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Abstract

We study the problem of reliably identify-
ing the best (lowest loss) arm in a stochas-
tic multi-armed bandit when the expected
loss of each arm is monotone decreasing as
a function of its pull count. This models,
for instance, scenarios where each arm it-
self represents an optimization algorithm for
finding the minimizer of a common function,
and there is a limited time available to test
the algorithms before committing to one of
them. We assume that the decreasing ex-
pected loss of each arm depends on the num-
ber of its pulls as a (inverse) polynomial with
unknown coefficients. We propose two fixed-
budget best arm identification algorithms –
one for the case of sparse polynomial de-
cay models and the other for general poly-
nomial models – along with bounds on the
identification error probability. We also de-
rive algorithm-independent lower bounds on
the error probability. These bounds are seen
to be factored into the product of the usual
problem complexity and the model complex-
ity that only depends on the parameters of
the model. This indicates that our methods
can identify the best arm even when the bud-
get is smaller. We conduct empirical studies
of our algorithms to complement our theoret-
ical findings.

1 INTRODUCTION

The multi-armed bandit model for sequential decision-
making (Thompson, 1933) has proven to be popular
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for learning over actions (arms) via iterative trial and
error. Most of the standard treatment of stochastic
bandits is based on the assumption that each arm’s
payoff is stationary, i.e., its mean loss (or reward) does
not change with time or how often it is played, see e.g.,
(Lattimore and Szepesvári, 2020, Chap. 4). This as-
sumption is quite restrictive in many scenarios where
bandit algorithms can be used as selection strategies
over a pool of ‘base algorithms’ to achieve a task, es-
pecially when each base algorithm is a learning agent.
This process of learning confers an inherent degree of
nonstationarity to the base algorithms, in that they
‘improve’ themselves over time. More formally, in this
setting, we aim to optimize (minimize) a black-box
function F : X → R with a limited number of function
queries, where a set of learning algorithms A1, . . . ,AK

(e.g., bandits, online convex optimization, or Bayesian
optimization algorithms) for optimizing F is given. In
this nonstationarity bandit problem, for each round
1 ≤ t ≤ T , an agent selects an algorithm Ait , the al-
gorithm Ait selects ξit,τ ∈ X and the agent observes
the loss F (ξit,τ ), where τ = τ(it, t) is the number of
times the algorithm Ait has been selected up to time
step t. If learning algorithms work properly, for each
arm i, the expected loss decreases as τ increases.

Motivated by this setting, we consider the problem of
best arm identification (BAI) in bandits with a de-
creasing loss profile for the arms. We term this prob-
lem setting decreasing bandits, which is equivalent to
rising bandits (Li et al., 2020) in the reward formula-
tion and a special case of rested bandits (Tekin and
Liu, 2012). More precisely, we model the (expected)
loss of an arm i after τ pulls as:

E [yi,τ ] =

d∑
m=1

θm(i)

τρm
, (1)

where θm(i) ∈ R is unknown to the learner, and the
sequence of powers ρ = (ρm)1≤m≤d ∈ Rd

≥0 is known.
We note that if θm(i) ≥ 0 for all m with ρm > 0, then
E [yi,τ ] is a non-increasing function of τ .

The decreasing bandits BAI problem with a fixed bud-



Model-Based Best Arm Identification for Decreasing Bandits

get has been studied under several settings. Under
a general assumption that for each arm i, the ex-
pected loss E [yi,τ ] is non-increasing with respect to
the number τ of arm pulls, the expected loss E [yi,τ ] is
“convex” with respect to τ , and the decay of the loss
decrement is given as E [yi,τ ]− E [yi,τ+1] = O(τ−1−ρ)
with ρ > 0, Mussi et al. (2023) shows the following
positive and negative results. (i) If the budget T is
sufficiently large, then the probability of the error of
identifying the best arm i∗ is given as exp (−Ω(T/H)),
where i∗ = argmini E [yi,T ], H =

∑
i ̸=i∗ ∆i(T )

−2, and
∆i(T ) = E [yi,T ] − E [yi∗,T ]. (ii) However, unless the
budget T satisfies the following inequality, then no al-
gorithm can identify the best arm (Mussi et al., 2023):

T ≥ H(ρ) (T ) , where H(ρ) (T ) =
∑
i ̸=i∗

1

∆i(T )1/ρ
. (2)

These results are natural, since if τ is sufficiently large,
then the expected loss E [yi,τ ] becomes approximately
stationary and otherwise, the assumption is too gen-
eral to identify the best arm. More precisely, if the
rate ρ of the decay is not large (e.g., ρ < 1/2), then
H(ρ) (T ) is large compared to the problem complexity
H and unlike the stationary setting (Audibert et al.,
2010), even if the upper bound exp (−Ω(T/H)) is less
than 1, there is no theoretical guarantee unless the
budget is large enough. This negative result motivates
study of the decreasing bandits BAI problem under a
more specific assumption such as the loss model (1).

We remark that our structured model (1) is well-
supported by empirical evidence, e.g., for the case
of the loss profile of the TuRBO algorithm (Eriksson
et al., 2019) (a Bayesian optimization algorithm) ap-
plied to minimization of the test function Levy(10)
(Laguna and Marti, 2005). Figure 1 shows the loss
trajectories of the learning algorithm over 100 inde-
pendent experiments, along with the average loss. We
also show the loss predicted by the model (1) with
d = 10 fitted using the loss trajectories. The mean
absolute error on the data is 0.09 (we detail how we
select (ρm)m in Sec. 7).

Contributions. Under the structured loss model (1),
we can prove more fine-grained and positive results.
We provide two algorithms – one for the general loss
model and one for a model with sparse coefficients
θm(i), along with upper bounds on their probabili-

ties of the error of the form exp
(
−Ω

(
T

γH2 log2 K

))
un-

der mild assumptions on the budget T (Sections 4, 5).
Here, H2 is a measure of problem complexity, defined
in Section 3, and γ is a constant independent ofH2 and
T . In this paper, we term a constant that is indepen-
dent of the problem complexity, and mainly depends
on the parameter ρ of the loss model a model complex-
ity. We then provide universal lower bounds on the
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Figure 1: Loss trajectories of the TuRBO-1 op-
timization algorithm of Eriksson et al. (2019).
Each independently-sampled trajectory plots the best
achieved loss so far for the trust region vs. time steps.
The orange curve shows a polynomial model fit to the
ensemble of loss trajectories.

probability of the error (Section 6), which shows that
the probability error involves a model complexity other
than the the problem complexity H. These results in-
dicate that our methods can identity the best arm with
a smaller budget compared to existing methods (Mussi
et al., 2023). We emphasize that even though one can
regard the loss model (1) as a linear model with a
feature vector (τ−ρm)1≤m≤d, these results are highly
non-trivial since the feature vector is time dependent.
Finally, we empirically verify our theoretical findings
in synthetic environments (Section 7). All the omitted
proofs can be found in Section E.

2 RELATED WORK

This paper studies a non-stationary BAI problem in
the fixed budget setting. The BAI problem has been
extensively studied especially for the stationary case
(Audibert et al., 2010; Mannor and Tsitsiklis, 2004;
Garivier and Kaufmann, 2016). Abbasi-Yadkori et al.
(2018) proposed a BAI algorithm in the best of both
worlds setting. While they define the best arm as the
arm with the largest cumulative rewards, we define the
best arm using a specific time step T̃ .

The BAI problem has been extended to the case of
linear bandits (Yang and Tan, 2022; Yavas and Tan,
2023). In their problem setting, the set of feature vec-
tors associated to the arm set is assumed to be sta-
tionary. Although our loss model (1) is linear with
respect to the feature vectors x(τ1), . . . , x(τK), the set
of feature vectors is non-stationary, where τi = τ(i, t)
is the pull count of arm i up to time step t, and
x(τ) = (τ−ρ1 , . . . , τ−ρd). Thus, we cannot apply ex-
isting linear BAI algorithms to our problem.

The problem setting where each arm is an online learn-
ing algorithm is known as the bandit model selection
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problem (Agarwal et al., 2017; Pacchiano et al., 2020),
however, most papers on the model selection focus on
the cumulative regret minimization problem.

The decreasing bandits problem is a special instance
of the rested bandit problem (Tekin and Liu, 2012),
where the expected loss is a function of the number of
arm pulls, and equivalent to rising bandits (Li et al.,
2020) in the rewards formulation. Rising bandits were
studied by (Heidari et al., 2016; Li et al., 2020) in the
case of noise-free rewards setting for regret minimiza-
tion, and were studied by (Metelli et al., 2022) for
cumulative regret minimization. The assumption in
(Metelli et al., 2022) is more general than ours, i.e., the
expected rewards are assumed to be non-decreasing
and concave with respect to the number of arm pulls.
Mussi et al. (2023) studied BAI problem for rising ban-
dits in the same setting as (Metelli et al., 2022), how-
ever, as mentioned in the introduction, they proved
that no algorithm can identify the best arm unless the
budget T is sufficiently large.

Cella et al. (2021) considered a pseudo (simple) regret
minimization problem for decreasing bandits assuming
that the loss is modeled as α/τρ + β, where α, β are
unknown coefficients. However, they assume that ρ
is the same for all arms. In practice, the rate of the
decay is unknown and it depends on each arm. The
assumption of the model in this paper can be regarded
as a generalization of Cella et al. (2021). Moreover,
since their objective is the pseudo regret minimization,
Cella et al. (2021) have not provided analysis on the
probability of the error. Here, the pseudo regret is

defined as defined as R(T ) = E
[
ŷi,τ

]
− mini E [yi,T ],

where î is the selected arm by the BAI algorithm, τ
is the pull counts of the arm î up to the time step T .
If we can construct an algorithm for the probability
of the error minimization with T̃ = T , then we can
also optimize the pseudo-regret by the Explore-Then-
Commit framework (Lattimore and Szepesvári, 2020).
We discuss application of our methods to pseudo regret
minimization in Sec. B.

3 PRELIMINARIES

3.1 Problem Setting

Let K be the number of arms and T be the num-
ber of decision rounds. We consider a non-stationary
best arm identification problem, where the expected
observed loss depends only on the number of times
that the arm i has been pulled up to time step t.
For each time step t, a learner selects an arm it ∈
[K], and observes loss yit,τ(i,t), where {yi,τ}i∈[K],τ∈[T ]

are random variables representing loss and τ(i, t) =∑t
s=1 1{is = i} denotes the number of times that

the arm i has been pulled up to time step t. We
assume the following model for the random variables

{yi,τ}: yi,τ =
∑d

m=1
θm(i)
τρm + εi,τ , where for each i,

θ(i) ∈ Rd is a parameter unknown to the learner
a priori, ρ1, . . . , ρd ≥ 0 are known parameters, and
εi,t is a noise random variable. The random vari-
ables {εi,t}1≤i≤K,1≤t≤T are taken to be independent
and σ0-subgaussian, i.e., E [exp(ξεi,τ )] ≤ exp(ξ2σ2

0/2),
∀ξ ∈ R.

Given a target pull count T̃ , the best arm i∗ ≡ i∗(T̃ )
is understood to be the arm with the minimum ex-
pected loss after being pulled T̃ times, i.e., i∗ =

argmini∈[K] yi,T̃ , where yi,T̃ = E
[
yi,T̃

]
, and where we

assume that the minimum is uniquely achieved. Note
that T̃ may be different from T , the number of decision
rounds in the learning process. After the final round
T , the learner outputs an arm î ∈ [K] as a guess for i∗.
The objective of the learner is to keep the error prob-
ability P (̂i ̸= i∗) as small as possible. We note that
existing works (Mussi et al., 2023; Cella et al., 2021)

conduct analysis for the case T̃ = T . In Sections 4 &
5, we derive upper bounds in more relaxed conditions,
i.e., T̃ ≥ maxi τ(i, T ).

3.2 Assumptions

We assume that the expected losses yi,τ are normalized
so that 0 ≤ yi,t ≤ 1 for 1 ≤ i ≤ K, 1 ≤ t ≤ T . For

ρ = (ρ1, . . . , ρd), let Σ̃ = Σ̃(ρ) ∈ Rd×d denote the

symmetric matrix with entries (Σ̃)ij = 1/(1−ρi−ρj).

