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Abstract

Estimating the expected value is one of the
key problems of statistics, and it serves as
a backbone for countless methods in ma-
chine learning. In this paper we propose a
new algorithm to build non-asymptotically
exact confidence intervals for the mean of
a symmetric distribution based on an inde-
pendent, identically distributed sample. The
method combines resampling with median-of-
means estimates to ensure optimal subgaus-
sian bounds for the sizes of the confidence
intervals under mild, heavy-tailed moment
conditions. The scheme is completely data-
driven: the construction does not need any
information about the moments, yet it man-
ages to build exact confidence regions which
shrink at the optimal rate. We also show how
to generalize the approach to higher dimen-
sions and prove dimension-free, subgaussian
PAC bounds for the exclusion probabilities
of false candidates. Finally, we illustrate the
method and its properties for heavy-tailed
distributions with numerical experiments.

1 INTRODUCTION

Mean estimation is a fundamental problem in statis-
tics, but the typical solutions only provide point esti-
mates. On the other hand, confidence regions are often
also needed in practice, especially when safety, stabil-
ity and other risk factors concern us. Classical theory
supports the application of the well-known empirical
mean estimator and central limit theorem (CLT) based
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confidence intervals using the sample variance, never-
theless, in practice CLT only provides heuristic solu-
tions and the required assumptions often do not hold.
In many real-world problems we need to cope with
heavy-tailed distributions and handle outliers in the
data, in which cases the empirical mean and standard
CLT based confidence intervals can perform poorly,
which calls for more robust techniques (Huber and
Ronchetti, 2009; Hampel et al., 2011).

In statistical learning the accuracy-confidence trade-
off is a key phenomenon (Vapnik, 1998; Györfi et al.,
2002; Shalev-Shwartz and Ben-David, 2014). Classi-
cal methods offer a variety of probably approximately
correct (PAC) type bounds for the mean. The cele-
brated Hoeffding’s inequality provides strong bounds
for the mean of bounded variables (Hoeffding, 1963).
Under the finite variance assumption tighter inequal-
ities are proved in (Bernstein, 1937; Bennett, 1962),
however, one needs to know the variance to construct
confidence intervals based on these results. Under the
boundedness assumption recently an adaptive martin-
gale approach was developed in (Waudby-Smith and
Ramdas, 2024) to derive concentration bounds, which
empirically outperforms the classical concentration in-
equalities. For the mean of heavy-tailed distributions
neat PAC-bounds are presented in (Catoni, 2012; Lu-
gosi and Mendelson, 2019a), however, these inequal-
ities suffer from similar limitations as the bounds of
Bennett (1962) and Bernstein (1937): they assume the
a priori knowledge of some moment parameters.

In this paper, motivated by non-asymptotic system
identification methods, such as the Sign-Perturbed
Sums (SPS) algorithm (Csáji et al., 2015; Szentpé-
teri and Csáji, 2023) and the Leave-out Sign-dominant
Correlation Regions (LSCR) approach (Campi and
Weyer, 2005), we introduce the resampled median-of-
means (RMM) method to construct exact confidence
intervals for the mean of a symmetric variable based
on an i.i.d. sample without making any other a priori
assumption. We prove that our method builds confi-
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dence intervals with optimal sizes w.r.t. the confidence
parameter (up to constant factors) without using any a
priori knowledge about the moments. The main advan-
tage of RMM w.r.t. the original SPS method lies in its
robustness, i.e., we prove subgaussian PAC bounds for
RMM under heavy-tailed distributional assumptions.

2 HEAVY-TAILED MEAN ESTIMATION

The problem can be specified as follows. We are given
a finite sample of independent and identically dis-
tributed (i.i.d.) random variables D0

.= {Yi}n
i=1 from

an unknown distribution QY which is symmetric about
an unknown parameter µ. First, we aim at construct-
ing a non-asymptotically valid hypothesis test for the
null hypothesis µ = θ, then we construct a confidence
interval for µ based on this test. One of the main ad-
vantages of RMM is that it needs no further assump-
tions other than symmetry to reach any user-chosen
(rational) confidence level. Beside the finite sample va-
lidity, we prove the exponential decay of the rejection
probability for µ ̸= θ under mild moment conditions.
We also show that the test induces exact confidence
intervals for µ and prove optimal non-asymptotic PAC
inequalities for the sizes of these intervals.

Let med(Y ) denote a median of random variable Y
and med(D0) denote the empirical median of a sample.
If QY is symmetric, then µ = med(Y ). We usually
assume that EY1 = µ in which case EY1 = med(Y1),
however, our results regarding the confidence level also
hold without this moment assumption. We denote the
well-known empirical mean (point estimate) by

µ̄n
.= 1
n

n∑
i=1

Yi. (1)

It is known that if σ2 .= D2Y1 < ∞, then µ̄n is the
“best” linear unbiased estimator, i.e., µ̄n has the low-
est variance among linear unbiased estimators (Hastie
et al., 2009). By the central limit theorem we have

lim
n→∞

P
(√

n | µ̄n − µ | > σ
√

2 log(2/δ)
)

≤ δ. (2)

if σ2 < ∞. However, this bound holds only asymptoti-
cally. In this paper we seek to find similar bounds that
hold for every finite sample size.

If the distribution of Y is σ-subgaussian, i.e., if
E[ exp(λ(Y − µ)) ] ≤ exp(σ2λ2/2) for all λ ∈ R, then

P
(

| µ̄n − µ | ≤ σ

√
2 log(2/δ)

n

)
≥ 1 − δ. (3)

The main advantage of this inequality lies in its finite
sample validity. Indeed (2) holds for all n ∈ N and

δ > 0. However, if the distribution is not subgaussian,
Chebyshev’s inequality yields a much weaker bound

P
(

| µ̄n − µ | ≤ σ

√
1
nδ

)
≥ 1 − δ. (4)

We can observe that this bound is exponentially worse
in δ. Nevertheless, this is the best one can say (Catoni,
2012), because for each δ > 0 there is a distribution
with variance σ for which we have

P
(

| µ̄n − µ | ≥ σ

√
c

δn

)
≥ δ. (5)

In general, we can conclude that the empirical mean
is computationally attractive and statistically efficient
under subgaussian assumptions, however, sensitive for
outliers which occur with high probability if the vari-
ance is large or infinite. In this paper, we aim at finding
exponential PAC bounds on the power of our hypoth-
esis test and also on the size of the corresponding con-
fidence region under much milder assumptions on QY

than subgaussianity (cf. Assumption A3).

We assume w.l.o.g. that n = k ·ñ, where k is an odd in-
teger and ñ ∈ N. An important example of estimators
for the expected value is the median-of-means method
(Nemirovsky and Yudin, 1983; Alon et al., 1996; Huber
and Ronchetti, 2009), defined by

µ̂(D0) .= med
(

1
ñ

ñ∑
i=1

Yi, . . . ,
1
ñ

kñ∑
i=(k−1)ñ+1

Yi

)
. (6)

One of the main advantages of the median-of-means
estimate µ̂ is formulated in Theorem 2.1 below (Lugosi
and Mendelson, 2019a, Theorem 2).
Theorem 2.1. Let {Y1, . . . , Yn} be an i.i.d. sample
and assume that D2Y1 = σ2 < ∞. Let δ ∈ (0, 1),
k = ⌈8 log(1/δ)⌉ and n = ñk, then

P
(

| µ̂− µ | ≤ σ

√
32 log(1/δ)

n

)
> 1 − δ. (7)

Under milder moment conditions, a generalized bound
can be proved (Devroye et al., 2016, Theorem 3.1),
(Lugosi and Mendelson, 2019a, Theorem 3):
Theorem 2.2. Let {Y1, . . . , Yn} be an i.i.d. sample
and EY1 = µ. Assume that there is an a ∈ (0, 1] with

E
[
|Y − EY |1+a

]
= M < ∞. (8)

Let δ > 0, k = ⌈8 log(2/δ)⌉ and n = kñ. Then, the
median-of-means estimate µ̂ with k blocks satisfies

P
(

| µ̂−µ | ≤ 8
(

12M1/a log(1/δ)
n

) a
1+a
)
> 1 − δ. (9)
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Moreover, for any mean estimator µn, there exists a
probability distribution with mean µ and (1+a)th cen-
tral moment M , such that

P
(

|µn − µ | >
(
M1/a log(2/δ)

n

) a
1+a
)

≥ δ. (10)

The second part of the theorem shows that these type
of bounds are optimal w.r.t. δ up to a constant factor,
which implies the tightness of the presented type II
error rate of the proposed test.

