia et al. (2019a) has shown that weighted KNN-Shapley can be computed in O(NK) time complexity, we focus
on the setting where K > 1.
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D.1 Reader-friendly Pseudo-code

Here, we show a reader-friendly version of the pseudo-code for our algorithms for computing WKNN-Shapley for
binary classification setting. The runtime-optimized version of the pseudo-code is shown in Appendix D.2.

Algorithm 1 Weighted KNN-Shapley for binary classification (reader-friendly version)
1: Input:

• K – hyperparameter of weighted KNN algorithm.
• z(val) = (x(val), y(val)) – the validation point.
• D = {zi = (xi, yi)}Ni=1 – sorted training set where d(xi, x

(val)) ≤ d(xj , x
(val)) for any i ≤ j.

2:
3: Compute the weight wi for i ∈ {1, . . . , N}.
4: w̃j = (21[y(val) = yj ]− 1)wj for i ∈ {1, . . . , N}.
5:
6: for i ∈ {1, . . . , N} do
7:
8: // Initialize Fi

9: Initialize Fi[m, `, s] = 0 for m ∈ {1, . . . , N}, ` ∈ {1, . . . ,K − 1}, s ∈ W(K).
10: for m ∈ {1, . . . , N} \ {i} do
11: Fi[m, 1, w̃m] = 1 (Theorem 17)
12:
13: // Compute Fi (Runtime-optimized version is in Appendix D.2)
14: for ` ∈ {2, . . . ,K − 1} do
15: for m ∈ {`, . . . , N} \ {i} do
16: for s ∈ W(K) do
17: Fi[m, `, s] =

∑m−1
t=1 Fi[t, `− 1, s− w̃m] (Equation (11) in Theorem 17)

18:
19: // Compute Ri,m (Runtime-optimized version is in Appendix D.2)
20: for m ∈ {max(i+ 1,K + 1), . . . , N} do

21: Ri,m =

{∑m−1
t=1

∑
s∈[−w̃i,−w̃m) Fi[t,K − 1, s] for yi = y(val)∑m−1

t=1

∑
s∈[−w̃m,−w̃i)

Fi[t,K − 1, s] for yi 6= y(val)
(Theorem 8)

22:
23: // Compute Gi,`

24: Gi,0 = 1[wi < 0].a
25: for ` ∈ {1, . . . ,K − 1} do

26: Gi,` =

{∑
m∈[N ]\i

∑
s∈[−w̃i,0)

Fi [m, `, s] for yi = y(val)∑
m∈[N ]\i

∑
s∈[0,−w̃i)

Fi [m, `, s] for yi 6= y(val)
(Theorem 6)

27:
28: // Compute the Shapley value for zi

29: φzi = sign(wi)
[

1
N

∑K−1
`=0

Gi,`(N−1
`

) +
∑N

m=max(i+1,K+1)
Ri,m

m
(m−1

K

)].b (Theorem 8)

aRecall that we define v(S) = 1
[∑min(K,|S|)

j=1 w̃(j) ≥ 0
]
, hence v({zi})− v(∅) ∈ {−1, 0} and is equal to −1 if and only if

wi < 0.

bsign(w) =


1 w > 0

0 w = 0

−1 w < 0

.
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D.2 Detailed Pseudo-code used in Implementation

Here, we show the runtime-optimized version of the pseudo-code for our algorithms for computing WKNN-Shapley
for binary classification setting. Specifically, the for-loops for computing Fi and Ri,m can be optimized for efficiency.

Algorithm 2 Weighted KNN-Shapley for binary classification
1: Input:

• K – hyperparameter of weighted KNN algorithm.
• z(val) = (x(val), y(val)) – the validation point.
• D = {zi = (xi, yi)}Ni=1 – sorted training set where d(xi, x

(val)) ≤ d(xj , x
(val)) for any i ≤ j.

2:
3: Compute the weight wi for i ∈ {1, . . . , N}.
4: w̃j = (21[y(val) = yj ]− 1)wj for i ∈ {1, . . . , N}.
5:
6: for i ∈ {1, . . . , N} do
7:
8: // Initialize Fi

9: Initialize Fi[m, `, s] = 0 for m ∈ {1, . . . , N}, ` ∈ {1, . . . ,K − 1}, s ∈ W(K).
10: for m ∈ {1, . . . , N} \ {i} do
11: Fi[m, 1, w̃m] = 1 (Theorem 17)
12:
13: // Compute Fi (Runtime-optimized version)
14: for ` ∈ {2, . . . ,K − 1} do
15: F0[:] =

∑`−1
t=1 Fi[t, `− 1, :]

16: for m ∈ {`, . . . , N} \ {i} do
17: for s ∈ W(K) do
18: Fi[m, `, s] = F0[s− wm]

19:
20: // Compute Ri,m (Runtime-optimized version)
21: for s ∈ W(K) do
22: R0[s] =

∑max(i+1,K+1)−1
t=1,t 6=i Fi[t,K − 1, s].

23: for m ∈ {max(i+ 1,K + 1), . . . , N} do

24: Ri,m =

{∑
s∈[−w̃i,−w̃m) R0[s] for yi = y(val)∑
s∈[−w̃m,−w̃i)

R0[s] for yi 6= y(val)

25: R0 = R0 + Fi[m,K − 1, :]

26:
27: // Compute Gi,`

28: Gi,0 = 1[wi < 0].a
29: for ` ∈ {1, . . . ,K − 1} do

30: Gi,` =

{∑
m∈[N ]\i

∑
s∈[−w̃i,0)

Fi [m, `, s] for yi = y(val)∑
m∈[N ]\i

∑
s∈[0,−w̃i)

Fi [m, `, s] for yi 6= y(val)
(Theorem 6)

31:
32: // Compute the Shapley value for zi

33: φzi = sign(wi)
[

1
N

∑K−1
`=0

Gi,`(N−1
`

) +
∑N

m=max(i+1,K+1)
Ri,m

m
(m−1

K

)].b (Theorem 8)

aRecall that we define v(S) = 1
[∑min(K,|S|)

j=1 w̃(j) ≥ 0
]
, hence v({zi})− v(∅) ∈ {−1, 0} and is equal to −1 if and only if

wi < 0.

bsign(w) =


1 w > 0

0 w = 0

−1 w < 0

.
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D.3 Detailed Pseudo-code for approximation algorithm

Here, we show the pseudo-code for our deterministic approximation algorithms for WKNN-Shapley from Section
4.2. We highlight its difference with the exact computation algorithm.

