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Abstract

There has been increasing interest in apply-
ing multi-armed bandits to adaptive designs
in clinical trials. However, most literature
assumes that a previous patient’s survival re-
sponse of a treatment is known before the
next patient is treated, which is unrealistic.
The inability to account for response delays
is cited frequently as one of the problems in
using adaptive designs in clinical trials. More
critically, the “delays” in observing the sur-
vival response are the same as the rewards
rather than being external stochastic noise.
We formalize this problem as a novel stochas-
tic multi-armed bandit (MAB) problem with
reward-dependent delays, where the delay at
each round depends on the reward generated
on the same round. For general reward/delay
distributions with finite expectation, our
proposed censored-UCB algorithm achieves
near-optimal regret in terms of both problem-
dependent and problem-independent bounds.
With bounded or sub-Gaussian reward distri-
butions, the upper bounds are optimal with
a matching lower bound. Our theoretical re-
sults and the algorithms’ effectiveness are val-
idated by empirical experiments.

1 INTRODUCTION

Clinical trials are conducted to evaluate the efficacy
of new treatments. In contrast with the traditional
randomised clinical trials, which allocated patients to
the two treatments uniformly at random throughout
the trial, there has been growing interest in adopting
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response-adaptive randomisation (RAR), in which the
randomisation probabilities change during the trial as
patient responses are observed. This dynamic design,
aimed at enhancing efficiency and ensuring that more
patients are assigned to the better performing treat-
ments, has become an attractive method for patient
allocation (Pallmann et al., 2018; Zhang and Rosen-
berger, 2007; Williamson et al., 2022).

While ensuring a clinical trial has enough power to
identify meaningful differences at its end is impor-
tant, we must also prioritize the well-beings of the
patients throughout the trial. Rising to this oppor-
tunity, multi-armed bandits (MAB) have emerged to
be the idealized mathematical decision framework for
response-adaptive clinical trials. As such, the last
decade has witnessed tremendous research efforts in
designing efficient (stochastic) bandit algorithms to
correctly identify the best treatment while treating pa-
tients as effectively as possible during the trial (Aziz
et al., 2021; Varatharajah and Berry, 2022; Atan et al.,
2019; Zhang and Rosenberger, 2007; Arya and Yang,
2020; Zhou et al., 2019a), although the scope of multi-
armed bandits is much more general.

However, in most multi-armed bandit settings it is as-
sumed that the reward of treatment allocation is im-
mediately available before the next patient arrives.
This is not realistic since in most cases the treat-
ment effect is seen at some delayed time after the
treatment is provided. The challenges introduced by
delayed outcomes in oncology and cancer treatments
where the therapeutic effect takes time to manifest are
well-recognized in the literature (Arya and Yang, 2020;
Eick, 1988a,b; Williamson et al., 2022). The inability
of most response-adaptive designs to account for delay
has long been cited as one of the major hindrances to
their practical application (Shrestha and Jain, 2021;
Williamson et al., 2022).

The importance of considering delays is highlighted
by literature in recent years, while most considerations
were motivated by reward delays in advertisement and
news article recommendations (Vernade et al., 2017;
Joulani et al., 2013; Vernade et al., 2020; Zhou et al.,
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2019b; Gael et al., 2020). As such, the delay was as-
sumed either to be fixed, or stochastic but reward-
independent, i.e. sampled from an unknown delay dis-
tribution that can depend on the chosen arm, but not
on the stochastic reward received on the same round.
In many clinical settings, however, it is seldom the case
that the individual medical outcomes will be available
later at random points in time, regardless of the effec-
tiveness of the treatment.

The more challenging setting of reward-dependent de-
lays was not explicitly addressed previously in the ban-
dit literature, expect for the work by Lancewicki et al.
(2021). More critically, most of the researchers and
physicians for oncology and cancer treatment use sur-
vival analysis to measure the outcome of a treatment.
Among all the survival measures, progression-free sur-
vival (PFS) is defined as the number of days after the
treatment until a disease progression or death, and is
widely used as an event-driven surrogate measure of
clinical benefits (Driscoll and Rixe, 2009; Hari et al.,
2018; Marshall et al., 2016). In this case, we can ob-
serve the survival outcome only until disease worsens,
in the sense that the “delays” in observing the PFS
are the same as the PFS itself, rather than external
stochastic noise. In contrast to reward-independent
case, the observed survival outcomes can give a bi-
ased estimation of the true rewards as shorter PFS
will be observed earlier. Meanwhile, a unique feature
of survival analysis is that typically not all patients
experience the event (e.g., death or disease progres-
sion) by the end of the observation period, so the ac-
tual survival responses for some patients are unknown.
This phenomenon, referred to as censoring, must be
accounted for in the analysis. Hence, when a substan-
tial portion of survival responses remain unobserved,
and when reward and delay can be arbitrarily large,
the expected observed reward of the best arm might
be much smaller than that from a sub-optimal arm,
which creates significant challenges in learning.

1.1 Our Contributions

Motivated by the existing gap between the theory of
response-adaptive randomisation (which is abundant
with clinical trial design proposals in the setting of
immediate responses) and clinical practice (in which
survival responses are typically delayed), we propose
a novel stochastic bandit formulation that maximizes
the cumulative expected rewards rt of adaptively cho-
sen arms at, given stochastic delays dt = max(0, ⌈rt⌉)
in observing the reward rt, which creates a (nearly)
perfect correlation between the stochastic reward ra
and the delay distribution τa

1.

1⌈x⌉ denotes the minimum integer that is ≥ x.

As progression-free survival (PFS) is naturally posi-
tive, we first consider general reward distributions with
no assumptions other than ra > 0 and E[ra] <∞, for
any arm a. We design an anytime Censored-UCB al-

gorithm which achieves O
(∑

i̸=i∗
log(T ) log log(T )2

∆i

)
ex-

pected regret and a problem-independent (i.e. gap-

free) regret bound of O
(√

KT log(T ) log log(T )
)
,

that match the bounds of the standard non-delayed
setting up to a log-logarithm factor. The additional
log-logarithm factor can be attributed to potentially
heavy-tailed reward/delay distributions and the fact
that long delays are associated with larger rewards due
to their strong dependency.

We then consider important special cases with
bounded reward/delay distributions, and sub-
Gaussian reward/delay distributions. We provide
a refined analysis that achieves problem-dependent
regret bounds of O (log(T )), with an additive increase
of

∑
i ̸=i∗ ∆i in the regret for the standard non-

delayed stochastic MAB. We show that this bound
is optimal under bounded rewards, by presenting
a matching lower bound. We also present the first

problem-independent bound of O
(√

KT log(T )
)

under reward-dependent delays that matches the
bounds of the standard non-delayed MAB.

We would like to note here that our settings and herein
the results are new compared to the literature. To the
best of our knowledge, the only studies (Lancewicki
et al., 2021; Gael et al., 2020) that propose provable
algorithms for reward-dependent setting rely on the as-
sumption that the rewards are bounded in [0,1], with
additional assumptions in Gael et al. (2020) such as
the delays are bounded by an α-pareto distribution.

1.2 Related Literature

Recent research has explored the challenges of learning
in bandit feedback with delays across various contexts
in the literature. Most of the work assumes reward-
independent delays, i.e. the reward rt and delay dt
are independent from each other. Among the related
studies, Dud́ık et al. (2011) is the first to consider de-
lays in stochastic MAB with fixed delay d. Mandel
et al. (2015) follows the work of Joulani et al. (2013)
and allows for some unknown, arbitrary process that
generates delay times. Similar to Joulani et al. (2013),
the delay is assumed to be bounded, and the upper
bound is consistent with the classical MAB problems.

There are other works studying i.i.d. stochastic de-
lays. For arm-independent stochastic delays, contex-
tual bandits are considered in Zhou et al. (2019b).
Vernade et al. (2020) proposes learning algorithms
for linear Bandits in which delays are only partially
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observable. Zhou et al. (2019b) investigates general-
ized linear contextual bandits in the presence of i.i.d.
stochastic delays. Pike-Burke et al. (2018) proposes
a variant of delayed bandits with aggregated anony-
mous feedback, under the assumption that the ex-
pected delay is bounded and known to the learner.
Arm-dependent stochastic delays have been investi-
gated by Gael et al. (2020) in the setting of stochastic
bandits, Lancewicki et al. (2021) with less assump-
tions with unrestricted delay distributions, and Arya
and Yang (2020) under a multi-armed bandit prob-
lem with covariates. A more recent work by Shi et al.
(2023) devotes to establishing valid statistical infer-
ence to quantify the uncertainty of learned policies un-
der multi-armed bandits with arm-dependent delayed
feedback. Keyvanshokooh et al. (2019) proposes a con-
textual multi-armed bandit model that discusses feed-
back under (reward-independent) constant delays and
stochastic delays and highlights the challenges posed
by delayed feedback in medical contexts.

Much less attention has been paid on reward-dependent
stochastic delays. Vernade et al. (2017) considers de-
layed Bernoulli bandits where it is impossible to de-
cide whether the conversion is 0 or if conversion is 1
but the observation is delayed. However, this work re-
quires complete knowledge of the delay distribution.
Lancewicki et al. (2021) more explicitly proposes the
unrestricted delay distributions, in which the stochas-
tic delay at each round and the reward are drawn from
a joint distribution. While there is no assumption
on the delay distributions, the reward distributions
are assumed to be bounded in [0,1]. Although with
a slightly different focus, Zimmert and Seldin (2020);
Gyorgy and Joulani (2021); Van Der Hoeven and Cesa-
Bianchi (2022) consider non-stochastic bandits under
arbitrary or arm-dependent delays and propose algo-
rithms achieving regret bounds that depend on the
total delay D in T rounds.

On the other hand, in the literature on clinical tri-
als, most RAR procedures hinge on the limiting as-
sumption that when a treatment must be assigned for
a newly enrolled patient, the outcomes of previously
treated patients must be fully assessed. However, as
survival analysis and survival measures continue to be
well acknowledged as the primary assessment to ap-
prove new drugs, design or interpret clinical trials, in-
trinsic delay of survival outcomes can prohibit their
implementation in practice. Ryeznik et al. (2012) de-
scribes the inability to account for delay as “a major
stumbling block in implementing adaptive designs”,
and Rosenberger et al. (2012) lists it as one of the
main criticisms of response-adaptive randomisation.

