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Abstract

We consider the informative path planning
(IPP) problem in which a robot interacts with
an uncertain environment and gathers infor-
mation by visiting locations. The goal is to
minimize its expected travel cost to cover a
given submodular function. Adaptive solu-
tions, where the robot incorporates all avail-
able information to select the next location
to visit, achieve the best objective. How-
ever, such a solution is resource-intensive as
it entails recomputing after every visited lo-
cation. A more practical approach is to de-
sign solutions with a small number of adap-
tive “rounds”, where the robot recomputes
only once at the start of each round. In this
paper, we design an algorithm for IPP param-
eterized by the number k of adaptive rounds,
and prove a smooth tradeoff between k and
the solution quality (relative to fully adap-
tive solutions). We validate our theoretical
results by experiments on a real road net-
work, where we observe that a few rounds of
adaptivity suffice to obtain solutions of cost
almost as good as fully-adaptive ones.

1 INTRODUCTION

We consider the informative path planning (IPP) prob-
lem in which a robot interacts with an uncertain en-
vironment and gathers information by visiting loca-
tions. The informative path planning problem has
been widely studied, and has applications in informa-
tion gathering (Singh, Krause, Guestrin, et al. 2006),
object detection (Platt et al. 2011), and manipulating
a robot arm for tasks like pushing a button or grasping
(Javdani et al. 2014). We discuss two applications of
IPP.
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First, consider the following disaster management ap-
plication. Suppose that an autonomous unmanned
aerial vehicle (UAV) is searching for a lost victim (Lim,
Hsu, and Lee 2016). The UAV acquires new informa-
tion on the victim’s location by using onboard sensors,
and the goal is to plan a search strategy in order to find
the victim as fast as possible. Another application of
IPP, arising in information gathering, is in monitoring
algae biomass in a lake (Dhariwal et al. 2006). It is
not economical to cover the lake sufficiently with static
sensors, and instead one wants to plan a route for a
robotic boat (carrying a sensor) to move to various
locations in the lake to gather information.

We note that both these applications involve stochastic
submodular optimization: the uncertainty stems from
not knowing the underlying state of the world (the
victim’s true location, or the concentration of pollu-
tants in the lake), and progress (eliminating possible
locations from consideration, or collecting information
from different parts of the lake) can be captured using
a submodular function (see Lim, Hsu, and Lee (2016)
and Singh, Krause, Guestrin, et al. (2006) for details).
In most works, stochastic submodular optimization is
restricted over a set domain; that is, the goal is to se-
lect some subset to optimize the expected objective.
However, we are interested in settings where the robot
interacts with the environment by visiting different
sensing location; in other words, the robot’s decisions
are constrained to form a path (rather than an arbi-
trary subset). So, the goal in IPP is to minimize its
expected travel cost to cover a given submodular func-
tion (see § 1.1 for a formal definition).

Solutions to such a stochastic problem are sequential
decision processes, making them highly adaptive: at
each step, the robot incorporates all available infor-
mation to select the next location to visit. This pro-
cess continues until the submodular function is cov-
ered. However, such a solution entails recomputing
after every visited location, which can be resource-
intensive. So, fully adaptive solutions may not be
feasible in practical situations. This motivates the
design of solutions with a small number of adaptive
“rounds”, where the robot recomputes only once at
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the start of each round. Such solutions strike a bal-
ance between achieving the best objective and keep-
ing resource utilization low. For example, from an
energy efficiency perspective: a robot often operates
with limited battery capacity, and the need for fre-
quent re-computations after each visited location can
lead to substantially faster energy consumption. Ad-
ditionally, the process of incorporating observed data
and preparing it for re-computation is not instanta-
neous as it involves data gathering/analysis, and may
lead to increased computational time. By keeping the
rounds of adaptivity small, we aim to mitigate such
operational challenges. We note that the tradeoff be-
tween rounds of adaptivity and solution quality is not
new, and has been studied in various streams of liter-
ature (see § 2). We make the following contributions.

1. We design an algorithm for IPP parameterized by
the number k of adaptive rounds, and prove a
smooth tradeoff between k and the solution qual-
ity (relative to fully adaptive solutions).

2. We consider separately an important special case
of IPP: path planning for hypothesis identification
(Lim, Hsu, and Lee 2016), and obtain a better
performance guarantee via a more efficient algo-
rithm.

3. Finally, we run computational experiments on a
real road network dataset and previously-used in-
stances of hypothesis identification. For these in-
stances, we observe that with 2 rounds of adap-
tivity, the cost is on average within 50% and 12%
of the fully adaptive cost, respectively. More-
over, the 2-round algorithm is on average 15 times
faster than the fully adaptive one.

1.1 Definitions

An instance of IPP is given by the tuple
(X, r, d,M,D, O, f), where X corresponds to a
finite set of n sensing locations, r is the initial location
of the robot, and d is a metric on X ∪{r}. We assume
throughout that d is symmetric and satisfies triangle
inequality. Here M = {1, . . . ,m} denotes a finite set
of hypotheses or scenarios. We take the Bayesian
approach, and use pω to denote the prior probability
of each hypothesis ω ∈ M , where

∑
ω∈M pω = 1.

