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Abstract

Solving image inverse problems (e.g., super-
resolution and inpainting) requires generat-
ing a high fidelity image that matches the
given input (the low-resolution image or the
masked image). By using the input image as
guidance, we can leverage a pretrained diffu-
sion generative model to solve a wide range
of image inverse tasks without task specific
model fine-tuning. To precisely estimate the
guidance score function of the input image,
we propose Diffusion Policy Gradient (DPG),
a tractable computation method by viewing
the intermediate noisy images as policies and
the target image as the states selected by the
policy. Experiments show that our method
is robust to both Gaussian and Poisson noise
degradation on multiple linear and non-linear
inverse tasks, resulting into a higher image
restoration quality on FFHQ, ImageNet and
LSUN datasets.

1 Introduction and Problem
Formulation

Denoising Diffusion Probabilistic Models (DDPM) Ho
et al. (2020); Sohl-Dickstein et al. (2015) provide
tractable solutions to model an unknown high qual-
ity image distribution. Their modeling and genera-
tion capabilities have been exploited in a wide range
of image inverse problems Dhariwal and Nichol (2021);
Blattmann et al. (2022); Rombach et al. (2021); Kawar

†Work done during an internship at Meta AI.
*Email: tanghaoyue13@tsinghua.org.cn

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

et al. (2022), where the objective is to recover a high-
quality image corresponding to a given low-resolution
or blurred image. However, training a diffusion model
from scratch for each inverse task is time-consuming.
Alternatively, one can use the input image as a guid-
ance, and recover the high-quality image using guided
diffusion using a pretrained diffusion generative model
Ho and Salimans (2021); Dhariwal and Nichol (2021).
Nonetheless, when the input image is distorted by ran-
dom noise, this guidance signal becomes inaccurate.
Therefore, solving such noisy inverse problems is chal-
lenging.

We now describe the noisy image inverse problem in
more details. Consider x0 as a high-quality image with
distribution p0(x0). Let y be a noisy input image ob-
tained by applying an operator A to image x0, i.e.,

y = A(x0) + n, (1)

where n represents distorted random noise. The op-
erator A is dependent on the specific image inverse
tasks. For example, in super-resolution tasks, A is the
downsampling operator; in inpainting problems, the
operator A extracts the unmasked pixels of an image.
However, the operator A is often low-rank or invert-
ible, making direct computation of the inverse y im-
possible. Alternatively, one can leverage the Bayes’
rule p0(x0|y) ∝ p0(x0)p0(y|x0) to sample from both
the prior p0(x0) and the likelihood p0(y|x0), where
the prior p0(x0) is implicitly modeled by a pre-trained
diffusion generative model.

There are currently two lines of work in utilizing pre-
trained diffusion generative models to solve image in-
verse problems. The first line of work utilizes the low
rank structure of the operator A, and directly plugs
the known information y into the corresponding space
of x0. SDEdit Meng et al. (2022) solves image inpaint-
ing and stroke based generation tasks by plugging a
noisy y into a selected starting point of the diffusion
generation process. Blended Diffusion Avrahami et al.
(2022, 2023) and DiffEdit Couairon et al. (2023) en-
hance image inpainting and editing performance by
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(a) Inpainting (b) Super-Resolution (c) Gaussian deblurring (d) Motion deblurring

(e) Non-linear deblurring (f) Uncropping

Figure 1: Examples on solving noisy image inverse problems on ImageNet validation set using our proposed method

without task specific model finetuning or training.

substituting the unmasked pixels of the generated im-
age with the noisy pixels on y in every diffusion gen-
eration step. To solve a wider range of tasks such
as super-resolution and deblurring, researchers further
decompose A using the singular value decomposition
(SVD) to obtain its column and null space Song et al.
(2021a); Wang et al. (2023); Kawar et al. (2022). The
null space contents is refined with the help of both the
pre-trained diffusion generative model and the known
column space contents from y. Specifically, in each dif-
fusion generation step i, Kawar et al. (2022) fills the
column space contents in xi with a noisy input image
y and then predict xi−1; Wang et al. (2023) refines the
column space of xi using both the current prediction xi

and the input y, and then use the refined xi to denoise
and obtain xi−1. However, those plug-in approaches
can only work for linear inverse problems, and each
task requires an SVD decomposition of the operator
A. To solve a wider range of non-linear inverse prob-
lem when the SVD decomposition becomes impossi-
ble, another line of research directly use the condi-
tional probability pi(y|xi) to guide the generation pro-
cess Chung et al. (2022, 2023); Meng and Kabashima
(2022); Song et al. (2023c,a); Rout et al. (2023); Song
et al. (2023b); Hu et al. (2023). Notice that the
guidance score function ∇xi

logEp0|i(x0|xi)[p0(y|x0)] is
the gradient of the expected cost taken over distri-
bution p0|i(x0|xi), and computing p0|i(x0|xi) requires
run the diffusion generation process from step i. To
relieve the computation burden, the diffusion pos-
terior sampling (DPS) method Chung et al. (2023)
approximates p0|i(x0|xi) with a Gaussian distribu-
tion q0|i(x0|xi) = N (µi(xi), r

2
i I), where the mean

µi(xi) is the minimum mean squared error (MMSE)
estimation of the clean image x0 given the cur-
rent noisy image xi. The score function, denoted
as ∇xi

logEp0|i(x0|xi)[p0(y|x0)], is approximated by
computing the gradient of log p0(y|x0) at sample x0 =
µi(xi) with the highest density mass in distribution
q0|i(x0|xi), i.e., ∇xi logEp0|i(x0|xi)[p0(y|x0)]. In this

work, we further improve the estimation of DPS via
the policy gradient method by using multiple samples
from q0|i(x0|xi).