Algorithm 3 Approximation of Weighted KNN-Shapley for binary classification
1: Input:

• K – hyperparameter of weighted KNN algorithm.
• z(val) = (x(val), y(val)) – the validation point.
• D = {zi = (xi, yi)}Ni=1 – sorted training set where d(xi, x

(val)) ≤ d(xj , x
(val)) for any i ≤ j.

• M? – hyperparameter for SV approximation (Section 4.2). M? = N for exact SV calculation.
2:
3: Compute the weight wi = ωx(val)(xi) for i ∈ {1, . . . , N}.
4: w̃j = (21[y(val) = yj ]− 1)wj for i ∈ {1, . . . , N}.
5:
6: for i ∈ {1, . . . , N} do
7:
8: // Initialize Fi

9: Initialize Fi[m, `, s] = 0 for m ∈ {1, . . . ,M?}, ` ∈ {1, . . . ,K − 1}, s ∈ W(K).
10: for m ∈ {1, . . . ,M?} \ {i} do
11: Fi[m, 1, w̃m] = 1 (Theorem 17)
12:
13: // Compute Fi (Runtime-optimized version)
14: for ` ∈ {2, . . . ,K − 1} do
15: F0[:] =

∑`−1
t=1 Fi[t, `− 1, :]

16: for m ∈ {`, . . . ,M?} \ {i} do
17: for s ∈ W(K) do
18: Fi[m, `, s] = F0[s− wm]

19:
20: // Compute Ri,m (Runtime-optimized version)
21: for s ∈ W(K) do
22: R0[s] =

∑max(i+1,K+1)−1
t=1,t 6=i Fi[t,K − 1, s].

23: for m ∈ {max(i+ 1,K + 1), . . . ,M?} do

24: Ri,m =

{∑
s∈[−w̃i,−w̃m) R0[s] for yi = y(val)∑
s∈[−w̃m,−w̃i)

R0[s] for yi 6= y(val)

25: R0 = R0 + Fi[m,K − 1, :]

26:
27: // Compute Gi,`

28: G̃
(M?)

i,0 = 1[wi < 0].a
29: for ` ∈ {1, . . . ,K − 1} do

30: G̃
(M?)

i,` =

{∑
m∈[M?]\i

∑
s∈[−w̃i,0)

Fi [m, `, s] for yi = y(val)∑
m∈[M?]\i

∑
s∈[0,−w̃i)

Fi [m, `, s] for yi 6= y(val)
(Definition 10)

31:
32: // Compute the Shapley value for zi

33: φ̂
(M?)
zi = sign(wi)

[
1
N

∑K−1
`=0

G̃(M?)
i,`(N−1

`

) +
∑M?

m=max(i+1,K+1)
Ri,m

m
(m−1

K

)
]
.b (Definition 10)

aRecall that we define v(S) = 1
[∑min(K,|S|)

j=1 w̃(j) ≥ 0
]
, hence v({zi})− v(∅) ∈ {−1, 0} and is equal to −1 if and only if

wi < 0.

bsign(w) =


1 w > 0

0 w = 0

−1 w < 0

.
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D.4 Expanded Discussion for the Selection of M? for Deterministic Approximation Algorithm

Determining a universally applicable heuristic for setting M? is challenging. As we mentioned in
Remark 5, ideally, we would like to pick the smallest M? such that the error bound ε(M?) from Theorem 12
is significantly smaller than |φzi | for a significant portion of zis. However, determining a universally applicable
heuristic for setting M? is challenging due to the varying magnitude of φzi across different datasets, which are
difficult to anticipate. For example, in the case where all but one data point are “null players”, that single data
point will possess a value of v(D), while all others will be valued at 0. On the other hand, if all data points are
identical, each will receive a value of v(D)/N .

We can select M? in an adaptive way (not used in our experiment). As the magnitude of WKNN-Shapley
can vary significantly depending on the specific dataset, it is more reasonable to select M? in an adaptive way.
Specifically, we can compute (φ̂

(M?)
zi )i∈[N ] for each of M? = K + 1, . . . ,. We can keep increment M? until the

magnitude of ε(M?) is substantially smaller than (e.g., < 10%) the magnitude of φ̂(M?)
zi for a majority of zis. We

can easily modify Algorithm 3 so that this approach does not increase the overall runtime since φ̂
(M?)
zi can be

easily computed from φ̂
(M?−1)
zi and the additionally computed Fi[M

?, ·, ·]. That is, from Definition 10, we can
easily see that when yi = y(val),

φ̂(M?)
zi = φ̂(M?−1)

zi +

(
1

N

K−1∑
`=0

∑
s∈[−w̃i,0)

Fi [M
?, `, s](

N−1
`

) +
Ri,M?

M?
(
M?−1

K

)) (13)

and when yi 6= y(val),

φ̂(M?)
zi = φ̂(M?−1)

zi −

(
1

N

K−1∑
`=0

∑
s∈[0,−w̃i)

Fi [M
?, `, s](

N−1
`

) +
Ri,M?

M?
(
M?−1

K

)) (14)

In our experiment, we find M? =
√
N works well across all benchmark datasets (ablation study in

Appendix G.5). However, in our experiment, we find that the performance of approximated WKNN-Shapley
on the downstream tasks such as mislabeled and noisy data detection, are relatively stable across a wide range of
choices of M? (see Appendix G.5). This is likely because of the nice property of our approximated WKNN-Shapley
in preserving the fairness properties of the exact WKNN-Shapley (Theorem 13). Hence, in our experiment, we do
not follow the adaptive process of selecting M?, but adopt the simple rule of M? =

√
N , which already works

very well.
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E EXTENSION TO MULTI-CLASS CLASSIFICATION SETTING

In Section 4, we have developed efficient solutions for computing and approximating the Data Shapley of
weighted hard-label KNN binary classifiers. Directly adapting the same techniques from the binary to multi-class
classification setting, however, can significantly increase the overall time complexity (see Appendix E.1 for
details). Hence, in Appendix E.2, we introduce an alternative utility function to measure the performance of
WKNN classifiers. This new utility function provides more detailed confidence information about the KNN
classifier, as opposed to the original utility function in (2), which only provides basic zero-one correctness. More
importantly, computing the Data Shapley in terms of the new utility function can be conveniently reduced to
the WKNN-Shapley computation for binary classifiers without significantly increasing time complexity, a benefit
leveraged from the linearity axiom of the Shapley value.