The set O denotes all possible observations: each
location v ∈ X realizes to a random observation in
O. The distribution D specifies the probability pω of
each hypothesis ω ∈ M as well as the observations
{ω(v) ∈ O : v ∈ X} at all locations under hypothesis
ω. The true hypothesis ω∗ is drawn fromM according
to the distribution D. While the prior distribution
D is known to the algorithm, the true hypothesis

ω∗ is initially unknown. When location v ∈ X is
visited, the robot observes ω∗(v) ∈ O and can use
this information to update its priors. In this paper,
we assume that our observations are noiseless, i.e.
for a fixed hypothesis w∗, the observation w∗(v) is
deterministic.

If the robot has visited a subset S ⊆ X of locations
and observed ov ∈ O at each v ∈ S then the set
{(v, ov) : v ∈ S} ⊆ X × O is called a partial real-
ization. We use ψ ⊆ X×O to denote a generic partial
realization; if we want to additionally specify the loca-
tions S contained in ψ then we use the notation ψ(S).
We define ψω(X) := {(v, ω(v)) : v ∈ X} to denote the
partial realization associated with hypothesis ω at all
locations. We say that hypothesis ω is compatible with
a partial realization ψ, denoted ω ∼ ψ, if ψ ⊆ ψω(X).

Let Ψ = 2X×O be the power-set of all location-
realization pairs. Note that Ψ contains every partial
realization. Not every subset in Ψ corresponds to an
actual partial realization, but using the full power-set
Ψ makes the definition of our utility function cleaner.
In particular, function f : Ψ → Z+ is a monotone
submodular set function. Formally, we say that f is
submodular if whenever A ⊆ B ⊆ Ψ and e /∈ B, we
have f(A ∪ {e}) − f(A) ≥ f(B ∪ {e}) − f(B), and
we say that f is monotone if whenever A ⊆ B, we
have f(A) ≤ f(B). Let Q ∈ Z+ be the maximal
value of the function. We say that a partial realization
ψ ∈ Ψ covers function f if f(ψ) = Q. We assume that
f(ψω(X)) = Q for each hypothesis ω ∈ M . In other
words, if we visit all locations then the function f will
be covered, irrespective of the true hypothesis ω∗.

Let Π = (r, v1, . . . , vℓ, r) be any tour that starts and
ends at r; we abuse notation and also use Π to denote
the set of locations visited. All tours in this paper will
begin/end at r: we will not state this condition each
time (to avoid clutter). We say that tour Π covers
hypothesis ω if, and only if, f(ψω(Π)) = Q. The goal
in IPP is to design a tour Π (possibly adaptively) that
covers the true hypothesis ω∗. An equivalent condi-
tion is that the observed partial realization ψ(Π) at
the end of the tour must satisfy f(ψ(Π)) = Q. The
objective is to minimize the expected distance E[d(Π)]
of the tour Π, where the expectation is taken over ω∗.
We note that an adaptive tour Π decides on the next
location to visit based on the observations at all previ-
ous locations. We are interested in solutions that have
limited adaptivity as defined next.

Definition 1.1. For an integer k ≥ 1, a k-round
solution proceeds in k rounds of adaptivity. In each
round ℓ ∈ {1, . . . , k}, the solution specifies a tour on
all remaining locations and visits them in this order
until some stopping rule (at which point it starts the
next round). The tour in round ℓ can depend on the
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observations seen in rounds 1, . . . , ℓ− 1.

In a k-round solution, tour re-computation only oc-
curs at the start each round, which happens at most k
times. Setting k = 1 in Definition 1.1 gives us a non-
adaptive tour that does not have to recompute after it
starts. On the other hand, setting k →∞ (effectively
k = n) gives us a fully adaptive tour, that recomputes
after each visited location. Having more rounds po-
tentially leads to a smaller objective value, so fully
adaptive solutions have the least objective value. Our
performance guarantees are relative to an optimal fully
adaptive solution; let OPT denote this solution and its
cost. The k-round-adaptivity gap is defined as follows:

sup
instance I

E[cost of best k-round solution on I]

E[cost of best fully adaptive solution on I]
.

In formulating IPP, we required the solution to be a
tour originating from r. We note that one could also
ask for a path originating from r, which is allowed to
end at any location as long as the function f is cov-
ered. All our results also apply to this path variant,
formalized in the following proposition.

Proposition 1.1. Any α-approximation algorithm for
the tour version of IPP gives a 2α-approximation to the
path version of IPP.

Indeed, by symmetry and triangle inequality, the cost
of an optimal tour is at most 2 times the cost of an
optimal path, and any α-approximate solution for the
tour version of IPP is also feasible for the path version.

A noteworthy special case of IPP is informative
path planning for hypothesis identification (IPP− H).
IPP− H has function f counting the number of elimi-
nated hypotheses: this is monotone and submodular.
Covering the function corresponds to eliminating all
but one hypothesis, which is the same as identifying
the true hypothesis. A more efficient algorithm for
IPP− H is explored in § 4.