Several research attempts have focused on simplified
problems. For example, Eick (1988a,b); Wang (2002)

examines delayed feedback within a two-armed clin-
ical trial, where the distribution of one arm is as-
sumed to be known. Most methodological papers dis-
cussing response-adaptive randomisation procedures
assume a fixed delay (e.g. Langenberg and Srinivasan
(1982); Chick et al. (2017, 2022)), with recent work
(Williamson et al., 2022) identifying the existing gap
for Bayesian response-adaptive randomisation proce-
dures by considering a two-armed Bernoulli bandit
with either fixed and/or arm-independent stochastic
delays. Xu and Yin (2014) and Zhang and Rosen-
berger (2007) propose optimal allocation schemes de-
rived for arm-independent exponential and/or Weibull
distributed response delays.

While empirical and medical evidence have suggested
the use of bandit formulation for response-adaptive
randomisation with PFS as response (for example,
Zhou et al. (2019a) have shown the effectiveness of a
Bayesian contextual bandit algorithm for treating an
incurable cancer on 803 patients recruited in 2000-2017
with 3762 total revisits and average PFS of 163 days
(median = 93)), nevertheless, there is no response-
adaptive randomisation literature considered reward-
dependent delays for general reward/delay distribu-
tions, and our work aims to fill the gap.

2 PROBLEM SETTING

Notations. We denote min {a, b} as a∧ b. For a pos-
itive integer n, denote [n] to be the set {1, 2, . . . , n}.
For any real number x, ⌈x⌉ denotes the minimum in-
teger that is not less than x, while ⌊x⌋ denotes the
maximum integer that does not exceed x. For two
real-valued functions f and g, if there exists constants
c,N , such that f(t) ≤ cg(t) for all t ≥ N , we write
this as f = O(g), and g = Ω(f). Finally, we denote
I(E) as the indicator of the event E .

Suppose there are K > 1 arms or treatments in the
action set A. Each arm i ∈ A is associated with a
reward distribution νi and a delay distribution τi. The
reward distribution can have unbounded support and
the delay distribution is supported on N = {0, 1, ...}.
We denote by µi the (unknown) expected reward of
arm i, µ∗ = µi∗ = maxj µj , and ∆i = µ∗ − µi.

At each round t (e.g. for current patient t), the learner
chooses an arm (e.g. treatment) at ∈ A and get re-
ward rt(at) sampled i.i.d. from νat

. Unlike the stan-
dard MAB setting, the learner does not immediately
observe rt(at) at the end of round t. Instead, the tuple
(at, rt(at)) is received at the end of round t+ dt(at).

The reward-dependent delay model. Motivated
by the clinical trials setting where the reward rt(at)
can measure the survival time after a treatment at is
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given to the current patient t, in this work, we consider
a special form of the stochastic delays dt(at) that are
dependent on the reward rt(at) in the same round.
For example, one commonly used survival measure is
progression-free survival (PFS), which is defined as the
number of days after the treatment, that a patient
lives with the disease (such as cancer) but it does not
get worse. The identification of “progression” gen-
erally involves imaging techniques (e.g. plain radio-
grams, CT scans, MRI) or the toxicological character-
istics of the treatments in the trial. With this being
said, if the progression-free survival is rt(at), which
are positive integers corresponding to the number of
days, the tuple (at, rt(at)) can only be observed af-
ter dt(at) = rt(at) rounds until the identification of
disease progression.

Proposed more generally, for general reward distribu-
tions νi, if the sampled reward rt < 0, the reward will
be revealed immediately without delay. If the sampled
reward rt ≥ 0, the delay dt in receiving the response
is the minimum integer that is no less than rt. In
other words, dt = max(0, ⌈rt⌉) in observing the re-
ward rt, which creates a (nearly) perfect correlation
between the stochastic reward distribution νi and the
delay distribution τi.

Performance criterion. In most bandit problems,
the regret is the cumulative loss due to not playing
an optimal action. The performance of the learner in
our setting is thus measured as usual by the expected
pseudo-regret that considers the loss of all generated
rewards, regardless of whether the reward is received
before horizon T . Formally,

E[RT ] := max
i

E

[
T∑

t=1

νi

]
− E

[
T∑

t=1

ν(at)

]

= Tµ∗ − E

[
T∑

t=1

ν(at)

]
.

3 OUR ALGORITHM: CENSORED
UPPER CONFIDENCE BOUND

At each round t, if s+ds < t (reward occurred in round
s is available at the beginning of round t), (s, as, rs)
are completely observed by the learner. In the pres-
ence of delayed feedback, however, the sample mean
of completely observed rewards is no longer an unbi-
ased estimator for µi, as the expectation of observed
reward can be different from the actual expected re-
ward, e.g. smaller reward will be observed earlier.

The essential idea of our proposed algorithm is to use
censored information of the reward within m steps af-
ter the arm was played, to augment the set of com-
pletely observed tuples. Namely, for a given positive

integer m, for any t > s + m, if delay ds ≤ m, the
tuple (s, as, rs) is included in the history Ht of the ob-
served information. If ds > m, given the dependency
between the reward and the delay distribution, while
rs may not be observed due to delay, we know that
rs > m. Hence the tuple (s, as,m) is added into the
history Ht of information. Taking together, we define

Ht(m) = {(s, as, rs)|∀s, s+m < t, ds ≤ m}
∪ {(s, as,m)|∀s, s+m < t, ds > m}

= {(s, as, rs ∧m)|∀s, s+m < t}.

as the information (filtration) available at the begin-
ning of round t for the learner to choose an arm.

Denoting the number of pulls of arm i up to time t−m
as Nt(m, i) :=

∑t−m−1
s=1 I{as = i}, we construct the

estimator as follows:

r̂t(m, i) :=

∑t−m−1
s=1 (rs ∧m)I{as = i}

Nt(m, i)
. (1)

The idea is that if we keep increasing m (which might
be a function of the round t, i.e., m = ⌊m(t)⌋),
we have limm→∞ E[νi ∧ m] = E[νi], based on the
Dominated Convergence Theorem (see appendices for
proof). Thus the estimation of E[νi ∧m] will asymp-
totically converge to the real mean rewards.

3.1 Algorithm

We first consider general reward distributions with po-
tentially unbounded support, under the only assump-
tion of finite expectation, i.e. E[νi] <∞ for any i ∈ A,
which includes exponential and Weibull distributions
that are frequently used for survival analysis, Poisson
distributions, and other heavy-tailed distributions. As
survival measures are naturally positive, we start our
discussion with νi > 0.

We first define a censored upper confidence bound
based on the following concentration bound, with the
proof provided in the appendix.

Proposition 1. For any non-random integers 1 <
m < t ≤ T , and δ ∈ (0, 1

2 ), we have

P

(
|r̂t(m, i)− E[νi ∧m]| ≤ m

√
2

Nt(m, i)
log

(
2T

δ

))
≥ 1−δ.

By applying the union bound for 0 ≤ t ≤ T and i ∈ A,
we define the m(t)-censored-UCB index as

UCB
m(t)
i (t, T ) = r̂t

(
m(t), i

)
+m(t)

√√√√2 log (2K2T 3)

Nt

(
m(t), i

) ,

where m(t) = o(t) is a censoring function that may
take the forms of, for example, log(t) and log log(t).
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Algorithm 1 presents the censored-UCB algorithm for
known horizon T . To initialize Algorithm 1, one
should begin the UCB index when t −m(t) − 1 > K
so that each νi ∧M should have at least one sample

to build the estimator r̂t

(
m(t), i

)
. We denote l as the

number of initialization rounds that are required. One
should note that l is not random, and only depends on
the censored function m(·) and the number of arms. If
m(t) is set to be log(t) or log log(t), we can set l = 2.

To get an anytime algorithm, we utilize the doubling
trick and select several nodes l < T1 < T2 < · · · as the
updating points. We follow the standard exponential
doubling trick (Besson and Kaufmann, 2018) such that
partition T1 < T2 < · · · is defined to be

Ts =

⌊
T0

a
ab

s

⌋
, s ∈ N+ (2)

for some a, b > 1, T0 ∈ N+. Suppose that AlgT repre-
sents a sub-routine (e.g. Algorithm 1) with a known
horizon T , algorithm 2 presents the anytime censored-
UCB algorithm with unknown horizon T . We note
here that the adoption of doubling trick is from a the-
oretical standpoint and a refined regret bound can be
obtained by an upper confidence bound that only de-
pends on the current time t.

Algorithm 1: m(t)-Censored-UCB algorithm

Input: Horizon T, censoring function m(t),
initialization rounds l

Pull each arm l times
for t ≥ lK + 1 do

Compute Nt

(
m(t), i

)
and r̂t

(
m(t), i

)
for all i

Compute upper confidence bound

UCB
m(t)
i (t, T ) for all i ∈ A

Select at ← argmaxi UCB
m(t)
i (t, T )

end

Algorithm 2: Anytime algorithm with unknown
horizon T
Input: The updating nodes T1 < T2 < · · · , the

sub-algorithm AlgT with any given T

i← 0, initialize the algorithm Alg(0) = AlgT0
;

for t = 1, 2, 3, · · · do
if t > Ti then

i← i+ 1
Initialize algorithm Alg(i) = AlgTi−Ti−1

end

Play algorithm Alg(i): the arm at is selected
the same as that in round t− Ti under Alg(i)

end

3.2 Regret Analysis

The regret analysis presented in this section is derived
under Algorithm 2. The results for known horizon T
are discussed in supplementary materials.

For any real number c > 1 and sub-optimal arm i, we
define di,i∗(c) as

0 ∨ inf

{
x ∈ R : ∀m ≥ x,E[νi∗ ∧m]− E[νi ∧m] ≥ ∆i

c

}
which means the smallest value in R+∪{0}, truncating
on which we can lead to an at least ∆i

c gap between
arm i and the optimal arm. Such value must exist
since for any arm i, E[νi ∧m]→ E[νi]. Thus, for some
given c, di,i∗(c) is a problem-dependent parameter.

Similarly, we define

di,i∗ = min {j ∈ N : E [νi ∧ k] < E [νi∗ ∧ k] ,∀k ≥ j} ,

which can be viewed as di,i∗(∞).

We note here that, in general, di,i∗ cannot be merely
determined by the mean and the variance of νi and νi∗ .
For example, we let νi∗ ∼ N (1.1, 1), ν1 ∼ Poisson(1),
ν2 ∼ N (1, 1), where ν1 and ν2 have the same mean and
variance. However, by definition, d2,i∗ = 0, d1,i∗ > 0.
If the reward distributions are limited to a double-
parameter exponential family, whose probability den-
sity functions are defined in{

f(x) = e(x−µ)2/2σ2

/
√
2πσ2 : µ, σ ∈ Θ

}
,

then since νi’s are characterized by mean and variance,

di,i∗ = inf

{
k > 0 :

∫ ∞

m

(Fi∗(t)− Fi(t))dt ≤ ∆i,∀m ≥ k

}
is determined by ∆i, µi, σi.