Our Contributions. We propose a new method to
estimate the guidance score for solving image inverse
problems in each diffusion step, which results in a bet-
ter image restoration quality and fidelity compared
with the ground truth image. Our contributions are
summarized as follows:

• We redefine each noisy image as a policy, where
the predicted clean image serves as a state selected
by the policy. DPG is a new approach for estimat-
ing the guidance score function given the input
image y.

• DPG eliminates the need for computing a closed-
form pseudo-inverse or performing SVD decompo-
sition. Leveraging a pre-trained diffusion genera-
tive model, our method can address a broad range
of image inverse problems without requiring task-
specific model fine-tuning. Selected image inverse
results generated by DPG are presented in Fig. 1.

• The score function estimated by DPG is theo-
retically more accurate than DPS, particularly
in the earlier stages of the generation process.
In experiments, DPG excels in restoring high-
frequency details in images. Quantitative evalua-
tions conducted on FFHQ, ImageNet, and LSUN
image restoration tasks demonstrate that our pro-
posed method achieves improvements in both im-
age restoration quality and consistency compared
to the ground truth.

2 Methodology

2.1 Preliminaries: Diffusion Models

Let x0 be a high-fidelity image that follows an un-
known distribution p0(x0). Distribution p0(x0) can be
turned into a Gaussian by gradually adding Gaussian
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noise by iteratively for N steps. The noise injection in
each step i is as follows:

xi =
√
1− βixi−1 +

√
βizi, zi ∼ N (0, I). (2)

When the iterations N → ∞, the evolution of x0:T is
then a result of a continuous time stochastic differen-
tial equation. Let T be a constant, denote ti :=

i
N T

and β(ti) :=
βi+1

∆t , the value of each noisy image xi is
the result of x(ti) obtained by the following stochastic
differential equation (Song et al., 2021b, Eq. (11)):

dx = −1

2
β(t)xdt+

√
β(t)dw, t ∈ [0, T ], (3)

where w is a Wiener process. Denote α(t) :=

exp
(
−
∫ t

0
β(s)ds

)
and let σ(t) :=

√
1− α(t), the con-

ditional probability pt|0(x(t)|x(0)) is a Gaussian dis-
tribution, i.e.,

pt|0(x(t)|x(0)) = N (x(t)|
√

α(t)x(0), (1−α(t))I). (4)

At the final step T , α(T ) → 0 and therefore, xT ∼
N (0, I) is a Gaussian distribution.

Generating high resolution image x0 is equivalent to
sample from distribution p0(x0). An intuitive solution
is to run the reverse process of equation 3 by starting
from the final step x(T ) ∼ N (0, I). According to (Song
et al., 2021b, Eq. (29)), the reverse SDE of equation 3
is as follows:

dx =

[
−β(t)

2
x− β(t)∇x log pt(x)

]
dt+

√
β(t)dw,

(5)
where pt(x(t) :=

∫
pt|0(x(t)|x0)p(x0)dx0 is the

marginal distribution of noisy image xt.

A high quality image x0 ∼ p0(x0) can be generated by
numerically solving the reverse time SDE equation 5.
The earliest DDPM solver interpolates [0, T ] with N
discrete timestamps. Let ti :=

i
N T , xi := x(ti) be the

i-th interpolated time point and value, DDPM gener-
ate x0 via the following equation:

xi−1 =
1√
αi

xt +
1− αi√
1− αi

(σi∇x log pi(xi)) +
√

βizi,

(6)

where zi ∼ N (0, I) is a random Gaussian noise sam-
pled in step i ∈ [N ], βi := β(ti)∆t and αi := α(ti),
σi :=

√
1− αi. Coefficient αi−1 := 1 − βi−1 =

exp(−βi−1) = exp
(
−
∫ ti
ti−1

β(s)ds
)
= αi

αi−1
.

The Denoising Diffusion Implicit Model (DDIM) ac-
celerates DDPM by generating x0 using:

xi−1 =

√
αi−1√
αi

xi +
√
αi−1

(√
1− αi−1

αi−1
−
√

1− αi

αi

)
× (σi log pi(xi)). (7)

2.2 Solving Inverse Problems as Posterior
Sampling

Our goal is to find the high quality image x0 that
matches the input y, i.e., find the root of equation 1.
With the priori p0(x0), generating x0 that matches y
can be viewed as sampling from the following condi-
tional probability:

p0(x0|y) =
p0(x0)p0(y|x0)

p(y)
∝ p0(x0)p0(y|x0). (8)

The conditional probability p0(y|x0) is a function of
the reconstruction loss denoted by ℓy(x0), i.e.,

p0(y|x0) ∝ exp

(
− 1

Z
ℓy(x0)

)
, (9)

where Z is a constant independent of x0 and y. For
image y that is distorted by Gaussian random noise,
i.e., n ∼ N (0, σ2

yI), the reconstruction loss ℓy(x0) =
∥y −A(x0)∥22.