1.2 Example: UAV Search

We formalize the UAV search application from Lim,
Hsu, and Lee (2016) as an instance of IPP− H to
demonstrate the use of our model. This problem mod-
els a UAV searching for a lost victim in an area mod-
eled as an N ×N grid. The UAV can be at “high” or
“low” altitudes. At high altitudes, the UAV can use
a long range sensor to determine whether the missing
person is in the 3× 3 grid around its location. At low
altitudes, the UAV can use a more accurate sensor to
determine whether the current location contains the
victim.

An instance of the UAV search problem is given by the
tuple (X, r, d,M,D, O). The set X corresponds to the

2×N×N sensing locations (a sensing location is a cell
in the N ×N grid in either high or low altitudes) and
r is the initial location of the UAV. The distance met-
ric d(i, j) is the Manhattan distance between sensing
locations i and j. Scenarios M correspond to possible
locations of the victim on the N × N grid, and pω is
the prior probability that the victim is at ω ∈M . For
each v ∈ X, there is a set Sv ⊆ X of locations that
can be “sensed” from v. We set O = {0, 1} where an
observation of 1 at location v implies that the victim
is in one of the locations Sv. Finally, note that the
function f in IPP− H counts the number of scenarios
that are eliminated.

2 RELATED WORK

It is known that metrics of informativeness in several
domains (for example, sensor placement (Krause and
Guestrin 2005) and target search (Hollinger, Singh, et
al. 2009)) exhibit submodularity. Submodular set func-
tion optimization has been studied extensively (Wolsey
1982; Nemhauser, Wolsey, and Fisher 1978), and has
also been extended to optimizing over paths (Chekuri
and Pál 2005; Călinescu and Zelikovsky 2005). Con-
sequently, any approximation algorithm for submodu-
lar path orienteering (Chekuri and Pál 2005) can be
used to plan a path for a robot in order to maximize
a submodular function of the visited locations. Singh,
Krause, Guestrin, et al. (2006) provided an approach
for extending any single robot algorithm to the multi-
robot setting, with a (nearly) matching approximation
guarantee.

Submodular optimization (over sets) has been ex-
tended to the stochastic setting in a number of works,
e.g., Asadpour and Nazerzadeh (2016), Golovin and
Krause (2017), Im, Nagarajan, and Zwaan (2016),
Grammel et al. (2016), and Gupta, Nagarajan, and
Singla (2017). Recent works (Agarwal, Assadi, and
Khanna 2019; Esfandiari, Karbasi, and Mirrokni 2021;
Ghuge, Gupta, and Nagarajan 2021) are particularly
relevant to us: these papers establish trade-offs be-
tween rounds of adaptivity and the approximation fac-
tor for stochastic submodular cover problems, where
one wants to select a subset to cover a submodular
function (there are different settings with indepen-
dent, scenario-based and adaptive-submodularity con-
ditions). Our work extends the results from Ghuge,
Gupta, and Nagarajan (2021) for scenario-based dis-
tributions to the case of optimizing over paths in a
metric.

Stochastic submodular optimization over paths has
also received significant attention. IPP has been stud-
ied in robotics and related fields, and many heuris-
tic approaches have been proposed to solve the prob-
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lem. For example, in Hollinger, Englot, et al. (2013),
a minimum-cost tour is constructed on “informa-
tive” sensing locations, and in Hollinger, Mitra, and
Sukhatme (2011), the idea is to search for a strategy
over a finite planning horizon. An adaptive approach
appeared in Singh, Krause, and Kaiser (2009): their
algorithm re-plans every step using a non-adaptive in-
formation path planning algorithm.

The special case of IPP− H has itself been studied
widely. This appears in Gupta, Nagarajan, and Ravi
(2017) as the “isolation problem” enroute to obtain-
ing approximation algorithms for the adaptive trav-
eling salesman problem. Gupta, Nagarajan, and
Ravi (2017) obtained a fully-adaptive O(log2 n logm)-
approximation algorithm for IPP− H. Lim, Hsu, and
Lee (2015) and Lim, Hsu, and Lee (2016) obtained sim-
ilar algorithms for IPP; these hold for a slightly more
general definition involving adaptive-submodularity
(Golovin and Krause 2017). When applied to IPP,
the algorithms in Lim, Hsu, and Lee (2015) and
Lim, Hsu, and Lee (2016) yield a fully adaptive
O
(
log2+ϵ(n) · log(m) · log (1/pmin)

)
-approximation al-

gorithm; here pmin ≤ 1/m is the minimum probability
of any hypothesis. Navidi, Kambadur, and Nagarajan
(2020) obtained an improved O

(
log2+ϵ(n) · log(m)

)
-

approximate fully adaptive algorithm for IPP.

The tradeoff between rounds of adaptivity and solu-
tion quality has also been considered in other contexts.
Gao et al. (2019), Esfandiari, Karbasi, Mehrabian, et
al. (2021), and Agarwal, Ghuge, and Nagarajan (2022)
study online learning problems, where observations
are made in batches. Balkanski, Breuer, and Singer
(2018), Balkanski and Singer (2018), Balkanski, Ru-
binstein, and Singer (2019), and Chekuri and Quan-
rud (2019) study deterministic submodular optimiza-
tion, where function queries are batched. However, the
techniques used in these papers are completely differ-
ent from ours.