3 EXPLOITING SYMMETRY

Our main goal in this paper is to construct confidence
intervals with optimal sizes, see Equation (9), based
on a non-asymptotically exact hypothesis test, hence
for a given θ ∈ R let us consider

H0 : µ = θ and H1 : µ ̸= θ (11)

under the following assumptions:
A1. Y1, . . . , Yn are i.i.d.
A2. QY is symmetric about µ.

We emphasise that the hypothesis test that we present
is exact under these two conditions. We note that the
assumption that variables {Y1, . . . , Yn} have the same
distribution can be weakened for most of our results.
The key property that we need is that each variable
possesses the same symmetry point µ. Nevertheless, we
work with an additional assumption on the moment of
the observed variables to quantify the type II error
probabilities or the power of the presented test:
A3. E

[
|Y − EY |1+a

]
= M < ∞ for an a ∈ (0, 1].

We also quantify the rate of shrinkage of the corre-
sponding confidence regions under Assumptions A1-
A3. One can observe that from A2 and A3 it follows
that EY = µ. Furthermore, in particular if a = 1, then
assumption A3 requires σ2 < ∞. We emphasise that
the presented test does not use the knowledge of con-
stants a and M , yet we can prove the optimality of the
sizes of the corresponding confidence regions that we
build. This is one of the main advantage of our scheme
compared to the methods that are used in practice, for
example, see (Bubeck et al., 2013).

Let p be the desired (rational) significance level. Let us
find integers r and m such that p = r/m. In this paper
we propose a new resampling method to test nullhy-
pothesis H0. Let Y (θ) = α(Y − θ) + θ be a param-
eterized random variable defined with a Rademacher
variable α independent of Y . Clearly E[Y (θ)] = θ and

Y (θ) is symmetric about θ. By Jensen’s inequality

E[|Y (θ) − E[Y (θ)]|1+a]] = E[|α|1+a|Y − θ|1+a]

≤ E
[(

2|Y − µ| + 2|µ− θ|
2

)1+a]
≤ E

[
1
2(2|Y − µ|)1+a + 1

2(2|µ− θ|)1+a

]
= 2a

(
E[|Y − µ|1+a] + d1+a

)
≤ 2(M + d1+a),

(12)

where d .= | θ − µ |. In particular, for a = 1 we can
compute the exact variance of Y (θ) by

D2[Y (θ)] = E[α2(Y − θ)2]

= E[(Y − µ)2] + E[(µ− θ)2] = σ2 + d2.
(13)

For notational simplicity letW .= Y−µ be the centered
version of Y and W0

.= {Wi}n
i=1, where Wi = Yi−µ for

i ∈ [n]. Keep in mind, however, that {Wi}n
i=1 are not

observed. Note that Y = µ+W and Y (µ) = µ+α ·W ,
where α is a Rademacher variable, have the same dis-
tribution, because W is symmetric about zero. More-
over, one can prove that Y and Y (µ) are condition-
ally i.i.d. w.r.t. |W |, hence they are also exchange-
able (Csáji et al., 2015). On the other hand if θ ̸= µ,
then the distribution of Y differs from the distribu-
tion of Y (θ), e.g., a key difference is that Y (θ) is sym-
metric about θ whereas Y is symmetric about µ. We
aim at detecting this difference. For our test we gen-
erate alternative samples using H0 and compare the
new (resampled) datasets to the original one, i.e., for
i ∈ [n] and j ∈ [m− 1] let {αi,j} be i.i.d. random signs
(Rademacher variables), for j ∈ [m− 1], and let

Dj(θ) .= {α1,j(Y1 − θ) + θ, . . . , αn,j(Yn − θ) + θ} (14)

be parameter-dependent alternative samples. Further,
let D0(θ) .= D0, for θ ∈ R. It is easy to see that Dj(θ) is
an i.i.d. sample from the distribution of Y (θ) for j ̸= 0.
We decide about H0 by comparing D0(θ) to Dj(θ) for
j ∈ [m− 1] with a ranking function, see Definition 3.1.
If D0(θ) differs significantly from Dj(θ), then we reject
H0, otherwise we accept the null hypothesis.
Definition 3.1 (ranking function). Let A be a mea-
surable space (with some σ-algebra), a (measurable)
function ψ : Am → [m ] is called a ranking function if
for all (a1, . . . , am) ∈ Am it satisfies P1 and P2.

P1 For all permutation τ on set {2, . . . ,m}, we have

ψ
(
a1, a2, . . . , am

)
= ψ

(
a1, aτ(2), . . . , aτ(m)

)
,

that is function ψ is invariant w.r.t. reordering
the last m− 1 terms of its arguments.

P2 For all i, j ∈ [m ], if ai ̸= aj, then we have

ψ
(
ai, {ak}k ̸=i

)
̸= ψ

(
aj , {ak}k ̸=j

)
,

where the simplified notation is justified by P1.
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The value of a ranking function is called the rank. The
main observation about the rank is given by the lemma
that follows (Csáji and Tamás, 2019, Lemma 1):
Lemma 3.1. Let ξ1, . . . , ξm be almost surely pair-
wise different exchangeable random elements in a mea-
surable space and let ψ be a ranking function, then
ψ(ξ1, . . . , ξm) is uniformly distributed on [m].

The original sample and the alternative samples are
random vectors in Rn. We can observe that the
datasets can be identical, for example, if every sign
that we generate equals to +1. This poses a technical
challenge in ranking. In order to resolve this problem,
we use a tie-breaking permutation, cf. (Csáji et al.,
2015). Let π be a random permutation on [m − 1]0

.=
{0, . . . ,m − 1} generated uniformly from the permu-
tation group on [m − 1]0, independently from D0 and
{αi,j}. We define the a.s. pairwise different extended
datasets as Dπ

j (θ) .= (Dj(θ), π(j)) for j = 0, . . . ,m−1.
It is easy to prove that Dπ

0 (µ), . . . ,Dπ
m−1(µ) are ex-

changeable, hence we obtain an exact hypothesis test
with significance level r/m if we reject H0 if and only
if we have ψ(Dπ

0 (θ), . . . ,Dπ
m−1(θ)) > m− r.

Theorem 3.1. For any ranking function ψ, if as-
sumptions A1 and A2 hold, then we have

P
(
ψ
(

Dπ
0 (µ), . . . ,Dπ

m−1(µ)
)
> m− r

)
= r

m
. (15)

We can observe that (15) provides the exact probabil-
ity of type I error for every sample size n ∈ N and
for every symmetric distribution QY . Our conditions
on ψ are also very mild. In fact at this point we allow
degenerate rankings, as well, e.g., rankings that only
depend on the tie-breaking permutation. Nevertheless,
we would like to avoid these “pathological” choices and
apply rankings that admit finite sample PAC bounds.