Notation Review. Recall that we use W to denote the discretized space of [0, 1], where we create 2b equally
spaced points within the interval when we use b bits for discretization. We denote W := |W| = 2b the size of
the weight space. Furthermore, we use W(K) to denote the discretized space of [0,K] (where we create K2b

equally spaced points within the interval). We use NBx(val),K(S) to denote the set of data points that is within
the K-nearest neighbors of x(val) among S. We use α

(S,j)

x(val) denotes the index (among D) of jth closest data point
in S to x(val).

E.1 Direct Extension from Binary Classification Setting can be Inefficient

We first discuss a simple, direct extension of our exact WKNN-Shapley algorithm from binary to multi-class
classification setting. In Algorithm 1, the main idea is to maintain a record of Fi[m, `, s] for a singular scalar value
s which represents the summation of “signed weights” w̃j . In order to extend this approach to the multi-class
setting, it is natural to enhance this scalar representation to a “histogram” depiction, Fi[m, `, s], where s is the
vector sum of weights for each data point, and the weights are in the form of one-hot encoding. That is, in the
multi-class setting, Fi is augmented to record the number of subsets such that the sum of weights of the data
points in the one-hot encoding is equal to the histogram s (subject to the conditions analog to those in Definition
5). Denote ey ∈ [C] the one-hot encoding of the label, with 1 on yth entry and 0 otherwise. The augmented Fi is
defined as follows:
Definition 18. Let Fi [m, `, s] denote the count of subsets S ⊆ D \ {zi} of size ` that satisfy the conditions below:
(1) CondKNN, (2) Within S, the data point xm is the min(`,K)-th closest to the query example x(val), and (3)∑min(`,K−1)

j=1 w
α

(S,j)

x(val)

ey
α
(S,j)

x(val)

= s.

The results in the maintext (Theorem 6, 7, and 8) can be easily adapted to this more generalized definition of
Fi. While this direct extension can compute the exact Data Shapley for the utility function in (2), it has a time
complexity of O(K1+CN2WC) as we need to record Fi[m, `, s] for all possible histograms s ∈ WC

(K), where WC
(K)

denotes the product space of W(K). This is manageable for datasets with a modest size of class space. However,
for datasets with a large class space, this complexity can render the runtime prohibitively large.

E.2 Alternative Utility Function that Enables More Efficient Computation of WKNN-Shapley

Due to the above-mentioned computational bottleneck, we introduce an alternative utility function for weighted
KNN classifiers, which not only reflects the KNN classifiers’ performance but also paves the way for a more
efficient Data Shapley computation analogous to that of the binary setting. This is another instantiation of the
rationale of developing advanced data valuation techniques with proper adjustment to the utility function.

Alternative Utility Function for Weighted Hard-Label KNN Classifiers. For a class c ∈ [C] \ {y(val)},
we denote

v(c)(S; z(val)) := 1

min(K,|S(c)|)∑
j=1

w
α

(S(c),j)

x(val)

1

[
y
α

(S(c),j)

x(val)

= y(val)
]
≥

min(K,|S(c)|)∑
j=1

w
α

(S(c),j)

x(val)

1

[
y
α

(S(c),j)

x(val)

= c

] (15)

where S(c) := {(x, y) ∈ S : y ∈ {y(val), c}} is the subset of S whose labels are either y(val) and c. We propose an
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alternative utility function as follows:

ṽ(S; z(val)) :=
1

C − 1

∑
c∈[C]\y(val)

v(c)(S(c); z(val)) (16)

Note that for binary classifiers, the new utility function ṽ reduces to the original v. Interpretation of the
Alternative Utility Function: The alternative utility function, ṽ, captures a more fine-grained view of the
classifier’s performance. Instead of just deciding based on whether a prediction is correct as the original utility
function in (2), it reduces the multi-class classification game as multiple binary-class classification games, and
assesses how many times the correct class, y(val), are correctly being predicted in those subgames. Hence, ṽ
provides insight into not just the correctness, but also the relative confidence of a prediction with respect to other
classes.

Data Shapley for ṽ. The linearity axiom of the Shapley value provides that

φzi(ṽ) =
1

C − 1

∑
c∈[C]\y(val)

φzi(v
(c))

Denote the subset Dy(val),c ⊆ D such that Dy(val),c := {(x, y) ∈ D : y ∈ {y(val), c}}. Observe that φzi(v
(c)) = 0

for all zi /∈ Dy(val),c, and φzi(v
(c)) for zi ∈ Dy(val),c can be easily computed with WKNN-Shapley for binary

classification setting (Algorithm 2). Hence, we can first compute φzi(v
(c)) for each c ∈ [C] \ y(val) individually,

and then aggregate these values.

Algorithm 4 Weighted KNN-Shapley for multi-class classification
1: Input:

• K – hyperparameter of weighted KNN algorithm.
• z(val) = (x(val), y(val)) – the validation point.
• D = {zi = (xi, yi)}Ni=1 – sorted training set where d(xi, x

(val)) ≤ d(xj , x
(val)) for any i ≤ j.

• C – number of classes
2: for c ∈ [C] \ {y(val)} do
3: φzi(v

(c)) = 0 for zi /∈ Dy(val),c.
4: Compute φzi(v

(c)) for zi ∈ Dy(val),c by executing Algorithm 2 on Dy(val),c.
5: Return: φzi(ṽ) =

1
C−1

∑
c∈[C]\y(val) φzi(v

(c)) for zi ∈ D.

Remark 7. We can also replace the exact computation of φzi(v
(c)) in line 4 by our deterministic approximation

algorithm (Algorithm 3) and obtain a deterministic approximation for φzi(ṽ). The error bound is simply the
average of error bounds for computing φzi(v

(c)) for each of c ∈ [C] \ {y(val)}.

While this might imply an inevitable factor of C in the computational complexity, note that the “effective
dataset” for v(c) is the subset Dy(val),c ⊆ D that comprises only data points labeled y(val) or c. As a result, the
computational time to compute the Shapley value for v(c) reduces to O(K2|Dy(val),c|2W ). This provides a huge
runtime saving when the dataset is balanced.
Theorem 19. For a class-balanced training dataset D with C classes, computing the exact WKNN-Shapley
{φzi(ṽ)}zi∈D achieves runtime O

(
K2N2W

C

)
.

Proof. When the dataset D is balanced, we have |Dy(val),c| = 2N
C . Hence, the runtime of computing {φzi(v

(c))}zi∈D

is O
(

K2N2W
C2

)
, and hence the total runtime is O

(
K2N2W

C

)
.