The role of adaptivity was first formally studied in
Dean, Goemans, and Vondrák (2008) for the stochas-
tic knapsack problem. Since then, it has been has been
extensively studied for various stochastic optimization
problems such as stochastic submodular maximiza-
tion (Asadpour and Nazerzadeh 2016; Gupta, Na-
garajan, and Singla 2017; Bradac, Singla, and Zuzic
2019), stochastic matching (Bansal, Gupta, et al.
2012; Behnezhad, Derakhshan, and Hajiaghayi 2020),
set cover (Goemans and Vondrák 2006), submodular
cover (Agarwal, Assadi, and Khanna 2019; Ghuge,
Gupta, and Nagarajan 2021), k-TSP (Jiang et al.
2020), intersections of matroids (Gupta and Nagara-
jan 2013) and orienteering (Guha and Munagala 2009;
Gupta, Krishnaswamy, et al. 2015; Bansal and Na-
garajan 2015).

3 k-ROUND ALGORITHM FOR IPP

In this section, we prove the following result.

Theorem 3.1. For any integer k ≥ 1 and ϵ > 0, there
is a k-round adaptive algorithm for IPP with cost at
most O

(
log2+ϵ(n) ·m1/k · (logm+ k logQ)

)
times the

cost of an optimal adaptive algorithm.

A key component of our algorithm is a non-adaptive
algorithm to solve a partial cover version of IPP. For-
mally, an instance of the partial cover version of IPP
is the same as an instance of IPP with an additional
parameter δ ∈ (0, 1]. Now, the goal is to visit a set of
locations T that realize to ψ(T ) ∈ Ψ such that either
(i) number of compatible scenarios |{ω ∈ M : ψ(T ) ⊆
ψω}| < δm, or (ii) the function f is fully covered, i.e.,
f(ψ(T )) = Q. The k-round algorithm for IPP will
then recursively solve the partial cover version with
carefully chosen values for the parameter δ.

An important subroutine in our algorithm is the fol-
lowing deterministic problem.

Definition 3.1 (Ratio Submodular Orienteering
(RSO)). Given a metric d on locations X ∪ {r} and
a monotone submodular function g : 2X → Z+, find

an r-tour T that maximizes the ratio g(T )
d(T ) , where g(T )

is the function value on the nodes of T and d(T ) is the
total distance in T .

This problem is NP-hard, but there are poly-
logarithmic approximation ratios known:

Theorem 3.2 (Călinescu and Zelikovsky 2005).
For any constant ϵ > 0 there is an O(log2+ϵ n)-
approximation algorithm for RSO in runtime nO(1/ϵ).

If one allows for quasi-polynomial time nO(logn) then
a better O(log n)-approximation algorithm is known
(Chekuri and Pál 2005). It is also hard to approx-
imate to a factor better than O(log1−ϵ n) (Halperin
and Krauthgamer 2003.)

We first prove the following.

Theorem 3.3. There is a non-adaptive algorithm for
the partial cover version of IPP with expected cost

O
(
ρ
δ log

(
Q
δ

))
times the cost of the optimal adaptive

solution for IPP, where ρ is the best approximation
guarantee for ratio submodular orienteering.

The algorithm creates a pre-planned (non-adaptive)
tour; that is, without knowing the realizations at the
locations. We find that iteratively selecting tours that
maximize a carefully-defined score function (see Equa-
tion (1)) works well; however, selecting such tours
turns out to be an NP-hard problem. So, at each
step we pick a tour that approximately maximizes the
score function, which is subsequently appended to the
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non-adaptive tour: this process continues until all lo-
cations are included in the non-adaptive tour, or we
can conclude that the number of compatible scenar-
ios after visiting the already selected locations will be
less than δm (see Definition 3.2). We note that the
score of a tour (roughly) measures the progress we can
makes towards (i) eliminating scenarios and (ii) cover-
ing function f on visiting the tour. Crucially, we prove
that the numerator of this score function corresponds
to a monotone submodular function (see Lemma 3.4).
So, we can use an approximation algorithm for RSO to
optimize the score. Before we state the score function,
we need some definitions.

Definition 3.2. For any S ⊆ X, let H(S) denote
the partition {Y1, · · · , Yℓ} of the scenarios M where
all scenarios in a part have the same realization for
the locations in S. Let Z := {Y ∈ H(S) : |Y | ≥ δ|M |}
be the set of “large” parts.

Consider scenarios ω1 and ω2. According to Defini-
tion 3.2, ω1 and ω2 belong to the same part of H(S)
if and only if ω1(v) = ω2(v) for all v ∈ S; i.e., visiting
the locations in S leads to the same partial realization
under either scenario ω1 or ω2. After observing the
realization of S, the set of compatible scenarios must
be one of the parts in H(S). Also note that |Z| ≤ 1

δ
as each part in Z has at least δ|M | scenarios.
Definition 3.3. For any location v ∈ X and subset
Z ⊆M of scenarios, consider the partition of Z based
on the realization of v. Let Bv(Z) ⊆ Z be the largest
cardinality part, and define Lv(Z) := Z \Bv(Z).