One of our main ideas is to compare the empirical es-
timate of the distance between parameter θ and the
median-of-means estimator computed from each sam-
ple. If θ = µ, then each estimate has the same dis-
tribution, otherwise µ̂(D0) is “farther” from θ than
µ̂(Dj(θ)) with high probability for j = 1, . . . ,m − 1.
Let us consider reference variable functions

Sj(θ) .= | µ̂(Dj(θ)) − θ | for j = 0, . . . ,m− 1. (16)

Because of the reasoning above S0(θ) should be greater
than Sj(θ) for j ∈ [m − 1] for those θ ∈ R that are
“far” from µ. However, S0(θ) and Sj(θ) have the same
distribution if θ = µ, and they are exchangeable. In
conclusion we define the ranking function by

R(θ) = ψ(Dπ
0 (θ), . . . ,Dπ

m−1(θ))

.= 1 +
m−1∑
i=1

I
(
S0(θ) ≻π Sj(θ)

)
,

(17)

Algorithm 1: RMM Hypothesis Test (for µ = θ)
Inputs: i.i.d. sample D0, rational significance level p,

tie-breaking permutation π on [m− 1]0

1: Choose integers 1 ≤ r < m such that p = r/m.
2: For (i, j) ∈ [n] × [m − 1]0 generate n(m − 1) in-

dependent Rademacher signs {αi,j}.
3: Constructm−1 alternative datasets for j ∈ [m−1]:

Dj(θ) .= {α1,j(Y1 − θ) + θ, . . . , αn,j(Yn − θ) + θ}

and let Dπ
j (θ) .= (Dj(θ), π(j)) for j ∈ [m− 1]0.

4: Compute the reference variables
Sj(θ) .= | µ̂(Dj(θ)) − θ | for j = 0, . . . ,m− 1.

5: Compute the rank R(θ) according to (17).
6: Reject H0 if and only if R(θ) > m− r.

where ≺π is defined as the standard < ordering with
tie-breaking, i.e., Sj(θ) ≺π Sk(θ) if and only if
Sj(θ) < Sk(θ) or

(
Sj(θ) = Sk(θ) and π(j) < π(k)

)
(Csáji et al., 2015). We reject θ if and only if R(θ) >
m− r. The test is summarized in Algorithm 1.

Theorem 3.2. Assume A1 and A2, then the test de-
fined in Algorithm 1 is exact, i.e., for every 1 ≤ r < m

P ( R(µ) > m− r ) = r

m
. (18)

Proof. The claim is a corollary of Theorem 3.1. One
can show that D0,D1(µ), . . . ,Dm−1(µ) are exchange-
able (Csáji and Tamás, 2019) and use Lemma 3.1.

We prove a non-asymptotic pointwise bound for the
type II error probability of the presented test.
Theorem 3.3. Assume A1, A2 and A3. Let δ > 0,
k = ⌈8 log(2(m− r+1)/δ)⌉, 1 ≤ r < m be user-chosen
integers and R be defined by (17). If

8
(24(M + d1+a)1/a log

(
m−r+1

δ

)
n

) a
1+a

<
d

2 , (19)

holds for d = |θ − µ |, then we have

P ( R(θ) ≤ m− r ) ≤ δ. (20)

We can observe that if we fix δ, m, r and θ, then
Equation (19) holds for n large enough. In addition,
for a given sample size we can find the smallest δ for
which (19) holds. In this case the smallest upper bound
for (20) will be exponentially small with respect to the
sample size. Moreover, if Equation (19) is satisfied for
a parameter θ with D = |µ− θ |, then it also holds for
every θ ∈ R such that |µ− θ | ≥ D.
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Proof. Let us fix θ ̸= µ, integers r < m and use nota-
tion µ̂j .= µ̂(Dj(θ)) for j ∈ [m − 1]0. First we observe
that if |µ̂0 − µ | < d/2, then |µ̂0 − θ | ≥ d/2, thus

P( R(θ) > m− r ) ≥ P
(

| µ̂0 − µ | < d/2 and

| µ̂j − θ | < d/2 for j = 1, . . . ,m− r
)
.

(21)

Then, we define ancillary events as

B0
.= { | µ̂0 − µ | < d/2 },

Bj
.= { | µ̂j − θ | < d/2 } for j = 1, . . . ,m− 1.

(22)

By the union bound, we have

P
( m−r⋃

j=0
B̄j

)
≤

m−r∑
j=0

P(B̄j)

= P
(

|µ̂0 − µ| ≥ d/2
)

+
m−r∑
j=1

P
(

|µ̂j − θ| ≥ d/2
)
.

(23)

Because of (19), the first term can be bounded as

P(| µ̂0 − µ | ≥ d/2) (24)

≤ P
(

| µ̂0 − µ | > 8
(

12M1/a log(1/δ̃)
n

) a
1+a
)

≤ δ̃,

where δ = (m − r + 1)δ̃. The other terms can be
bounded similarly by

P(|µ̂j − θ| ≥ d/2) ≤ (25)

P
(

| µ̂j − θ | > 8
(

24(M + d1+a)1/a log(1/δ̃)
n

) a
1+a
)

≤ δ̃.

In conclusion, under (19) we have

P( R(θ) ≤ m− r ) ≤ (m− r + 1) δ̃ = δ, (26)

which proves the desired bound.

If a = 1, the constants of the previous theorem can be
strengthened to obtain Theorem 3.4.
Theorem 3.4. Assume A1, A2 and A3. Let δ > 0,
k = ⌈8 log((m− r + 1)/δ)⌉, 1 ≤ r < m be user-chosen
integers and R be defined by (17). If

4(σ2 + d2)32 log((m− r + 1)/δ)
n

≤ d2 (27)

holds for d = |µ− θ|, then we have

P( R(θ) ≤ m− r ) ≤ δ. (28)

The proof is included in the supplementary materials.

4 CONFIDENCE INTERVALS

In this section we apply the presented hypothesis test
to define the RMM method to construct confidence
regions for µ. We include those parameters in the con-
fidence set that are accepted by Algorithm 1, that is

Θn
.= { θ : R(θ) ≤ m− r }. (29)

Note that we do not need to regenerate the random
signs for each θ, the same set of signs can be used.
Moreover, as we will see, Θn is a (possibly degenerate)
interval and its endpoints can be explicitly computed.

Because of Theorem 3.2, the following claim holds:
Corollary 4.1. Assume A1 and A2, then Θn is an
exact confidence region for µ, i.e., for 1 ≤ r < m

P
(
µ ∈ Θn

)
= 1 − r

m
. (30)

Additionally, Theorem 3.3 implies that the inclusion
probability for any θ ̸= µ goes to zero with an expo-
nential rate as the sample size tends to infinity. In this
section we seek to give a PAC bound on the size of Θn

under the finite moment condition, A3. Let

diam(Θn) .= sup
θ1,θ2

{
| θ1 − θ2 | : θ1, θ2 ∈ Θn

}
(31)

as usually. It can be shown that diam(Θn) is a random
variable, which can be infinite. We prove optimal PAC
bounds on the shrinkage of diam(Θn).
Theorem 4.1. Assume A1, A2 and A3. Let m = 2,
δ > 0, k = ⌈8 log(20/δ)⌉, R be defined by (17) and
Θn

.= { θ : R(θ) ≤ 1 }, then for n ≥ k(k + 8 log(k))

P
(

diam(Θn) > 8
(

12M1/a log(10/δ)
n

) a
1+a
)

≤ δ. (32)

Proof. The proof consists of several parts. First, we fix
ε > 0 and bound the probability

P(diam(Θn) > ε) (33)

from above with two terms. We handle the case when
there are too many or too few +1 in a random sign
vector realization separately, because the probability
of these events is exponentially small. Let

Zℓ
.= 1

2

ℓñ∑
i=(ℓ−1)ñ+1

(1 − αi) for ℓ = 1, . . . , k. (34)

We can see that {Zℓ}k
ℓ=1 are independent binomial

variables with parameters ñ and 1/2 and expected value
ñ/2. Let us define the events that follow

Aℓ
.=
{

|Zℓ − EZℓ | ≤ ñ/4
}
, for ℓ = 1, . . . , k,

A
.=

k⋂
ℓ=1

Aℓ =
{

max
1≤ℓ≤k

|Zℓ − EZℓ| ≤ ñ/4
}
.