We then discuss sampling from p0(x0|y) by run-
ning the reverse of the forward diffusion equation 3.
Let pt(x(t)|y) :=

∫
pt|0(x(t)|x0)p(x0|y)dx0 be the

marginal distribution of xt given input image y. By re-
placing∇x log pt(x) in equation 5 with∇x log pt(xt|y),
we can sample x0 ∼ p0(x0|y) through the following
SDE:

dx =

[
−β(t)

2
x− β(t)∇x log pt(x(t)|y)

]
dt+

√
β(t)dw.

(10)
To solve equation 10 numerically through the DDPM
equation 6 or DDIM equation 7 method, we need
to compute the score function of the si(xi,y) :=
∇x(ti) log pti(x(ti)|y) = ∇xi log pi(xi|y), which can be
decomposed by:

si(xi,y) := σi∇xi log pi(xi|y) = σi∇xi log pi(xi,y)

=σi∇xi log pi(xi)︸ ︷︷ ︸
ϵθ(xi,i)

+σi∇xi
log pi(y|xi). (11)

The first term ∇xi log pi(xi) is the score function
of the marginal distribution pi(xi), which is learned
through the generative model parameterized by θ, i.e.,
σi∇xi

log pi(xi) = ϵθ(xi, i). Computing the second
term ∇xi

log pi(y|xi) in equation 11 is hard because
pi(y|xi) =

∫
x0

p0|i(x0|xi)p0(y|x0)dx0 requires integral

over posterior p0|i(x0|xi).

2.3 Computing ∇x log pi(xi|y) as Policy
Gradient

The computation of the gradient ∇xi log pi(y|xi) can
be decomposed as follows:

∇xi log pi(y|xi)
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=∇xi

(
log

∫
p0|i(x0|xi)p0(y|x0)dx0

)
=

1∫
p0|i(x0|xi)p0(y|x0)dx0

×
(
∇xi

∫
p0|i(x0|xi)p0(y|x0)dx0

)
∝∇xi

∫
p0|i(x0|xi)︸ ︷︷ ︸

State Density Function

p0(y|x0)︸ ︷︷ ︸
Cost

dx0 =: s̃i(xi,y).

(12)

Notice that s̃i(xi,y) contains the directional informa-
tion about the guidance score ∇xi

log pi(y|xi). To
compute s̃i(xi,y), notice that the generated image
x0 is determined by the intermediate noisy image xi,
and the conditional probability p0(y|x0) can be viewed
as a cost of x0. Therefore, the computation of the
score function s̃i(xi,y) in equation 12 is closely related
to policy gradient in reinforcement learning, where
p0|t(x0|xt) is the state density function by choosing
policy xi, and p0(y|x0) is the cost. The following the-
orem enables us to compute the score function equa-
tion 12 from the policy gradient perspective:

Theorem 1 (Leibniz Rule) Suppose p0(x0) is the
probability measure of Ntrain, Ntrain < ∞ high quality
training images. Then for all i ∈ [N ], we can com-
pute the score function s̃i(xi,y) from equation 12 as
follows:

s̃i(xi,y)=Ep0|i(x0|xi)

[
p0(y|x0)∇xi log p0|i(x0|xi)

]
. (13)

Notice that the diffusion model is usually trained with
a finite number of images, Theorem 1 works for a wide
range of pretrained diffusion models. Proof of The-
orem 1 is provided in Appendix 5.1. A benefit for
using equation 13 is that we do not need to compute
the derivative of p0(y|x0) (i.e., the reconstruction loss
ℓy(x0)) and therefore do not require p0(y|x0) to be
differentiable.

2.4 Implementation Details

2.4.1 Tractable Monte Carlo sampling

Computing the score function in equation 13 requires
sampling clean images x0 from a complex distribution
p0|i(x0|xi) and then compute its density. To facili-
tate the sampling and computation, similar to Chung
et al. (2023); Song et al. (2023c), we select a Gaussian
distribution q0|i(x0|xi) = N (µi(xi), r

2
i I) to approxi-

mate p0|i(x0|xi). The mean µi(xi) and variance ri for
q0|i should be selected so that q0|i is close to p0|i, i.e.,
the KL divergence between p0|i and q0|i is small. The
following Lemma provides us with a good mean and
variance selection principle:

Lemma 1 For any distribution p0|i(x0|xi) whose

density function is absolutely continuous on Rdx ,
the optimum Gaussian distribution q0|i(x0|xi) =
N (µt(xi), r

2
i I) that minimizes the KL divergence

D(p0|i(x0|xi)||q0|i(x0|xi)) is:

µi(xi) = Ep0|i [x0|xi], r
2
i =

1

dx
Ep0|i

[
∥x0 − µi(xi)∥22

]
.