The above definition is used to quantify the “infor-
mation gain” of visiting a single location. If the re-
alized scenario ω∗ ∈ Lv(Z), then we can eliminate
at least half the scenarios in Z by visiting location
v. For any part Z ∈ H(S), note that the partial re-
alizations ψω(S) are identical for all ω ∈ Z: we use
ψZ(S) ⊆ X ×O to denote this partial realization.

Let Π denote the non-adaptive tour constructed so far
in our algorithm, and let S be the set of locations in
Π. The score (1) of a new tour T is computed by
considering two notions of progress for each Z ∈ Z:

• Information gain
∑
ω∈LT (Z) pω, measures the to-

tal probability of the scenarios that belong to
Lv(Z) for some v ∈ T .

• Relative function gain
∑
ω∈Z pω ·

f(ψZ(S)∪ψω(T ))−f(ψZ(S))
Q−f(ψZ(S)) measures the expected

relative gain obtained by visiting locations in
tour T (expectation is w.r.t. scenarios in Z).

The overall score of tour T is the sum of these terms
(over all parts in Z) normalized by the distance d(T )

Algorithm 1 Partial Covering Algorithm
PCA((X, r, d,M,D, O, f), δ)
1: S ← ∅, Π← ∅
2: while S ̸= X do
3: Define H(S), Z and Lv(Z) as in Definitions 3.2

and 3.3
4: if Z is empty then break

5: Select tour T that ρ-approximately maximizes:

score(T ) =
1

d(T )
·
∑
Z∈Z

( ∑
ω∈LT (Z)

pω+

∑
ω∈Z

pω ·
f(ψZ(S) ∪ ψω(T ))− f(ψZ(S))

Q− f(ψZ(S))

)
(1)

where LT (Z) = ∪v∈TLv(Z).
6: S ← S ∪ T , Π← Π ◦ T
7: R← ∅, ψ(R)← ∅, H ←M .
8: while |H| ≥ δm and f(ψ) < Q do
9: T ← first tour in Π not yet visited

10: ψ(T )← realization of vertices in T
11: R← R ∪ T , ψ(R)← ψ(R) ∪ ψ(T )
12: H ← {ω ∈ H : ω ∼ ψ(R)}; that is, set of

compatible scenarios

13: return visited locations R, partial realization ψ(R)
and compatible scenarios H.

of the tour. Note that the score of a tour is com-
puted only using “large” parts Z. This is because
if the realization of S corresponds to any other part
then the number of compatible scenarios would be less
than δm (and the partial cover algorithm would have
terminated). We show that the numerator of (1) is a
monotone and submodular function (see Lemma 2.2 in
the full version (Tan, Ghuge, and Nagarajan 2023)).

Lemma 3.4. Let

g(T ) =
∑
Z∈Z

( ∑
ω∈LT (Z)

pω+

∑
ω∈Z

pω ·
f(ψZ(S) ∪ ψω(T ))− f(ψZ(S))

Q− f(ψZ(S))

)
,

where S ⊆ X is some fixed subset. Then g is monotone
and submodular.

Note that score(T ) = g(T )/d(T ), and since g(T ) is
monotone and submodular, we can use an approxima-
tion algorithm for RSO to optimize the score. Once the
non-adaptive tour Π, which itself is a concatenation of
many smaller tours, is specified, the algorithm starts
by visiting tours in this order until (i) the number of
compatible scenarios drops below δm, or (ii) the real-
ized function value equals Q. Note that in case (ii),
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Algorithm 2 k-round adaptive algorithm for IPP,
k-ADAP(I = (X, r, d,M,D, O, f), k)

1: Run PCA(I,m−1/k) for the first round. Let R de-
note the set of locations visited. Let ψ and H de-
note the partial realization and set of compatible
scenarios respectively.

2: Define the residual submodular function fψ(ϕ) =
f(ψ ∪ ϕ) − f(ψ), and define the distribution DH

by conditioning on the remaining scenarios H.
3: Solve k-ADAP(Î = (X \R, r, d,H,DH , O, fψ), k−1)

the function is fully covered. See Algorithm 1 for a
formal description of the non-adaptive algorithm.

We recursively use this non-adaptive partial cover al-
gorithm to get a k-round solution for IPP. The first
round involves setting δ = m−1/k in PCA. At the end
of round #1, let R be the set of locations visited,
ψ = ψ(R) be the partial realization observed, and
H ⊆ M be the compatible scenarios. Then, we can
condition on the scenarios in H, and define a “resid-
ual” function fψ : Ψ→ Z+ as fψ(ϕ) = f(ψ∪ϕ)−f(ψ),
which is also monotone and submodular. Finally, we
recurse on this residual function fψ to get a k−1 round
solution. See Algorithm 2 for a formal description. We
formalize this discussion in the following result.

Theorem 3.5. Algorithm 2 is a k-round algorithm for
IPP with expected cost O

(
ρ ·m1/k · (logm+ k logQ)

)
times the optimal fully adaptive cost. Here, m is the
number of scenarios and ρ is the approximation guar-
antee for RSO.

Combined with the approximation algorithm for sub-
modular orienteering (Theorem 3.2), this proves The-
orem 3.1.

The proof of Theorem 3.5 can be found in Tan, Ghuge,
and Nagarajan (2023, § 2). The rest of this section is
devoted to the proof of Theorem 3.3.