We assume that det Σ̃ ̸= 0. Moreover, we assume that
the degrees of the monomials in the model satisfy 0 ≤
ρm < 1/2 for 1 ≤ m ≤ d. This assumption can be
justified as follows. If we only want to estimate yi,T̃
for an arm i using observed samples yi,1, . . . , yi,τ , even
in the stationary case (i.e., d = 1 and ρ1 = 0), the
width of the (1−δ)-confidence interval of the estimator
is about O(

√
log(1/δ)/

√
τ) = O(1/τ1/2). Intuitively,

one cannot hope for a better estimation error in the
non-stationary case. If ρm > 1/2, then the term τ−ρm

in the loss is too small compared to the width of the
confidence interval. Therefore, it is natural to assume
0 ≤ ρm < 1/2 for all 1 ≤ m ≤ d.

3.3 Problem Complexity

Since our problem formulation includes the conven-
tional stationary BAI problem, the conventional prob-
lem complexities such as H and H2 (Audibert et al.,
2010; Mannor and Tsitsiklis, 2004) play an impor-
tant role in our analysis. We provide definitions of
these notions in our setup. The problem complexity
H = H(T̃ ) is defined as

∑
i∈[K],i̸=i∗ ∆i(T̃ )

−2 Here,

∆i(T̃ ) = yi,T̃ −yi∗,T̃ is the optimality gap after T̃ arm
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pulls. To define H2(T̃ ), here, we assume that arms
1, 2, . . . ,K are sorted so that y1,T̃ < y2,T̃ · · · ≤ yK,T̃ .

and H2 = H2(T̃ ) is defined as max2≤i≤K i∆i(T̃ )
−2.

3.4 Notation

For a vector x ∈ Rd and 1 ≤ p ≤ ∞, ∥x∥p denotes
the ℓp-norm. If p = 2, we simply denote ∥x∥2 by
∥x∥. For an integer d ≥ 1, we denote by 1d ∈ Rd×d

the identity matrix. For n ∈ Z≥1, [n] denotes the
set {1, . . . , n}. For a symmetric matrix A ∈ Rd×d,
we denote by λmin(A) and λmax(A) the minimum and
maximum eigenvalue of A, respectively. For i, j ∈ Z,
δij denotes Kronecker’s delta. We put ρmax = maxi ρi,
and ρmin = mini ρi. We provide a list of notations in
Section A.

4 GENERAL LOSS MODEL

In this section, we present an algorithm (Algorithm 1)
that can be regarded as a non-stationary, model-based
extension of Sequential Halving (abbreviated as SH)
(Karnin et al., 2013), and provide upper bounds on
the probability of its best arm identification error.

4.1 Estimators and the Model Complexity

Since the model (1) is a linear model with the time
varying feature vector x(τ) = (τ−ρ1 , . . . , τ−ρd)⊤ ∈ Rd,
it is natural to consider an estimator of the expected
loss yi,T̃ using an online least squares (LS) estimator.
In this section, we assume that there exists B > 0
such that ∥θ(i)∥2 ≤ B for 1 ≤ i ≤ K. We fix an arm
1 ≤ i ≤ K and define an estimator yi,T̃ as follows. Let
yi,τ , . . . , yi,τ be observed losses when the arm i has
been selected τ times up to a time step t. Let λ ≥ 0,

be a regularizer, and we define an estimator ŷ
(τ)

i,T̃
as:

ŷ
(τ)

i,T̃
= x⊤(T̃ )V −1

τ

τ∑
s=1

yi,sx(s), (3)

where Vτ = λ1d +
∑τ

s=1 x(s)x
⊤(s) ∈ Rd×d. One can

consider an online least squares estimator ŷ
(τ)

i,T̃
of yi,T̃

for a linear model with any feature vectors x(τ). How-
ever, as we will see soon (Proposition 4.3 in the case

of λ = 0), a non-trivial fact here is that ŷ
(τ)

i,T̃
− yi,T̃

is O( 1√
τ
)-subgaussian, despite the non-stationary na-

ture of the feature vector x(τ), where τ is the number
of samples and the big-O notation hides constants de-
pending on ρ, σ0.

To provide a more precise statement, we introduce a
complexity measure for the general loss model. We
note that the (i, j)-entry of the gram matrix Vτ =

Algorithm 1 SH with the LS estimator

1: Input: time interval T , target pull count T̃ , num-
ber of arms K, regularizer λ > 0

2: Initialize A0 ← [K]
3: for r = 0, . . . , ⌈log2 K⌉ − 1 do

4: Sample each arm i ∈ Ar for tr =
⌊

T
|Ar|⌈log2 K⌉

⌋
times.

5: For 1 ≤ i ≤ K, let ŷ
(τr)

i,T̃
be the estimation (3)

using the τr =
∑r

s=0 ts observed losses.
6: Let Ar+1 be the set of arms in Ar with the car-

dinality ⌈|Ar|/2⌉ with the smallest estimations.
7: end for
8: Output arm in S⌈log2 K⌉

λ1d +
∑τ

s=1 x(s)x
⊤(s) is given as λδij +H(τ, ρi + ρj).

Here, for τ ≥ 1, ρ > 0, H(τ, ρ) is the generalized
harmonic number defined as H(τ, ρ) :=

∑τ
s=1 s

−ρ.
The positive results in this paper are due to the spe-
cial property of the generalized harmonic numbers ex-
plained as follows. It is easy to see that H(τ, ρ) ≈
τ1−ρ/(1 − ρ), but a more precise inequality can be
derived using the Euler-Maclaurin formula. The fol-
lowing lemma is well-known in the field of analytic
number theory, but for the sake of completeness, we
provide a proof in Appendix.

Lemma 4.1. For τ ∈ Z≥1 and 0 ≤ ρ < 1, we have∣∣∣∣τρ−1H(τ, ρ)− 1

1− ρ

∣∣∣∣ ≤ 2− ρ

1− ρ
τρ−1.

Motivated by Lemma 4.1, we define a normalized
Gram matrix Σ̃τ,λ and the model complexity as fol-
lows.

Proposition 4.2 (The model complexity in the gen-
eral loss case). We assume vectors x(1), . . . , x(d) are
linearly independent. We define the model complexity
γ as

γ ≡ γρ = d sup
τ≥d

(
λmin(Σ̃τ )

)−1

.

Here, Σ̃τ,λ ∈ Rd×d is defined as (Σ̃τ )ij =
τρi+ρj−1H(τ, ρi + ρj). Then, we have 0 < γ < ∞
and γ depends only on d, ρ.

As previously mentioned, the following proposition

states that ŷ
(τ)

i,T̃
− yi,T̃ is O(1/

√
τ)-subgaussian (in the

case of λ = 0). This unusual property of the estimator
comes from the special property of the feature vector
x(τ) (Lemma 4.1).

Proposition 4.3. Suppose that x(1), . . . , x(d) are lin-

early independent and d ≤ τ ≤ T̃ . (i) If λ = 0,

then ŷ
(τ)

i,T̃
− yi,T̃ is σ0

√
γρ/
√
τ -subgaussian. (ii) Sup-

pose λ > 0. Then, for each τ , with probability at least
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1− δ, we have

|ŷ(τ)
i,T̃
− yi,T̃ | ≤

(
σ0

√
2 log 2/δ +

√
λ∥θ(i)∥

) √γρ√
τ
.

4.2 Proposed Method and Upper Bounds

Proposition 4.3 shows that we can construct a esti-

mator ŷ
(τ)

i,T̃
of yi,T̃ such that ŷ

(τ)

i,T̃
− yi,T̃ is R/

√
τ -

subgaussian, where R > 0 is a constant. Here, for sim-
plicity we consider the case of λ = 0. Since the R/

√
τ -

subgaussian property is the only property required of
the loss (or reward) estimator for the performance
analysis of SH (Karnin et al., 2013), it is reasonable to
consider a variant (displayed in Algorithm 1) of SH.
Similar to SH, in each phase r = 0, . . . , ⌈log2 K⌉ − 1,
Algorithm 1 maintains a set of good arms Ar, then
pulls each arm in Ar for tr times, and Ar+1 is the top
half arms in Ar in terms of the estimations. Here, un-
like SH, we use estimators provided by Proposition 4.3
when halving Ar and we use τr =

∑r
s=0 tr samples in

the estimation.

By Proposition 4.3 and the proof of (Karnin et al.,
2013, Theorem 4.1), we have the following theorem:

Theorem 4.4. Suppose ∥θi∥ ≤ B for any 1 ≤ i ≤
K with B > 0 and that T̃ ≥ τr ≈

⌊
T

⌈log2 K⌉

⌋
, where

r = ⌈log2 K⌉ − 1. Moreover, we assume that vectors
x(1), . . . , x(d) are linearly independent, and t0 ≥ d,

where t0 =
⌊

T
K⌈log2 K⌉

⌋
. Then, we have the following

statements: (i) Suppose λ = 0. Then,

P (̂i ̸= i∗) ≤ 4⌈log2 K⌉ exp
(
− T

24σ2
0γρH2⌈log2 K⌉

)
,

(ii) Suppose λ > 0 and we put

p = 2K⌈log2 K⌉ exp
(
− T

29σ2
0γρH2⌈log2(K)⌉

)
.

For δ ∈ (0, 1), we define

λ(δ) = 2σ0

√
2 log(2⌈log2 K⌉K/δ)

B
.

We assume that p < 1. Then, for any ε > 0 satisfying
(1 + ε)p ∈ (0, 1), the probability of the error of Algo-
rithm 1 with λ = λ(δ), δ = (1 + ε)p is upper bounded

as P (̂i ̸= i∗) ≤ (1 + ε)p. Here H2 ≡ H2(T̃ ).

Note that the theorem treats the case T̃ ≥ τ⌈log2 K⌉−1,

i.e., T̃ ≥ max1≤i≤T Ti, where Ti = τ(i, T ) the number
of times the arm i has been selected. As mentioned in
Section 3.1, this is a more relaxed condition compared
to existing work. Moreover, we shall discuss the gen-
eralization to the case of general T̃ in Section F. As

discussed in the introduction, although the existing re-
sult requires the condition that the budget T is larger
than H(ρ) (T ) to identify the best arm, where ρ corre-
sponds to min{ρi : ρi > 0} in our setting, Theorem 4.4
indicates that our algorithm can identify the best arm
if T ≳ max(H2(T̃ ), dK) log2 K, which can be smaller
than H(ρ) (T ). Here, the notation ≳ hides constants
such as the model complexity γρ, which is determined
by the parameters of the model and algorithm.

Since the model complexity γρ only depends on the
parameter ρ of the model, it can be controlled by the
algorithm, however, it could be large. To mitigate this
issue, in the experiment section (Section 7), for a given
d, we consider an optimization problem to select ρ.

5 SPARSE LOSS MODEL

In the previous section, we defined the model com-
plexity and provided upper bounds of the probability
of the error under the general loss model setting. In
this section, to reduce the model complexity, assuming
the sparsity of the model (1), we define another model
complexity γs, which can be smaller than γρ,λ under
the sparsity assumption, and provide upper bounds of
the probability of the error.

5.1 Sparsity of the Model and Estimator

Let S ⊆ [d] be a subset. We assume that
{m ∈ [d] : θm(i) ̸= 0} ⊆ S for all arms 1 ≤ i ≤ K.
By definition the set S represents the sparsity of our
loss model.