(35)
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By the law of total probability, we have

P(diam(Θn) > ε) = P(diam(Θn) > ε |A)P(A)

+ P(diam(Θn) > ε | Ā)P(Ā)

≤ P({diam(Θn) > ε} ∩A) + P(Ā).

(36)

We bound the second term with the union bound and
Hoeffding’s inequality as

P
(

max
1≤ℓ≤k

|Zℓ − EZℓ| > ñ/4
)

= P
( k⋃

ℓ=1
Āℓ

)

≤
k∑

ℓ=1
P(Āℓ) = k P(Āℓ)

≤ k P(|Zℓ − EZℓ| > ñ/4) ≤ 2 k exp
(

− n

8k

)
.

(37)

In the next step, we show that if A occurs, then Θn is
a bounded interval. Reference variable function

S0(θ) = | µ̂(D0) − θ | (38)

is the absolute value of a linear function with slope
−1. Let us define the sub-sample alternative lines as

S
(ℓ)
1 (θ) .= 1

ñ

ℓñ∑
i=(ℓ−1)ñ

αi,1(Yi −θ) for ℓ = 1, . . . , k. (39)

Then, the alternative reference function equals to

S1(θ) = |µ̂(D1(θ)) − θ|

=
∣∣med

(
S

(1)
1 (θ) + θ, . . . , S

(k)
1 (θ) + θ)

)
− θ
∣∣

=
∣∣med

(
S

(1)
1 (θ), . . . , S(k)

1 (θ)
)∣∣,

(40)

which is the median of linear functions with slopes
strictly between −1 and +1. Without taking the abso-
lute value, the median of linear functions have exactly
one intersection with µ̂(D0) − θ, i.e., equation

µ̂(D0) − θ = med
(
S

(1)
1 (θ), . . . , S(k)

1 (θ)
)

(41)

has exactly one solution. It can be shown that the solu-
tion of this equation equals to the median of the inter-
sections of µ̂(D0) − θ with sub-sample lines {S(ℓ)

1 (θ)}.
These intersections can be computed as

ν−
ℓ =

µ̂(D0) − 1
ñ

∑ℓñ
i=(ℓ−1)ñ αi,1Yi

1 − 1
ñ

∑ℓñ
i=(ℓ−1)ñ αi,1

= µ+
µ̂(W0) − 1

ñ

∑ℓñ
i=(ℓ−1)ñ αi,1Wi

1
ñ

∑ℓñ
i=(ℓ−1)ñ(1 − αi,1)

= µ+
µ̂(W0) − 1

ñ

∑ℓñ
i=(ℓ−1)ñ αi,1Wi

2
ñZℓ

(42)

for ℓ = 1, . . . , k. Hence, the median of intersections

ν− = med
ℓ∈[k]

ν−
ℓ

= µ+ med
ℓ∈[k]

(
µ̂(W0) − 1

ñ

∑ℓñ
i=(ℓ−1)ñ αi,1Wi

2
ñZℓ

)
= µ+ V −,

(43)

is an intersection of S0(θ) and S1(θ), where

V − .= med
ℓ∈[k]

(
µ̂(W0) − 1

ñ

∑ℓñ
i=(ℓ−1)ñ αi,1Wi

2
ñZℓ

)
. (44)

Similarly, another intersection of S0(θ) and S1(θ) is

ν+ = µ+ V +, (45)
where

V + .= med
ℓ∈[k]

(
µ̂(W0) + 1

ñ

∑ℓñ
i=(ℓ−1)ñ αi,1Wi

2
ñ (ñ− Zℓ)

)
. (46)

Since S1(θ) is “flatter” than S0(θ), these are the only
two intersections and

Θn = { θ : S0(θ) ≺π S1(θ) } = [λ, ϱ ]π, (47)

where λ .= min(ν−, ν+), ϱ .= max(ν−, ν+) and [·, ·]π
denotes the interval of which endpoints are included
if π(0) < π(1). We can also observe that V − and V +

have the same symmetric distribution and both ν− and
ν+ are well-defined, because ñ/4 ≤ Zℓ ≤ 3ñ/4. Thus, the
size of the confidence interval can be computed as

diam(Θn) = | ν+ − ν− | = |V + − V − |. (48)

We note that the formulas for ν± remain valid if all
{Zℓ, ñ − Zℓ}k

ℓ=1 are positive and are extended for the
degenerate cases in Algorithm 2. Using symmetry and
the application of the union bound yield

P(diam(Θn) > ε |A) ≤ P(|V +| > ε/2 or |V −| > ε/2 |A)

≤ P(|V +| > ε/2 |A) + P(|V −| > ε/2 |A)

= 2 · P(|V −| > ε/2 |A) ≤ 4 · P(V − > ε/2 |A). (49)

We can see that Zℓ is independent of the nominator
in (44), because αi,1Wi and αi,1 are independent for
each i ∈ [n]. We consider the events that follow

B = {V − > ε/2}, (50)

B̃ =
{

med
ℓ∈[k]

(
µ̂(W0) − 1

ñ

∑ℓñ
i=(ℓ−1)ñ αi,1Wi

1
2

)
> ε/2

}
.

Our key observation is that B ∩ A ⊆ B̃ ∩ A, because
when V − is positive, then decreasing Zℓ in the denom-
inator for every ℓ ∈ [k] to ñ/4, increases the median.
Consequently similarly as in (49)

P(B ∩A) ≤ P(B̃ ∩A) ≤ 2 · P
(
µ̂(W0) > ε/8

)
. (51)
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Figure 1: Construction of the confidence interval with
m = 2 (50 % confidence), n = 30 and k = 3.

The details of this calculation can be found in the sup-
plementary material. In conclusion, if k = ⌈8 log(2/δ̃)⌉,

ε = 64
(

12M1/a log(1/δ̃)
n

) a
1+a and n ≥ k(8 log(k) + k):

P
(

diam(Θn) > 8
(

12M1/a log(1/δ̃)
n

) a
1+a
)

≤ 2 k exp
(

− n

8k

)
+ 8 δ̃ ≤ 10 δ̃.

(52)

from which the theorem follows.

We proved that Θn = [λ, ϱ ]π, where random permu-
tation π “decides” about the endpoints, and Θn is
bounded with high probability. In addition, µ̂(D0) is
always included in Θn if Θn ̸= ∅. The proof provided
explicit formulas, cf. (42), (43), and (45), to construct
the confidence interval for m = 2. The time and space
complexities of the algorithm are linear in n and k.

An illustrative example of the confidence interval (Θn)
construction for m = 2 and k = 3 is presented in
Figure 1. In this example, the dashed lines are the sub-
sample reference and alternative lines, while the solid
lines are the reference variable functions for j = 0 and
j = 1. Then, the confidence region is given by the
intersections of the reference variables for p = 0.5.

We also show that Θn = [λ, ϱ ]π for every m ≥ 2
and present an explicit formula for the interval for all
sign realizations {αi,j} and m ≥ 2 in Algorithm 2. We
prove, as well, that Θn admits the special form of (60).