3.1 Proof of Theorem 3.3

For the analysis, we denote our non-adaptive policy,
and its (random) cost as NA. Similarly, we use OPT to
refer to an optimal fully adaptive policy and its (ran-
dom) cost. We refer to the cumulative cost incurred
by either policy as elapsed time. We define constants

β (specified later) and L := log
(
Q
δ

)
. Next, we define

terms that are used to track the progress of OPT and
NA respectively.

• o(t) := P (OPT does not terminate by time t)

• a(t) := P (NA does not terminate by time βLt)

Observe that o(t) and a(t) are non-increasing functions
of t, and o(0) = a(0) = 1. We can view o(t) and
a(t) as “non-completion” probabilities of OPT and NA

respectively. The following key lemma relates these
non-completion probabilities.

Lemma 3.6. For any i ≥ 0, we have

βδ

4ρ
·
∑
j≥i

(
a(j + 1)− 2 · o(j + 1)

j + 1

)
≤ a(i). (2)

Using this lemma, we can prove Theorem 3.3.

Proof of Theorem 3.3. Using the integral identity for
expectations, we can write the expected cost of our
non-adaptive policy as follows.

E[NA] =
∫ ∞

0

P(NA > t)dt =

∫ ∞

0

a

(
t

βL

)
dt

= βL

∫ ∞

0

a(t)dt

where the final equality follows by applying a change
of variables. Since a(t) is non-increasing in t, we have

E[NA] = βL

∫ ∞

0

a(t)dt ≤ βL
∑
i≥0

a(i) = βL ·A (3)

where we set A =
∑
i≥0 a(i). Similarly, we let O =∑

i≥0 o(i), and sum (2) over i ≥ 0 to obtain

4ρ

βδ
·A =

4ρ

βδ
·
∑
i≥0

a(i) ≥
∑
i≥0

∑
j≥i

(
a(j + 1)− 2 · o(j + 1)

j + 1

)
=
∑
j≥1

(a(j)− 2 · o(j)) ≥ A− 2O

where the final inequality uses a(0) = o(0) = 1. On
rearranging the above inequality, we obtain

A ≤ 2βδ

βδ − 4ρ
·O. (4)

Finally, we can write the expected cost of OPT in terms
of O as follows.

O − 1 =
∑
j≥1

o(j) ≤
∫ ∞

0

o(t)dt = E[OPT]. (5)

where the inequality holds since o(·) is non-increasing.
On combining Equations (3),(4), and (5) we get

E[NA] ≤ βL ·A ≤ 2β2Lδ

βδ − 4ρ
·O ≤ 2β2Lδ

βδ − 4ρ
·(E[OPT] + 1) .

Setting β = 8ρ
δ implies that E[NA] ≤ 32Lρ

δ ·(E[OPT] + 1).
We note that the +1 term can be eliminated by a
straightforward scaling argument: note that, for any
b ≥ 1, if all costs are scaled by b (resulting in OPT

and NA being scaled by b), we get E[NA] ≤ 32Lρ
δ ·(

E[OPT] + 1
b

)
, thus implying that for large enough b,

we get E[NA] ≤ 32Lρ
δ · E[OPT], as desired.
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The proof of Lemma 3.6 is found in Tan, Ghuge, and
Nagarajan (2023, § 2). We note that our k-round
adaptivity gap is nearly best possible. As shown in
Ghuge, Gupta, and Nagarajan (2021), there are in-
stances of IPP (even on star metrics) where every k-

round solution has cost at least Ω( m1/k

k logm ) times the

optimal adaptive cost. So, we need at least logm
log logm

rounds to achieve any poly-logarithmic approximation.

4 IMPROVED ALGORITHM FOR
HYPOTHESIS IDENTIFICATION

Here, we consider an important special case of IPP:
path planning for hypothesis identification (IPP− H).
An instance is given by the tuple (X, r, d,M,D, O).
Here, X is the set of sensing locations, r is the root
location and d is a metric on X ∪ {r}. Set M =
{1, . . . ,m} is a finite set of hypotheses/scenarios with
probabilities {pω}ω∈M . The set O denotes the possible
observations; each v ∈ X realizes to a random observa-
tion in O. The distribution D specifies the probability
pω of each scenario ω ∈M as well as the observations
{ω(v) ∈ O : v ∈ X} at all locations under scenario
ω. The true hypothesis/scenario ω∗ ∈M according to
the distribution D; however ω∗ is initially unknown to
the algorithm. The goal is to identify ω∗ by visiting
locations at the minimum expected distance. When lo-
cation v ∈ X is visited, the robot observes ω∗(v) ∈ O
and can use this information to update its priors.

We obtain the following improved result for IPP− H.

Theorem 4.1. For any integer k ≥ 1, there is a
randomized k-round adaptive algorithm for hypothesis
identification with cost O

(
log2(n) ·m1/k · k · logm)

)
times the optimal adaptive cost.