Next, we construct estimators. We fix i ∈ [K] and 1 ≤
t ≤ T . We assume that an algorithm has selected the
i-th arm τ times, and losses {yi,s}1≤s≤τ are observed
up to time step t. We modify the feature vector x(s) =
(s−ρ1 , . . . , s−ρd)⊤ ∈ Rd and the vector θ(i) as follows:

x′(s) = diag(τρ1 , . . . , τρd)x(s) = x(s/τ).

and θ′(i) = diag(τ−ρ1 , . . . , τ−ρd)θ(i). For λ > 0, we
consider the optimization objective of LASSO with the
modified feature vectors {x′(s)}1≤s≤τ as follows:

θ̂λ,τ (i) = argminα∈Rd ∥Yi,τ −X ′
τα∥22/τ + λ∥α∥1. (4)

Here Yi,τ = (yi,s)1≤s≤τ ∈ Rτ and X ′
τ =

(x′(1), . . . , x′(τ))⊤ ∈ Rτ×d. Then the empirical gram

matrix (X ′
τ )

⊤X ′
τ/τ is equal to Σ̃τ ∈ Rd×d defined as

follows.

(Σ̃τ )i,j = τρi+ρj−1H(τ, ρi + ρj), (5)

for 1 ≤ i, j ≤ K.



Model-Based Best Arm Identification for Decreasing Bandits

5.2 Compatibility Constant

Following Bühlmann and Van De Geer (2011), we in-
troduce the compatibility constant. As we will see
shortly, the compatibility constant is a similar notion
to the minimum eigenvalue of Σ̃τ , however, its defini-
tion depends on the sparsity S, and can be larger than
the minimum eigenvalue.

Definition 5.1 (Bühlmann and Van De Geer (2011)).
Let A ∈ Rd×d be a positive semi-definite matrix.
For S ⊆ [d], L > 1, we define the set R(S,L) ={
α ∈ Rd : ∥αSc∥1 ≤ L∥αS∥1 ̸= 0

}
. Here, for α ∈ Rd,

αS ∈ Rd is defined as (αS)i = αi if i ∈ S and (αS)i = 0
otherwise. The compatibility constant ϕ2(S,A,L) ≥ 0
is defined as follows:

ϕ2(S,A,L) = min

{
|S| α⊤Aα

∥αS∥21
: α ∈ R(S,L)

}
.

The definition of the compatibility constant is simi-
lar to that of the minimum eigenvalue. However, the
minimization in the definition is restricted to the set
R(S,L), it can be larger than the minimum eigenvalue
if the sparsity if high. By definition, we have the fol-
lowing.

Proposition 5.2 (Bühlmann and Van De Geer
(2011), Lemma 6.20, Lemma 6.23). For a positive
semi-definite matrix A ∈ Rd×d, we have λmin(A) ≤
ϕ2(S,A,L).

We also remark that in the literature, L is assumed
to be a fixed constant (L = 3) (Bühlmann and Van
De Geer, 2011). We refer to (Bühlmann and Van
De Geer, 2011, Chapter 6.13) for further lower and
upper bounds of compatibility constants.

5.3 Concentration Inequality

The following proposition provides a confidence inter-
val of an estimator of yi,T̃ using (4). This proposition

can be proved in the same way to (Bühlmann and Van
De Geer, 2011, Theorem 6.1). However, due to some
assumptions specific to this setting (e.g., θ′(i) depends
on the number of samples τ , the upper bound is pro-
vided by a value specific to Σ̃τ ), we provide a proof for
the sake of completeness in Section E.3.

Proposition 5.3. Let 1 ≤ i ≤ K be an arm. For

δ ∈ (0, 1), let λ = (L+1)β
L−1

√
2 log(2d/δ)

τ be a regularizer,

and θ̂λ,τ be a solution of the LASSO problem Eq. (4),

where β = 2
√
(3− 2ρmax)/(1− 2ρmax). We define an

estimator ỹi,τ (T̃ ) of yi,T̃ as

ỹ
(τ)

i,T̃
= θ̂λ,τ (i) · x′(T̃ ). (6)

We assume that τ ≤ T̃ . Then, with probability at least

1− δ, we have
∣∣∣ỹ(τ)

i,T̃
− yi,T̃

∣∣∣ ≤ C
√

log(2d/δ)
τ , where C =

2
√
2βL|S|

(L−1)ϕ2(S,Σ̃τ ,L)
.

5.4 The Model Complexity

We provide definition of the model complexity for the
sparse case and we also define a time step τ0 that will
be used in the assumption of the main result of this
section (Theorem 5.6).

Definition 5.4 (The complexity of the model in the
sparse case). We define τ0 = τ0(S,L) as the smallest

integer satisfying ϕ2(S, Σ̃τ , L) > 0, for any τ ≥ τ0.
Then, we define the complexity of the model γs =
γs(ρ, S, L) by

γs = sup
τ≥τ0(L,S)

(
|S|

ϕ2(S, Σ̃τ , L)

)2

. (7)

Compare to the definition of the model complexity pro-
vided in Proposition 4.2, although we take a square in
Eq. (7), since it involves |S| and the compatibility
constants instead of the dimension and the minimum
eigenvalues, γs can be smaller if the sparsity of the
model is high by the remarks provided in Section 5.2.
The following proposition states that similarly to the
non-sparse case (Proposition 4.2), γs(ρ, L, S) is a well-
defined (finite) constant depending only on ρ, L, S. We
also provide an upper bound for the integer τ0 under
a mild condition.

Proposition 5.5. (i) The integer τ0 = τ0(S,L) satis-
fying the condition in Definition 5.4 exists. Moreover,
if we assume that vectors x(1), . . . , x(d) ∈ Rd are lin-
early independent, then we have τ0 ≤ d.

(ii) The model complexity γs(ρ, L, S) depends only on
ρ, L, S and is finite.

5.5 Upper Bounds

We propose another variant (Algorithm 2) of SH
(Karnin et al., 2013). Similar to Algorithm 1, in each
phase r, we construct estimators of yi,T̃ . For each
phase r and arm i ∈ Ar, we consider estimators de-
fined by (6) using

∑r
s=0 ts samples with the regularizer

λ = l/
√
τr, where l > 0 is an input of the algorithm.

Algorithm 2 SH with LASSO estimators

Input: T , T̃ , K, l > 0
The same procedure as Algorithm 1 except that we

use estimators ỹ
(τr)

i,T̃
defined by (6) with the regular-

izer λ = l/
√
τr at line 5, where τr =

∑r
s=0 ts.
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The next theorem is the main result in this section and
provides upper bounds of the probability of the error
of Algorithm 2.

Theorem 5.6. Let γs = γs(ρ, S, L) be the complexity
of the model and τ0(S,L) ≥ 1 be the integer in Defini-
tion 5.4. We put

p = 2dK⌈log2 K⌉ exp
(
− T

cβ2γsH2⌈log2(K)⌉

)
. (8)

where c = 29(1− L−1)2, H2 = H2(T̃ ) and β is a con-
stant depending only on ρmax given in Proposition 5.3.

We define l(δ) as (L+1)β
L−1

√
2 log(2dK⌈log2 K⌉/δ). We

assume that p < 1, T̃ ≥ τr ≈
⌊

T
⌈log2 K⌉

⌋
and t0 ≥

τ0(S,L), where r = ⌈log2 K⌉ − 1, t0 =
⌊

T
K⌈log2 K⌉

⌋
.

Then, for any ε > 0 satisfying (1 + ε)p ∈ (0, 1), the
probability of the error of Algorithm 2 with l = l(δ),

δ = (1+ ε)p is upper bounded as P (̂i ̸= i∗) ≤ (1 + ε)p.

This theorem states that if the parameter l is appro-
priately selected, then the probability of the error is
given as O(p). As we discussed in Section 5.4, the
model complexity γs can be smaller than γρ,λ if the
sparsity is high. Therefore, Algorithm 2 can identify
the best arm with a smaller budget than Algorithm
1 under the assumption. In Theorem 5.6, we assume

that T̃ ≥ τ⌈log2 K⌉−1 ≈
⌊

T
⌈log2 K⌉

⌋
as in Theorem 4.4.

In addition, we assume that t0 ≥ τ0, which is roughly
equivalent to T ≥ τ0K log2 K. By Proposition 5.5,
this assumption is satisfied if T ≥ dK log2 K under a
mild assumption on ρ.

6 LOWER BOUNDS

This section provides algorithm-independent lower
bounds of the probability of error. Theorem 6.3,
to follow, shows a lower bound roughly of the form

exp
(
−O

(
T

H(T̃ )Γρ

))
, where ρ = (ρ1, . . . , ρd) and Γρ is

a model complexity, which a constant depending only
on ρ. In the following, we provide the definition of the
model complexity for the lower bounds, and state lower
bounds of the probability of error. We then provide
a comparison of our results to those of (Mussi et al.,
2023, Theorems 6.1, 6.2), that give lower bounds in a
more generalized setting but for possibly larger bud-
gets.

6.1 The Model Complexity

We briefly explain how we construct environments to
derive lower bounds and how we derive the model com-
plexity for lower bounds. We provide more details in
Section E.4. As explained in Section 3, a problem in-
stance is defined by a set of vectors Θ = {θ(i)}1≤i≤K

and noise random variables {εi,τ}1≤i≤K,1≤τ≤T . In
this section, we assume the noise random variable εi,τ
is given as an independent gaussian noise that fol-
lows N (0, σ2

0). As in the stationary case (Carpen-
tier and Locatelli, 2016), we construct K problem
Θ(n) = {θ(i;n)}1≤i≤K for n = 1, . . . ,K, where in the
n-th problem instance Θ(n), the best arm is the arm
n. We let fn

i,τ the distribution function of the ran-
dom variable yi,τ . Similarly to the stationary case, to
derive lower bounds, it is important to provide an up-
per bound of the empirical KL-divergence defined as :

K̂Li,τ = 1
τ

∑τ
s=1 log

(
f1
i,s(yi,s)

fi
i,s(yi,s)

)
. By the explicit form

of fn
i,τ , we see that the empirical KL-divergence K̂Li,τ

involves the gram matrix Στ ∈ Rd×d, where Στ is de-
fined as (Στ )ij = H(τ, ρi + ρj). Similarly to Proposi-
tion 4.2 , we define the model complexity as follows:

Proposition 6.1 (The model complexity in the case
of lower bound). We define Γρ = Γ as

Γ = Γρ = inf
τ∈Z≥1

(
λmax(Σ̃τ )

)−1

, (9)

where Σ̃τ ∈ Rd×d is defined in (5). Then, 0 < Γρ <∞
and depends only on ρ = (ρ1, . . . , ρd).

Here, we define the model complexity using the maxi-
mum eigenvalues of Σ̃τ instead of the minimum eigen-
values as in Proposition 4.2. This gap is related to
the ill-conditionedness of the matrix Σ̃, and to miti-
gate this issue, we introduced the sparse loss model in
Section 5. We refer to Sec. C for more details.

6.2 Assumption of a Class of the Algorithms

To provide an upper bound of the empirical KL-
divergence, we require the following mild assumption
regarding algorithms.

Assumption 6.2. Let A be an algorithm and denote
Ti = τ(i, T ) the number of times the arm i has been se-
lected. We assume that there exists a positive constant
α independent of T̃ and T such that αT̃ ≤ Ti ≤ T̃ , for
any 1 ≤ i ≤ K.

To explain the assumption, for simplicity, we assume
that T̃ = T . Assumption 6.2 requires that the algo-
rithm A pulls every arm at least a constant multiple of
the budget T . This is a natural requirement since our
problem setting includes the stationary best arm iden-
tification problem as a special case, and existing algo-
rithms such as SH (Karnin et al., 2013) or Successive
Rejects (Audibert et al., 2010) satisfy this assumption

with α = Ω( 1
K logK ) if T = T̃ . We note that our algo-

rithms (Algorithm 1, 2) and an existing method RSR
(Mussi et al., 2023) for the non-stationary BAI prob-
lem also have the same property. In the stationary
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case, if the optimality gaps {∆i}2≤i≤K at time step T̃
are of the same order, a UCB-type algorithm (UCB-E
Audibert et al. (2010)) satisfies this assumption and we
provide the lower bound using such problem instances.