In (53), we calculate, for each j and ℓ, the points in
which S(ℓ)

j (θ) is equal to µ̂− θ and θ− µ̂, respectively.
With high probability, these functions have only one
intersection defined by the formula in (53) indepen-
dently from s, i.e., typically ν−

j,−1 = ν−
j,+1. However, a

Algorithm 2: RMM Confidence Interval
Inputs: i.i.d. sample D0, rational significance level p,

tie-breaking permutation π on [m− 1]0

odd median-of-means parameter k
1: Choose integers 1 ≤ r < m such that p = r/m.
2: Randomly generate n · (m − 1) independent

Rademacher signs {αi,j} for (i, j) ∈ [n] × [m− 1]0.
3: For all (ℓ, j) ∈ [k]× [m−1] and s ∈ {±1}, compute

the extended values

ν±
ℓ,j,s =

µ̂(D0) ± 1
ñ

∑ℓñ
i=(ℓ−1)ñ αi,jYi

1 ± 1
ñ

∑ℓñ
i=(ℓ−1)ñ αi,j

, (53)

where ±c
0 = ±∞ for all c > 0 and 0

0 = s · ∞.
4: For all j ∈ [m− 1] and s ∈ {±1}, let

ν+
j,s

.= med
ℓ∈[k]

ν+
ℓ,j,s, ν−

j,s
.= med

ℓ∈[k]
ν−

ℓ,j,s. (54)

5: For all j ∈ [m− 1], let

vj .= [ν+
j,−1, ν

+
j,+1, ν

−
j,−1, ν

−
j,+1] (55)

6: For j ∈ [m− 1] if π(j) > π(0), let

λj
.= vj

(1), ϱj
.= vj

(4) (56)

otherwise let

λj
.= vj

(2), ϱj
.= vj

(3), (57)

where vj
(1), v

j
(2), v

j
(3), v

j
(4) are ordered.

7: Let λ(1), . . . , λ(m−1) and ϱ(1), . . . , ϱ(m−1) be the
order statistics w.r.t. ≺π and let

λ
.= λ(r), ϱ

.= ϱ(m−r). (58)

8: Return [λ, ϱ ]π
.= (59)

(λ, ϱ) ∪ {λ : π(0) < π(η1)} ∪ {ϱ : π(0) < π(η2)},

where η1, η2 ∈ [m − 1] are the original indices of
λ(r) and ϱ(m−r), i.e., their indices before ordering.

technical challenge is posed by the tie-breaking. If for
some ℓ ∈ [k] the corresponding signs {αi,j}ℓñ

i=(ℓ−1)ñ are
all equal to +1, S(ℓ)

j (θ) is parallel with µ̂ − θ. In this
case, we define the extended intersection values as +∞
or −∞, respectively. For 0/0, the extended intersec-
tion values are determined based on the tie-breaking
permutation π. Index s is introduced to include the
dependence of these extended values on π. Then, the
interval in which we have S0(θ) ≺π Sj(θ) is determined
by (54), (55), (56) and (57), and the RMM confidence
regions are built up from these intervals, see (60).
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Theorem 4.2. For m ≥ 2 we have

Θn =
⋃

J⊆[m−1],
|J|=m−r

⋂
j∈J

{
θ : S0(θ) ≺π Sj(θ)

}
, (60)

thus Θn is an interval that contains µ̂(D0), if Θn ̸= ∅.

Based on these observations, we can prove the opti-
mality of our method, more precisely, we have
Theorem 4.3. Assume A1, A2 and A3. Let r < m
be user-chosen integers, δ > 0, k = ⌈8 log(20(m−r)/δ)⌉,
then for n ≥ k(k + 8 log(k)), we have

P
(

diam(Θn) > 8
(12M1/a log

( 10(m−r)
δ

)
n

) a
1+a
)

≤ δ.

(61)

Proof. The proof relies on the union bound and it is
essentially the same as the one used in the end of the
proof of (Szentpéteri and Csáji, 2023, Theorem 3).

If a = 1, an easy computation yields a similar result
with better constants based on Theorem 2.1.
Theorem 4.4. Assume A1, A2 and A3. Let r < m
be user-chosen integers, δ > 0, k = ⌈8 log(10(m−r)/δ)⌉,
then for n ≥ k(k + 8 log(k)), we have

P
(

diam(Θn) > σ

√
32 log(10(m− r)/δ)

n

)
≤ δ. (62)

5 MULTIVARIATE HYPOTHESIS TEST

In this section we assume that Y is a q-dimensional
random vector and {Y i}n

i=1 is an i.i.d. sample, cf. A1.
Henceforth, we denote the coordinates of Y with lower
indices. Our assumptions are as follows.

A4. Y − µ
d= µ− Y, for some vector µ ∈ Rq.

A5. Σ .= E[(Y − EY )(Y − EY )T] exists.

We note that the components of Y can be correlated,
and A4 does not require symmetry w.r.t. each coor-
dinate axis. It is easy to see that from A4 and A5 it
follows that µ = EY . Let us denote the greatest eigen-
value of covariance matrix Σ by λ∗ = λmax(Σ).

It is known that for a zero mean multidimensional nor-
mal variable Z with var(Z) = Σ, we have

P(∥Z∥ − E∥Z∥ ≥ t
√
n) ≤ exp

(
− nt2

2λ∗

)
(63)

for the Euclidean norm ∥·∥, see (Boucheron et al., 2013;
Cirel’son et al., 2006; Lugosi and Mendelson, 2019a).
Because of

E∥Z∥ ≤
√
E[∥Z∥2] =

√
Tr(Σ), (64)

if µ̄n denotes the empirical mean of a normally dis-
tributed i.i.d. sample {Zi}n

i=1, then for all δ ∈ (0, 1)

P
(

∥µ̄n − µ∥ >
√

Tr(Σ)
n

+
√

2λ∗ log(1/δ)
n

)
≤ δ. (65)

In general, it is hard to reach this high probability
bound for an unknown distribution with covariance
matrix Σ, e.g., the coordinate-wise median-of-means

µ̃j
.= µ̂({Y i

j }n
i=1) for j = 1, . . . , q, (66)

admits a much weaker PAC bound. For all δ ∈ (0, 1)
if k = ⌈8 log(1/δ)⌉ only a dimension dependent in-
equality can be proved (Lugosi and Mendelson, 2019a),
where log(1/δ) is multiplied by the trace instead of the
largest eigenvalue of Σ, i.e.,

P
(

∥µ̃− µ∥ ≤
√

32 Tr(Σ) log(q/δ)
n

)
≥ 1 − δ. (67)

One may construct estimators with stronger guar-
antees. Several methods (such as the geometrical
median-of-means (Hsu and Sabato, 2016; Minsker,
2015) and the median-of-means tournaments (Lugosi
and Mendelson, 2019b)) are analyzed in the neat sur-
vey of Lugosi and Mendelson (2019a). The median-of-
means tournament estimator and also its polynomial
time relaxation are proved to be in the subgaussian
regime (Hopkins, 2020; Lugosi and Mendelson, 2019b).

In this paper we use any subgaussian estimator ˆ̂µ, such
as the median-of-means tournament estimator (Lugosi
and Mendelson, 2019b), to define a meta test for the
mean estimation problem in the multivariate setup. In
particular, we assume that
A6. For the expected value estimator ˆ̂µ and any δ > 0,
there exist positive constants c1, c2 and c3 such that

P
(

∥ ˆ̂µ− µ∥>
√
c1 Tr(Σ)

n
+
√
c2λ∗ log(c3/δ)

n

)
≤ δ. (68)

For θ ∈ Rq we consider the nullhypothesis H0 : µ = θ
and alternative H1 : µ ̸= θ. We generalize the RMM
method to the multivariate case by constructing the
alternative datasets of vectors for j ∈ [m− 1] as

Dj(θ) .= {α1,j1⊙(Y1 −θ)+θ, . . . , αn,j1⊙(Yn −θ)+θ},

where ⊙ denotes the Hadamard (element-wise) prod-
uct. By introducing Dπ

j
.= (Dj(θ), π(j)) for j ∈

[m− 1]0, and defining the reference variables as

Sj(θ) .= ∥ ˆ̂µ(Dj(θ)) − θ ∥ (69)

for j = 0, . . . ,m − 1, the nullhypothesis is rejected as
in Algorithm 1, i.e., if and only if R(θ) > m−r, where
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R(θ) is defined as in (17). A detailed description of
this algorithm can be found in the appendix.