In order to cast IPP− H as a special case of IPP, we
define a submodular function f : 2X×O → R+ as fol-
lows. For each v ∈ X and o ∈ O, let Ev,o ⊆ M be
the set of hypotheses that are incompatible with ob-
servation o at location v. Note that if we observe o
at location v then we must have ω∗ ̸∈ Ev,o. Now, we
define, ∀S ⊆ X and ov ∈ O for v ∈ S:

f({(v, ov) : v ∈ S}) =
∣∣ ⋃
v∈S

Ev,ov
∣∣. (6)

Note that this is exactly the number of incompatible
hypotheses after having visited locations S and ob-
served ov at each v ∈ S. It is easy to see that f is
monotone and submodular: it is a set coverage func-
tion. Clearly, ω∗ is identified precisely when this num-
ber is m− 1. So, we set our target Q = m− 1.

Recall that at each step of the partial covering algo-
rithm PCA, we need to solve an instance of RSO with

the following objective function:

g(T ) =
∑
Z∈Z

( ∑
ω∈LT (Z)

pω+

∑
ω∈Z

pω ·
f(ψZ(S) ∪ ψω(T ))− f(ψZ(S))

Q− f(ψZ(S))

)
,

∀T ⊆ X. Above, S ⊆ X is a fixed subset. This is
exactly the criterion in (1).

In the special case of IPP− H, we show below that all
RSO instances correspond to the simpler ratio group
Steiner problem:

Definition 4.1 (Ratio Group Steiner). An instance
consists of a metric (V, d) with nodes V and distances
d : V × V → R+. There is a special root node r ∈ V
and k groups, where each group i ∈ [k] is associated
with a subset Si ⊆ V and weight wi ≥ 1. We want
to find a tour τ originating from r that minimizes the
ratio of its distance to the weight of groups covered.

Moreover, we provide a simpler algorithm for this
problem that is faster in practice (see Tan, Ghuge,
and Nagarajan (2023)[§ 3.1]).

Theorem 4.2. There is a randomized O(log2 n)-
approximation algorithm for ratio group Steiner, where
n = |V | is the number of nodes.

We now construct an instance of ratio group Steiner
corresponding to the RSO instance when function f is
given by (6). The metric and root remains the same.
The groups and weights are as follows:

• Groups for information gain (1st term in g). For
each Z ∈ Z and scenario ω ∈ Z there is a group
consisting of nodes {v ∈ X : ω ∈ Lv(X)} with
weight pω.

• Groups for function gain (2nd term in g). For
each Z ∈ Z, note that the compatible scenarios af-
ter observing partial realization ψZ(S) is exactly
Z. So, f(ψZ(S)) = m− |Z| and ∀R ⊆ X ×O,

f(ψZ(S)∪R)− f(ψZ(S)) = |Z ∩
(
∪(v,o)∈REv,o

)
|.

Hence, for any ω ∈ Z and ∀T ⊆ X, we have

f(ψZ(S) ∪ ψω(T ))− f(ψZ(S))
Q− f(ψZ(S))

=

1

|Z| − 1

∑
θ∈Z

1
[
θ ∈ ∪v∈TEv,ψω(v)

]
.

Moreover, note that θ ∈ ∪v∈TEv,ψω(v) iff the out-
comes at v under scenarios ω and θ are different,
i.e., ψω(v) ̸= ψθ(v). Now, we introduce a group
for each Z ∈ Z and scenarios ω, θ ∈ Z with nodes
{v ∈ X : ψω(v) ̸= ψθ(v)} and weight pω

|Z|−1 .
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So, it follows that for any T ⊆ X, the total weight
of covered groups is g(T ). Hence, this RSO instance
reduces to the ratio group Steiner problem.

Completing the proof of Theorem 4.1. Using
the above ratio group Steiner instance and Theo-
rem 4.2, we obtain a ρ = O(log2 n) approximation al-
gorithm for RSO instances arising from IPP− H. Com-
bined with Theorem 3.5, this implies Theorem 4.1.

Tighter Approximation Using More Rounds.
Using our partial covering algorithm (Theorem 3.3)
and a different measure of progress in each
round (as in Theorem 6.7 of Ghuge, Gupta,
and Nagarajan (2021)), we can also obtain 2k-
round algorithms with better approximation guar-
antees of O

(
log2+ϵ(n) ·m1/k · log(Qm)

)
for IPP

and O
(
log2(n) ·m1/k · logm)

)
for IPP− H (see Tan,

Ghuge, and Nagarajan (2023)[§ A] for details). Setting
the number of rounds to O(logm), we then get approx-
imation guarantees of O

(
log2+ϵ(n) · log(Qm)

)
and

O
(
log2(n) · logm

)
for IPP and IPP− H respectively.

These approximation ratios match the previous-best
approximation ratios for these problems, even for fully-
adaptive algorithms (Navidi, Kambadur, and Nagara-
jan 2020; Gupta, Nagarajan, and Ravi 2017). In fact,
IPP− H and IPP generalize the group Steiner tree prob-
lem (Garg, Konjevod, and Ravi 2000), for which the
best known approximation ratio is O

(
log2(n) · logm

)
;

there is also an Ω(log2−ϵ n) hardness of approximation
(Halperin and Krauthgamer 2003).