6.3 Lower Bounds

To state the main result of this section (Theorem
6.3), we introduce some notations as follows. For
Θ = {θ(i)}Ki=1 ⊂ Rd and independent random vari-
ables N = {εi,t}1≤i≤K,1≤t≤T that are σ0-subgaussian,
we denote by I = (Θ,N ) the corresponding prob-
lem instance. For a problem instance I, we denote
by HI the problem complexity H(T̃ ). We define a
set Π of problem instances satisfying yi,t ∈ [0, 1] for
1 ≤ i ≤ K, 1 ≤ t ≤ T . For a > 0, we define a set of
problem instances Π≤a as {I ∈ Π : HI ≤ a} for a > 0.

Theorem 6.3 (Lower bounds of the probability of
error). We fix ρ1, . . . , ρd ∈ [0, 1/2). Let A be an al-
gorithm satisfying Assumption 6.2. Furthermore, we
assume that A satisfies supI∈Π≤a

PI (̂i ̸= i∗I) ≤ 1/2,
where i∗I is the best arm in the problem instance I.
Then, there exist universal constants c1, . . . , c5 > 0
such that for any a > c1KT̃ 2ρmin and T with T ≥
c2σ

2
0a

2Γ2
ρα

4ρmax
√

log(KTc3) we have

sup
I∈Π≤a

PI (̂i ̸= i∗I) ≥ c4 exp

(
−c5

T

σ2
0aΓρα2ρmax

)
.

(10)

Here, since ∆i(T̃ ) ≲ T̃−ρmin , we require the condition

that a ≳ KT̃ 2ρmin . If the loss model (1) has a constant
term, i.e., ρmin = 0, then this is equivalent to a ≳
K. The assumption that supI∈Π≤a

PI (̂i ̸= i∗I) ≤ 1/2
should be satisfied for any reasonable algorithm and
the same condition was assumed in the stationary case
(Carpentier and Locatelli, 2016). Our lower bound

(10) is of the form exp
(
−O

(
T

H(T̃ )Γρα2ρmax

))
. The

factors Γρ and α2ρmax are independent of T and H(T̃ ),
and by the remark in Section 6.2, we have α2ρmax =
Ω̃(K−1) for typical classes of algorithms.

Next, we compare Theorem 6.3 with (Mussi et al.,
2023, Theorem 6.1, 6.2). For simplicity, we assume

that T = T̃ in this comparison. As explained in the
introduction, they proved that in their problem set-
ting, which is more general than ours, unless T satis-
fies (2), then, no algorithms cannot identify the best
arm i∗, where ρ corresponds to min{ρi : ρi > 0}
in our notation. In Theorem 6.3, we provide lower
bounds under the assumption that the budget satisfies
T = Ω(H(T̃ )2Γ2

ρ). Ignoring a constant Γρ that only

depends on ρ, we note that H(T̃ )2 can be smaller than
the RHS of (2) especially for environments where ex-
pected losses are slowly decreasing (ρi < 1/4 for any

i satisfying ρi ̸= 0). Therefore, Theorem 6.3 holds
even if the assumption (2) is not satisfied. We provide
an example where the slowly decreasing assumption is
valid. If we aim to minimize a function F : X → R
using learning algorithms corresponding to the set of
arms, the loss yi,τ is related to simple regret of the
learning algorithm. The lower bound of the expected
simple regret of Bayesian optimization algorithms is
given as Ω̃(T−ν/(2ν+D)) (the case of Matèrn-ν kernels)
(Vakili et al., 2021), where X ⊂ RD. If ν = 1.5, D > 3,
then we have ν/(2ν +D) < 1/4.

7 EXPERIMENTS

Environments. We conduct experiments using syn-
thetic environments described as follows. For d ≥ 1,
we select ρ1, . . . , ρd so that det Σ̃ is large. Specifically,
we let ρ1 = 0.0 and maximize f(ρ2, . . . , ρd) = det Σ̃

on [0.05, 0.45]d−1. Here, we note that the matrix Σ̃
is approximately the gram matrix in the optimization
problem (4). Let 2 ≤ m < n ≤ d and a, b, a′ > 0. We

define yi,τ as yi,τ =

{
aτ−ρm + bτ−ρn + εi,τ if i = 1,

a′τ−ρm + εi,τ if i ≥ 2.

Here, εi,τ ∼ N (0, σ2
0) with σ0 = 0.01. We consider two

problem instances. One is lower dimensional d = 4 and
the other one is higher dimensional d = 50, which are
denoted by I4 and I50 respectively. In both environ-
ments, we assume K = 5, and the expected loss yi,τ is
the same for 2 ≤ i ≤ K by definition, and the expected
loss of arm 1 is initially larger than the others, but it
decreases faster than them. In this experiments, we
assume T̃ ≥ 50 and T̃ = T . The best arm is the arm
1. We take a = b = 0.5, a′ = 0.8, ρm ≈ 0.29, ρn = 0.45
in the case of I4 and in the case of I50, we select a, b, a′
so that H(50) is the same as that in I4. We provide
more details in Section G.

Baselines. We compare our algorithms to the state-
of-the-art methods for decreasing bandits BAI and a
well-known algorithm SH (Karnin et al., 2013) for the
stationary BAI. RSH (Rising SH) is a modification of
RSR (Rising Successive Rejects) (Mussi et al., 2023),
which is a BAI algorithm for decreasing bandits. RSR
is a variant of Successive Rejects (Audibert et al.,
2010) and it estimates yi,T̃ by the average ŷ(τ, ε) of the

most recent ⌊ϵτ⌋ the observed losses, where ϵ ∈ (0, 1)
is a parameter of the algorithm. In this experiment,
we also consider a modification RSH of RSR based on
SH. The only difference between our proposed methods
and RSH are the definition of the estimators, which is
ŷ(τ, ε) in the case of RSH, and it would not be difficult
to see that RSH has a similar theoretical property as
that of RSR. RUCBE is a UCB-type algorithm for the
same setting as RSR and it is stated that RUCBE can
identify the best arm for smaller budgets compared to
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Figure 2: Experiments in synthetic environments

RSR (Mussi et al., 2023).

Results. In Figure 2, we display the accuracies
of identifying the best arm in the problem instance
I4 and I50 (the left and right figure, respectively).
Here, we conduct the experiments for budgets T =
50, 100, 150, . . . , 500 and repeat each experiment 100
times. The the error bars represent 95%-confidence in-
terval over the repetition. LS-SH and LASSO-SH are
our proposed methods (Algorithm 1, 2, respectively).
For the parameters λ and l of LS-SH and LASSO-SH,
we show results for the values 1e−3, 1e−2, 1e−1 of a
similar order as σ0 = 0.01. Regarding the baselines, we
select the same best parameter across the budgets, and
show results for the best parameter. Figure 2 indicates
that the proposed methods achieve higher accuracies
with smaller budgets compared to the baselines, which
empirically proves our theoretical results. We find that
RUCBE performs well at first, but deteriorates gradu-
ally. We suspect that this is because RUCBE estimates
yi,T , and if T is larger, then the bias can be larger. Re-
sults in the problem instance I50 show that that while
LS-SH suffers from high dimensionality, LASSO-SH is
less prone to it.

8 CONCLUSION

In this paper, we consider a best arm identification
problem in the fixed budget setting, where the ex-
pected loss is monotone decreasing function as the
number of arm pulls. We proposed two algorithms
under sparse and general loss models, and provided
upper bounds of the probability of the error. We also
provided algorithm-independent lower bounds. More-
over, we conducted experiments in synthetic environ-
ments, and empirically verify our theoretical results.
The extension to the case of of ϵ-optimal arm (Zhao
et al., 2023) or that to the infinite-armed case (Li et al.,
2017) would be an interesting possible future work.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes] See Section 3.2, and assumptions in
each Lemma, Proposition, and Theorem.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes] See Sections 4, 5, D.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
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Appendix

A Notation

Table 1: List of Notations
Symbol Description

T budget
K the number of arms

T̃ time step at which the best arm is defined using the expected loss
τ = τ(i, t) the number of times the arm i has been pulled up to time step t
θ(i) ∈ Rd a coefficient vector of the loss model (1) for the i-th arm

yi,τ loss random variable of the i-th arm observed by the learner at time step t
yi,τ the expected loss E [yi,τ ]
i∗ the best arm i∗ = argmini yi,T̃
εi,τ noise random variable that is σ0-subgaussian

ρ = (ρ1, . . . , ρd) exponents of τ(i, t) in the loss model
ρmin min1≤i≤d ρi
ρmax max1≤i≤d ρi
x(τ) (τ−ρ1 , . . . , τ−ρd)⊤ ∈ Rd

Σ̃ = Σ̃(ρ) a symmetric matrix of size d defined as (Σ̃)ij = 1/(1− ρi − ρj)

H(T̃ ) a problem complexity of an instance (see Section 3)

H2(T̃ ) a problem complexity of an instance (see Section 3)
H(ρ) (T ) a variant of the problem complexity defined as

∑
i ̸=i∗

1
∆i(T )1/ρ

∆i(T̃ ) the optimality gap for arm i ∈ [K]

ŷ
(τ)

i,T̃
the LS estimator of yi,T̃ using τ samples

γρ,λ the model complexity for the general loss model (Section 4)
B upper bound of the norms ∥θ(i)∥
ỹ
(τ)

i,T̃
the LASSO estimator of yi,T̃ using τ samples

S ⊂ [d] the sparsity of the loss model
L > 1 a constant used in the definition of the compatibility constant

ϕ2(S,A,L) the compatibility constant (A ∈ Rd×d: semi positive-definite)
γs(ρ, S, L) the model complexity for the sparse loss model (Section 5)

Γρ the model complexity for the lower bounds
∥A∥F the Frobenius norm of a matrix A
∥A∥2 the spectral norm of a matrix A
∥A∥∞ the sup norm of a matrix A

B APPLICATION to PSEUDO REGRET MINIMIZATION

In this section, we apply our methods to the pseudo regret minimization problem (Cella et al., 2021). In this

problem setting, a learner outputs an arm î after T rounds and pseudo regret R(T ) is defined as follows:

R(T ) = E
[
ŷi,τ

]
− E [yi∗,T ] ,

where i∗ = argmini E [yi,T ] and τ = τ (̂i, T ). Since the expected loss is decreasing, if the learner selects the right

arm (i.e., î = i∗), then to minimize R(T ) the learner has to maximize τ(i∗, T ), i.e., the leaner has to minimize
the total number

∑
i ̸=i∗ τ(i, T ) of pull counts of suboptimal arms.

We consider a class of algorithms satisfying the properties stated in Theorem 4.4 and Theorem 5.6.

Assumption B.1 (Assumption for a BAI algorithm). We assume that an algorithm A(Te, T̃ ) for the decreasing
BAI problem satisfies the following property, where Te is the budget for the BAI problem. There exists constants
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a, b > 0, T0(ρ) > 0 and γρ > 0 such that for any Te ≥ T0(ρ) and T̃ ≥ Te, the probability of the error of identifying

the best arm at T̃ is bounded as follows:

P
(̂
i ̸= argmini yi,T̃

)
≤ b exp

(
− Te

aγρH2(T̃ )

)
.

Then, we consider a method that follows the explore-then-commit framework as displayed in Algorithm 3.

Algorithm 3 ETC for Decreasing Bandits

1: Input: time interval T , period for exploration Te, number of arms K, A: algorithm for the decreasing
bandits BAI problem

2: Run A(Te, T̃ ) with T̃ = T using the budget Te and let î be the returned arm.

3: For the rest rounds (t = Te + 1, . . . , T ), select the same arm î.

Then, we can easily prove the following result.

Proposition B.2. We assume that there exist constants ρ ∈ (0, 1/2) and α > 0 such that H(T ) ≤ αT 2ρ.
Moreover, we assume that ρ and α are known to the learner. We assume θ(i∗) ∈ Rd

≥0 and define ρ̃ so that

E [yi∗,τ ]− lim
τ→∞

E [yi∗,τ ] = Θ
(
τ−ρ̃

)
, (11)

that is ρ̃ = minm∈M ρm, where M = {m ∈ [d] : θm(i∗) ̸= 0, ρm > 0}. Let A be an algorithm for the decreasing
BAI satisfying Assumption 6.2 with constants a, b, T0(ρ), γρ > 0. Let ν > 0 be a parameter satisfying ν > 1 + ρ̃.
If we run Algorithm 3 with Te = aγραT

2ρ(ν log T + log b) and T is sufficiently large, then the expected pseudo
regret is upper bounded as follows:

E [R(T )] ≤ T−ν + yi∗,T−Te
− yi∗,T = Õ(T−ρ̃−1+2ρ).