Remarkably, this methodology is even more efficient than its binary classification counterpart.
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F MISSING PROOFS

Notation Review. Recall that we use W to denote the discretized space of [0, 1], where we create 2b equally
spaced points within the interval when we use b bits for discretization. We denote W := |W| = 2b the size of
the weight space. Furthermore, we use W(K) to denote the discretized space of [0,K] (where we create K2b

equally spaced points within the interval). We use NBx(val),K(S) to denote the set of data points that is within
the K-nearest neighbors of x(val) among S. We use α

(S,j)

x(val) denotes the index (among D) of jth closest data point
in S to x(val).
Theorem 20 (Restate of Theorem 2). For any data point zi ∈ D and any subset S ⊆ D \ {zi}, the marginal
contribution has the expression as follows:

v(S ∪ {zi})− v(S) =


1 if yi = y(val), CondKNN, Cond0to1

−1 if yi 6= y(val), CondKNN, Cond1to0

0 Otherwise
(17)

where

CondKNN := zi is within K nearest neighbors of x(val) among S ∪ {zi} (18)

Cond0to1 :=


∑

zj∈S w̃j ∈ [−w̃i, 0) if |S| ≤ K − 1∑K−1
j=1 w̃

α
(S,j)

x(val)

∈
[
−wi,−w̃

α
(S,K)

x(val)

)
if |S| ≥ K

(19)

Cond1to0 :=


∑

zj∈S w̃j ∈ [0,−w̃i) if |S| ≤ K − 1∑K−1
j=1 w̃

α
(S,j)

x(val)

∈
[
−w̃

α
(S,K)

x(val)

,−wi

)
if |S| ≥ K

(20)

Proof. First of all, we observe that if zi /∈ NBx(val),K(S ∪ {zi}), i.e., if zi is not within the K nearest neighbors of
the queried example x(val) among the subset S ∪ {zi}, then the prediction of KNN classifier does not change, and
hence we know that v(S ∪ {zi}) = v(S). Hence CondKNN is necessary for v(S ∪ {zi})− v(S) to be non-zero.

If zi ∈ NBx(val),K(S ∪ {zi}), we divide into two cases: 1 If |S| ≤ K − 1 we know that adding zi will not
exclude any other data point from the K nearest neighbors of x(val). Hence v(S ∪ {zi}) − v(S) = 1 only if
yi = y(val) and

∑
zj∈S w̃j ∈ [−w̃i, 0), and v(S ∪ {zi}) − v(S) = −1 only if yi 6= y(val) and

∑
zj∈S w̃j ∈ [0,−w̃i).

2 If |S| ≥ K we know that adding zi will exclude the original Kth nearest neighbors of x(val) among dataset
S. Hence, v(S ∪ {zi}) − v(S) = 1 only if yi = y(val) and

∑K−1
j=1 w̃α

x(val) (S,j) ∈
[
−wi,−w̃α

x(val) (S,K)

)
, and

v(S ∪ {zi})− v(S) = −1 only if yi 6= y(val) and
∑K−1

j=1 w̃α
x(val) (S,j) ∈

[
−w̃α

x(val) (S,K),−wi

)
.

Theorem 21 (Full version of Theorem 7). When K > 1,4 for ` = 1 we have Fi[m, 1, s] =

{
1 s = wm

0 s 6= wm

. We can

then compute Fi[m, `, s] for ` ≥ 2 with the following relations:

If ` ≤ K − 1, we have

Fi[m, `, s] =

m−1∑
t=1

Fi[t, `− 1, s− wm] (21)

and if ` ≥ K, we have

Fi[m, `, s] =

{
0 m < i∑m−1

t=1 Fi[t,K − 1, s]
(
N−m
`−K

)
m > i

(22)

Note that we set Fi[i, ·, ·] = 0 for mathematical convenience.
4Since Jia et al. (2019a) has shown that weighted KNN-Shapley can be computed in O(NK) time complexity, we focus

on the setting where K > 1.
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Proof. Base case of ` = 1: by definition of Fi, if ` = 1 the dataset that satisfy the conditions required for
Fi[m, 1, ·] can only be the singleton {zm}, and hence the base case is straightforward.

Case of ` ≤ K − 1: the inclusion of zi in NBx(val),K(S ∪ {zi}) is guaranteed for this range of `. The datasets
that satisfy the conditions required for Fi[m, `, s] can be partitioned based on the (`− 1)th closest point to x(val),
which leads to the recursive relation in (21).

Case of ` ≥ K: Since xm is the K-th nearest data point to x(val) within S, we have Fi[m, `, s] = 0 for any m < i
since zi is also required to be within K nearest neighbor to x(val). When m > i, the datasets that satisfy the
conditions required for Fi[m, `, s] can be partitioned based on the (K − 1)th closest point to x(val), which leads to
the relation in (22) by simple combinatorial analysis.

Theorem 22 (Restate of Theorem 8). For a weighted, hard-label KNN binary classifier using the utility function
given by (3), the Shapley value of data point zi can be expressed as:

φzi = sign(wi)

 1

N

K−1∑
`=0

Gi,`(
N−1
`

) + N∑
m=max(i+1,K+1)

Ri,m

m
(
m−1
K

)
 (23)

where

Ri,m :=

{∑m−1
t=1

∑
s∈[−w̃i,−w̃m) Fi[t,K − 1, s] for yi = y(val)∑m−1

t=1

∑
s∈[−w̃m,−w̃i)

Fi[t,K − 1, s] for yi 6= y(val)
(24)

Proof. We state the proof for the case where yi = y(val), and the proof for the case where yi 6= y(val) is nearly
identical. Recall that

Gi,` =

{∑
m∈[N ]\i

∑
s∈[−w̃i,0)

Fi [m, `, s] ` ≤ K − 1∑
m∈[N ]\i

∑
s∈[−w̃i,−w̃m) Fi [m, `, s] ` ≥ K

if yi = y(val).