(14)

We then select the mean µi(xi) and variance ri using
Lemma 1.
(1). µi(xi): According to equation 14, the
optimum mean µi(xi) is the MMSE estimation
of x0 given xi, which requires an integral over

p0|i(x0|xi) =
p0(x0)pi|0(xi|x0)

pi(xi)
. The Tweedie’s es-

timator Efron (2011); Kim and Ye (2021) is ca-
pable of estimating µi(xi) using the conditional
pi|0(xi|x0) = N (xi;

√
αix0,

√
1− αiI) and the score

function ∇xi
log pi(xi) =

ϵθ(xi,i)√
1−αi

, i.e.,

µi(xi)

:=

√
1− αi

αi

(
1√

1− αi
xi−
√
1−αi∇xi

log pi(xi)

)
(a)
=

1√
αi

(
xi −

√
1− αiϵθ(xi, i)

)
, (15)

where equality (a) is obtained because ϵθ(xi, i) =√
1− αi∇xi

log pi(xi).
(2). ri: According to equation 14, ri should be the
average pixel-wise prediction error of the clean im-
age x0. However, computing ri using the Tweedie’s
formula requires computing the Hessian of log pi(xi),
which is computational challenging in diffusion mod-
els. As an alternative, notice that the reconstruction
error between the input y and the current prediction
A(µi(xi)), i.e., ∥y − A(µi(xi))∥2 can also reflect the
prediction error of the clean image. A small recon-
struction error indicates our prediction µi(xi) is accu-
rate and the error ∥x0 − µi(xi)∥22 should be small as
well. Therefore, we intuitively select

ri =

√
1

C ×H ×W
∥y −A(µi(xi))∥22, (16)

where C,H,W are the channels, height and width of
the image x0.

With the distribution q0|i(x0|xi), we can estimate the
score function s̃i(xi, i) inequation 12 using the Monte

Carlo method. Let x
(m)
0 ∼ q0|i(x0|xi),m = 1, · · · , Nmc

samples drawn i.i.d from distribution q0|i(x0|xi). Fol-
lowing equation 13, the s̃i(xi, i) can be computed by:

s̃i(xi,y)

≈Eq0|i(x0|xi)

[
p0(y|x0)∇xi

log q0|i(x0|xi)
]
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=Eq0|i(x0|xi)

[
p0(y|x0)∇xi

(
− 1

2r2i
∥x0 − µi(xi)∥22

)]
=− 1

2r2iNmc

Nmc∑
m=1

(
p0(y|x(m)

0 )∇xi
∥x0 − µi(xi)∥22

)
(17)

2.4.2 Selection of p0(y|x0)

After sample x
(m)
0 ,m ∈ [Nmc] from distribution

q0|i(x0|xi) = N (µi(xi), r
2
i I), we need to compute the

conditional probability p0(y|x(m)
0 ) for each data sam-

ple. Ideally, the conditional distribution p0(y|x(m)
0 ) ∝

exp
(
− 1

Z ℓy(x
(m)
0 )

)
should be a fixed distribution for

all the generation steps i. However, in the initial steps
of the diffusion generation process (i is large), the pre-
diction µi(xi) is far away from the target image, the
reconstruction loss ℓy(x0) between the input image

y and the posterior sampled image A(x(m)
0 ) can be

very large. If Z is too small, the conditional prob-

ability p0(y|x0) is always 0 for all the samples x
(m)
0

in step i; while in later stage of the diffusion gen-
eration process (i is small), the reconstruction loss
ℓy(A(µi(xi)) can be small, selecting a large Z may
lead to the fact that all the conditional probabilities

of x
(m)
0 ∼ q0|i(x0|xi) is close to one. Selecting an in-

variant Z for all the diffusion generation steps lead to

the that all the conditional probability p0(y|x(m)
0 ) are

too close to 0 or 1, and the score function s̃i(xi,y)
is not accurate. To prevent these phenomena, we
choose Zi adaptively and assign a different normal-

izing factor for the conditional probability p0(y|x(m)
0 )

in each generation step i. For Gaussian noise, we se-

lect p0(y|x0) ∝ exp
(
− 1

Zi
∥y −A(x0)∥22

)
, where each

Zi = r2i = 1
C×H×W ∥y −A(µi(xi))∥22, i.e., p(y|x0) has

the same variance as q(x0|xi) defined in equation 16;
for Poisson noise, we select the conditional distribution
p0(y|x0) ∝ exp(− 1

Zi
∥y −A(x0)∥1) to be an exponen-

tial distribution, where Zi = ∥y −A(µi(xi))∥1.

2.4.3 Reward Shaping

Similar to policy gradient in reinforcement learning,
direct MC estimation of the policy gradient equa-
tion 13 suffers from high estimation variance. To re-
duce the estimation variance, we leverage the reward
shaping technique Ng et al. (1999). The goal is to
deduct the a bias term bi(xi) = Eq0|i(x0|xi)[p0(y|x0)]
from the cost p0(y|x0) of each sample x0. Notice that
bi(xi) should be a scalar independent of samples x0,
therefore we deduct a different bias term b(m) from
each sample p0(y|x(m)

0 ) using the leave-one-out cross-

validation, i.e.,

b
(m)
i :=

1

Nmc − 1

Nmc∑
j=1,j ̸=m

p0

(
y|x(j)

0

)
. (18)

We can then improve the MC estimation from equa-
tion 17 by:

s̃i(xi,y)= (19)

−
∑Nmc

m=1(p0(y|x
(m)
0 )−b(m)

i )∇xi
∥x(m)

0 −µi(xi)∥22
2r2iNmc

.