The exact confidence level of this test is stated under
assumptions 0.A1 and A4 in the following theorem:
Theorem 5.1. Assume A1 and A4, then the defined
hypothesis test is exact, i.e., for every 1 ≤ r < m

P ( R(µ) > m− r ) = r

m
. (70)

Finite sample guarantees that follow can be proved for
the type II error probability of the presented test.
Theorem 5.2. Assume A1, A4, A5 and A6. Let δ > 0
and r < m be user-chosen integers. For θ ̸= µ if

√
c1(Tr(Σ) + ∆2)

n
+

√√√√c2(λ∗ +∆2) log
(

c3(m−r)
δ

)
n

<
∆
2 ,

(71)
holds for ∆ = ∥ θ − µ ∥, then we have

P( R(θ) > m− r ) ≥ 1 − δ. (72)

The complete proofs are presented in the supplements.

6 NUMERICAL EXPERIMENT

In this section we present a numerical experiment com-
paring our theoretical bounds on the sizes of RMM
confidence intervals, given by Theorem 4.3, with the
theoretical confidence bound for the median-of-means
estimator, given in (Lugosi and Mendelson, 2019a,
Theorem 3), and with the empirical sizes of the RMM
and SPS confidence regions. We consider a scalar mean
estimation problem, where Y is sampled from a sym-
metrized Pareto distribution with scale parameter 1
and shape parameter 1.6. Throughout our experiments
we considered 0.5-level confidence regions, in particu-
lar m = 2 and r = 1 were used, a sample size of
n = 12900 and s = 10000 independently simulated tra-
jectories. We performed the experiments with δ = 0.1,
a = 0.5 and set k according to Theorem 4.3.

In Figure 2 the (1 − δ)-quantiles of the empirical con-
fidence interval sizes of the proposed RMM method
and the SPS algorithm are compared with the the-
oretical bounds of (61) and (Lugosi and Mendelson,
2019a, Theorem 3) for each sample size.

Although the theoretical bounds are a bit conservative
compared to the empirical sizes, it can be observed
that the difference between the theoretical bounds are
negligible and that our data-driven RMM algorithm
has a better empirical sample complexity than using
the results of (Lugosi and Mendelson, 2019a, Theo-
rem 3). Our experiments are also indicative of the phe-
nomenon that in case of heavy-tailed distributions, the
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Figure 2: Comparison of confidence interval sizes.

RMM method outperforms the original SPS construc-
tion regarding sample complexity.

7 CONCLUSIONS

Constructing a confidence region for the mean of a
distribution is an essential and well-studied problem in
statistics. However, standard approaches either build
on asymptotic results or on the knowledge of some
moments that might be harder to get than the mean.

In this paper the problem of estimating the mean of
a symmetric, heavy-tailed distribution from an i.i.d.
sample was addressed, and a new method, called the
resampled meadian-of-means (RMM), was introduced.
RMM is completely data-driven, it does not require
additional a priori knowledge, e.g., information on mo-
ments. First the RMM based hypothesis test was pre-
sented, then the corresponding RMM confidence in-
terval was constructed. It was shown that the RMM
confidence interval has exact coverage probability for
any finite sample size. Moreover, optimal PAC bounds
were proved for the shrinkage of the RMM intervals.
Finally, the construction was extended to the multi-
variate case and RMM was also evaluated empirically.
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Supplementary Materials for “Data-Driven Confidence Intervals
with Optimal Rates for the Mean of Heavy-Tailed Distributions”

These supplementary materials contain the proofs which were left out from the main paper due to lack of space.
Some additional details for the main proofs are also included. The time and space complexity of the confidence
interval construction is studied, as well, and a pseudocode is given for the multivariate version of the RMM test.
Finally, additional experiments are presented comparing the sizes of the RMM and SPS confidence intervals
to nonparametric tests such as the sign test and Wilcoxon signed-rank test and illustrating the distribution of
the confidence interval endpoints, and the empirical coverage probabilities of the tests based on the asymptotic
theory, SPS and RMM.

1 Supplementary Proofs
This section contains the proofs of Theorems 3.4, 3.6, 3.7, and 5.2; as well as additional details for Theorem 3.5.

Proof of Theorem 3.4.

In this section, we present the detailed proof of Theorem 3.4.

Let us fix θ ̸= µ, integers 1 ≤ r < m and use notation µ̂j .= µ̂(Dj(θ)) for j = 0, . . . , m − 1. The following lower
bound holds

P(R(θ) > m − r) ≥ P
(

|µ̂0 − µ| < d/2, |µ̂j − θ| < d/2 for j = 1, . . . , m − r
)
, (1)

because from |µ̂0 − µ| < d/2 it follows that |µ̂0 − θ| ≥ d/2. Let us define events

B0
.= { | µ̂ − µ | < d/2 },

Bj
.= { | µ̂j − θ | < d/2 } for j = 1, . . . , m − 1.

(2)

By the union bound we have

P
( m−r⋃

j=0
B̄j

)
≤

m−r∑
j=0

P(B̄j) ≤ P
(

|µ̂0 − µ| ≥ d/2
)

+
m−r∑
j=1

P
(

|µ̂j − θ| ≥ d/2
)
. (3)

and henceforth if
4(σ2 + d2)32 log((m − r + 1)/δ)

n
< d2, (4)

then we have

P
(

|µ̂j − θ| ≥ d/2
)

≤ P
(

|µ̂j − θ| >

√
(σ2 + d2)32 log((m − r + 1)/δ)

n

)
≤ δ

m − r + 1 . (5)

In addition because of

4σ2 32 log((m − r + 1)/δ)
n

≤ 4(σ2 + d2)32 log((m − r + 1)/δ)
n

< d2, (6)

we also have

P
(

|µ̂0 − θ| ≥ d/2
)

≤ P
(

|µ̂j − θ| > σ

√
32 log((m − r + 1)/δ)

n

)
≤ δ

m − r + 1 . (7)

In conclusion

P
(

R(θ) > m − r
)

≥ P
( m−r⋂

j=0
Bj

)
≥ 1 −

m−1∑
j=0

P(B̄j) ≥ 1 − δ. (8)

Note that for any fixed θ for n large enough (4) is satisfied. The dependence on δ is logarithmic.
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Equality 45 for Theorem 3.5

ν+ = med
ℓ∈[k]

ν+
ℓ = med

ℓ∈[k]

(
µ̂(D0) + 1

ñ

∑ℓñ
i=(ℓ−1)ñ αi,1Yi

1 + 1
ñ

∑ℓñ
i=(ℓ−1)ñ αi,1

)
= med

ℓ∈[k]

(
µ +

µ̂(W0) + 1
ñ

∑ℓñ
i=(ℓ−1)ñ αi,1Wi

1
ñ

∑ℓñ
i=(ℓ−1)ñ(1 + αi,1)

)

= µ + med
ℓ∈[k]

(
µ̂(W0) + 1

ñ

∑ℓñ
i=(ℓ−1)ñ αi,1Wi

2
ñ (ñ − Zℓ)

)
= µ + V +.

(9)

Inequality 51 for Theorem 3.5.