When ` ≥ K, we have

Gi,` =
∑

m∈[N ]\i

∑
s∈[−w̃i,−w̃m)

Fi [m, `, s]

=

N∑
m=max(i+1,K+1)

∑
s∈[−w̃i,−w̃m)

Fi [m, `, s]

=

N∑
m=max(i+1,K+1)

∑
s∈[−w̃i,−w̃m)

(
N −m

`−K

) m−1∑
t=1,t6=i

Fi[t,K − 1, s]

=

N∑
m=max(i+1,K+1)

(
N −m

`−K

) ∑
s∈[−w̃i,−w̃m)

m−1∑
t=1,t6=i

Fi[t,K − 1, s]

=

N∑
m=max(i+1,K+1)

(
N −m

`−K

)
Ri,m

where Ri,m =
∑

s∈[−w̃i,−w̃m)

∑m−1
t=1,t6=i Fi[t,K − 1, s].
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N−1∑
`=K

Gi,`(
N−1
`

) =

N−1∑
`=K

N∑
m=max(i+1,K+1)

(
N−m
`−K

)
Ri,m(

N−1
`

)
=

N∑
m=max(i+1,K+1)

Ri,m

N−1∑
`=K

(
N−m
`−K

)(
N−1
`

)
=

N∑
m=max(i+1,K+1)

Ri,m

(
N−1∑
`=K

(
m−1
K

)(
N−m
`−K

)(
N−1
`

) )(
m− 1

K

)−1

=

N∑
m=max(i+1,K+1)

Ri,m

(
N

m

)(
m− 1

K

)−1

Theorem 23 (Restate of Theorem 9). Algorithm 2 (in Appendix D.2) computes the exact Shapley value and
achieves O(K2N2W ) time complexity.

Proof. It is easy to see that the for-loop for computing Fi for ` ≤ K requires a runtime of O(KN |W(K)|). The
for-loop for computing Ri,m requires a runtime of O(N |W(K)|). The for-loop for computing Gi,` for ` ≤ K requires
a runtime of O(KN |W(K)|). All of these subroutines are included in the outside for-loop for computing φzi for
all zi ∈ D. Hence, the overall runtime is O(KN2|W(K)|) = O(K2N2W ).

Theorem 24 (Restate of Theorem 11). Algorithm 3 (in Appendix D.3) computes the approximated WKNN-Shapley
φ̂
(M?)
zi for all zi ∈ D and achieves a total runtime of O(WK2NM?).

Proof. It is easy to see that the for-loop for computing Fi for ` ≤ K requires a runtime of O(KM?|W(K)|). The
for-loop for computing Ri,m requires a runtime of O(M?|W(K)|). The for-loop for computing Gi,` for ` ≤ K
requires a runtime of O(KM?|W(K)|). All of these subroutines are included in the outside for-loop for computing
φzi for all zi ∈ D. Hence, the overall runtime is O(KNW |W(K)|) = O(WK2NM?).

Theorem 25 (Restate of Theorem 12). For any zi ∈ D, the approximated Shapley value φ̂
(M?)
zi (1) shares the same

sign as φzi , (2) ensures
∣∣∣φ̂(M?)

zi

∣∣∣ ≤ |φzi |, and (3) has the approximation error bounded by
∣∣∣φ̂(M?)

zi − φzi

∣∣∣ ≤ ε(M?)

where

ε(M?) :=

N∑
m=M?+1

(
1

m−K
− 1

m

)
+

K−1∑
`=1

(
N
`

)
−
(
M?

`

)
N
(
N−1
`

) = O (K/M?)

Proof. The property (1) follows from that the sign of both exact and approximated WKNN-Shapley only depends
on whether yi = y(val). The property (2) follows from the approximation algorithm only counts part of the
subproblems, and hence

∣∣∣φ̂(M?)
zi

∣∣∣ ≤ |φzi |. We now prove property (3).

In the exact algorithm 1, we have

φi =
1

N

K−1∑
`=0

Gi,`(
N−1
`

)︸ ︷︷ ︸
(A)

+

N∑
m=max(i+1,K+1)

Ri,m

(
1

m

)(
m− 1

K

)−1

︸ ︷︷ ︸
(B)

First of all, note that ∑
s∈W

Fi [m, `, s] =

(
m− 1− 1[i < m]

`− 1

)
≤
(
m− 1

`− 1

)



Jiachen T. Wang, Prateek Mittal, Ruoxi Jia

for any ` ≤ K since
∑

s∈W Fi [m, `, s] is essentially the total number of subsets S ⊆ D \ zi of size ` where zm is
the farthest data point to the query example x(val).

Now, denote

G̃i,` :=

M?∑
m=1

∑
s∈[−w̃i,0)

Fi [m, `, s]

for 1 ≤ ` ≤ K − 1. The gap between Gi,` and G̃i,` can be bounded as follows:

∣∣G̃i,` − Gi,`

∣∣ = N∑
m=M?+1

∑
s∈[−w̃i,0)

Fi [m, `, s]

≤
N∑

m=M?+1

∑
s∈W

Fi [m, `, s]

≤
N∑

m=M?+1

(
m− 1

`− 1

)

=

N∑
m=`

(
m− 1

`− 1

)
−

M?∑
m=`

(
m− 1

`− 1

)
=

(
N

`

)
−
(
M?

`

)
Now we bound the error from taking the approximation R̂i,m = 0 for m ≥ M? + 1. Since we have

Ri,m =

m−1∑
t=1

∑
s∈[−w̃i,−w̃m)

Fi[t,K − 1, s]

≤
m−1∑
t=1

(
t− 1

K − 2

)
=

(
m− 1

K − 1

)
Hence

N∑
m=max(i+1,K+1,M?+1)

Ri,m

(
1

m

)(
m− 1

K

)−1

≤
N∑

m=max(i+1,K+1,M?+1)

(
m− 1

K − 1

)(
1

m

)(
m− 1

K

)−1

≤
N∑

m=M?+1

(
m− 1

K − 1

)(
1

m

)(
m− 1

K

)−1

=

N∑
m=M?+1

K

m(m−K)

=

N∑
m=M?+1

(
1

m−K
− 1

m

)

Hence, for any data point zi, we have∣∣∣φ̂(M?)
zi − φi

∣∣∣ = 1

N

K−1∑
`=0

∣∣Gi,` − G̃i,`

∣∣(
N−1
`

) +

N∑
m=max(i+1,K+1,M?+1)

Ri,m

(
1

m

)(
m− 1

K

)−1

≤ 1

N

K−1∑
`=1

(
N
`

)
−
(
M?

`

)(
N−1
`

) +

N∑
m=M?+1

(
1

m−K
− 1

m

)
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Theorem 26 (Restate of Theorem 13). The approximated Shapley value {φ̂(M?)
zi }zi∈D satisfies symmetry and

null player axiom.

Proof. Null Player Axiom. If a data point zi is a null player (i.e., v(S ∪ zi) = v(S) for all S ⊆ D \ {zi}), then
we have φzi = 0. From the expression in Theorem 8, we must have Ri,m = 0 for all 0 ≤ m ≤ N and Gi,` = 0
for all 0 ≤ ` ≤ N − 1 (as these are non-negative quantities). Since G̃i,` ≤ Gi,`, we know that G̃i,` = 0 for all
0 ≤ ` ≤ N − 1. Hence, we have φ̂

(M?)
zi = 0.