2.4.4 Score Function Re-scaling

Notice that the score function computed from equa-
tion 19 contains only direction information. The exact
norm of the gradient ∇xi log pi(y|xi) is unknown. We
need to re-scale the computed score function s̃i(xi,y)
with norm B, i.e., assume that σi∇xi

log pi(y|xi) ≈
B · 1

∥s̃i(xi,y)∥2
2
s̃i(xi,y) and plug it into equation 11 to

compute the score function si(xi,y), i.e.,

si(xi,y) ≈ ϵθ(xi, i) +B · s̃i(xi,y)

∥s̃i(xi,y)∥22
. (20)

2.5 Algorithm Description

Using the score function estimated by equation 20,
we can solve the image inversion problems with
the conditional guided diffusion using the standard
DDPM/DDIM sampling method. The image restora-
tion restore the target image x0 is displayed in Algo-
rithm 1.

2.6 Connection with Diffusion Posterior
Sampling (DPS)

Figure 2: Evolution of

the reconstruction loss ∥y−
A(µi(xi))∥2 of the DPS and

DPG method.

In this part, we dis-
cuss the relationship be-
tween the score func-
tion obtained by DPS
Chung et al. (2023) and
our proposed method in
Corollary 1.

Corollary 1 When
ri → 0 and assume we have infinite number of MC
samples, if p0(y|x0) is a Gaussian distribution, then
the score function 17 is approximately

s̃i(xi,y) =
1

2σ2
yri

p0(y|x0)∇xi
ℓy(xi), (21)

whose direction is the same of the score function in
DPS Chung et al. (2023).

Proof of Corollary 1 is provided in Appendix 5.2.
Corollary 1 shows that the score function s̃i(xi,y) ≈
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µ1000(x1000) µ900(x900) µ600(x600) µ300(x300) x0 (Final)

D
P
G

Input ℓ = 51.0 ℓ = 15.5 ℓ = 9.64 ℓ = 6.56

D
P
S

Ground Truth ℓ = 144 ℓ = 15.8 ℓ = 10.9 ℓ = 7.99

Figure 3: Image generation procedure and the reconstruction loss ℓ := ∥y−A(µi(xi))∥2 by using DPG and DPS
methods in super-resolution.
Algorithm 1 Diffusion Policy Gradient (DPG)

Require: Number of generation steps N , input image
y, reconstruction loss function ℓy(A(·))
xN ∼ N (0, I)
for i = N to 1 do

µi(xi)← 1√
αi

(
xt +

√
1− αiϵθ(xi, i)

)
▷

equation 14.

ri ←
√

1
C×H×W ∥y −A(µi(xi))∥22 ▷ equation 16

x
(m)
0 ← N (µi(xi), r

2
i I),m = 1, · · · , Nmc, ▷

Sample from q(x0|xi)

b
(m)
i ← 1

Nmc−1

∑Nmc

j=1,j ̸=m p0(y|x(m)
0 ) ▷ Reward

Shaping equation 18

s̃i(xi,y)←−
∑Nmc

m=1(p0(y|x(m)
0 )−b

(m)
i )∇xi

∥x(m)
0 −µi(xi)∥2

2

2r2tNmc

▷ Diffusion Policy Gradient equation 19

si(xi,y)← ϵθ(xi, i) +B s̃i(xi,y)
∥s̃i(xi,y)∥2

2

xi−1 ← 1√
αi
xi +

1−αi√
1−αi

si(xi,y) +
√
βizi. ▷

DDPM

Or xi−1 ←
√

αi−1

αi
xi +

√
αi−1

(√
1−αi−1

αi−1
−
√

1−αi

αi

)
si(xi,y) ▷ DDIM

end for
Return image x0

∇xi
ℓy(xi) by DPS Chung et al. (2023) is accurate

when ri → 0, i.e., in later-stages of the diffusion gener-
ation process. However, in initial stages of the image
generation (i.e., i is large), the score function obtained
by DPS is inaccurate. As is shown in Fig. 2, the recon-
struction loss ℓy(xi) by running the DPS algorithm in
the initial image generation stages (i.e., i ≥ 750) larger
compared with our proposed DPG method. Fig. 3
plots the intermediate recoverved figures during the
diffusion process. Since DPG has a more accurate es-
timation of the guidance score function, the shape and
the sketch of the image is recovered at an earlier stage
compared with the DPS method (i.e., at step i = 900,
noisy image generated by DPG has the sketch of the

chicken, while the image generated by DPS is blank.)
More results for deblurring experiments can be found
in the Appendix.

3 Experiments

In this section, we show experimental results obtained
by our DPG method and compare its performance
with other state-of-the art methods.