Theorem 1. Suppose there exists a constant c0 > 0

such that for all i ∈ N+,
m(Ti)

m(Ti−1)
≤ c0, then for any

c > 1 and T > max {C0,K}, the expected regret of
Algorithm 2 satisfies

E[RT ] ≤
∑
i ̸=i∗

C1c
2m(T )2

∆i
log(T ) +

∑
i̸=i∗

C2m(T ) log log(T )∆i

+ C3 log(log(T ))
∑
i̸=i∗

m−1(di,i∗(c))∆i + C4

= O

∑
i̸=i∗

m(T )2 log(T )

∆i

 ,

where Ci = Ci(a, b, c0, T0), i = 0, 1, 2, 3, 4 are some
universal constants.

The condition m(Ti)
m(Ti−1)

≤ c0, is to say that m(·) is not
increasing very fast. For logarithm and iterated loga-
rithm censoring functions, this condition can be satis-
fied by c0 = b, T0 > a, b > 1. Meanwhile, log log(T ) in



Stochastic Multi-Armed Bandits with Strongly Reward-Dependent Delays

the second and the third term comes from the process
of exponential doubling trick and the regret bound for
know horizon T does not include this term.

Proof of Theorem 1 (sketch). We first derive the up-
per bound for a given budget T , which is of order∑

i ̸=i∗ M
2(T ) log(T )/∆i. Consider the last time the

agent pulls an arm i that is sub-optimal. The Algo-

rithm ensures that UCB
m(t)
i∗ (t, T ) ≤ UCB

m(t)
i (t, T ) at

this time, leading to the following bound for E(νi∗ ∧
m(t))− E(νi ∧m(t)), i.e.,

E(νi∗ ∧m(t))− E(νi ∧m(t)) ≤ 2m(t)

√
log (2K2T 3)

Nt(m(t), i)
.

If at this time, t is greater than m−1(di,i∗(c)), then the
left hand side will be greater than ∆i

c thus leading to
an upper bound for Nt(m(t), i):

Nt(m(t), i) ≤ C ′ c
2m2(t) log (T )

∆2
i

,

for some universal constants C ′, using the fact that
K < T . Otherwise, t < m−1(di,i∗(c)), then the to-
tal number of pulls on the arm i will not exceed t, and
thus the reward contributed by this arm is bounded by
m−1(di,i∗(c))∆i. The known horizon upper bound is
obtained by taking the pulls from t−m−1 to t into con-
sideration, namely, a regret of order m(T )

∑
i̸=i∗ ∆i.

Then, according to the doubling trick, the regret at
time T is accumulated by

RT =

LT∑
j=1

RTj−Tj−1
(AlgTj−Tj−1

)

where LT = min {j : Tj > T}. Since the summation∑
log(Ti − Ti−1) conserves the order of log(T ), the

doubling trick conserves the order. For the low-order
terms, LT = O(log log T ) implies the contribution of
which cannot exceed the leading terms. □

Remark 1. Although the term m(·) = o(t) can be
arbitrarily small, this is not a free lunch, since the
constant involves a term m−1(di,i∗(c)). It will be in-
finitely large if one chooses m(t) to be constant. As a
result, this includes a trade-off. If we choose the cen-
soring function to be m(t) = log log(t), the regret is

bounded by O
(∑

i ̸=i∗
log log(T )2 log(T )

∆i

)
that matches

the O
(∑

i̸=i∗
log(T )
∆i

)
regret bound of the classic MAB

without delays up to a log-logarithm factor. The slight
gap can be attributed to potentially heavy-tailed dis-
tributions, where m2(t) gives an upper bound of the
arbitrarily large second moment of the censored re-
ward νi∧m(t) up to time t. The term m−1(di,i∗(c))∆i

corresponds to the number of pulls we use to distin-
guish the difference between arms. Such a term can

be unexpectedly large if the distributions are irregular
when the sub-optimal arm i dominated the truncated
expected rewards E(νi∧N) until a very large N , which
is intuitively called the “stick-together” arms. Another
term, m(t)

∑
i ̸=i∗ ∆i corresponds to the regret because

of the information that has been censored, with m(t)
as the cost we pay to process that censored informa-
tion.

The above regret is problem-dependent in the sense
that it is fully specified by the reward/delay distri-
butions of the arms. When mini ∆i is small and/or
di,i∗(c) is large, the problem-dependent constants can
be usually large. Hence, we also notice that it is
valuable to derive problem-independent bounds (e.g.
distribution-free) as follows which are bounds on the
worst-case expected regret as a function of the num-
ber of armsK and time T (Degenne and Perchet, 2016;
Joulani et al., 2013; Pike-Burke et al., 2018).

Theorem 2 (Problem-independent). If there exists

some constant c0 such that m(Ti+1)
m(Ti)

≤ c0, and if we

further assume additional uniform integrability on νi,
i.e. E

[
m−1(x)(νi − νi ∧ x)

]
< G1 and E(νi) ≤ G2 <

∞ for some constants G1 and G2, then Algorithm 2
incurs an expected regret at most

E[RT ] ≤ C1m(T )
√

KT log(T ) + C2

= O
(
m(T )

√
KT log(T )

)
,

for T > C3, where Ci = Ci(a, b, T0, G1, G2), i = 1, 2, 3
are universal constants.

The uniform integrability assumption generally means
that the increasing speed of m−1(·) is slower than the
decaying speed of the tail probability. For example, if
m(t) = log t while νi is assumed to have sub-Gaussian
distributions, the condition is satisfied.

4 TIGHTER REGRET BOUNDS
FOR SPECIAL CASES

In this section, we show that under some common and
mild assumptions on the reward distribution, we can
obtain tighter regret guarantees. We consider two set-
tings: reward distribution with bounded support, and
sub-Gaussian reward distributions.

4.1 Rewards with Bounded Support

Without loss of generality, we assume that the reward
distribution νi is supported in [0,M ] and known to the
learner, with the generalization to any bounded case
[M1,M2] provided in the appendix.

In this case, for time t > M , the rewards from the time
before t −M − 1 must be observed by time t. Hence
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we propose to use the following estimator

r̂t(i) =

∑t−M−1
s=1 rsI(as = i)

Nt(i)
,

where Nt(i) =
∑t−M−1

s=1 I(as = i). Note that M re-
mains constant in this setting. Since all the out-
coming rewards are observed after at most M time
points, this estimator is unbiased. Similarly, the up-
per confidence bound is constructed as

UCBi(t, T ) = r̂t(i) +M

√
2 log (2K2T 3)

Nt(i)
.

For completeness, we present the pseudo-codes of
bounded rewards in Algorithm 3. Algorithm 2 can be
used to obtained an anytime algorithm by adopting
Algorithm 3 as the sub-routine AlgT .

Algorithm 3: Censored-UCB algorithm for
known horizon T under bounded reward setting

Input: Horizon T , M
Pull each arm once
Random pull the arms until t > M
for t ≥ max {K,M + 1} do

Compute the estimation r̂t(i) for i ∈ A
Compute UCBi(t, T ) for i ∈ A
Select at ← argmaxi UCBi(t, T )

end

We get the following instance specific and problem-
independent regret bounds.

Theorem 3. The expected regret of anytime Algo-
rithm 3 can be upper bounded by

E[RT ] ≤ C1

∑
i ̸=i∗

M2 log(T )

∆i

+ C2M log(log T )
∑
i ̸=i∗

∆i + C3

= O

∑
i ̸=i∗

log(T )

∆i

 ,

T > C4, with universal constants Ci = Ci(a, b, T0), i =
1, 2, 3, 4.

We remark that log log(T ) comes from the process of
exponential doubling trick and the regret bound for
know horizon T does not include the log log(T ) term.
It is worth noting that the upper bound by Lancewicki
et al. (2021) depends on di(qi) that represents quan-
tiles of the arms’ distribution, while our bound only
depends on ∆i.

Theorem 4 (Problem-independent). For any problem
instance, the expected regret of Algorithm 3 satisfies,

E[RT ] ≤ C1M
√
KT log(T ) + 2KM2

= O(
√
KT log(T )),

for universal constant C1, and ∀T > max(K,M).

It worth noting here, the best-known problem-
independent bound for the expected regret of clas-
sic (non-delayed) UCB1 is O(

√
KT log(T )), together

with O(
√
KT log(T )) for Thompson sampling using

Beta priors (Auer et al., 2002; Agrawal and Goyal,
2017; Bubeck et al., 2012). Meanwhile, Joulani et al.
(2013) shows that for reward-independent delay distri-
butions with a finite expected delay, the worst case
scales with O(

√
KT log(T ) + KE[τ ]). Nevertheless,

our results show that under our reward-dependent de-
lay with bounded support, the upper bound matches
with the order of the classical MAB problems, and re-
covers the result by Joulani et al. (2013) up to an M
factor which reflects the upper bound of the reward
distribution, saying that the price to pay for the delay
in receiving the observations is negligible.

4.2 Sub-Gaussian Reward Distributions

In this section, we consider the broadly adopted set-
ting in MAB with sub-Gaussian reward distributions.
Without loss of generality, we assume that all arms are
1-sub-Gaussian defined as follows,

Definition 1. An arm with stochastic reward X is
said to be 1-sub-Gaussian, if for all t > 0,

P (X − EX ≥ t) ≤ e−
t2

2 ,P (X − EX ≤ −t) ≤ e−
t2

2

Consequently, ∀λ ∈ R : E
(
eλ(X−EX)

)
≤ eλ

2/2.

We modified the UCB index in Algorithm 1 as follows,

UCB
m(t)
i (t, T ) = r̂t(m(t), i) +

√
4

Nt(m(t), i)
log (e2K2T 3).

The key idea is that when νi are assumed to have sub-
Gaussian distributions, the distribution of νi ∧ m is
“nearly sub-Gaussian”, by which we can obtain a re-
fined concentric inequality of r̂t(m(t), i). Using the
censored function m(t) = log t, we have the following
regret bounds with proofs in the appendix.

Theorem 5. The anytime Censored-UCB algorithm
with m(t) = log t leads to an expected regret, for T >
C0(a, b, T0) and any c > 1,

E[RT ] ≤ C

(
∆i +

1

∆i

)
log(T ) + 2

∑
i ̸=i∗

Ci log log(T )

= O
((

∆i +
1

∆i

)
log(T )

)
,
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in which C = 128c2b2/(b − 1), Ci = edi,i∗ (c)∆i(4 +
2/ log b), and C0(a, b, T0) is some constant only related
to a, b, T0.