Remark B.3. In the proposition, we assume that H(T ) ≲ T 2ρ with 0 < ρ < 1/2, which is a natural assumption
by our model assumption (Section 3). Since −1+2ρ < 0, the proposition states that the expected pseudo regret
E [R(T )] decreases faster than E [yi∗,τ ] − limτ→∞ E [yi∗,τ ]. Compared to (Cella et al., 2021), this proposition
provides a more interpretable result in a more generalized setting.

Proof of Proposition B.2. We assume that T satisfies T ≥ T0(ρ) and we let i∗ = argmini yi,T . Let E be the event

defined as {ω : î ̸= i∗}. By Assumption 6.2 and assumptions of the proposition, we have P (E) ≤ T−ν . On Ec,
the pseudo regret is given as yi∗,T−Te

− yi∗,T . Thus, the expected pseudo regret is given as

E [R(T )] ≤ T−ν + yi∗,T−Te
− yi∗

= T−ν +O((T − Te)
−ρ̃ − T−ρ̃) = Õ(T−ρ̃−1+2ρ).

Here, the first equality follows from (11) and the second equality follows from Te = Õ(T 2ρ) and the assumption
on ν.

C Upper and Lower Bounds

In this section, we discuss the gap between the upper bound provided in Section 4 and the lower bound provided in
Section 6. Since Σ̃τ,λ and Σ̃τ can be approximated by Σ̃, the gap of model complexities defined in Section 4 (gen-

eral loss model) and Section 6 (lower bounds) is approximately given as d κ(Σ̃), where κ(Σ̃) := λmax(Σ̃)/λmin(Σ̃)
is the condition number of the matrix. Therefore, the question “how large is the gap between lower and up-
per bounds?” is approximately equivalent to “how ill-conditioned is the matrix Σ̃?”. The matrix Σ̃ can be
ill-conditioned, and it is related to the numerical instability of the estimators. This was the motivation of intro-
ducing the sparse loss model. We provide numerical examples below. As the table shows, the matrix Σ̃ becomes
ill-conditioned as d increases. We also provide numerical examples of (upper bounds of) the compatibility con-

stant ϕ2(S, Σ̃, L) in the case of |S| = 2 (due to the non-convexity of the problem, we can only compute upper
bounds of the compatibility constants). In Section 5, we use the compatibility constants instead of the minimum
eigenvalues. The table indicates that the compatibility constants can be much larger than minimum eigenvalues
(numerical examples of Proposition 5.2).
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d 3 4 5 6 7

λmin(Σ̃) 4e-1 4e-1 2e-1 4e-2 9e-3

d κ(Σ̃) 2e+2 1e+3 5e+3 3e+4 2e+5

ϕ2(S, Σ̃, L) 7e-1 9e-1 5e-1 3e-1 1e-1

D COMPUTATIONAL COMPLEXITY

We briefly discuss computational complexities of the proposed methods (Algorithm 1, 2). First, we consider the
computational complexity of Algorithm 1. For each arm i and phase r = 0, . . . , ⌈log2 K⌉ − 1, the computational

complexity of ŷ
(τr)

i,T̃
is given as O(d2τr + d3), where τr =

∑r
s=0 ts. Thus, in total, the computational complexity

of Algorithm 1 is given as O(d2KT/ log2 K + d3K log2 K).

Next, let us consider the computational complexity of Algorithm 2. We assume an oracle for solving the convex
optimization problem (the LASSO optimization problem) (4) and denote by C(τ, d) its computational complexity.
For the computational complexities of algorithms for LASSO, we refer to (Beck and Teboulle, 2009; Zhao and Huo,

2023). For each arm i and phase r, the computational complexity for ỹ
(τ)

i,T̃
is given asO(d2τr+C(τr, d)), where τr ≈

2r+1T
K log2 K . Thus, in total, the computational complexity is given as O

(
d2KT/ log2 K +K

∑⌈log2 K⌉−1
r=0 C(τr, d)

)
.

E PROOFS

In this section, we provide proofs omitted in the main paper. In Section E.1, we prove Lemma 4.1. In Section
E.2, we provide proofs of the results in Section 4 other than Lemma 4.1. In Section E.3, we provide proofs of
the results in Section 5. In Section E.4, we provide proofs of the results in Section 6.

Additional Notations. We introduce additional notation used in the proofs. For a matrix A = (aij), we denote
by ∥A∥F the Frobenius norm of a matrix A and define ∥A∥∞ as maxi,j |aij |. For a matrix A ∈ Rd×d, we denote
by ∥A∥2 ≥ 0 the spectral norm of A, i.e., ∥A∥22 = λmax(A

⊤A). If A is symmetric, and positive semi-definite,
then ∥A∥2 = λmax(A). For any A, we have ∥A∥2 ≤ ∥A∥F.

E.1 LEMMA FOR GENERALIZED HARMONIC NUMBERS

For τ ∈ Z≥1 and ρ > 0, we define

H(τ, ρ) =

τ∑
s=1

s−ρ.

Proof of Lemma 4.1. The statement of the lemma follows from the following inequality and we provide a proof
below. ∣∣∣∣H(τ, ρ)−

(
1

2
+

τ−ρ

2
+

τ1−ρ − 1

1− ρ

)∣∣∣∣ ≤ 1− τ−ρ

2
. (12)

From the Euler-Maclaurin formula (see e.g. Apostol (1999)), we have the following (one can find the following
formula in a standard text book on the Riemann zeta function).

τ∑
s=1

s−ρ =
1

2
+

τ−ρ

2
+

τ1−ρ − 1

1− ρ
− ρ

∫ τ

1

x− ⌊x⌋ − 1/2

xρ+1
dx.

Then, the inequality (12) follows from ρ
∣∣∣∫ τ

1
x−⌊x⌋−1/2

xρ+1 dx
∣∣∣ ≤ (1− τ−ρ)/2.

E.2 GENERAL LOSS MODEL

In this section, we provide proofs omitted in Section 4. First, we prove Proposition 4.2.
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Proof of Proposition 4.2. By definition, γ depends only on λ and ρ. We note that λmin(Σ̃τ,λ) > 0 for any τ by

the linear independence. To prove that γ <∞, it is sufficient to prove λmin(Σ̃τ,λ) is lower bounded by a constant
independent of τ ∈ Z≥1 for sufficiently large τ . We have the following:

√
d
∣∣∣λmin(Σ̃τ,λ)− λmin(Σ̃)

∣∣∣ ≤ ∥Σ̃τ,λ − Σ̃∥F

≤ d

(
λ+

2− 2ρ

1− 2ρ

)
τ2ρ−1.

Here, ρ = max ρi, the first inequality follows from the Wielandt-Hoffman Theorem, and the second inequality
follows from Lemma 4.1. Since ρ < 1/2, if t0 is sufficiently large, then we have

1

2

√
d

(
λ+

2− 2ρ

1− 2ρ

)
t2ρ−1
0 < λmin(Σ̃).

Thus, for any τ ≥ t0, we have λmin(Σ̃t,λ) ≥ λmin(Σ̃)/2. Since λmin(Σ̃) > 0 by the assumption, we have our
assertion.

Next, we prove Proposition 4.3. In the stochastic bandit literature, the following well-known result is often used
to construct an estimator. We refer to e.g. (Valko et al., 2013, Lemma 1).

Proposition E.1. Let x1, · · · , xt ∈ Rd be random vectors, and ε1, . . . , εt be σ0-subgaussian random variables.
Let θ ∈ Rd and define ys = ⟨θ, xs⟩ + εs for s = 1, . . . , t. For λ ≥ 0, we put Vt = λ1d +

∑t
s=1 xsx

⊤
s . For

x ∈ Rd, we define µt(x) = xV −1
t

∑t
s=1 ysxs and σt(x) =

√
x⊤V −1

t x. We assume that x1, . . . , xt are independent

of ε1, . . . , εt, random variables {εs}ts=1 are independent.

1. Suppose λ = 0 and x1, . . . , xt span Rd. Then, µt(x)− ⟨θ, x⟩ is σ0σt(x)-subgaussian.

2. Suppose λ > 0. Then, for each x ∈ Rd, we have the following inequality with probability at least 1− δ:

|µt(x)− ⟨θ, x⟩| ≤
(
σ0

√
2 log 2/δ +

√
λ∥θ∥

)
σt(x).

Proof. This follows from the proof of (Valko et al., 2013, Lemma 1).

By Proposition 4.2 and Proposition E.1, we can prove Proposition 4.3 as follows.

Proof of Proposition 4.3. We define στ (T̃ ) as

στ (T̃ ) =

√
x⊤(T̃ )V −1

τ x(T̃ ).

Let Σ̃τ,λ be the symmetric matrix defined as (Σ̃τ )ij = τρi+ρj−1 (λδij +H(τ, ρi + ρj)). Then by definition, we

have Σ̃τ,λ is given as
1

τ
diag(τρ1 , . . . , τρd)Vτdiag(τ

ρ1 , . . . , τρd).

Therefore, we can rewrite στ (T̃ ) as follows:

σ2
τ (T̃ ) = x⊤(T̃ )V −1

τ x(T̃ )

= x⊤(T̃ /τ)diag(τ−ρ1 , . . . , τ−ρd)V −1
τ diag(τ−ρ1 , . . . , τ−ρd)x(T̃ /τ)

=
1

τ
x⊤(T̃ /τ)Σ̃−1

τ,λx(T̃ /τ).

By definition of γρ (Proposition 4.2) and the fact that Σ̃τ,λ − Σ̃τ is positive semi-definite, we have

σ2
τ (T̃ ) ≤

γρ∥x(T̃ /τ)∥2

dτ
≤ γρ

τ
. (13)

Here the second inequality follows from τ ≤ T̃ . Thus, we have our assertion by Proposition E.1.
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The first statement of Theorem 4.4 can be proved by Proposition 4.3 and the proof of (Karnin et al., 2013,
Theorem 4.1) as follows.

Proof of Theorem 4.4 1. In the proof, we put n = ⌈log2 K⌉ and m = ⌊log2 K⌋. We also let

R = σ0
√
γρ.

and we simply denote ∆i(T̃ ) by ∆i in this proof. We assume that the arms are sorted so that y1,T̃ < y2,T̃ ≤
· · · ≤ yK,T̃ . If T̃ ≥ τ , then, by Proposition 4.3 and the assumption that noise random variables are independent,

ŷ
(τ)

1,T̃
+ ŷ

(τ)

i,T̃
− y1,T̃ − yi,T̃ is

√
2R/
√
τ -subgaussian (Lattimore and Szepesvári, 2020, Lemma 5.4). Thus, by

(Lattimore and Szepesvári, 2020, Theorem 5.3), for any 2 ≤ i ≤ K, we have

P
(
ŷ
(τ)

1,T̃
> ŷ

(τ)

i,T̃

)
≤ exp

(
−τ∆2

i

R2

)
. (14)

For each phase, r = 0, . . . , n− 1, using τr samples, we compute ŷ
(τr)

i,T̃
, where τr =

∑r
s=0 ts, and tr =

⌊
T

|Ar|n

⌋
. We

note that by the assumption T̃ ≥ T
⌈log2 K⌉ , we have T̃ ≥ τr for any r. Since tr ≥ 1, we note that tr ≥ T

2|Ar|n and

|Ar| ≤ 2n−r, and we have the following:

τr ≥
2−n+r−1T

n
. (15)

For r = 0, . . . , n− 1, we denote by Er the event on which the best arm i∗ is eliminated in the phase r. We shall
prove that

P (Er) ≤ 4 exp

(
− T

24nR2H2(T̃ )

)
. (16)

If we can prove inequality (16), then we have the statement of the theorem by taking a union bound.