5 COMPUTATIONAL RESULTS

We provide a summary of computational results of our
k-round algorithm for path planning for hypothesis
identification (IPP− H). We test our algorithm on two
sets of instances: UAV search, (that were also used
in Lim, Hsu, and Lee (2016)), and a real-world road
network (Li et al. 2005). We consider the path version
of IPP− H, where the robot/UAV does not have to re-
turn to the root r at the end; by Proposition 1.1, all
our results apply to this path version. We also skip
returning to the root at the end of each round: the
solution goes directly from the last node of a round
to the first node of the next round. (By triangle in-
equality, the modified solution is at least as good as
the solution from Algorithm 2.) We note that the ex-
periments in Lim, Hsu, and Lee (2016) were also for
the path version. These experiments show that our
algorithm, using a small number of rounds, performs
well when compared with fully-adaptive algorithms,
and also demonstrates the computational benefits of
limited adaptivity.

Instances. We use a real-world dataset for the Cal-
ifornia road network, which describes connections be-
tween “points of interests” in California, and contains
21, 047 nodes and 21, 691 edges. We observe that a ma-
jority of the nodes in the network are degree-2 nodes;
so we can combine such nodes and only keep nodes
with degree 3 or more. The resulting network has
1, 365 nodes and 1, 991 edges (see Figure 1).

Figure 1: California road network.

We use this network to generate 10 instances of
IPP− H as follows. We set m = 50 and generate the
scenarios using the independent cascade model (ICM)
(see Tan, Ghuge, and Nagarajan (2023, § 4.1) for de-
tails). Let scenario i correspond to set Si: given sce-
nario i, the robot receives a feedback of 1 from node
v if v ∈ Si, and 0 otherwise. The robot begins near
the node with the highest centrality measure, and the
goal is to identify the underlying scenario with min-
imum expected cost. The ICM is parameterized by
edge probabilities that determines the likelihood of in-
fluence: we use p ∈ {0.6, 0.62, 0.64, 0.66, 0.68}, and
generate two instances for each p.

We also use some synthetic instances, motivated by
UAV search, which is based on prior work (Lim, Hsu,
and Lee 2016). These instances are smaller and dis-
play more geometric (grid like) structure. Previously,
Lim, Hsu, and Lee (2016) ran their adaptive IPP− H

algorithms on an 8 × 8 grid instance. In addition to
this instance, we also evaluate our algorithms on larger
9× 9 and 10× 10 grid instances. More details of these
UAV search instances are in Tan, Ghuge, and Nagara-
jan (2023, § 4).

Results. We run our k-round algorithm for k ∈
{1, . . . , 10}∪{inf}, where inf denotes the fully adap-
tive algorithm (practically, setting k = n effectively
gives a fully adaptive algorithm). For each instance,
we record the cost to identify each scenario. We nor-
malize the cost achieved by the k-round algorithm
against the adaptive algorithm (per scenario), yielding
an average relative cost (ARC), given by the following
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equation:

ARC = Ei
[
k-round(i)− ADAP(i)

ADAP(i)

]
× 100%

where k-round(i) (resp. ADAP(i)) denotes the cost in-
curred by the k-round (resp. fully adaptive) algorithm
for scenario i. We also report the average CPU time
(over scenarios) taken by the k-round algorithm. Since
the tour in the first round is the same across all scenar-
ios, we amortize its computation time across scenarios.
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Figure 2: Results for road network instances

We report results for the road network and UAV search
instances in Figures 2 and 3 respectively. We ob-
serve that, with an increase in the number of rounds,
the cost (ARC) typically decreases and computation
time increases. However, the trend of ARC sometimes
shows an increased cost with more rounds: this can be
attributed to the randomness in our algorithm (The-
orem 4.1), which is due to use of probabilistic tree
embedding. One notable result is for the UAV in-
stance 8 − OC, which was the only instance tested in
Lim, Hsu, and Lee (2016): even with 2 rounds, our
solution cost is about 30% less than the fully-adaptive
solution found in Lim, Hsu, and Lee (2016). We ob-
serve that using 2 rounds of adaptivity, the cost is on
average within 50% (for road network instances) and
within 12% (for UAV instances) of the fully adaptive
cost. Notably, the 2-round algorithm is 15 times faster
than the fully adaptive one (averaging over instances
and scenarios). In light of these computational results,

using 2-3 rounds of adaptivity gives a good trade-off
between cost and runtime.
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Figure 3: Results for UAV search instances

6 CONCLUSION

In this paper, we design an algorithm for the informa-
tive path planning problem parameterized by the num-
ber k of adaptive rounds, and prove a smooth trade-
off between k and the solution quality. Our compu-
tational experiments corroborate our theory, showing
that a few rounds of adaptivity suffice to get solutions
comparable to fully adaptive ones, while providing a
significant benefit in computational time. We leave
open the question of designing algorithms under un-
certainty of measurements: can we design algorithms
with limited adaptivity when measurements may be
imprecise or even incorrect with some probability?
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1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Not
Applicable]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]
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(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]


	INTRODUCTION
	Definitions
	Example: UAV Search

	RELATED WORK
	k-ROUND ALGORITHM FOR IPP
	Proof of Theorem 3.3

	IMPROVED ALGORITHM FOR HYPOTHESIS IDENTIFICATION
	COMPUTATIONAL RESULTS
	CONCLUSION