Remarkably in the proposed upper bound, the first
part

∑
i ̸=i∗

log T
∆i

is coming from learning, while the sec-
ond part

∑
i ̸=i∗ ∆i log T comes from the delay m(T ) =

log(T ). Nevertheless, this matches the O(log(T )) re-
gret bound of non-delayed MAB.

Notably, again, this is not a free lunch. In our setting,
the discrepancy between the two arms might be so tiny
that the learner cannot distinguish it in a short period
of time. Thus, one will need the problem-dependent
constant Ci to control such circumstances.

Theorem 6 (Problem-independent). For any prob-
lem instance satisfying 1-sub-Gaussian reward distri-
butions and the assumption that the expected reward
is bounded by some constant G > 0 uniformly, the ex-
pected regret of the anytime Censored-UCB algorithm
satisfies

E[RT ] ≤ 16
√

7KT log(T ) + CGK log(T ),

where CG = (11G+ 24)e2G+8.

5 LOWER BOUND

In this section, we investigate the problem-dependent
lower bound of the expected regret. Consider that
there are two arms and i∗ is the optimal. Recall that

di,i∗ = min {j ∈ N : E [νi ∧ k] < E [νi∗ ∧ k] ,∀k ≥ j} ,

which is the earliest time m, truncated by any time
after which, the optimal arm i∗ will always have a
greater mean reward than the sub-optimal arm i. The
following theorem tells us that the learner has to spend
an order of di,i∗ steps to distinguish the differences
between the arms.

Theorem 7. Let K = 2, and ∆ be the sub-optimal
gap, if an algorithm ALG under delays guarantees a
regret bound Tα for all instances, then there exists a
problem instance with sub-optimal gap ∆, for this in-
stance, it must suffer an expected regret of

E[RALG
T ] = Ω

(
(1− α) log(T )

∆
+ di,i∗∆

)
.

The lower bound term includes two terms, in which
the first term comes from the standard multi-armed
bandit problem. For the second term, assume that the
optimal arm has a distribution P(νi∗ = 0) = 1− p and
P(νi∗ = M + ∆/p) = p, while the sub-optimal arm i
has a distribution P(νi = 0) = 1− p and P(νi = M) =
p. In this case, M = di,i∗ . Before time M , there is no

means to distinguish the subtle between the two arms,
thus the regret is of order M ∆

2 , i.e., di,i∗∆.

We would like to point out that under known horizon
T , Algorithm 3 achieves a regret upper bound of

E[RT ] ≤
∑
i ̸=i∗

CM2

∆i
log(T ) + 2M

∑
i ̸=i∗

∆i,

with a universal constant C. This bound is optimal as
it matches the lower bound w.r.t the additive increase.

6 EXPERIMENTS

We conduct various numerical experiments to illus-
trate our theoretical results, and investigate the ef-
fect of the delay on the performance of the algorithms.
For each experimental setting, the results are averaged
over 50 runs, and the average cumulative regret (with
95% confidence interval) is depicted in Figure 1.

We compare our Censored-UCB algorithm to the naive
extension of the UCB algorithm in which the rewards
are taken into account only if it is observed (Naive
UCB), non-delayed UCB which assumes no delay in
observing the feedback, and OPSE (for general reward-
dependent delays) (Lancewicki et al., 2021). Note that
in OPSE, it assumes that all missing samples have
the maximal/minimal reward in estimating the up-
per/lower confidence bound, and hence OPSE is appli-
cable only for reward functions with bounded support.
Similar consideration is given to the optimistic-UCB
policy (Lancewicki et al., 2021), and however, in all
our experimental settings, optimistic-UCB appears to
suffer linear regret under our considered time horizon,
and hence we omitted it in the results.

We tested the algorithms with different reward distri-
butions. We consider Poisson distributed arms and
exponential reward distributions to represent general
reward settings. We use Binomial distributions to rep-
resent bounded reward setting. The final consideration
is given to Gaussian reward distributions.

Experiment 1: Poisson reward distributions
K = 5, λ⃗ = (1.1, 1.0, 0.5, 0.3, 0.1)

Experiment 2: Poisson reward distributions
K = 3, λ⃗ = (1.1, 0.9, 0.5)

Experiment 3: Gaussian reward distributions
K = 3, µ⃗ = (4, 3.95, 3.1), σ⃗ = (1, 1, 1)

Experiment 4: Gaussian reward distributions
K = 2, µ⃗ = (4, 3.5, 3.1), σ⃗ = (1, 1.9, 1.3)

Experiment 5: Binomial reward distributions
K = 2, n⃗ = (5, 5), p⃗ = (0.3, 0.5)

Experiment 6: Binomial reward distributions
K = 5, n⃗ = (3, 5, 4, 3, 5),

p⃗ = (0.38, 0.72, 0.63, 0.51, 0.46)
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Figure 1: Expected regret under scenarios representing general, bounded and sub-Gaussian reward distributions.

Experiment 7: Exponential reward distributions
K = 3, λ⃗ = (0.6, 0.75, 0.9)

Experiment 8: Exponential reward distributions
K = 3, λ⃗ = (0.62, 0.7, 1.25)

Under Experiment 1 and Experiment 2, we consider
unknown horizon T with T0 = 1, a, b = 2 for the
doubling trick, and m(t) = log log(T ). Censored
UCB yields a regret of O(log(T ) log log(T )2), which
matches our theoretical results. The gap compared to
O(log(T )) under non-delayed case is incurred due to
the substantial delays caused by right-skewed long tails
of Poisson distributions. Similar results are observed
in Experiments 7 and 8 under the exponential reward
setting which is usually adopted by survival analysis
in clinical trials.

Experiment 3 and Experiment 4 shows that the re-
gret of our algorithm is very close to that of classic
UCB without delays. The regret of naive UCB seems
to grow linearly in our experiments with Gaussian re-
wards, bounded rewards and exponential rewards, in-
dicating that under reward-dependent delays, the ob-
served rewards can give a biased estimation of the
true rewards as smaller reward will be observed earlier.
When a substantial portion of rewards remain unob-
served, the expected observed reward of the best arm
might be smaller than that of a sub-optimal arm. Fi-
nally, in [0,M ] bounded rewards, OPSE usesM to con-
struct the UCB for all rewards that are not observed.
When large amount of rewards are missing, this esti-
mate does not provide much information on the actual
distributions. In comparison, our algorithm uses cen-
sored reward that gives a more accurate estimation,
yielding a much better performance than OPSE. Ex-
periment 5 and Experiment 6 also show that the regret
of our algorithm is of the same order as that of classic
UCB without delays.

7 CONCLUSION

We have studied multi-armed bandits with (nearly)
perfect reward-dependent delays. While the problem
formulation is motivated from clinical settings where
the delay in getting a response depends on the ef-
fectiveness of the treatment, the framework can be
used to model other time-to-event data, such as ini-
tial breakthrough postoperative pain and/or failure
of an implanted medical device. It can also be ap-
plied to other domains such as customer churns, prod-
uct failure, social sciences (e.g. duration of mar-
riage/employment), and epidemiology (e.g. time to
infection). Reward-dependent delay is mostly un-
addressed in the literature and is more challenging
since the observed rewards lead to a biased estima-
tion of the true reward distributions. Under gen-
eral reward distributions, we present algorithms that
achieve near-optimal regret, with tighter regret guar-
antees under common assumptions on the reward dis-
tribution. We also present problem-independent regret
bounds. For Gaussian rewards, our algorithm matches
the worst case regret (under reward-independent de-
lays) of Joulani et al. (2013) up to a logarithmic factor,
and the logarithmic factors can be further removed for
bounded rewards.

References

Agrawal, S. and Goyal, N. (2017). Near-optimal regret
bounds for thompson sampling. Journal of the ACM
(JACM), 64(5):1–24.

Arya, S. and Yang, Y. (2020). Randomized allocation
with nonparametric estimation for contextual multi-
armed bandits with delayed rewards. Statistics &
Probability Letters, 164:108818.

Atan, O., Zame, W. R., and Schaar, M. (2019).



Stochastic Multi-Armed Bandits with Strongly Reward-Dependent Delays

Sequential patient recruitment and allocation for
adaptive clinical trials. In The 22nd International
Conference on Artificial Intelligence and Statistics,
pages 1891–1900. PMLR.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002).
Finite-time analysis of the multiarmed bandit prob-
lem. Machine learning, 47:235–256.

Aziz, M., Kaufmann, E., and Riviere, M.-K. (2021).
On multi-armed bandit designs for dose-finding clin-
ical trials. The Journal of Machine Learning Re-
search, 22(1):686–723.

Besson, L. and Kaufmann, E. (2018). What doubling
tricks can and can’t do for multi-armed bandits.
arXiv preprint arXiv:1803.06971.

Bubeck, S., Cesa-Bianchi, N., et al. (2012). Re-
gret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends®
in Machine Learning, 5(1):1–122.

Chick, S., Forster, M., and Pertile, P. (2017). A
bayesian decision theoretic model of sequential ex-
perimentation with delayed response. Journal of
the Royal Statistical Society Series B: Statistical
Methodology, 79(5):1439–1462.

Chick, S. E., Gans, N., and Yapar, Ö. (2022). Bayesian
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Online learning under delayed feedback. In Inter-
national Conference on Machine Learning, pages
1453–1461. PMLR.

Keyvanshokooh, E., Zhalechian, M., Shi, C.,
Van Oyen, M. P., and Kazemian, P. (2019). Con-
textual learning with online convex optimization:
Theory and application to medical decision-making.
Management Science, to appear.

Lancewicki, T., Segal, S., Koren, T., and Mansour,
Y. (2021). Stochastic multi-armed bandits with
unrestricted delay distributions. In International
Conference on Machine Learning, pages 5969–5978.
PMLR.

Langenberg, P. and Srinivasan, R. (1982). On
the colton model for clinical trials with delayed
observations-dichotomous responses. Biometrical
Journal, 24(3):287–296.

Mandel, T., Liu, Y.-E., Brunskill, E., and Popović, Z.
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Supplementary Material for “Stochastic Multi-Armed Bandits with
Strongly Reward-Dependent Delays”

A PRELIMINARIES: AUXILIARY LEMMAS

In this section, we provide some technical lemmas that will be useful in the proofs. First, as the fundamental
asymptotic property, we have the following lemma:

Lemma A.1. If ν is a random variable with E|ν| < ∞, then we have

lim
M→∞

E[ν ∧M ] = E[ν].