First, we assume |Ar| = 2 (the case of the last phase r = n − 1). Then, by the inequality (14), for any i ∈ Ar

with i ̸= 1, we have

P (Er) ≤ P
(
ŷ
(τr)

1,T̃
> ŷ

(τr)

i,T̃

)
≤ exp

(
−2−3T

nR2

∆2
i

2

)
≤ exp

(
−2−3T

nR2

∆2
2

2

)
≤ exp

(
− 2−3T

nR2H2

)
,

where the second inequality follows from (15) with r = n− 1. In particular, the inequality (16) holds.

Next, let us assume |Ar| > 2. Let A′
r be a subset of Ar such that Ar \A′

r is the set of the top ⌈|Ar|/4⌉ arms in
Ar in terms of loss yi,T̃ . We also define a random set A′′

r as

A′′
r =

{
i ∈ A′

r : ŷ
(τr)

i,T̃
< ŷ

(τr)

i∗,T̃

}
.

Then, noting that for any i ∈ A′
r, we have ∆i ≥ ∆ir , where ir = ⌈|Ar|/4⌉, and that the inequality (15) holds,

we have

E [|A′′
r |] =

∑
i∈A′

r

P
(
ŷ
(τr)

i,T̃
< ŷ

(τr)

i∗,T̃

)
≤ |A′

r|max
i∈A′

r

exp

(
−2−n+r−1T∆2

i

nR2

)
≤ |A′

r| exp
(
−
2−n+r−1T∆2

ir

nR2

)
≤ |A′

r| exp
(
−2−4T

nR2

∆2
ir

ir

)
≤ |A′

r| exp
(
− 2−4T

nR2H2

)
,
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where ir = ⌈|Ar|/4⌉. Here, the first inequality follows from (14), the second inequality follows from the fact that
∆i ≤ ∆ir for any i ∈ A′

r, which holds by definition, and the third inequality follows from ir ≥ 2m−2−r. If the
event Er holds, then we have A′′

r ⊇ A′
r ∩Ar+1. Thus, we have

P (Er) ≤ P (A′
r ∩Ar+1 ⊆ A′′

r ) ≤ P (|A′
r ∩Ar+1| ≤ |A′′

r |) ≤ P (|A′
r|/4 ≤ |A′′

r |).

Here, the third inequality holds since |A′
r ∩ Ar+1| ≥ |Ar+1| − ⌈|Ar|/4⌉ ≥ |A′

r|/4. By this inequality and the
Markov’s inequality, we have (16). This completes the proof.

To prove the second statement of Theorem 4.4, we introduce the following lemma. In this lemma, similarly to
Algorithm 2, we consider an arbitrary estimator of yi,T̃ at line 5 in Algorithm 1.

Lemma E.2. For each phase r in Algorithm 1, We assume that there is an estimator of y̆
(τr)

i,T̃
of yi,T̃ such that

the following inequality holds for any i ∈ [K] and any phase r = 0, . . . , ⌈log2 K⌉−1 with probability at least 1−δ:

∣∣∣y̆(τr)
i,T̃
− yi,T̃

∣∣∣ ≤ C

√
log(α/δ)

τr
. (17)

Here α,C > 0 We let

p = α exp

(
− T

26C2nH2

)
,

and assume that p < 1. For any δ > p, with probability at least 1 − δ, a modification Algorithm 1 that uses the

estimator y̆
(τr)

i,T̃
at line 5 in Algorithm 1 returns the best arm i∗.

Proof. In the proof, we put n = ⌈log2 K⌉ and m = ⌊log2 K⌋. In the proof, we denote ∆i(T̃ ) by ∆i and we
sort the arms so that y1,T̃ < y2,T̃ ≤ y3,T̃ ≤ · · · ≤ yK,T̃ . Therefore, i∗ = 1. We note that τr =

∑r
s=0 ts, and

tr =
⌊

T
|Ar|n

⌋
. Since tr ≥ 1, tr ≥ T

2|Ar|n and |Ar| ≤ 2n−r, we have

τr ≥
2−n+r−1T

n
. (18)

Let E ′ be an event on which (17) holds.

E ′ =

ω ∈ Ω :
∣∣∣y̆(τr)

i,T̃
− yi,T̃

∣∣∣ ≤ C

√
log(α/δ)

τr
, for i ∈ [K], r = 0, . . . , n− 1

 ,

where Ω is the sample space of the probability space on which we are working. Then, we have P (E ′) ≥ 1− δ.

We assume that (17) holds for any i and r. We also assume that i∗ is eliminated in the r-th phase. We prove
the following:

log
α

δ
≥ T

26C2nH2
. (19)

First, we assume that |Ar| > 2. Let A′
r be a subset of Ar such that Ar \ A′

r is the set of the top ⌈|Ar|/4⌉ arms

in Ar in terms of loss yi,T̃ . We define A′′
r by A′′

r =
{
i ∈ A′

r : y̆
(τr)

i,T̃
< y̆

(τr)

i∗,T̃

}
. Since i∗ is eliminated at the r-th

phase, the half of arms in Ar is better than i∗ in terms of y̆
(τr)

i,T̃
by the argument in the proof of Theorem 4.4, we

see that A′′
r ̸= ∅. By the definition of A′′

r and (17), we have for any i ∈ A′′
r

2C

√
log(α/δ)

τr
≥ ∆i.

By the definition of A′
r, we have ∆i ≥ ∆ir for any i ∈ A′

r, where ir = ⌈|Ar|/4⌉. Thus, noting that (18) holds
and ir ≥ 2m−r−2, for i ∈ A′′

r , we have

log
α

δ
≥ τr∆

2
i

4C2
=

τrir
4C2

∆2
i

ir
≥ T

26C2n

∆2
i

ir
≥ T

26C2n

∆2
ir

ir
≥ T

26C2nH2
.
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Therefore, the inequality (19) holds. We can easily prove (19) in the case of |Ar| = 2. Thus, we have δ ≤
2dKn exp

(
− T

26C2nH2

)
.

Let us assume δ > α exp
(
− T

26C2nH2

)
. If we assume that the event E ′ holds and i∗ is eliminated by the algorithm,

then we have deduced a contradiction. This completes the proof.

The second statement of Theorem 4.4 can be proved by Lemma E.2.

Proof of Theorem 4.4 2. In the proof, we put n = ⌈log2 K⌉. By Proposition 4.3 (ii), and taking a union bound
for i ∈ [K] and r = 0, . . . , n− 1, we have the following inequality with probability at least 1− δ:

|ŷ(τ)
i,T̃
− yi,T̃ | ≤

(
σ0

√
2 log(2nK/δ) +

√
λB
) √γρ√

τ
.

If we take λ = λ(δ) as in Theorem 4.4 (ii), then we have

|ŷ(τ)
i,T̃
− yi,T̃ | ≤ 2σ0

√
2γρ

√
log(2nK/δ)√

τ
.

Then, the statement (ii) of Theorem 4.4 follows from this inequality and Lemma E.2.

E.3 SPARSE MODEL

This section provides proofs omitted in Section 5.

First, we prove Proposition 5.5. We introduce a lemma below for it.

Lemma E.3 (van de Geer and Bühlmann (2009) Corollary 10.1). For two symmetric matrices Σ1,Σ2 ∈ Rd×d,
we define ∥Σ1 − Σ2∥∞ = sup1≤i,j≤d |(Σ1)ij − (Σ2)ij |. Then, we have

ϕ(S,Σ1, L) ≥ ϕ(S,Σ2, L)− (L+ 1)
√
∥Σ1 − Σ2∥∞|S|.

This lemma states that a function Σ 7→ ϕ(S,Σ, L) is Lipschitz continuous. We prove Proposition 5.5 as follows.

Proof of Proposition 5.5. (i) By Lemma 4.1, we have

∥Σ̃τ − Σ̃∥∞ <
2− 2ρmax

1− 2ρmax
τ2ρmax−1.

By Proposition 5.2 and the assumption det Σ̃ > 0, we have ϕ2(S, Σ̃, L) > 0. We take τ1 so that for any τ with
τ ≥ τ1 satisfies the following:

(L+ 1)
√
|S|
√

2− 2ρmax

1− 2ρmax
τρmax−1 < ϕ(S, Σ̃, L)/2.

Then, by Lemma E.3, we have
ϕ2(S, Σ̃τ , L) ≥ ϕ2(S, Σ̃, L)/4, (20)

if τ ≥ τ1. Since ϕ2(S, Σ̃, L) > 0, we see that an integer τ0 satisfying the condition in Definition 5.4 exists and
τ0 ≤ τ1.

If we assume x(1), . . . , x(d) are linearly independent and τ ≥ d, then ϕ2(S, Σ̃τ , L) > 0 by Proposition 5.2.
Therefore, we see that τ0 ≤ d.

(ii) By definition γs(ρ, L, S) depends only on ρ, L, S. In (1), we have proved that we can take τ1 ≥ 1 so that if
τ ≥ τ1, then (20) holds. Therefore, we see that

√
γs ≤ max

{
sup

τ0≤τ≤τ1

|S|
ϕ2(S, Σ̃τ , L)

,
4|S|

ϕ2(S, Σ̃, L)

}
<∞.
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To prove Proposition 5.3, we introduce a result on the confidence set of the estimator θ̂λ,τ (i). This can be proved
in the same manner as (Bühlmann and Van De Geer, 2011, Theorem 6.1), but, we provide a proof for the sake
of completeness.

Proposition E.4. Let 1 ≤ i ≤ K be an arm. For any δ ∈ (0, 1), we have the following inequality with probability
at least 1− δ:

∥θ̂λ,τ (i)− θ′(i)∥1 ≤ C

√
log(2d/δ)

τ
,

where λ = (L+1)β
L−1

√
2 log(2d/δ)

τ , C = 2
√
2βL|S|

(L−1)ϕ2(S,Σ̃τ ,L)
, and β = 2

√
(3− 2ρmax)/(1− 2ρmax).

If we assume Proposition E.4 holds, then we can prove Proposition 5.3 as follows.

Proof of Proposition5.3. We assume that Proposition E.4 holds. Since T̃ ≥ τ and ρi ≥ 0 for 1 ≤ i ≤ d, we have

∥x′(T̃ )∥∞ ≤ 1. Then, noting that
∣∣∣ỹ(τ)

i,T̃
− yi,T̃

∣∣∣ ≤ ∥x′(T̃ )∥∞∥θ̂λ,τ − θ′∥1, our assertion immediately follows from

Proposition E.4.

To prove Proposition E.4, we introduce the following lemma.

Lemma E.5. For 1 ≤ m ≤ d, let (X ′
τ )

(m) be the m-th row of the matrix X ′
τ = (x′(1), . . . , x′(τ))⊤ ∈ Rτ×d. We

define ετ by ετ = (εs)1≤s≤d ∈ Rd. For a constant λ0 > 0, we define an event G as follows:

G =

{
max

1≤m≤d
2
∣∣∣ετ · (X ′

τ )
(m)
∣∣∣ /τ ≤ λ0

}
. (21)

Then, we have

P (G) ≥ 1− 2d exp

(
−λ2

0τ

2β2

)
,

where β = 2
√
(3− 2ρmax)/(1− 2ρmax) as before.

Proof. Let ϵm = 2ετ · (X ′
τ )

(m). Since ε1, . . . , ετ are independent, ϵm is R-subgaussian (c.f. (Lattimore and
Szepesvári, 2020, Lemma 5.4)), where R is given as

R =
2

τ
τρm

√√√√ τ∑
s=1

s−2ρm =
2√
τ

√
τ2ρm−1H(τ, 2ρm) ≤ 2√

τ

√
3− 2ρm
1− 2ρm

.

Here the last inequality follows from Lemma 4.1. Therefore, ϵm is β/
√
τ -subgaussian. Then, the assertion of

the lemma follows by the concentration inequality for subgaussian random variables (Lattimore and Szepesvári,
2020, Theorem 5.3) and taking a union bound for m = 1, . . . , d.