P(B ∩ A) ≤ P(B̃ ∩ A) ≤ P
(

med
ℓ∈[k]

(
µ̂(W0) − 1

ñ

ℓñ∑
i=(ℓ−1)ñ

αi,1Wi

)
> ε/4

)

= P
(

µ̂(W0) − med
ℓ∈[k]

(
1
ñ

ℓñ∑
i=(ℓ−1)ñ

αi,1Wi

)
> ε/4

)
≤ P

(
{µ̂(W0) > ε/8} ∪

{
− med

ℓ∈[k]

1
ñ

ℓñ∑
i=(ℓ−1)ñ

αi,1Wi > ε/8
})

≤ P
(
µ̂(W0) > ε/8

)
+ P

(
med
ℓ∈[k]

1
ñ

ℓñ∑
i=(ℓ−1)ñ

−αi,1Wi > ε/8

)
≤ 2 · P

(
µ̂(W0) > ε/8

)
.

(10)

Proof of Theorem 3.6.

Now, we prove one of our key observations, which shows that Θn is in fact an interval.

Equation (53) follows from the observation that{
θ : S0(θ) ≺π Sj(θ)

}
=

{
θ : I(S0(θ) ≺j Sj(θ)) = 1

}
and⋃

J⊆[m−1],
|J|=m−r

⋂
j∈J

{
θ : S0(θ) ≺π Sj(θ)

}
=

{
θ : R(θ) ≤ m − r

}
. (11)

We show that Θn is an interval in three steps. First, we prove that Ij
.= {θ : S0(θ) ≺π Sj(θ)} is an interval for

any j ∈ [m − 1]. Second, we show that if Ij is nonempty, then µ̂ = µ̂(D0) is included. Finally, we use (11) to
conclude that Θn is an interval, because it is the union of intervals that have a common element or empty.

Clearly µ̂ is a parameter that should be included in Ij , because S0(µ̂) = 0. More precisely if ν ∈ Ij and ν > µ̂,
then we prove that [µ̂, ν] ⊆ Ij (similarly for ν < µ̂ if ν ∈ Ij , then we have [ν, µ̂] ⊆ Ij). Assume by contradiction
that there exists θ̄ ∈ [µ̂, ν] such that Sj(θ̄) ≺π S0(θ̄). We know that Sj is a piecewise linear function, of which
slopes are included in [−1, 1]. We have Sj(θ) ≤ θ + Sj(θ̄) − θ̄ for all θ > θ̄, because the left derivative of Sj is at
most 1. In addition for all θ < ν we have Sj(θ) ≥ θ + Sj(ν) − ν. If π(0) < π(j), then S0(ν) ≺π S0(ν) implies
S0(ν) ≤ Sj(ν) and Sj(θ̄) ≺π S0(θ̄) implies Sj(θ̄) < S0(θ̄). Thus, the contradiction follows by

−µ̂ = ν − µ̂ − ν = S0(ν) − ν ≤ Sj(ν) − ν ≤ Sj(θ) − θ ≤ Sj(θ̄) − θ̄ < S0(θ̄) − θ̄ = θ̄ − µ̂ − θ̄ = −µ̂. (12)

One can proceed similarly for π(0) > π(j). In conclusion we proved that Ij is an interval and if there is at least
one element in Ij , then µ̂ is also included. Henceforth, ∩j∈JIj is also an interval for all J ⊆ [m − 1], which
includes µ̂ or is empty. Finally, the same can be said about the union of these.

Proof of Theorem 3.7.

For the sake of completeness we present the proof of Theorem 3.7. It highly relies on Theorem 1.1 which can be
proved based on Theorem 3.5.
Theorem 1.1. Assume A1, A2 and A3. Let m = 2, δ > 0, k = ⌈8 log(10/δ)⌉, let R(θ) be the rank of S0(θ)
among {S0(θ), S1(θ)} w.r.t. ≻π, and Θn

.= { θ : R(θ) ≤ 1 }, then for n ≥ k(k + 8 log(k)), we have

P
(

diam(Θn) > σ

√
32 log(10/δ)

n

)
≤ δ. (13)



The only difference w.r.t. the proof of Theorem 3.5. is the bound on the probability of {µ̂(W) > ε/8}. We use

k = ⌈8 log(1/δ̃)⌉ and ε = 8σ

√
32 log(1/δ̃)

n . Then for n ≥ k(8 log(k) + k) we have

P
(

diam(Θn) > σ

√
32 log(1/δ̃)

n

)
≤ 2k exp

(
− n

8k

)
+ 8δ̃ ≤ 10δ̃. (14)

Setting δ
.= 10δ̃ completes the proof.

An auxiliary lemma for Theorem 5.2.

In this section, we present an auxiliary lemma for Theorem 4.2 and its detailed proof.
Lemma 1.1. Let Y be a random vector in Rq such that EY = µ, var(Y ) = ΣY and λ∗ = λmax(ΣY ). Let θ ∈ Rq

and α be a Rademacher variable independent of Y , then for Z = α1⊙ (Y − θ) + θ, we have EZ = θ and

Tr(var(Z)) = Tr(ΣY ) + ∥µ − θ∥2
, (15)

λmax(var(Z)) ≤ λmax(ΣY ) + ∥µ − θ∥2
. (16)

Proof. Because of independence we have E[α ⊙ (Y − θ) + θ] = E[α] ⊙ E[(Y − θ)] + θ = θ. We can show (15) by

Tr(var(Z)) = Tr(E[(α1⊙ (Y − θ) + θ − EZ)(α1⊙ (Y − θ) + θ − EZ)T])
= Tr(E[(α1⊙ (Y − θ))(α1⊙ (Y − θ))T]) = Tr(E[(Y − µ + µ − θ)(Y − µ + µ − θ)T])
= Tr(ΣY + (µ − θ)(µ − θ)T) = Tr(ΣY ) + ∥µ − θ∥2

,

(17)

where we also proved that var(Z) = ΣY + (µ − θ)(µ − θ)T. For (16) we use the well-known fact that for a
symmetric real matrix A we have

λmax(A) = max
x:∥x∥=1

xTAx. (18)

Therefore
λmax(var(Z)) = max

x:∥x∥=1
xT var(Z)x = max

x:∥x∥=1
xT(ΣY + (µ − θ)(µ − θ)T)x

= max
x:∥x∥=1

(
xTΣY x + xT(µ − θ)(µ − θ)Tx

)
≤ λ∗ + ∥µ − θ∥2

,
(19)

where we used that the largest eigenvalue of vvT equals to ∥v∥2.

Proof of Theorem 5.2

In this section, we present the detailed proof of Theorem 5.2.

Let us fix θ ̸= µ, integers 1 ≤ r ≤ m and use notation ˆ̂µj .= ˆ̂µ(Dj(θ)) for j = 0, . . . , m − 1. The following lower
bound holds

P(R(θ) > m − r) ≥ P
(

∥ ˆ̂µ0 − µ∥ < ∆/2, ∥ ˆ̂µj − θ∥ < ∆/2 for j = 1, . . . , m − r
)
, (20)

because from ∥ ˆ̂µ0 − µ∥ < ∆/2 it follows that ∥ ˆ̂µ0 − θ∥ ≥ ∆/2. Let us define events

B0
.= {∥ ˆ̂µ0 − µ∥ < ∆/2},

Bj
.= {∥ ˆ̂µj − θ∥ < ∆/2} for j = 1, . . . , m − 1.