Proof. We note the fact that for all M > 0, |ν ∧ M | ≤ |ν| holds. So |ν| is a union integrable bound for the
random variables ν ∧M . Since ν ∧M → ν, a.s., by dominated convergence theorem,

lim
M→∞

E[ν ∧M ] = E[ν].

To obtain the concentric inequalities, we require the following well-known lemma:

Lemma A.2 (Hoeffding’s Inequality). If X1, X2, · · · , Xn, are sequence of i.i.d. random variables with mean µ
and for every i, Xi ∈ [a, b], a.s., then, we have, for all t > 0,

P

(∣∣∣∣ n∑
i=1

Xi − nµ

∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2

n(b− a)2

)
.

This known result can be found in various tutorials, thus we skip the proof. Finally, we show a property of
doubling tricks.

Lemma A.3 (A bound for the constant terms in the exponential doubling trick). Assume that Ti =
⌊
T0

a ab
i
⌋

for a, b > 1 and T0 ∈ N+, and LT = min {i : Ti > T}, then, there exist constants c′1(a, b, T0) and c′2(a, b, T0) such
that

LT ≤ c′1(a, b, T0) log log T,

for all T > c′2.

Proof. By definition, we have
T0

a
ab

LT −1

≤ T,

and this yields

LT ≤ 1 +
1

log b
log

(
log(aT/T0)

log(a)

)
≤
(
2 +

1

log b

)
log log T,

for T > c′2(a, b, T0) := max
{
10, log

(
a
T0

)
, exp

{
e

log(2/ log a)
log b

}}
.

We denote c′1(a, b, T0) = 2 + 1
log b , this directly implies the result.

Lemma A.3 is useful to bound the low-order term in the exponential doubling trick processes since we will time
a term LT in the low-order terms.
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B OMITTED PROOFS IN SECTION 3

In this section, we give bounds to both the given-horizon setting and the unknown-horizon setting. These bounds
finally lead to Theorem 1 and Theorem 2 in the paper. We first show the upper bound of regret of given budget
T algorithm AlgT , then we apply the doubling trick to obtain an upper bound for unknown budget T .

Recall for c > 1 and a sub-optimal arm i, we define

di,i∗(c) = 0
∨

inf

{
x ∈ R : ∀k ≥ x,E[νi∗ ∧ k]− E[νi ∧ k] ≥ ∆i

c

}
,

which means the smallest value of N , truncating on which can we lead to an at least ∆i

c gap between arm i and the
optimal. Such value must exist since for any arm i, E[νi ∧M ] → E[νi] (Lemma A.1). However, if the infimum in
the definition of di,i∗(c) is less than 0, it means that for any M > 0, truncated by M , E[νi∗ ∧M ]−E[νi∧M ] ≥ ∆i

c .
Thus in such case, di,i∗(c) is set to be 0.

We begin with the bounds of the given budget setting. The following theorem gives the upper bound of the
expected regret in this case.

Theorem B.1. Suppose we have a monotone increasing function m(t) such that m(t) < t
2 for every t > 1, then,

for any c > 1, the m(t)-censored-UCB Algorithm with given total budget T leads to upper bounds of the expected
regret

E[RT ] ≤
∑
i̸=i∗

48m(T )2c2

∆i
log (KT ) + 2m(T )

∑
i ̸=i∗

∆i +
∑

i̸=i∗,di,i∗ (c) ̸=0

m−1(di,i∗(c))∆i,

for any T ≥ 2K.

Note that in this theorem, there is an increasing term m(T ), leading to a greater order than the regret of the
classical Multi-armed Bandit problem. When m(·) grows sufficiently slow, although the constant term will be
larger, our order will be arbitrarily closed to the classical regret bound. Specifically, if we take m(x) = log log x,
we will get a O((log log T )2 log T ) order. (However, as explained after Theorem 1, this is not a free lunch.)

In order to prove Theorem B.1, we first present the next concentration inequality.

Proposition B.1 (Restatement of Proposition 1). For any non-random integer m, integer 1 ≤ t ≤ T , and
δ ∈ (0, 1

2 ), we have

P

(
|r̂t(m(t), i)− E[νi ∧m]| ≤ m(t)

√
2

Nt(m(t), i)
log

(
2T

δ

))
≥ 1− δ.

Proof of Proposition B.1. First, by Hoeffding’s Inequality, we have

P

(∣∣∣∣X1 + · · ·+XN

N

∣∣∣∣ ≤
√

2

N
ln

(
2

δ

))
≥ 1− δ,

which holds for all N with i.i.d. reandom variable sequence X1, X2, · · · ∈ [0, 1].

Apply the union bound for N = 1, 2, · · · , T , we obtain

P

(
∀N ∈ [T ] :

∣∣∣∣X1 + · · ·+XN

N

∣∣∣∣ ≤
√

2

N
log

(
2T

δ

))
≥ 1− δ.

Replacing X1, X2 · · · by the sequence ri∧M , and N by Nt(m(t), i), since Nt(m(t), i) ∈ [T ], though it is a random
variable, we still have

P

(
|r̂t(m(t), i)− E[νi ∧m]| ≤ m

√
2

Nt(m(t), i)
log

(
2T

δ

))
≥ 1− δ.



Now, we take m = m(t) in this theorem and apply the union bound for 0 ≤ t ≤ T and i ∈ [K]. We have, with
probability at least 1− δ,

|r̂t(m(t), i)− E[νi ∧m(t)]| ≤ m(t)

√
2

Nt(m(t), i)
ln

(
2KT 2

δ

)
,∀t ∈ [T ], i ∈ [K]. (1)

Thus, we complete the proof of the lemma. □

We are now ready to prove Theorem B.1 with given horizon T .

Proof of Theorem B.1 We first use the concentric inequality presented in Proposition B.1, then by using
which we derive the upper bound of the number of pulls on each sub-optimal arm. Finally, we sum the regrets
to get a high-probability bound. To get the expectation bound, we select specific δ previously.

Assume the time t is the last time we pull a sub-optimal arm i, this implies that, by the algorithm,

r̂i∗,t(m(t)) +m(t)

√
2

Nt(m(t), i∗)
log

(
2KT 2

δ

)
≤ r̂t(m(t), i) +m(t)

√
2

Nt(m(t), i)
log

(
2KT 2

δ

)
.

This means that with probability at least 1− δ, we have

E[νi∗ ∧m(t)] ≤ E[νi ∧m(t)] + 2m(t)

√
2

Nt(m(t), i)
ln

(
2KT 2

δ

)
. (2)

We then discuss whether the step we are in is big enough to give bounds to Nt(m(t), i).

If E[νi∗ ∧m(t)]− E[νi ∧m(t)] ≥ ∆i

c , i.e., m(t) ≥ di,i∗(c), then

Nt(m(t), i) ≤ 8m(t)2c2

∆2
i

log

(
2KT 2

δ

)
≤ 16m(T )2c2

∆2
i

log

(
2KT 2

δ

)
.

Thus, until time t, the total number of times we pull the arm i is bounded by Nt(m(t), i)+m(t)+1. As a result,
in this case, the regret contributed by this arm cannot exceed

(Nt(m(t), i) +m(t) + 1)∆i.

On the other hand, if E[νi∗ ∧m(t)]− E[νi ∧m(t)] < ∆i

c , i.e. m(t) < di,i∗(c), then the total regret from the arm
i is bounded by

Reg(i) ≤ m−1(di,i∗(c))∆i.

Taking the regret from the initialization steps into account, we obtain that the regret contributed by arm i
cannot exceed m−1(di,i∗(c))∆i + (Nt(m(t), i) + 2m(t))∆i.

Combining the results from different i, we have the bound for one-time cumulated regret

RT ≤
∑
i ̸=i∗

16m(T )2c2

∆i
log

(
2KT 2

δ

)
+ 2m(T )

∑
i ̸=i∗

∆i +
∑
i ̸=i∗

m−1(di,i∗(c))∆i,

with probability at least 1− δ. Take δ = 1
KT , the expected regret

E[RT ] ≤
∑
i ̸=i∗

48m(T )2c2

∆i
log (KT ) + 2m(T )

∑
i ̸=i∗

∆i +
∑
i̸=i∗

m−1(di,i∗(c))∆i,

in which we used T > 2K. Hence, we complete the proof of Theorem B.1. □

We can begin the proof of the main result of Theorem 1 presented in the manuscript.

Proof of Theorem 1. With the upper bounds we have derived above, we use the exponential doubling trick
to extend it to any time T .
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We will derive a regret upper bound for any time T . Recall that in the unknown total budget setting, Ti =⌊
ab

i

T0/a
⌋
, so Ti − Ti−1 ≤ Ti ≤ T0

a ab
i

for i ≥ 2. Assume that LT = min {i : Ti > T}, then we have

LT∑
j=1

m(Tj − Tj−1)
2 log(Tj − Tj−1) ≤ m(TLT

)2
LT∑
j=1

log

(
T0

a
ab

j

)

= m(TLT
)2

LT∑
j=1

log(a)bj +m(TLT
)2LT log

(
T0

a

)

= b log(a)m(TLT
)2
bLT − 1

b− 1
+m(TLT

)2LT log

(
T0

a

)
.

By Lemma A.3, there exist constants

c′1(a, b, T0) := 2 +
1

log b
, c′2(a, b, T0) := max

{
10, log

(
a

T0

)
, exp

{
e

log(2/ log a)
log b

}}
, (3)

such that for T > c′2(a, b, T0), LT ≤ c′1(a, b, T0) log log(T ).

Since (bLT − 1) log(a) ≤ b log
(
ab

LT −1
)
≤ b log(T ), LT ≤ c′1log(log(T )) for T > c′2(a, b, T0), and further more,

m(TLT
)

m(T ) ≤ m(TLT
)

m(TLT −1)
≤ c0, we obtain, that for all T > c′2(a, b, T0),

LT∑
j=1

M(Tj − Tj−1)
2 log(Tj − Tj−1) ≤

b2c20m(T )2

b− 1
log(T ) +m(T )2c20c

′
1(a, b, T0) log

(
T0

a

)
log log(T )

≤
(

b2c20
b− 1

+ c′1(a, b, T0) log

(
T0

a

))
m(T )2 log T.