Proof of Proposition E.4. First, we note that the statement of the proposition can be rephrased as follows: Let
λ > 0 and θ̂λ,τ be a solution of Eq. (4) with a regularizer λ > 0. Let E be an event defined as follows:

E =

{
∥θ̂λ,τ − θ′∥1 ≤

2L|S|λ
(L+ 1)ϕ2(S, Σ̃τ , L)

}
.

Assume that 0 ≤ ρi < 1/2 for all 1 ≤ i ≤ d. Then, we have

P (E) ≥ 1− 2d exp

(
− (L− 1)2λ2τ

2β2(L+ 1)2

)
.

In this proof, we assume that the event G defined by (21) holds and we simply denote θ̂λ,τ by θ̂. Let ετ by
ετ = (εs)1≤s≤d ∈ Rd. By the basic inequality (Bühlmann and Van De Geer, 2011, Lemma 6.1), which can be

directly derived from the definition of θ̂, we have∥∥∥X ′
τ (θ̂ − θ′)

∥∥∥2
2
/τ + λ∥θ̂∥1 ≤ 2ε⊤τ X

′
τ (θ̂ − θ′)/τ + λ∥θ′∥1.
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By
2ε⊤τ X

′
τ (θ̂ − θ′)/τ ≤ ∥2ε⊤τ X ′

τ/τ∥∞∥θ̂ − θ′∥1,
and the definition of G, we have∥∥∥X ′

τ (θ̂ − θ′)
∥∥∥2
2
/τ + λ∥θ̂∥1 ≤ λ0∥θ̂ − θ′∥1 + λ∥θ′∥1. (22)

By the triangle inequality, we have the following:

∥θ̂∥1 = ∥θ̂S∥1 + ∥θ̂Sc∥1
≥ ∥θ′S∥1 + ∥θ̂Sc∥1 − ∥θ̂S − θ′S∥1.

Thus, by (22) and noting that ∥θ′∥1 = ∥θ′S∥1, it follows that∥∥∥X ′
τ (θ̂ − θ′)

∥∥∥2
2
/τ + λ

(
∥θ̂Sc∥1 − ∥θ̂S − θ′S∥1

)
≤ λ0∥θ̂ − θ′∥1.

Since ∥θ̂ − θ′∥1 = ∥θ̂Sc∥1 + ∥θ̂S − θ′S∥1, we have∥∥∥X ′
τ (θ̂ − θ′)

∥∥∥2
2
/τ + (λ− λ0)∥θ̂Sc∥1 ≤ (λ+ λ0)∥θ̂S − θ′S∥1. (23)

Assume λ > λ0 and let L = λ+λ0

λ−λ0
. By (23), we see that θ̂ − θ′ ∈ R(S,L). Since Σ̃τ = (X ′

τ )
⊤X ′

τ/τ and by the

definition of the compatibility constant ϕ2(S, Σ̃τ , L) and (23), we have

∥θ̂S − θ′∥1 ≤
2|S|Lλ

(L+ 1)ϕ2(S, Σ̃τ , L)
.

The statement of the proposition follows from this inequality and Lemma E.5.

Finally, we prove the main result of Section 5.

Proof of Theorem 5.6. In the proof, we put n = ⌈log2 K⌉. In Algorithm 2, we use the estimator (6) with the

regularizer λr = (L+1)β
L−1

√
2 log(2dKn/δ)

τr
in each phase r, then with probability at least 1− δ, we have the following

inequality for i ∈ [K] and r = 0, . . . , n− 1:

|ỹi,tr (T )− E [yi,T ]| ≤ C

√
log(2dKn/δ)

τr
. (24)

Noting that the assumptions t0 ≥ τ0 and T̃ ≥
⌊
T
n

⌋
hold, this follows from by taking a union bound in Proposition

5.3 and the definition of γs. Here C = 2
√
2β(1 − L−1)

√
γs. The statement of the theorem follows from this

inequality and Lemma E.2.

E.4 LOWER BOUNDS

In this section, we provide proofs omitted in Section 6. First, we prove Proposition 6.1.

Proof of Proposition 6.1. Let λ̃ = supτ∈Z≥1
λmax(Σ̃τ ). Then, by definition, λ̃ depends only on ρ1, . . . , ρd, so does

Γ. It is enough to prove 0 < λ̃ <∞. By the assumption that det Σ̃ ̸= 0 and the definition of λ̃, we have λ̃ > 0.
For a matrix A ∈ Rd×d, we denote by ∥A∥2 ≥ 0 the spectral norm of A, i.e., ∥A∥22 = λmax(A

⊤A). Since for

any A, we have ∥A∥2 ≤ ∥A∥F, Σ̃ and Σ̃τ are positive-semi definite, and by the triangle inequality of the spectral
norm, we have the following:

λmax(Σ̃τ ) ≤ λmax(Σ̃) + ∥Σ̃− Σ̃τ∥2
≤ λmax(Σ̃) + ∥Σ̃− Σ̃τ∥F

≤ λmax(Σ̃) +
2d(1− ρmax)

1− 2ρmax
τ−1/2+ρmax .

Here the last inequality follows from Lemma 4.1. Since ρmax ∈ [0, 1/2) by assumption, we have our assertion.
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Since we omitted details on construction of environments in Section 6, we will provide them as follows. Given
an environment, for 1 ≤ i ≤ K, 1 ≤ τ ≤ T , we denote by yi,τ the observed loss (random variable) when arm
i has been pulled τ -times. For a finite set Θ = {θ(i)}1≤i≤K ⊂ Rd of vectors, we define a probability model of
{yi,τ}1≤i≤K,1≤τ≤T by

yi,τ =

d∑
m=1

θm(i)τ−ρm + εi,τ = θ(i) · x(τ) + εi,τ .

Here {εi,τ}1≤i≤K,1≤τ≤T are independent random variable and each εi,τ follows the normal distribution N (0, σ2
0),

and x(τ) is defined as
x(τ) = (τ−ρ1 , . . . , τ−ρd)⊤ ∈ Rd.

We denote by (Ω,F ,PΘ) the corresponding probability space. The probability space (Ω,F , PΘ) defines a problem
instance for the best arm identification. By abuse of terminology, we often identify the problem instance with
the probability measure PΘ.

We let θ(1) ∈ Rd
≥0. For 2 ≤ i ≤ K, we let ∆(i) ∈ Rd

≥0 so that θ(1) − ∆(i) ∈ Rd
≥0. For example, by assuming

ρ1 ≤ ρ2 ≤ · · · ≤ ρd, we take θ(1) ∈ Rd
≥0 as

(θ(1))m =

{
1
2 if m = 1,

1
2(d−1) if m ≥ 2

(25)

and take ∆(i) ∈ Rd
≥0 so that (∆(i))m ∈ [0, (θ(1))m) for m = 1, . . . , d. Then, (θ(1)±∆(i)) ·x(τ) ∈ [0, 1] is satisfied

for any i, τ . We define θ(i) = θ(1) + ∆(i) and θ′(i) = θ(1)−∆(i) for 2 ≤ i ≤ K. We also define

di,T̃ = ∆(i) · x(T̃ ),

for 2 ≤ i ≤ K. Then, for 1 ≤ n ≤ K, we define a finite sequence Θ(n) of vectors as Θ(i) = (θ(1;n), . . . , θ(K;n)),
where

θ(i;n) =


θ(i) if n = 1,

θ(i) if n ≥ 2 and i ̸= n,

θ′(i) if n ≥ 2 and i = n.

For 1 ≤ n ≤ K, we simply denote the probability measure (problem instance) PΘ(n) by Pn. We note that in the
problem instance Pn, arm n is the best arm by construction.

For a fixed problem instance P , we define a complexity HP of the problem as

HP =
∑

1≤i≤K,k ̸=i∗

1

(yi,T̃ − yi∗,T̃ )
2
,

where i∗ = argmin1≤i≤K yi,T̃ . For 1 ≤ n ≤ K, we define H(n) as HPn
. Then, by construction, we see that

max1≤n≤K H(n) = H(1). We note that H(1) is given as
∑K

i=2 d
−2

i,T̃
by construction. If we define θ(1) by (25),

and define ∆(i) as

(∆(i))m =

{
1/2− η−1/2 if m = 1,

(θ(1))m if 2 ≤ m ≤ d,
(26)

then, we have H(1) = KηT̃ 2ρ1 , where η is an arbitrary real number satisfying η > 4.

We fix an algorithm A and denote by Ti the number of times the algorithm selects arm i up to time step T .
Then, each Ti is a random variable and satisfies

∑K
i=1 Ti = T . For 1 ≤ t ≤ T , we denote by Ft the σ-algebra

generated by observed losses by the algorithm up to time step t.

We denote by fn
i,t the distribution function on R associated to the random variable yi,t in the problem in-

stance Pn. By definition, fn
i,t is the distribution function of N (θ(i;n) · x(t), σ2

0), i.e., explicitly, fn
i,t(ξ) =

1
σ0

√
2π

exp
(
− (ξ−θ(i;n)·x(t))2

2σ2
0

)
. Following (Audibert et al., 2010; Carpentier and Locatelli, 2016), for 1 ≤ t ≤ T ,

2 ≤ i ≤ K, we define

K̂Li,t =
1

t

t∑
s=1

log

(
f1
i,t(yi,t)

f i
i,t(yi,t)

)
.
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By the change of measure argument (Audibert et al., 2010), we have the following (we refer to (Audibert et al.,
2010) for the proof).

Lemma E.6. For any event E ∈ FT , we have

Pi(E) = E1

[
1E exp

(
−TiK̂Li,Ti

)]
.

The empirical KL-divergence K̂Li,t is an estimator of the average KL-divergence KLi,t defined below.

Lemma E.7. For 1 ≤ i ≤ K and 1 ≤ t ≤ T , we define KLi,t as

KLi,t =
1

t

t∑
s=1

KL(f1
i,s, f

i
i,s).

For δ > 0, we define an event G = G(δ) ∈ FT as

G =

{
ω ∈ Ω : |K̂Li,Ti

−KLi,Ti
| ≤

√
8 log(KT/δ)

σ2
0Ti

, 1 ≤ ∀i ≤ K

}
.

Then, we have P1(G) ≥ 1− δ.

Proof. We define an event G′ as

G′ =

{
ω ∈ Ω : |K̂Li,t −KLi,Ti

| ≤

√
8 log(KT/δ)

σ2
0t

, 1 ≤ ∀i ≤ K, 1 ≤ ∀t ≤ T

}
.

Since G′ ⊆ G, it is sufficient to prove that P1(G′) ≥ 1 − δ. We let yi,t(n) = θ(i;n) · x(t) ∈ [0, 1]. Then by
definition, we have

K̂Li,t −KLi,t =
1

σ2
0t

t∑
s=1

(yi,t(1)− yi,t(i))(yi,t − yi,t(1)).

Since we consider P1(G′), we assume yi,t follows distribution f1
i,t, i.e., yi,t = yi,t(1) + εi,t. Then, the inequality

P1(G′) ≥ 1− δ can be proved by (Lattimore and Szepesvári, 2020, Theorem 5.3) and taking a union bound. This
completes the proof.

Next, we provide an upper bound of the average KL-divergence KLi,t as below.

Lemma E.8. For 2 ≤ i ≤ K and αT̃ ≤ t ≤ T̃ , we have

KLi,t ≤
α−2ρmaxd2

i,T̃

2Γσ2
0

.

Proof. We have the following:

KLi,t =
1

2σ2
0t

t∑
s=1

(θ(i; 1) · x(s)− θ(i; i) · x(s))2

=
1

2σ2
0t

t∑
s=1

(∆(i)⊤x(s))2

=
1

2σ2
0t

Tr

t∑
s=1

x(s)x⊤(s)∆(i)∆(i)⊤

=
1

2σ2
0t

TrD

t∑
s=1

x(s)x⊤(s)DD−1∆(i)∆(i)⊤D−1,
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where D = D(ρ1, . . . , ρd; t) := diag(tρ1 , . . . , tρd). Here the first equality follows from the definition and the fact
that KL(N (µ, σ2

0),N (µ′, σ2
0)) = (µ − µ′)2/(2σ2

0), and the second equality follows from the construction of the
problem instances. Thus, we have

KLi,t =
1

2σ2
0

TrΣ′
tD

−1∆(i)∆(i)⊤D−1,

where Σ′
t ∈ Rd×d is defined by Eq. (5). Since the spectral norm ∥ · ∥2 is dual to the trace norm, we have

KLi,t ≤
1

2σ2
0

λmax(Σ
′
t) TrD

−1∆(i)∆(i)⊤D−1.