3.1 Quantitative Results on Noisy Linear
Inverse Problems

Experiment Setup Similar to Chung et al. (2023);
Song et al. (2023b), we test the performance of our
proposed algorithm on three datasets: the FFHQ
256×256 dataset Karras et al. (2019), the ImageNet
dataset Deng et al. (2009) and the LSUN-Bedroom
dataset Yu et al. (2015). We consider four types of
image inverse tasks: (1) Inpainting, where a size of
128×128 mask is added randomly on the input im-
age; (2) 4×super-resolution with average pooling; (3)
Gaussian deblurring with kernel size 61×61 and stan-
dard deviation of 3.0; (4) Motion deblurring with ker-
nel size of 61 and intensity value 0.5 generated by1.
We consider that the input image is noisy, i.e., Gaus-
sian noise with variance σy = 0.05 or Poisson noise
with rate λ = 1.0 is added on the input image. For
FFHQ experiments, we use the pretrained model from
Chung et al. (2023) (trained on 4.9k images on FFHQ)
and test the performance of 1k validation set; For
Imagenet experiments, we use the unconditional Im-
agenet 256×256 generation model from Dhariwal and
Nichol (2021) and the 1k images are selected from 2;
For LSUN experiments, we use the pretrained LSUN-
Bedroom model from Dhariwal and Nichol (2021) and
test the performance on LSUN-Bedroom validation set
containing 300 images. All experiments are run on an
NVIDIA A100 GPU.

1https://github.com/LeviBorodenko/motionblur
2https://github.com/XingangPan/

deep-generative-prior/blob/master/scripts/
imagenet_val_1k.txt

https://github.com/LeviBorodenko/motionblur
https://github.com/XingangPan/deep-generative-prior/blob/master/scripts/imagenet_val_1k.txt
https://github.com/XingangPan/deep-generative-prior/blob/master/scripts/imagenet_val_1k.txt
https://github.com/XingangPan/deep-generative-prior/blob/master/scripts/imagenet_val_1k.txt
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Figure 4: Results on solving linear noisy inverse problems (inpainting, super-resolution and Gaussian deblurring)
on ImageNet Dataset. The input image is distorted by random Gaussian noise σy = 0.05.
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Figure 5: Image Restoration Results for Motion De-
blurring on ImageNet256×256.
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Figure 6: Image Restoration Results on ImageNet with
Poisson Noise λ = 1.0.

We compare the performance with the following
methods: Denoising Diffusion Null Space models
(DDNM+) Wang et al. (2023) for noisy problems, Dif-
fusion Posterior Sampling (DPS) Chung et al. (2022),
Denoising Diffusion Restoration Models (DDRM)
Kawar et al. (2022) and the Reddiff Mardani et al.
(2023). The key parameters for different methods are
displayed in Appendix 6. For LSUN dataset, we also
report the results obtained by the DDIM sampler with
200 steps generation.

Evaluation Metrics We measure both the image
restoration quality and consistency compared with the
ground-truth image. For image restoration quality, we
compute the Fréchet inception distance between the
restored images and the ground truth images; For im-
age restoration consitency, we computes the LPIPS
score Zhang et al. (2018) (VGG Net) and the Peak
Signal to Noise Ratio (PSNR) between the restored
image and the ground truth image. Quantative eval-
uation results are displayed in Table 3.1. Selected
image restoration samples when the observation noise
are Gaussian and Poisson are displayed in Fig. 4 and
Fig. 6.

Analysis The FID and LPIPS score of our proposed
DPG method is smaller than DPS method, indicating
that DPG has a better image restoration quality than
DPS method. This is because the estimation of the
score function by DPG is more accurate than DPS,
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Table 1: Quantitative Results on Inpainting, Super-Resolution and Gaussian deblurringring on FFHQ, Imagenet
and LSUN-Bedroom (256× 256) Datasets

Inpainting (Random) Super-Resolution (4×) deblurring (Gauss) deblurring (Motion)
Method FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑

FFHQ 1k Validation Set
DPG (DDPM) 22.44 0.181 22.17 22.49 0.214 26.61 22.29 0.216 26.02 24.44 0.223 26.38

DPS (DDPM) Chung et al. (2023) 33.12 0.216 21.83 39.35 0.214 25.67 44.05 0.257 24.93 39.02 0.242 24.92
DDRM Kawar et al. (2022) 27.47 0.172 23.44 62.15 0.294 25.36 74.92 0.332 23.36 N/A N/A N/A
DDNM+ Wang et al. (2023) 27.34 0.173 23.29 46.13 0.260 27.41 63.19 0.301 27.70 N/A N/A N/A

ImageNet 1k Validation Set
DPG (DDPM) 41.86 0.258 17.41 31.02 0.293 22.91 34.43 0.314 22.10 36.15 0.343 21.67

DPS (DDPM) Chung et al. (2023) 45.95 0.267 17.69 43.60 0.340 23.10 54.76 0.386 20.04 56.08 0.386 20.55
DDRM Kawar et al. (2022) 50.94 0.246 19.13 51.77 0.355 24.17 72.49 0.345 22.62 N/A N/A N/A
DDNM+ Wang et al. (2023) 50.50 0.246 19.16 51.08 0.362 24.00 71.74 0.410 24.90 N/A N/A N/A

RED-Diff Mardani et al. (2023) 192.96 0.292 20.03 74.39 0.434 23.39 62.79 0.380 23.65 N/A N/A N/A