(4)

We denote C1(a, b, c0, T0) =
b2c20
b−1 + c′1(a, b, T0) log

(
T0

a

)
. With those low-order terms in Theorem B.1,

LT∑
j=1

m(Tj − Tj−1)
∑
i̸=i∗

∆i ≤ c0m(T )
∑
i̸=i∗

∆iLT ≤
∑
i ̸=i∗

C2(a, b, c0, T0)m(T ) log log T∆i, (5)

in which C2(a, b, c0, T0) = c0c
′
1(a, b, T0) and

LT∑
j=1

∑
i̸=i∗

m−1(di,i∗(c))∆i ≤ c′1(a, b, T0) log log T
∑
i ̸=i

m−1(di,i∗(c))∆i. (6)

Combining Equations (4)(5)(6), the expected regret upper bound is given by

E[RT ] ≤
∑
i̸=i∗

96C1c
2m(T )2

∆i
log(T ) + C2(a, b, T0)m(T ) log log(T )

∑
i ̸=i∗

∆i

+ c′1(a, b, T0) log log(T )
∑
i ̸=i∗

m−1(di,i∗(c))∆i + 2
T0a

b

a
,

for T > max
{
10, T0a

b

a , log
(

a
T0

)
, exp

{
e

log(2/ log a)
log b

}}
, in which C1 =

b2c20
b−1 + (2+ 1

log b ) log
(
T0

a

)
, C2 = c0(2 +

1
log b ),

and c′1(a, b, T0) = (2 + q/ log b). This implies the Theorem 1, i.e.,

E[RT ] = O

∑
i̸=i∗

m(T )2 log(T )

∆i

 .

Thus, we complete the proof Theorem 1. □

We next turn to the proof of problem-independent regret bounds (Theorem 2) by first presenting the next
proposition.



Proposition B.2. If, additionally, that m(·) satisfies for all x > 0, E[m−1(x)(νi − νi ∧ x)] ≤ G1 < ∞, and a
uniform integrability E[νi] ≤ G2 < ∞ then∑

i ̸=i∗

m−1(di,i∗(c))∆i ≤
c

c− 1
KG1,

∑
i ̸=i∗

∆i ≤ KG2.

Proof of Proposition B.2. For
∑

i ̸=i∗ m
−1(di,i∗(c))∆i, the bounds are given with assumption that E[m−1(x)(νi−

νi ∧ x)] < G1 uniformly. We may assume di,i∗(c) > 0, otherwise, there is no need to prove. Consider a specific
sub-optimal arm i. For 0 < y < di,i∗(c), we write

∆i = E[νi∗ ∧ y]− E[νi ∧ y] + E[νi∗ − νi∗ ∧ y]− E[νi − νi ∧ y].

By definition of di,i∗(c), for any ϵ > 0, there exists y ∈ (di,i∗(c)− ϵ, di,i∗(c)), such that E[νi∗ ∧y]−E[νi∧y] < ∆i

c ,
so

∆i = E[νi∗ ∧ y]− E[νi ∧ y] + E[νi∗ − νi∗ ∧ y]− E[νi − νi ∧ y] ≤ ∆i

c
+ E[νi∗ − νi∗ ∧ y]− E[νi − νi ∧ y].

This implies that (
1− 1

c

)
∆i ≤ E[νi∗ − νi∗ ∧ y].

We time m−1(y) on both sides of the inequality, obtaining that

m−1(y)

(
1− 1

c

)
∆i ≤ m−1(y)E[νi∗ − νi∗ ∧ y] ≤ G1.

Since m−1(·) is monotone increasing, we obtain that

m−1(di,i∗(c)− ϵ)

(
1− 1

c

)
∆i ≤ G1,∀ϵ > 0.

Let ϵ → 0, we obtain

m−1(di,i∗(c))∆i ≤
c

c− 1
G1.

Finally, the assumption E[νi] < G2 directly leads to the upper bound of
∑

i̸=i∗ ∆i,∑
i̸=i∗

∆i ≤ KG2.

Hence, we complete the proof of Proposition B.2. □

Proof of Theorem 2. The problem-independent bounds can be derived from Theorem 1 by discussing whether
gaps ∆i are greater or smaller than ϵ, a threshold that is to be discussed. We write the upper bound for the
problem-dependent cases as

C1

∑
i ̸=i∗

m2(T ) log(T )

∆i
+ C2

∑
i ̸=i∗

m(T ) log log(T )∆i +
∑
i ̸=i∗

C3 log log(T )ci + C4,

where C1, C2, C3, C4 are problem-independent constants specified in the proof of Theorem 1, while ci depends
on the problem, i.e., ci =

∑
i ̸=i∗ m

−1(di,i∗(c))∆i.

For any ϵ > 0, we consider the instance-dependent regret contributed by arm i. If ∆i ≤ ϵ, then the regret
contributed will not exceed ϵNT (i), in which NT (i) is the total number we pull the arm i when the process is
completed. So the regret coming from those arms ∆i ≤ ϵ is bounded by ϵT . As a result, the regret bound

E[RT ] ≤ ϵT + C1

∑
i ̸=i∗,∆i>ϵ

m2(T ) log(T )

ϵ
+ C2

∑
i ̸=i∗

m(T ) log log(T )∆i +
∑
i ̸=i∗

C3 log log(T )ci + C4

≤ ϵT + C1
m2(T )K log(T )

ϵ
+ C2

∑
i ̸=i∗

m(T ) log log(T )∆i +
∑
i ̸=i∗

C3 log log(T )ci + C4,
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and this holds for any ϵ > 0. Specifically, taking ϵ = m(T )
√

C1K log(T )
T , we have

E[RT ] ≤ 2m(T )
√

C1KT log(T ) + C2

∑
i̸=i∗

m(T ) log log(T )∆i +
∑
i̸=i∗

C3 log log(T )ci + C4. (7)

Next, by Proposition B.2, ∑
i̸=i∗

∆i ≤
∑
i ̸=i∗

E[νi∗ ] ≤ KG2 ≤ G2

√
KT.

As a result,

C2

∑
i̸=i∗

m(T ) log log(T )∆i ≤ C2G2m(T )
√
KT log log(T ) ≤ C2G2m(T )

√
KT log(T ),

for T > c′2(a, b, T0) + 45 defined in Eq.(3), where C5 = C(a, b, T0) is some constant. Similarly, using Proposition
B.2, there exists some constant C ′′ such that

C3

∑
i̸=i∗

log log(T )ci ≤ C3KG1 log log(T ) ≤ C3G1

√
KT log(T ),

for T > c′2(a, b, T0) + 45, Plugging this into Eq. (7), taking c = 2 in Proposition B.2, we have

E[RT ] ≤ C̃1m(T )
√

KT log T + C̃2 = O(m(T )
√

KT log T ),

for T > max
{
10, log

(
a
T0

)
, exp

{
e

log(2/ log a)
log b

}}
+ T0a

b

a , where C̃1 = 8
√
b2c20/(b− 1) + (2 + 1/ log b) log(T0/a) +

c0(2 + log b)G2 + 2(2 + 1/ log b)G1, C̃2 = T0a
b

a G2. As a result, we complete the proof of Theorem 2. □

C OMITTED PROOFS IN SECTION 4.1

In this section, we show the upper bound for a given budget setting and then derive an anytime bound. We
begin with the case where the rewards are random variables in interval [0,M ] (the setting in Section 4.1). We
first have a concentric inequality.

Lemma C.1 (Concentric Inequality for Bounded-M setting). If 0 ≤ ri ≤ M holds for all stochastic rewards ri,
integer t satisfies that 1 ≤ t ≤ T , and δ ∈ (0, 1

2 ), we have

P

(
|r̂t(M, i)− E[νi]| ≤ M

√
2

Nt(M, i)
ln

(
2T

δ

))
≥ 1− δ.

Proof of Lemma C.1. The proof of this lemma is the same as that of proposition B.1 since we notice that
0 ≤ ri/M ≤ 1. Noting that −1 ≤ ri/M ≤ 1 and they are i.i.d sampled. As a result, by Lemma A.2, we have for
any positive integer N ,

P

(∣∣∣∣∣ 1N
N∑
i=1

ri − E[νi]

∣∣∣∣∣ ≤ M

√
2

N
ln

(
2

δ

))
≥ 1− δ.

Taking union bounds for 1 ≤ N ≤ T , noting that 1 ≤ Nt(M, i) ≤ T , we have

P

(
|r̂t(M, i)− E[νi]| ≤ M

√
2

Nt(M, i)
ln

(
2T

δ

))
≥ 1− δ.

Thus we complete the proof of Lemma C.1. □

Theorem C.1. The M-Censored-Bounded UCB algorithm with a given total budget T leads to a regret upper
bound

E[RT ] ≤
64M2

∆i
log(KT ) + max(2M, 4)

∑
i ̸=i∗

∆i.



Proof of Theorem C.1. The first K steps of the algorithm will give us at most
∑

i ̸=i∗ ∆i regrets. From
K to M , since we pull each arm at random, we know that the expected regret during this process is at most
M
K

∑
i̸=i∗ ∆i. Now consider the last time t the agent pulled a sub-optimal arm i with the algorithm. With

probability at least 1− δ,

E[νi∗ ] ≤ E[νi] + 2M

√
2

Nt(M, i)
log

(
2KT 2

δ

)
.

And this will lead to the inequality

Nt(M, i) ≤ 16M2

∆2
i

log

(
KT

δ

)
.

So the total regret contributed by arm i is bounded by

Reg(i) ≤ 16M2

∆i
log

(
KT

δ

)
+ (M + 1)∆i.

Summing them up and taking δ = 1
KT , will give us the conclusion that

E[RT ] ≤
∑
i ̸=i∗

64M2

∆i
log(KT ) + (M + 1 +M/K)

∑
i ̸=i∗

∆i.

If M ≥ 2, then M +1+ M
K ≤ 2M , if M < 2, then M +1+ M

K ≤ 4, thus completing the proof of Theorem C.1. □

Now we can show the Theorem 3.