Symmetry Axiom. Denote the condition cond≤m as “within S, the min(`,K)-th closest to the query example
x(val) is among {xk}mk=1. If two data points zi, zj are symmetry (i.e., v(S ∪ zi) = v(S ∪ zj) for all S ⊆ D \{zi, zj}),
we must have G̃

(M?)

i,` = G̃
(M?)

j,` since

G̃
(M?)

i,` =
∑

S⊆D\{zi},|S|=`,cond≤M?

[v(S ∪ {zi})− v(S)]

Furthermore, we also have Ri,m = Rj,m since

Ri,m =
∑

S⊆D\{zi},|S|=K−1,cond≤m−1

[v(S ∪ {zi})− v(S)]

which leads to φ̂
(M?)
zi = φ̂

(M?)
zj .
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G EVALUATION SETTINGS & ADDITIONAL EXPERIMENTS

We provide a summary of the content in this section for the convenience of the readers.

• Appendix G.1: General experiment settings (datasets and implementation details).

• Appendix G.2: Additional experiments for evaluating the influence of weights discretization.

• Appendix G.3: Experiment Settings and additional results for the runtime comparison of algorithms for
computing/approximating WKNN-Shapley.

• Appendix G.4: Experiment Settings and additional results for noisy data detection task.

• Appendix G.5: Ablation study for the choice of M? for the deterministic approximation algorithm from
Section 4.2.

• Appendix G.6: Qualitative comparison between weighted and unweighted KNN-Shapley scores.



Efficient Data Shapley for Weighted Nearest Neighbor Algorithms

G.1 Experiment Settings

G.1.1 Datasets

An overview of the dataset information can be found in Table 2. Following the existing literature in data valuation
(Ghorbani and Zou, 2019; Kwon and Zou, 2022; Jia et al., 2019b; Wang and Jia, 2023a; Wang et al., 2023), we
preprocess datasets for ease of training. Following Kwon and Zou (2022), for Fraud, Creditcard, and all datasets
from OpenML, we subsample the dataset to balance positive and negative labels. For these datasets, if they
have multi-class, we binarize the label by considering 1[y = 1]. Following Wang et al. (2023), for the image
dataset MNIST, CIFAR10, we apply a ResNet50 (He et al., 2016) that is pre-trained on the ImageNet dataset
as the feature extractor. This feature extractor produces a 1024-dimensional vector for each image. For the
sentence classification datasets AGNews and DBPedia, we use sentence embedding (Reimers and Gurevych, 2019)
to extract features, resulting in 1024-dimensional vectors for each textual sample. We then standardize these
extracted features using L2 normalization.

The size of each dataset we use is shown in Table 2. For some of the datasets, we use a subset of the full set. The
validation data size we use is 10% of the training data size.

Dataset Number of classes Size of dataset Source
Click 2 2000 https://www.openml.org/d/1218
Fraud 2 2000 Dal Pozzolo et al. (2015)

Creditcard 2 2000 Yeh and Lien (2009)
Apsfail 2 2000 https://www.openml.org/d/41138

Phoneme 2 2000 https://www.openml.org/d/1489
Wind 2 2000 https://www.openml.org/d/847
Pol 2 2000 https://www.openml.org/d/722

CPU 2 2000 https://www.openml.org/d/761
2DPlanes 2 2000 https://www.openml.org/d/727
MNIST 10 2000 LeCun (1998)

CIFAR10 10 2000 Krizhevsky et al. (2009)
AGnews 4 2000 Wang et al. (2021)
DBPedia 14 2000 Auer et al. (2007)

Table 2: A summary of datasets used in Section 5’s experiments.

G.1.2 Implementation of Weighted KNN-Shapley

In Section 5 in the main text, the weights used in KNN are based on `2 distance between the training point and
queried example, and then normalize all weights to [0, 1]. That is, the weight of a data point zi is computed by

wi :=

∥∥xN − x(val)
∥∥− ∥∥xi − x(val)

∥∥∥∥xN − x(val)
∥∥− ∥∥x1 − x(val)

∥∥
The weights are then discretized by rounding to the nearest values that can be represented with b bits. That is,
we create 2b equally spaced points within the interval of [0, 1], and round the weights to the closest point in the
discretized space. We set the number of bits b = 3 in all experiments unless explicitly specified.

G.1.3 Details for Mislabel Data Detection Experiment

In the experiment of mislabeled data detection, we randomly choose 10% of the data points and flip their labels.
Specifically, we flip 10% of the labels by picking an alternative label from the rest of the classes uniformly at
random.
Remark 8 (Baseline of Data Shapley). We note that several works have demonstrated that (unweighted)
KNN-Shapley significantly outperforms the traditional Data Shapley (Pandl et al., 2021; Wang et al., 2023) in
discerning data quality in tasks such as mislabeled data detection. Moreover, Data Shapley is highly inefficient
as it requires ML models for many times, which is impractical for actual use. Hence, in this work, we omit the
baseline of Data Shapley.

https://www.openml.org/d/1218
https://www.openml.org/d/41138
https://www.openml.org/d/1489
https://www.openml.org/d/847
https://www.openml.org/d/722
https://www.openml.org/d/761
https://www.openml.org/d/727
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G.2 Error From Weight Discretization

G.2.1 Value Deviation

We empirically study the difference between WKNN-Shapley computed based on the original continuous weights
and the discretized weights. However, for continuous weights, it is computationally infeasible to compute the
exact Data Shapley. Therefore, we instead look at the computed Shapley values’ difference when using b bits
and b+ 1 bits for b = 1, 2, . . .. Figure 4 shows the results for `2 and `∞ error. That is, a point on the figure at
x-axis b refers to the error reduction if using one more bit b+ 1. We have two observations here: (1) The error
converges quickly as b increases and is near zero after b ≥ 5. (2) The larger the dataset size N is, the smaller the
error is. This interesting phenomenon is because the errors are dominated by the differences in the Shapley value
computed for influential data points. When the dataset size is small, there are more influential data points since
the performance of models trained on different data subsets can be significantly different from each other. On the
other hand, when the dataset size is larger, there will be fewer influential points since most of the data subsets
have a high utility (see Figure 5 for the visualization of the comparison between the distribution of data value
scores).

Figure 4: Convergence of the discretization error with the number of bits growth. The y-axis shows the `2 or `∞
norm of the difference between the Shapley values computed based on b bits and b+ 1 bits. The lower, the better.
We use Fraud dataset from OpenML, and we use K = 5 here.