Since ∆(i) ∈ Rd
≥0, we have TrD−1∆(i)∆(i)⊤D−1 ≤ (∆(i) · x(t))2. By the assumption t ≥ αT̃ , we have

(∆(i) · x(t))2 ≤ α−2ρmax(∆(i) · x(T̃ ))2 = α−2ρmaxd2
i,T̃

.

Therefore, we have assertion of the lemma by Eq. (9).

In the following lemma, we define an event Ei (2 ≤ i ≤ K) on which the algorithm A returns î = 1. In the
problem instance Pi, the arm 1 is not the best arm, and we provide a lower bound of Pi(Ei) as follows.
Lemma E.9. For 1 ≤ k ≤ K, we define

tk = E1 [Tk] .

For δ, δ′ ∈ (0, 1) and 2 ≤ i ≤ K, we define an event Ei ∈ FT as

Ei =
{
ω ∈ G(δ) : î = 1, Ti ≤ ti/δ

′
}
.

Then, we have

Pi(Ei) ≥ exp

(
−
tid

2
i,T̃

α−2ρmax

2Γσ2
0δ

′ −

√
8 log(KT/δ)

σ2
0T

)
P1(Ei).

Proof. Since Ei ∈ cFt,

Pi(Ei) = E1

[
1Ei

exp
(
−TiK̂Li,Ti

)]
≥ E1

[
1Ei exp

(
−TiKLi,Ti

−

√
8 log(KT/δ)

σ2
0Ti

)]

≥ E1

[
1Ei

exp

(
−TiKLi,Ti

−

√
8 log(KT/δ)

σ2
0T

)]

≥ E1

[
1Ei exp

(
−tiKLi,Ti/δ

′ −

√
8 log(KT/δ)

σ2
0T

)]

≥ E1

[
1Ei

exp

(
−
tid

2
i,T̃

α−2ρmax

2Γσ2
0δ

′ −

√
8 log(KT/δ)

σ2
0T

)]

= exp

(
−
tid

2
i,T̃

α−2ρmax

2Γσ2
0δ

′ −

√
8 log(KT/δ)

σ2
0T

)
P1(Ei).

Here the first equality follows from Lemma E.6, the fist inequality follows from Lemma E.7, the second inequality
follows from Ti ≤ T , the third inequality holds since we have Ti ≤ ti/δ

′ on Ei, the fourth inequality follows from
Lemma E.8. This completes the proof.

Finally, we provide a proof of Theorem 6.3.
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Proof of Theorem 6.3. This can be proved in a similar manner to Carpentier and Locatelli (2016). For the sake

of completeness, we provide a proof. For given a > 4KT̃ 2ρmin , we take ∆(i) so that a = H(1). This is possible if
we define θ(1) and ∆(i) by (25) and (26). Since in the problem instance P1, the arm 1 is the best arm, by the

assumption supI∈Π≤a
PI (̂i ̸= i∗I) ≤ 1/2, we have

P1(̂i ̸= 1) ≤ 1/2.

By Markov’s inequality, we have
P1(Ti ≥ ti/δ

′) ≤ δ′E1 [Ti] /ti = δ′.

By these inequalities and Lemma E.7, we have

P1(Ei) ≥ 1− δ − δ′ − 1/2 = 1/2− δ − δ′.

Thus, by selecting δ, δ′ so that 1/2−δ−δ′ > 0 (e.g., δ = δ′ = 1/6), we have the following inequality for 2 ≤ i ≤ K
by Lemma E.9:

Pi(Ei) ≳ exp

(
−
tid

2
i,T̃

α−2ρmax

2Γσ2
0δ

′ −

√
8 log(KT/δ)

σ2
0T

)
. (27)

Here ≳ hides a (universal) constant. Since
∑K

i=2 d
−2

i,T̃
= H(1), there exists 2 ≤ i′ ≤ K such that

ti′ ≤
T

H(1)d2
i′,T̃

.

By (27), we have

Pi′(Ei′) ≳ exp

(
− α−2ρmaxT

2ΓH(1)σ2
0δ

′ −

√
8 log(KT/δ)

σ2
0T

)
.

Therefore, we have the following inequality with a = H(1):

sup
I∈Π≤a

PI (̂i ̸= i∗I) ≳ exp

(
−α−2ρmaxT

2Γaσ2
0δ

′ −

√
8 log(KT/δ)

σ2
0T

)
.

Our assertion follows from this inequality.

F GENERALIZATION OF THE UPPER BOUNDS

In Theorems 4.4, 5.6, we assume that T̃ satisfies T̃ ≥ τr ≈ T/ log2 K, where r = ⌈log2 K⌉ − 1, τr =
∑r

s=0 tr,

tr =
⌊

T
|Ar|⌈log2 K⌉

⌋
as in Algorithm 1. We provide a generalization of the theorems to the case when T̃ < τr.

Theorem F.1. We assume ∥θi∥ ≤ B for any 1 ≤ i ≤ K with B > 0. We define αT̃ = max(1, τr/T̃ ), where
r = ⌈log2 K⌉ − 1. Then, the probability of the error of Algorithm 1 satisfies the following:

P (̂i ̸= i∗) ≤ 4⌈log2 K⌉ exp

− T

24α2ρmax

T̃
γρ,λ(B2 +

σ2
0

2λ )H2⌈log2 K⌉

 ,

where H2 = H2(T̃ ).

Next, we assume the same setting as in Section 5. Similarly to Theorem 5.6, we have the following.

Theorem F.2. We define αT̃ = max(1, τr/T̃ ), where r = ⌈log2 K⌉ − 1. Let γs = γs(ρ, S, L) be the complexity
of the model and τ0(S,L) ≥ 1 be the integer in Definition 5.4. We put

p = 2dK⌈log2 K⌉ exp

(
− T

cα2ρmax

T̃
β2γsH2⌈log2(K)⌉

)
.
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where c = 29(1−L−1)2, H2 = H2(T̃ ) and β is a constant depending only on ρmax given in Proposition E.4. We

define l(δ) as (L+1)β
L−1

√
2 log(2dK⌈log2 K⌉/δ). We assume that p < 1 and t0 ≥ τ0(S,L), where t0 =

⌊
T

K⌈log2 K⌉

⌋
.

Then, for any ε > 0 satisfying (1 + ε)p ∈ (0, 1), the probability of the error of Algorithm 2 with l = l(δ),

δ = (1 + ε)p is upper bounded as P (̂i ̸= i∗) ≤ (1 + ε)p.

Since the proof is the same, we only provide a proof of Theorem F.1.

Proof of Theorem F.1. In Theorem 5.6, we need the condition that T̃ ≤ τ⌈log2 K⌉−1 because it is necessary

to bound the norm ∥x(T̃ /τ)∥ by
√
d. in (13). In Algorithm 1, for each s = 0, . . . , ⌈log2 K⌉ − 1 phase, it

constructs an estimator ŷ
(τs)

i,T̃
using τs samples. We note that ∥x(T̃ /τs)∥ ≤ ∥x(T̃ /τr)∥ ≤ αρmax

T̃

√
d, where

r = ⌈log2 K⌉−1. Then, instead of Proposition 4.3, we see that ŷ
(τs)

i,T̃
−yi,T̃ is αρmax

T̃

√
γρ,λ(B2+σ2

0/(2λ))
τ -subgaussian

for s = 0, . . . , ⌈log2 K⌉ − 1. By the same proof of Theorem 5.6, we have the assertion of the theorem.

G APPENDIX TO EXPERIMENTS

In this section, we provide details omitted in Section 7.

G.1 DETAILS OF THE EXPERIMENTS

Code

We provide code and data for reproducing experiments in a supplementary material.

Selection of ρ

As described in Section 7, we let ρ1 = 0 and select ρ2, . . . , ρd as

argmax(ρ2,...,ρd)∈[0.05,0.45]d−1 det Σ̃(ρ).

Here, we consider the maximization on [0.05, 0.45]d−1, since errors in Lemma 4.1 become worse if 2ρi is close to
1 (2 ≤ i ≤ d). If d = 4, then ρ is given as (ρ2, ρ3, ρ4) = (0.2935618930156164, 0.41565736966993305, 0.45). For
other dimensions, the values are stored in the file data/rhos.json in the code directory. For optimization, we used
the L-BFGS-B method (Liu and Nocedal, 1989), which is available in the SciPy library (Virtanen et al., 2020).

Environments

As mentioned in Section 7, we consider the loss model as follows:

yi,τ =

{
aτ−ρm + bτ−ρn + εi,τ if i = 1,

a′τ−ρm + εi,τ if i ≥ 2.

Here, i ∈ [K] with K = 5, εi,τ ∼ N (0, σ2
0) with σ0 = 0.01. In the problem instance I4, we let a = b =

0.5, a′ = 0.8, ρm = ρ2, ρn = ρ4. In the problem instance I50, we select a, b, a′ so that H(50) is the same as
that in I4. Specifically, we let a =′ 0.8, b = 0.2, a′ = 0.8954915084635513 and ρm = 0.14086303741335188, ρn =
0.3763414216486129. In Figures 3, 4, we show expected losses E [yi,τ ] in the problem instance I4 and I50. We

also show problem complexities H(T̃ ) for the problem instance I4 and I50 in Figure 5 and 6, respectively. As we
mentioned in Section 7, the expected loss of arm 1 is initially larger than that of the other arms, but it decreases
faster than the other arms. Also, if T̃ ≥ 50, the best arm is the arm 1.

Choice of the Parameters

Next, we detail how we selected parameters of the algorithms. For the proposed methods (Algorithm 1 and
Algorithm 2), we show experimental results for λ = 1e−3, 1e−2, 1e−1 and l = 1e−3, 1e−2, 1e−1, which is a similar
order as σ0 = 1e−2. For the baselines, in Section 7, we only show the results for the “best” parameter. Here, the
best parameter is defined as follows. For a parameter κ of a baseline algorithm, we repeat the experiments for 100
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Figure 3: Expected losses in the problem instance I4
(K = 5, d = 4)
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Figure 4: Expected losses in the problem instance I50
(K = 5, d = 50)
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Figure 5: H(T̃ ) in the problem instance I4 (K = 5, d =
4)
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Figure 6: H(T̃ ) in the problem instance I50 (K = 5, d =
50)

times for each budget T = 50, 100, . . . , 500. For each budget T , we compute accuracy acc(κ, T ) =
∑

1(̂i = i∗)/100
over the repetition and define a metricm(κ) by the median of acc(κ, T ) for T = 50, 100, . . . , 500. For the baselines,
we only show the results for a parameter κ with the largest median m(κ). A set of parameters of the baselines
are selected as follows. For each arm i, RSH and RSR use the estimator ŷi(τ, ε), which is the average of the most
recent ⌊ετ⌋ observed losses. For these algorithms, we conducted experiments for ε = 0.1, 0.2, 0.3, 0.4, 0.5. For
RUCBE, we take ε = 0.25 as in (Mussi et al., 2023) and conducted experiments for a = 0.1, 0.2, . . . , 0.9, where
a is the exploration parameter.

Computational Resources

We conducted the experiments using the Intel Xeon Gold 6148 processor with 30GB RAM.

G.2 EXISTING ASSETS AND LICENSE

We implemented the algorithms using the Scikit-Learn library (Pedregosa et al., 2011), which is licensed under
the BSD 3-Clause ”New” or ”Revised” License. To generate Figure 1, we optimized a test function using a
Bayesian optimization algorithm (Eriksson et al., 2019). For the experiment, we use the BoTorch (Balandat
et al., 2020) implementation of the Bayesian optimization algorithm, where BoTorch is licensed under the MIT
license.