Proof of Theorem 3. Given this bound, with similar standard doubling tricks for corresponding problems, we
can derive an anytime bound. Using the same deduction of anytime upper bound in the general problem, we
deduce the anytime bound. Still, we set that LT = min {i : Ti > T}. Without loss of generality, we assume in
each episode, the budget Ti − Ti−1 is greater than the arms K. Then,

LT∑
j=1

log(T ) ≤
LT∑
j=1

log

(
T0

a
ab

j

)
≤ b2

b− 1
log(T ),

for T > T0a
b

a . Still, by Lemma A.3,

LT∑
j=1

M
∑
i ̸=i∗

∆i ≤
(
2 +

1

log b

)
log log(T )M

∑
i ̸=i∗

∆i,

for any T > max
{
10, log

(
a
T0

)
, exp

{
e

log(2/ log a)
log b

}}
. So we have

E[RT ] ≤
∑
i ̸=i∗

64M2b2

(b− 1)∆i
log T + 2

(
2 +

1

log b

)
log log(T )max(M, 2)

∑
i ̸=i∗

∆i,

for T > max
{
10, log

(
a
T0

)
, exp

{
e

log(2/ log a)
log b

}}
+ T0a

b

a . For M > 2, the above is directly the Theorem 3. If

M < 2, we note that the arms are pulled in every episode, so 2max(M, 2)
∑

i̸=i∗ ∆i ≤ 4MK ≤ 4M T0a
b2

a , as a
result, combing them both,

E[RT ] ≤
∑
i̸=i∗

64M2b2

(b− 1)∆i
log T + 2

(
2 +

1

log b
+

T0a
b2

a

)
log log(T )M

∑
i ̸=i∗

∆i.

Hence, we complete the proof. □

From Theorem C.1 we can also propose the deduction for problem-independent upper bound.

Proof of Theorem 4. With the standard technique, discussing whether ∆i < ϵ or not, we obtain the bound
for the leading term.
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For M ≥ 2 and some ϵ > 0, we consider the problem-dependent regret contributed by arm i. If ∆i ≤ ϵ, then
the regret contributed will not exceed ϵNT (i), in which NT (i) is the total number we pull the arm i when the
process is completed. So the regret coming from those arms ∆i ≤ ϵ is bounded by ϵT . For those ∆i > ϵ, by
Theorem C.1, we have

Regi(T ) ≤
64M2

∆i
log (KT ) + 2M∆i ≤

64M2

ϵ
log (KT ) + 2M∆i.

Combining these two, the total regret upper bound

E[RT ] ≤ ϵT +
∑

i:∆i>ϵ

64M2

ϵ
log (KT ) + 2M

∑
i:∆i>ϵ

∆i

≤ ϵT +
64M2K

ϵ
log (KT ) + 2M

∑
i̸=i∗

∆i.

(8)

The leading term is independent of the problem. So by taking ϵ = 8M
√

K log(KT )
T in Equ.(8), we obtain, for all

T ≥ K, the regret

E[RT ] ≤ 16M
√
KT log(KT ) + 2M

∑
i̸=i∗

∆i ≤ 32M
√
KT log(T ) + 2KM2,

in which we used the fact that ∆i ≤ M , so
∑

i ̸=i∗ ∆i ≤ KM and K < T .

For those M < 2, we observe that 4
∑

i ̸=i∗ ∆i ≤ 4KM ≤ 4M
√
KT , so in this case,

E[RT ] ≤ 32M
√

KT log T + 4M
√
KT ≤ 36M

√
KT log T .

Hence, we complete the proof of Theorem 4. □

Next, we consider the problem in which ri ∈ [−M1,M2], where M1 and M2 are positive numbers. In this case,
the rewards will be observed before M2. As a result, the censor function m(t) can be selected as constant M2.
In this case, we have the following concentric inequality.

Lemma C.2 (Concentric Inequality for Bounded-M setting). If −M1 ≤ ri ≤ M2 holds for all stochastic rewards
ri, integer t satisfies that 1 ≤ t ≤ T , and δ ∈ (0, 1

2 ), we have

P

(
|r̂t(M2, i)− E[νi]| ≤ (M1 +M2)

√
2

Nt(M2, i)
ln

(
2T

δ

))
≥ 1− δ.

Proof of Lemma C.2. Noting that −1 ≤ ri/(M1 +M2) ≤ 1 and they are i.i.d sampled. As a result, by Lemma
A.2, we have for any positive integer N ,

P

(∣∣∣∣∣ 1N
N∑
i=1

ri − E[νi]

∣∣∣∣∣ ≤ (M1 +M2)

√
2

N
ln

(
2

δ

))
≥ 1− δ.

Taking union bounds for 1 ≤ N ≤ T , noting that 1 ≤ Nt(M2, i) ≤ T , we have

P

(
|r̂t(M2, i)− E[νi]| ≤ (M1 +M2)

√
2

Nt(M2, i)
ln

(
2T

δ

))
≥ 1− δ.

Thus we complete the proof of Lemma C.2. □

From this, we can show the (M1,M2)-Censored-Bounded UCB algorithm with a given total budget T .

Theorem C.2. The (M1,M2)-Censored-Bounded UCB algorithm with a given total budget T leads to a regret
upper bound

E[RT ] ≤
64(M1 +M2)

2

∆i
log(KT ) + 2max(M2, 2)

∑
i ̸=i∗

∆i.



Proof of Theorem C.2. The first K steps of the algorithm will give us at most
∑

i ̸=i∗ ∆i regrets. From
K to M2, since we pull each arm at random, we know that the expected regret during this process is at most
M2

K

∑
i ̸=i∗ ∆i. Now consider the last time t the agent pulled a sub-optimal arm i with the algorithm. With

probability at least 1− δ,

E[νi∗ ] ≤ E[νi] + 2(M1 +M2)

√
2

Nt(M2, i)
log

(
2KT 2

δ

)
.

And this will lead to the inequality

Nt(M2, i) ≤
16(M1 +M2)

2

∆2
i

log

(
KT

δ

)
.

So the total regret contributed by arm i is bounded by

Reg(i) ≤ 16(M1 +M2)
2

∆i
log

(
KT

δ

)
+ (M2 + 1)∆i.

Summing them up and taking δ = 1
KT , will give us the conclusion that

E[RT ] ≤
∑
i ̸=i∗

64(M1 +M2)
2

∆i
log(KT ) + (M2 + 1 +M2/K)

∑
i ̸=i∗

∆i.

If M2 ≥ 2, then M2 + 1 + M2

K ≤ 2M2, if M2 < 2, then M2 + 1 + M2

K ≤ 4. As a result, we have

E[RT ] ≤
64(M1 +M2)

2

∆i
log(KT ) + 2max(M2, 2)

∑
i ̸=i∗

∆i.

We then complete the proof of Theorem C.2. □

D OMITTED PROOFS IN SECTION 4.2

In this section, we give proofs to Theorem 5 and 6. We first give the regret upper bounds for the given budget
T setting. Again, for c > 1 and a sub-optimal arm i, we define

di,i∗(c) = 0
∨

inf

{
x ∈ R : ∀k ≥ x,E[νi∗ ∧ k]− E[νi ∧ k] ≥ ∆i

c

}
.

Theorem D.1. For any c > 1, we define a constant Ci for each arm i and censored function m(t) by

Ci = exp (max {di,i∗(c), 2E[νi∗ ],E[νi∗ ] + 2, 8})∆i,

The algorithm with Upper Confidence Bound UCB
m(t)
i (t, T ) defined in section 4.2 and censoring function m(t) =

log t with given budget T will lead to an expected regret bound:

E[RT ] ≤
∑
i ̸=i∗

2Ci + 2
∑
i̸=i∗

∆i log(T ) +
∑
i ̸=i∗

112c2

∆i
log (T ) .

Remarkably in the theorem, there are three terms. The first term Ci corresponds to the regrets caused by the
delays. The second term is attributed to the censored function, m(t) = log t, coming from the time points from
t− log(t) to t, while the third term is the leading term of the algorithm.

To prove this theorem, we first show the concentric inequalities. First, the following lemma shows that a
truncation of a sub-Gaussian distribution is nearly sub-Gaussian, which is useful for the deduction of upper
bounds in Theorem D.1.
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Lemma D.1. If a random variable X is 1-sub-Gaussian and a non-random number M is chosen such that
M > max {2EX,EX + 2} and (M − EX)2 ≥ 2M , then for all λ ∈ R

E
(
eλ(X∧M−E[X∧M ])

)
≤ eλ

2

ee
−M

(1 + e−M ),

where X ∧M = min {X,M} .

Proof of Lemma D.1. Since M > max(2EX,EX + 2) , we have

E[X −X ∧M ] =

∫ ∞

0

P (X −X ∧M ≥ t) dt

=

∫ ∞

0

P (X ≥ t+M) dt

=

∫ ∞

0

P (X − EX ≥ t+M − EX) dt

≤
∫ ∞

0

e−
(t+M−EX)2

2 dt

=

∫ ∞

M−EX
e−

t2

2 dt

≤
∫ ∞

M−EX
e−tdt

≤
∫ ∞

M/2

e−tdt = e−M/2.

(9)

Now for λ > 0,

E
(
eλ(X∧M−E[X∧M ])

)
≤ E

(
eλX−λE[X∧M ]

)
= E

(
eλ(X−EX)

)
eλ(EX−E[X∧M ])

≤ e
λ2

2 e
λ2

2 +
(EX−E[X∧M])2

2

≤ eλ
2

ee
−M

≤ (1 + e−M )eλ
2

ee
−M

,

in which we used the fact that (EX − E[X ∧M ])2/2 ≤ e−M from Eq.(9).

For λ < 0,

E
(
eλ(X∧M−E[X∧M ])

)
=
(
E[eλXI(X ≤ M)] + E[eλMI(X > M)]

)
e−λE[X∧M ]

≤ e−λE[X∧M ]E
(
eλX

)
+ e−λE[X∧M ]E

(
eλMI(X > M)

)
.

We denote p1 = e−λE[X∧M ]E
(
eλX

)
and p2 = e−λE[X∧M ]E

(
eλMI(X > M)

)
. Firstly,

p1 ≤ e
λ2

2 eλEX−λE[X∧M ].

On the other hand, if (M − EX)2 > 2M ,

E
(
eλMI(X > M)

)
= eλMP (X > M)

= eλMP (X − EX > M − EX)

≤ eλMe−
(M−EX)2

2

= eλEXe−
(M−EX)2

2 +λ(M−EX)

≤ eλEXe−
(M−EX)2

2

≤ eλEXe−M ,



so

p2 ≤ eλEX−λE[X∧M ]e−M .

As a result,

p1 + p2 ≤ eλEX−λE[X∧M ](e
λ2

2 + e−M ) ≤ e
λ2

2 + e−M ≤ eλ
2

ee
−M

(1 + e−M ).

For λ = 0, it is obvious. Hence, we complete the proof. □

From this, we can derive the concentric inequality, using the property that Nt(m(t), i) ≤ t−m(t).

Proposition D.1. If m(t) = ⌊log t⌋, then with probability at least 1− δ,

|r̂t(m(t), i)− E[νi ∧m(t)]| ≤

√
4

Nt(m(t), i))
log

(
e2KT 2

δ

)
holds for all m−1(max {di,i∗(c), 2E[νi∗ ],E[νi∗ ] + 2, 8}) < t ≤ T and i ∈ [K].