LSUN-Bedroom Validation Set
DPG (DDPM) 34.32 0.218 18.90 31.44 0.262 23.48 38.72 0.277 22.39 34.44 0.284 22.82
DPG (DDIM) 34.39 0.209 19.74 33.86 0.269 23.99 46.08 0.322 22.25 45.08 0.355 21.97

DPS Chung et al. (2023) 35.91 0.218 18.58 37.42 0.284 23.67 48.10 0.320 22.25 50.09 0.358 21.73
DDRM Kawar et al. (2022) 37.61 0.205 19.59 50.96 0.310 24.10 59.04 0.353 22.64 N/A N/A N/A
DDNM+ Wang et al. (2023) 37.03 0.204 19.55 50.15 0.296 24.48 74.40 0.336 24.38 N/A N/A N/A

RED-Diff Mardani et al. (2023) 44.35 0.240 20.49 75.76 0.380 24.67 64.70 0.314 25.27 N/A N/A N/A

Table 2: Quantitative Results on Non-linear deblur-
ring on Imagenet (256× 256) Datasets

Method FID↓ LPIPS↓ PSNR↑
DPG (Ours) 88.15 0.464 20.73

DPS 120.79 0.484 17.79

especially in the initial stages of the diffusion genera-
tion process. Therefore, the shape and structure of the
image can be recovered in an earlilier stage of the diffu-
sion process, this gives room to recover high frequency
details in later stage of the image generation. Notice
that DDNM+ and DDRM uses a plug-in estimation,
i.e., the known pixels in y are directly used in the gen-
eration process. Therefore, the PSNR of DDNM+ and
DDRM are better than the proposed DPG method,
but the recovered high frequency detailed features are
less than our proposed DPG method. DPG has a
smaller LPIPS score and FID score in most tasks. The
Reddif method is not robust to input noise, the quality
of the restored image degrades significantly. Moreover,
since DPG has a better estimation of the guidance
score, we can combine DPG with the DDIM solver.
Results on LSUN dataset shows there is little quality
loss compared with the 1000 steps DDPM generation.

3.2 Quantitative Experiments on Non-Linear
Image Inverse Problems

Our method does not require the operator A to be
linear, and thus can be applied to non-linear image in-
version problems. We consider the input image is dis-
torted by the non-linear blur kernel Tran et al. (2021),
and compare the image restoration results of our DPG
method with the DPS Chung et al. (2023). Selected
image restoration results are displayed in Fig. 7 and
quantitative evaluations are displayed in Table 3.2.
According to Fig. 7, DPG can restore more details of
the original image, and this results in a smaller LPIPS
score.

Input DPS DPG Ground Truth

Figure 7: Image Restoration Results for Non-linear
Deblurring on ImageNet.

4 Conclusions and Limitations

In this paper, we proposed a new method to esti-
mate the guidance score function to solve image in-
verse problems using pre-trained diffusion generative
models. Our method is robust when the input im-
age is perturbed by random noise, and can be used
for solving non-linear inverse problems. Experiments
demonstrate that the proposed method can improve
image restoration quality in both human eye evalua-
tion and quantitative metrics for a wide range of tasks
such as inpainting, super-resolution and deblurring.

While the score function computed by DPG using
equation 20 eliminates the necessity for a differentiable
loss function ℓy(x0), we observe, in the specific case of
JPEG restoration, that the quality of the generated
image is less stable and far worse compared to the re-
sults achieved by ΠGDM Song et al. (2023b).

Acknowledging the superiority of our method over al-
ternatives like DPS and DDNM, it is essential to note
that the generation speed of our approach DPG is
slower when the operator becomes complex (i.e., the
non-linear deblurring kernel). Moreover, current de-
blurring experiments are carried out when the blur
kernel is known. In the future, we would like to ex-
plore solving deblurring problems with unknown ker-
nels and apply the method on latent diffusion models
Rombach et al. (2021).



Haoyue Tang1,*, Tian Xie1, Aosong Feng2

References

Avrahami, O., Fried, O., and Lischinski, D. (2023).
Blended latent diffusion. ACM Trans. Graph., 42(4).

Avrahami, O., Lischinski, D., and Fried, O. (2022).
Blended diffusion for text-driven editing of natural
images. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 18208–18218.

Blattmann, A., Rombach, R., Oktay, K., and Ommer,
B. (2022). Retrieval-augmented diffusion models.

Chung, H., Kim, J., Mccann, M. T., Klasky, M. L.,
and Ye, J. C. (2023). Diffusion posterior sampling
for general noisy inverse problems. In The Eleventh
International Conference on Learning Representa-
tions.

Chung, H., Sim, B., Ryu, D., and Ye, J. C. (2022). Im-
proving diffusion models for inverse problems using
manifold constraints. In Advances in Neural Infor-
mation Processing Systems.

Couairon, G., Verbeek, J., Schwenk, H., and Cord,
M. (2023). Diffedit: Diffusion-based semantic image
editing with mask guidance. In The Eleventh Inter-
national Conference on Learning Representations.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. (2009). ImageNet: A Large-Scale Hierar-
chical Image Database. In CVPR09.

Dhariwal, P. and Nichol, A. (2021). Diffusion models
beat gans on image synthesis. Advances in neural
information processing systems, 34:8780–8794.