Figure 5: Distributions of WKNN-Shapley on different sizes of the subset of Fraud dataset from OpenML (the
number of bits for discretization b = 5 and K = 5).
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G.2.2 Performance on discerning data quality

In this section, we compare the performance between continuous and discretized weighted KNN-Shapley on the
tasks of discerning data quality, specifically mislabeled data detection and noisy data detection. The experiment
settings are the same as those described in Section 5.2 and Appendix G.4.

Comparison between continuous and discretized WKNN-Shapley. Due to the runtime complexity of
O(NK) associated with the exact algorithm for computing WKNN-Shapley with continuous weights, it becomes
unfeasible to compute WKNN-Shapley with continuous weights for values of K > 2. Thus, in this section,
our focus remains on the comparative performance for K = 2. Table 3 shows the performance comparison on
mislabeled data detection task, and Table 4 shows the performance comparison on noisy data detection task
(with the same setting as stated in Appendix G.1). As we can see, WKNN-Shapley with discretized weights
(third column) maintains a performance closely aligned with its counterpart that uses continuous weights (first
column). This observation further validates that weight discretization only has a small influence on the efficacy of
WKNN-Shapley in differentiating between high- and low-quality data points.

Comparison of discretized weighted KNN-Shapley with different discretization bits. Figure 6 and 7
show the performance comparison of WKNN-Shapley with different number of bits for discretization b, on the
task of mislabeled data detection and noisy data detection, respectively. As we can see, the performance of both
the exact and deterministic approximation of WKNN-Shapley is relatively stable, regardless of the number of
discretization bits.

Weighted
KNN-Shapley

(Continuous Weights)

Weighted
KNN-Shapley

(Continuous Weights,
Monte Carlo Approximation)

Weighted
KNN-Shapley

(Discretized Weights,
this work)

Weighted
KNN-Shapley

(Discretized Weights,
deterministic approximation,

this work)
2DPlanes 0.853 0.851 0.854 0.851

CPU 0.809 0.791 0.809 0.796
Phoneme 0.729 0.609 0.747 0.742

Fraud 0.511 0.501 0.507 0.513
Creditcard 0.723 0.716 0.724 0.698

Vehicle 0.733 0.636 0.72 0.769
Click 0.707 0.609 0.707 0.719
Wind 0.81 0.769 0.813 0.809

Pol 0.973 0.978 0.996 1
MNIST 0.732 0.742 0.733 0.72

CIFAR10 0.742 0.64 0.729 0.722
AGNews 0.942 0.932 0.944 0.914
DBPedia 0.969 0.969 0.988 0.988

Table 3: AUROC scores of different variants of weighted KNN-Shapley for mislabeled data detection on benchmark
datasets at K = 2. The higher the AUROC score is, the better the method is. The Monte Carlo approximation
(second column) is a stochastic algorithm. However, since it is already computationally expensive for just a single
execution, we only run it once.
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Weighted
KNN-Shapley

(Continuous Weights)

Weighted
KNN-Shapley

(Continuous Weights,
Monte Carlo Approximation)

Weighted
KNN-Shapley

(Discretized Weights,
this work)

Weighted
KNN-Shapley

(Discretized Weights,
deterministic approximation,

this work)
2DPlanes 0.62 0.524 0.609 0.604

CPU 0.76 0.698 0.8 0.676
Phoneme 0.591 0.542 0.578 0.6

Fraud 0.831 0.722 0.831 0.622
Creditcard 0.493 0.507 0.533 0.489

Vehicle 0.569 0.529 0.533 0.44
Click 0.431 0.458 0.413 0.333
Wind 0.773 0.667 0.773 0.649

Pol 0.502 0.52 0.547 0.471
MNIST 0.68 0.671 0.676 0.678

CIFAR10 0.502 0.529 0.509 0.502
AGNews 0.508 0.508 0.472 0.444
DBPedia 0.447 0.451 0.443 0.514

Table 4: AUROC scores of different variants of weighted KNN-Shapley for noisy data detection on benchmark
datasets at K = 2. The higher the AUROC score is, the better the method is. The Monte Carlo approximation
(second column) is a stochastic algorithm. However, since it is already computationally expensive for just a single
execution, we only run it once.

Figure 6: AUROC scores of different variants of KNN-Shapley for noisy data detection with different discretization
bits b. The higher the curve is, the better the method is.

Figure 7: AUROC scores of different variants of KNN-Shapley for noisy data detection with different discretization
bits b. The higher the curve is, the better the method is.
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G.3 Settings & Additional Experiments for Runtime Comparison

Detailed Settings. For the runtime comparison experiment in Section 5.1, we follow similar experiment settings
from prior study (Kwon and Zou, 2023) and use a synthetic binary classification dataset. To generate the synthetic
dataset, we sample data points from a 2-dimensional standard Gaussian distribution, and the labels are assigned
based on the sign of the sum of the two features. We note that the dataset dimension has minimal impact on the
runtime of WKNN-Shapley compared with dataset size N , since the dataset dimension only affects the runtime of
computing the distance between data points. All experiments were conducted on a 32-Core 2.6 GHz Intel Skylake
CPU Processor.

We present additional experimental results comparing runtimes, further expanding on Section 5.1. We vary both
K, the KNN hyperparameter, and b, the bit count for discretization.

Figure 8 shows the runtime comparison for our exact method and deterministic approximation for WKNN-Shapley,
considering different number of bits b for discretization. As we can see, although the runtime increases with more
bits for discretization, our algorithms, even at b = 7, demonstrate a > 104 times of improvement over both the
exact computation and approximation algorithm introduced in Jia et al. (2019a).

Figure 9 shows the runtime comparison between our exact WKNN-Shapley computation algorithm and the O(NK)
algorithm from Jia et al. (2019a), considering different choices of K. Since K = 10 for the baseline algorithm is
computationally infeasible even for very small N (e.g., 20), we do not show the curve here. As we can see, our
algorithm’s curves for K = 3, K = 5, and K = 10 exhibit a relatively modest ascent in runtime, staying well below
106 seconds even at 100,000 training points. In contrast, the algorithm from Jia et al. (2019a) witnesses a steeper
rise. This distinction is expected given that our algorithm’s runtime scales at O(K2), whereas the one from Jia
et al. (2019a) features an exponential time complexity with respect to K. Figure 10 shows the runtime comparison
between our deterministic approximation algorithm and the Monte Carlo-based approximation algorithm (from
Jia et al. (2019a)) for WKNN-Shapley. As we can see, our approximation algorithm is around > 104 times faster
than the Monte Carlo algorithm for achieving the same error bound.
Remark 9. We note that, as a training-free algorithm, KNN-Shapley exhibits a significant advantage in its
computational efficiency compared with approaches such as Data Shapley/Banzhaf which requires many model
retraining. For instance, as reported in Data Banzhaf’s official Github repo5, it takes around 5 CPU hours to
train 10,000 very small MLP models on different subsets of a tiny, size-200 dataset! On the contrary, it only
takes a few seconds for KNN-Shapley under the same setting.