(21)

By the union bound we have

P
( m−r⋃

j=0
B̄j

)
≤

m−r∑
j=0

P(B̄j) ≤ P
(

∥ ˆ̂µ0 − µ∥ ≥ ∆/2
)

+
m−r∑
j=1

P
(

∥ ˆ̂µj − θ∥ ≥ ∆/2
)

(22)

Because of A6 the first term can be bounded by

P
(

∥ ˆ̂µ0 − µ∥ ≥ ∆/2
)

≤ P
(

∥ ˆ̂µ0 − µ∥ >

√
c1 Tr(Σ)

n
+

√√√√c2λ∗ log
(

c3(m−r)
δ

)
n

)
≤ δ̃,

(23)



Data-Driven Confidence Intervals for the Mean of Heavy-Tailed Distributions

where δ = (m − r + 1)δ̃. The other terms can be bounded similarly by

P
(

∥ ˆ̂µj − θ∥ ≥ ∆/2
)

≤ P
(

∥ ˆ̂µj − θ∥ >

√
c1(Tr(Σ) + ∆2)

n
+

√√√√c2(λ∗ +∆2) log
(

c3(m−r)
δ

)
n

)
≤ δ̃.

(24)

In conclusion under the required conditions we have

P(R(θ) ≤ m − r) ≤ (m − r + 1)δ̃ = δ, (25)

which proves the desired bound.

2 Space and Time Complexities of the Confidence Interval Construction

Algorithm 2 is computationally light. The time complexity of computing the confidence interval is in O(m · n)
flops, i.e., one can find the endpoints in linear time w.r.t. m · n. Generating the random signs requires (m − 1) · n
steps. Then each αi,j is used a constant times to compute ν±

ℓ,j for all ℓ ∈ [k] and j ∈ [m−1] and each Yi is used m
times. Computing the median of k elements is in O(k), see (Blum et al., 1973), which is much smaller than O(n).
Finally computing the quantiles of m − 1 elements is also in O(m). The space complexity of the algorithm is
trivially in O(m·n), however, one does not need to memorize each {αi,j} thus it can be reduced to O(max(m, n)).
One can also reduce the space complexity by using recursive variants of median-of-means estimates. Finally we
also observe that our method can be easily parallelized, because several parts can be computed simultaneously.

3 Multivariate RMM Test Algorithm

In this section the detailed description of the multivariate RMM test is presented.

Algorithm 1: Multivariate RMM Hypothesis Test (for µ = θ)
Inputs: i.i.d. sample D0, rational significance level p,

tie-breaking permutation π on [m − 1]0,
subgaussian estimator ˆ̂µ

1: Choose integers 1 ≤ r < m such that p = r/m.
2: Generate n(m − 1) independent Rademacher sign variables {αi,j} for (i, j) ∈ [n] × [m − 1]0.
3: Construct m − 1 alternative datasets for j ∈ [m − 1]:

Dj(θ) .= {α1,j1⊙ (Y1 − θ) + θ, . . . , αn,j1⊙ (Yn − θ) + θ}

and let Dπ
j

.= (Dj(θ), π(j)) for j ∈ [m − 1]0.
4: Compute the reference variables

Sj(θ) .= ∥ ˆ̂µ(Dj(θ)) − θ∥ for j = 0, . . . , m − 1.

5: Compute the rank
R(θ) = 1 +

m−1∑
j=1

I
(

S0(θ) ≻π Sj(θ)
)
.

6: Reject H0 if and only if
R(θ) > m − r.

4 Supplementary Numerical Experiments

4.1 Confidence interval size experiment

In this experiment we compare the empirical sizes of several confidence regions for different sample distributions.
We consider the mean estimation problems, where Y is sampled from a (a) symmetrized Pareto II distribution
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(a) Symmetrized Pareto II distribution (a = 1.6)
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(b) Laplace distribution (µ = 0, λ = 1)
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(c) Standard normal distribution
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(d) Uniform distribution on (−10, 10)

Figure 1: Comparison of confidence interval sizes

with shape parameter a = 1.6 and scale parameter 1, (b) zero-mean Laplace distribution with scale parameter
λ = 1, (c) standard normal distribution and (d) uniform distribution on interval (−10, 10). The sizes of the RMM
and SPS confidence regions are compared to the sizes of the sign test-based and Wilcoxon signed-rank test-based
confidence intervals (Pratt and Gibbons, 1981). For the Wilcoxon signed-rank test we used the statistical package
of R with approximate confidence levels. Throughout our experiments we considered 0.5-level confidence regions,
with m = 20 and r = 10 in case of the RMM and SPS, a sample size of n = 5000 and s = 10000 independently
simulated trajectories. For the Wilcoxon signed-rank test we used fewer independent simulations (s′ = 100),
because constructing the confidence intervals based on this test is computationally intensive and there was a
very small variance regarding the sizes. The difference between the 0.9-quantiles of the confidence interval sizes
for the different sample distributions are shown in Figure 1. It can be observed that in case of the heavy-
tailed Pareto II distribution the sizes of the sign test and Wilcoxon signed-rank test-based confidence regions
are smaller than that of RMM and SPS. Recall that despite their smaller sizes, these order-based tests have no
guarantees for their shrinkage rates, also the Wilcoxon signed-rank test has high computational burden and only
has approximate guarantees for the coverage probability. These experiments also indicate that as the sample
distribution becomes less heavy-tailed, the RMM and SPS methods build confidence intervals with smaller sizes
than the sign and Wilcoxon signed-rank tests. We can conclude that the RMM method can be a robust solution,
because it achieves a significant improvement for heavy-tailed distributions w.r.t. the SPS method and is more
efficient than the tested nonparametric methods for light-tailed distributions.
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4.2 Experiment: Distribution of Intersections

An empirical comparison between the SPS (Sign-Perturbed Sums) and the RMM (Resampled Median-of-Means)
methods for sample distributions with different tail probabilities are presented here. In these simulations the
empirical distributions of the random variables that determine the confidence intervals (the end point of the
intervals) are investigated. In case of the SPS algorithm these points can be computed as in (Szentpéteri and
Csáji, 2023), while in case of the RMM method these points are ν+ and ν−. In the experiments the observations
were (symmetrically) Pareto-distributed with scale parameter 1 and shape parameter β. We set k = 5, considered
a sample size of n = 125 and s = 100000 independently generated end points. Our results are shown for different
β parameters in Figure 2. The empirical distributions indicate that for heavy-tailed noises the end points of
the intersections (that determines the confidence interval) are more concentrated about 0 in case of the RMM
method, while for not heavy-tailed noises they are more concentrated in case of the the SPS method.

−20 −15 −10 −5 0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
β=1.1

RMM
SPS

−8 −6 −4 −2 0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
β=1.5

RMM
SPS

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

β=3
RMM
SPS

Figure 2: Comparison of confidence interval end point distributions n = 125, k = 5, s = 100000.

4.3 Experiment: Coverage Probability

We studied the empirical coverage probabilities of confidence intervals based on the asymptotic theory, the SPS
algorithm and the RMM method. In this experiment we considered n = 30, k = 3 and s = 100000 independently
generated confidence intervals and computed the empirical probabilities p̂ that the true parameter is in the
region. The observations were (symmetrically) Pareto-distributed with scale parameter 1 and shape parameter
β as before. Our results are summarized in Table 1. We can observe that the confidence levels are always exact
for the RMM and SPS methods, however, the asymptotic confidence intervals perform poorly. On the one hand
for β ≤ 2 the true variance is infinite, thus the asymptotic intervals constructed based on the sample variance
are too large. On the other hand for β = 3 and n = 30 the limit distribution is a poor approximation of the
distribution of the mean and the asymptotic method underestimates the uncertainty of the sample mean.

Table 1: Empirical coverage probabilities for n = 30, k = 3 and s = 100000.

p̂A p̂SP S p̂RMM

β = 1.1 0.999 0.899 0.898
β = 1.5 0.987 0.901 0.901
β = 2 0.938 0.901 0.900
β = 3 0.748 0.901 0.900
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