Efron, B. (2011). Tweedie’s formula and selection
bias. Journal of the American Statistical Associa-
tion, 106(496):1602–1614.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising
diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851.

Ho, J. and Salimans, T. (2021). Classifier-free diffu-
sion guidance. In NeurIPS 2021 Workshop on Deep
Generative Models and Downstream Applications.

Hu, Y., Wang, Y., and Zhang, J. (2023). Dear-
gan: Degradation-aware face restoration with gan
prior. IEEE Transactions on Circuits and Systems
for Video Technology, 33(9):4603–4615.

Karras, T., Laine, S., and Aila, T. (2019). A style-
based generator architecture for generative adver-
sarial networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion, pages 4401–4410.

Kawar, B., Elad, M., Ermon, S., and Song, J. (2022).
Denoising diffusion restoration models. In Advances
in Neural Information Processing Systems.

Kim, K. and Ye, J. C. (2021). Noise2score: Tweedie’s
approach to self-supervised image denoising without
clean images. In Advances in Neural Information
Processing Systems.

Mardani, M., Song, J., Kautz, J., and Vahdat, A.
(2023). A variational perspective on solving in-
verse problems with diffusion models. arXiv preprint
arXiv:2305.04391.

Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu,
J.-Y., and Ermon, S. (2022). SDEdit: Guided im-
age synthesis and editing with stochastic differential
equations. In International Conference on Learning
Representations.

Meng, X. and Kabashima, Y. (2022). Diffusion model
based posterior sampling for noisy linear inverse
problems. arXiv preprint arXiv:2211.12343.

Ng, A. Y., Harada, D., and Russell, S. J. (1999). Policy
invariance under reward transformations: Theory
and application to reward shaping. In Proceedings of
the Sixteenth International Conference on Machine
Learning, ICML ’99, page 278–287, San Francisco,
CA, USA.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P.,
and Ommer, B. (2021). High-resolution image syn-
thesis with latent diffusion models.

Rout, L., Raoof, N., Daras, G., Caramanis, C., Di-
makis, A. G., and Shakkottai, S. (2023). Solving
linear inverse problems provably via posterior sam-
pling with latent diffusion models. arXiv preprint
arXiv:2307.00619.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N.,
and Ganguli, S. (2015). Deep unsupervised learn-
ing using nonequilibrium thermodynamics. In In-
ternational conference on machine learning, pages
2256–2265. PMLR.

Song, B., Kwon, S. M., Zhang, Z., Hu, X., Qu, Q.,
and Shen, L. (2023a). Solving inverse problems with
latent diffusion models via hard data consistency.

Song, J., Vahdat, A., Mardani, M., and Kautz, J.
(2023b). Pseudoinverse-guided diffusion models for
inverse problems. In International Conference on
Learning Representations.

Song, J., Zhang, Q., Yin, H., Mardani, M., Liu, M.-Y.,
Kautz, J., Chen, Y., and Vahdat, A. (2023c). Loss-
guided diffusion models for plug-and-play control-
lable generation. In Proceedings of the 40th Inter-
national Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research,
pages 32483–32498. PMLR.

Song, Y., Shen, L., Xing, L., and Ermon, S. (2021a).
Solving inverse problems in medical imaging with
score-based generative models. In NeurIPS 2021
Workshop on Deep Learning and Inverse Problems.



Haoyue Tang1,*, Tian Xie1, Aosong Feng2

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar,
A., Ermon, S., and Poole, B. (2021b). Score-based
generative modeling through stochastic differential
equations. In International Conference on Learning
Representations.

Tran, P., Tran, A. T., Phung, Q., and Hoai, M. (2021).
Explore image deblurring via encoded blur kernel
space. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
11956–11965.

Wang, Y., Yu, J., and Zhang, J. (2023). Zero-shot im-
age restoration using denoising diffusion null-space
model. The Eleventh International Conference on
Learning Representations.

Weber, A. G. (2006). The usc-sipi image database:
Version 5. http://sipi. usc. edu/database/.

Yu, F., Zhang, Y., Song, S., Seff, A., and Xiao, J.
(2015). Lsun: Construction of a large-scale image
dataset using deep learning with humans in the loop.
arXiv preprint arXiv:1506.03365.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and
Wang, O. (2018). The unreasonable effectiveness of
deep features as a perceptual metric. In CVPR.


	Introduction and Problem Formulation
	Methodology
	Preliminaries: Diffusion Models
	Solving Inverse Problems as Posterior Sampling
	Computing xpi(xi|y) as Policy Gradient
	Implementation Details
	Tractable Monte Carlo sampling
	Selection of p0(y|x0)
	Reward Shaping
	Score Function Re-scaling

	Algorithm Description
	Connection with Diffusion Posterior Sampling (DPS)

	Experiments
	Quantitative Results on Noisy Linear Inverse Problems
	Quantitative Experiments on Non-Linear Image Inverse Problems

	Conclusions and Limitations
	Proofs
	Proof of Theorem 1
	Proof of Corollary 1

	Key parameters for experiments
	DPG
	Key parameters for other methods
	Runtime Comparisons

	More Experiement Results
	Results on the Image Restoration Process