Figure 8: Runtime comparison between our exact and approximation algorithms for WKNN-Shapley in Section 4,
and those from Jia et al. (2019a), across varying training data sizes N . We set K = 5 here for all methods. For
our algorithms from Section 4, we vary the number of bits for discretization. All other settings are the same as
Figure 2 in the maintext.

5https://github.com/Jiachen-T-Wang/data-banzhaf
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Figure 9: Runtime comparison between our exact WKNN-Shapley computation algorithm in Section 4.1, and the
O(NK) from Jia et al. (2019a), across varying training data sizes N . We set b = 3 here for weights discretization
in our algorithm. We vary and compare the runtime for different choices of K. All other settings are the same as
Figure 2 in the maintext.

Figure 10: Runtime comparison between our deterministic WKNN-Shapley approximation algorithm in Section
4.2, and the Monte Carlo approximation from Jia et al. (2019a), across varying training data sizes N . We set
b = 3 here for weights discretization in our algorithm. We vary and compare the runtime for different choices of
K. All other settings are the same as Figure 2 in the maintext.
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G.4 Application on Noisy Data Detection

Settings. In the experiment of noisy data detection, we randomly choose 10% of the data points and add strong
noise to their features. Specifically, we add zero-mean Gaussian noise to data features, where the standard
deviation of the Gaussian noise added to each feature dimension is equal to the average absolute value of the
feature dimension across the full dataset. Similar to the task of mislabeled data detection, we use AUROC as the
performance metric on noisy data detection tasks.

Table 5 shows the AUROC scores across the 13 benchmark datasets we experimented on when K = 5 and number
of bits for discretization b = 3. Similar to the results for mislabeled data detection, we can see that both exact
and approximated WKNN-Shapley significantly outperform the unweighted KNN-Shapley (either soft-label or
hard-label) across most datasets, attributable to WKNN-Shapley’s ability to more accurately differentiate between
bad and good data based on the additional information of the proximity to the queried example. We can also see
the similar encouraging result that the approximated WKNN-Shapley achieves performance comparable to, and
sometimes even slightly better than, the exact WKNN-Shapley across the majority of datasets. This is likely
attributable to its favored property in preserving the fairness properties of its exact counterpart.

In Figure 11, we show similar result on the task of noisy data detection that, compared to unweighted KNN-
Shapley, WKNN-Shapley maintains notably stable performance across various choices of K, particularly for larger
values of K. This is attributable to the additional weighting information incorporated in WKNN-Shapley.

Soft-label
KNN-Shapley

(Jia et al. (2019))

Hard-label
KNN-Shapley

(this work)

Exact
WKNN-Shapley

(this work)

Approximated
WKNN-Shapley

(this work)
2DPlanes 0.556 0.498 0.733 0.68

CPU 0.778 0.769 0.942 0.947
Phoneme 0.551 0.6 0.744 0.673

Fraud 0.862 0.858 0.911 0.916
Creditcard 0.453 0.422 0.653 0.636

Vehicle 0.511 0.52 0.916 0.933
Click 0.44 0.444 0.711 0.662
Wind 0.782 0.804 0.849 0.853

Pol 0.493 0.502 0.836 0.804
MNIST 0.782 0.538 0.911 0.911

CIFAR10 0.533 0.418 0.8 0.822
AGNews 0.481 0.531 0.559 0.543
DBPedia 0.482 0.498 0.58 0.576

Table 5: AUROC scores of different variants of KNN-Shapley for noisy data detection tasks on various datasets.
The higher the AUROC score is, the better the method is.
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Figure 11: AUROC scores of different variants of KNN-Shapley for noisy data detection with different Ks. The
higher the curve is, the better the method is.
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G.5 Ablation Study for the choice of M? for the deterministic approximation algorithm

In this section, we evaluate the performance variation when we pick different M? for our deterministic approxima-
tion algorithm in Section 4.2. Specifically, we choose different values of M? and plot the performance variation in
mislabeled/noisy data detection task with different error bound ε(M?). Note that ε(M?) = 0 corresponds to the
exact WKNN-Shapley. We also highlight the location of ε(

√
N), i.e., the error bound for the M? we set in the

experiment. As we can see from Figure 12, the performance of the approximated WKNN-Shapley is highly stable
across a wide range of choices of M?s. Hence, we set M? =

√
N in all of the experiments instead of following the

adaptive procedure of selecting M? mentioned in Appendix D.4.

Figure 12: Performance variation of approximated WKNN-Shapley on (a) mislabeled data detection and (b)
noisy data detection across different choice of M?. For a more direct comparison, we plot x-axis as the theoretical
error bound ε(M?) derived in Theorem 12.
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G.6 Qualitative Comparison between Weighted and Unweighted KNN-Shapley

In our experiments, we show that weighted KNN-Shapley significantly outperforms unweighted KNN-Shapley
in discerning data quality. This can likely be attributed to WKNN-Shapley’s adept ability to more accurately
differentiate between bad and good data based on the proximity to the queried example. In this section, we present
a more detailed qualitative analysis highlighting why WKNN-Shapley outperforms unweighted KNN-Shapley in
discerning data quality.

Figure 13 shows the value score distribution of unweighted and weighted KNN-Shapley of 50 data points, where 5
of them are being mislabeled. The KNN-Shapley scores are computed with respect to a single validation point.
As we can see, compared with the unweighted KNN-Shapley, WKNN-Shapley exhibits a much higher variation
in value scores of different data points. More importantly, WKNN-Shapley can better differentiate the quality
between the data points that are near the validation point. As we can see from the figure, the two mislabeled
points that are the closest to the validation point (index 49 and 50) receive much lower WKNN-Shapley scores
compared with those benign data points that have a different label as the validation point (index 41-48). On the
other hand, unweighted KNN-Shapley assigns almost the same negative values for all data points that are close to
the validation point but has a different label (index 41-50), regardless of whether they are benign or mislabeled.

Figure 13: Distribution of unweighted and weighted KNN-Shapley scores at (a) K = 5 and (b) K = 10 for 50
data points from CPU dataset, where 5 of them are mislabeled data points.
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