Proof. Denote the constant m−1(max {di,i∗(c), 2E[νi∗ ],E[νi∗ ] + 2, 8}) by C. From the technical lemma, we can
construct the concentric inequality. For independent identically distributed 1-sub-Gaussian random variable Xi,
i = 1, 2, · · · , n, we have, for any λ, p ∈ R+,

P

(
n∑

i=1

Xi ∧M − E[Xi ∧M ] > p

)
≤ E

[
e
∑n

i=1 λ(Xi∧M−E[Xi∧M ])

eλp

]

≤ eλ
2n(1 + e−M )nene

−M

eλp
.

Let p = nϵ, λ = ϵ/2, we have

P

(
n∑

i=1

(Xi ∧M)− E[Xi ∧M ] > nϵ

)
≤ e−nϵ2/4(1 + e−M )nene

−M

.

Apply the same for the other side, we obtain that for any n,

P

(∣∣∣∣∣ 1n
n∑

i=1

(Xi ∧M)− E[X ∧M ]

∣∣∣∣∣ > ϵ

)
≤ 2e−nϵ2/4(1 + e−M )nene

−M

.

Return to the problem, where M = m(t), 1 ≤ n ≤ t−m(t). Since m(t) = log(t), we have

(1 + e−M )n ≤ (1 +
1

t
)n ≤ (1 +

1

t
)t ≤ e,

and

ne−M ≤ t−M

t
≤ 1.

From this, we obtain that if 1 ≤ n ≤ t−M ,

P

(∣∣∣∣∣ 1n
n∑

i=1

(Xi ∧M)− E[X ∧M ]

∣∣∣∣∣ > ϵ

)
≤ 2e2 · e−nϵ2/4,

i.e., whenever t > C, 1 ≤ n ≤ t−M and M = m(t) = log(t), we always have

P

(∣∣∣∣∣ 1n
n∑

i=1

(Xi ∧M)− E[X ∧M ]

∣∣∣∣∣ ≤
√

4

n
log

(
2e2

δ

))
≥ 1− δ.
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So for this t, fixing M = m(t) and applying the union bound for 1 ≤ n ≤ t−M . Since 1 ≤ Nt(m(t), i) ≤ t−M ,
we have, with probability at least 1− δ,

|r̂t(m(t), i)− E[νi ∧m(t)]| ≤

√
4

Nt(m(t), i)
log

(
2e2T

δ

)
.

The total union bound will then be given by, with probability at least 1− δ,

|r̂t(m(t), i)− E[νi ∧m(t)]| ≤

√
4

Nt(m(t), i)
log

(
2e2KT 2

δ

)
,

for all C ≤ t ≤ T and i ∈ [K]. Hence, we complete the proof of Proposition D.1.

Now we can turn to the proof of Theorem D.1.

Proof of Theorem D.1. During the process, we consider the last time we pulled the sub-optimal arm i ̸= i∗,
denoting it as t. If t is not big enough such that t < m−1(di,i∗(c)) or m(t) < max {2E[νi∗ ],E[νi∗ ] + 2, 8}, then
the regret which is contributed from this arm

Regi(t) ≤ ∆im
−1 (max {di,i∗(c), 2E[νi∗ ],E[νi∗ ] + 2, 8}) ,

which is a constant, denoted as Ci.

If t is big enough that m(t) > maxi ̸=i∗ max {di,i∗(c), 2E[νi∗ ],E[νi∗ ] + 2, 8}, then the concentric inequality will
hold: with probability ≥ 1− δ, for all maxi Ci,m ≤ t ≤ T and i ∈ [K],

|r̂t(m(t), i)− E[νi ∧m(t)]| ≤

√
4

Nt(m(t), i)
log

(
2e2KT 2

δ

)
.

That means

E[νi∗ ∧m] ≤ E[νi ∧m] + 2

√
4

Nt(m(t), i)
log

(
2e2KT 2

δ

)
.

Consequently,

∆i

c
≤ 2

√
4

Nt(m(t), i)
log

(
2e2KT 2

δ

)
,

and thus

Nt(m(t), i) ≤ 16c2

∆2
i

log

(
2e2KT 2

δ

)
.

In conclusion, the regret contributed by sub-optimal arm i is bounded by

Regi(t) ≤ Ci +∆i(m(T ) + 1) +
16c2

∆i
log

(
2e2KT 2

δ

)
.

Summing Regi(t) for each sub-optimal arm i, noting that the regret from the initialization step will not exceed∑
i ̸=i∗ ∆i, we have, with probability ≥ 1− δ,

RT ≤
∑
i ̸=i∗

Ci + 2
∑
i̸=i∗

∆im(T ) +
∑
i̸=i∗

16c2

∆i
log

(
2e2KT 2

δ

)
.

Note that m(t) = ⌊log t⌋, the upper bound is O(log T ). Still, we take δ = 1
KT , we obtain the expectation regret

bound

E[RT ] ≤
∑
i ̸=i∗

2edi,i∗ (c)∆i + 2
∑
i̸=i∗

∆i log(T ) +
∑
i ̸=i∗

16c2

∆i
log
(
2e2K2T 3

)
. □



We now give the complete proof for Theorem 5 as follows.

Proof of Theorem 5. With Theorem D.1, again, we give bounds for the regrets of doubling trick. In this case,
we note that for given budget T , the regret upper bound

E[RT ] ≤ C

(
∆i +

1

∆i

)
log(T ) + 2

∑
i ̸=i∗

Ci,

in which C = 128c2, Ci = edi,i∗ (c)∆i. Again, we denote LT = min {i : Ti > T}. Then,

LT∑
j=1

log(Ti+1 − Ti) ≤
b2

b− 1
log(T ),

in which T > T0a
b

a . By Lemma A.3,

LT∑
i=1

2
∑
i ̸=i∗

Ci ≤
(
4 +

2

log b

)
log log(T )

∑
i ̸=i∗

Ci = o(log(T )),

for T > max
{
10, log

(
a
T0

)
, exp

{
e

log(2/ log a)
log b

}}
.

As a result,

E[RT ] ≤
128c2b2

(b− 1)

(
∆i +

1

∆i

)
log T +

(
4 +

2

log b

)
log log(T )

∑
i ̸=i∗

edi,i∗ (c)∆i,

for T > max
{
10, log

(
a
T0

)
, exp

{
e

log(2/ log a)
log b

}}
+ T0a

b

a . Hence, we complete the proof of Theorem 5. □

Finally, we provide the proof for Theorem 6 as follows.

Proof of Theorem 6. We show that if we assume there are upper bounds for E[νi] ≤ G,∀i ∈ [K] with some
constant G, a problem-independent upper bound under known horizon T would be

E[RT ] ≤ 16
√
KT log(KT ) + CGK log(T ),

where CG = (5G+ 12)e2G+8.

We first give bounds for Ci = edi,i∗ (c)∆i. In order to give bounds for Ci, since m(t) = log(t), we only need to
give bounds edi,i∗ (c)∆i. (Because the other terms, emax(E[ν∗

i ]+2,E[ν∗
i ],8) ≤ e2G+8 is already bounded)

For a fixed arm i ̸= i∗, let Ni = di,i∗(c), we thus have

∆i = E[νi∗ ∧Ni]− E[νi ∧Ni] + E[νi∗ − νi∗ ∧Ni]− E[νi − νi ∧Ni].

By definition, E[νi∗ ∧Ni]− E[νi ∧Ni] ≤ ∆i

c , so we have

eNi∆i
c− 1

c
≤ eNiE[νi∗ − νi∗ ∧Ni]. (10)

If Ni ≤ max {2G, 8}, then (2G + 4)e2G+4 is an upper of Eq. (10). If Ni > max(2G, 8), by the deduction of
Lemma D.1 Eq. (9),

eNiE[νi∗ − νi∗ ∧Ni] ≤ 2

As a result,

eNi∆i
c− 1

c
≤ 2 + (2G+ 4)e2G+8.

This implies that

edi,i∗ (c)∆i ≤
c

c− 1
(2G+ 6)e2G+8.
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As a result, for all c > 1, we have

E[RT ] ≤
c

c− 1
(2G+ 6)e2G+4 +KG log(T ) +

∑
i̸=i∗

112c2

∆i
log (T ) .

Specifically, taking c = 2, we have edi,i∗ (c)∆i ≤ (4G + 12)e2G+8. Thus, Ci ≤ (5G + 12)e2G+8. Then, whenever
T > 2(K +G) + 1,

E[RT ] ≤ 2(5G+ 12)e2G+8K +KG log(T ) +
∑
i ̸=i∗

448

∆i
log (T ) ,

we then denote CG = (11G+ 24)e2G+8, consequently,

E[RT ] ≤ CGK log(T ) +
∑
i ̸=i∗

448

∆i
log (T ) .

For any ϵ > 0, we consider the problem-dependent regret contributed by arm i. If ∆i ≤ ϵ, then the regret
contributed will not exceed ϵNT (i), in which NT (i) is the total number we pull the arm i when the process is
completed. So the regret coming from those arms ∆i ≤ ϵ is bounded by ϵT . For those ∆i > ϵ, by the previous
argument, we have

Regi(T ) ≤
448

∆i
log (T ) + CGK log(T ).

Consequently, the total regret is bounded by

E[RT ] ≤ ϵT +
∑

i:∆i>ϵ

448

ϵ
log (T ) + CGK log(T )

≤ ϵT +
448K

ϵ
log (T ) + CGK log(T ).

(11)

So by taking ϵ =
√

448K log(T )
T in Eq.(11), we obtain, for all T ≥ 1, the regret

E[RT ] ≤ 16
√

7KT log(T ) + CGK log(T ),

where CG = (11G+ 24)e2G+8. Hence, we complete the proof of Theorem 6. □

E OMITTED PROOFS IN SECTION 5

In this section, we show the lower bound presented in the paper. We first notice the following lemma presented
by Lancewicki et al. (2021), which is a variant of Lemma 11 in Kleinberg et al. (2008). This gives a lower bound
of MAB problem without delay.

Lemma E.1 (Lancewicki et al. (2021)). Consider an algorithm ALGMAB for MAB problem without delays.
And let Iber be the set of problems with Bernoulli rewards. If the ALG’s regret is bounded by CTα over any
problem instance we proposed, then there exists I ∈ Iber, where ∆ is the sub-optimal gap, such that the algorithm
has at least a regret of

E[RALG
T ] ≥ Ω

(
(1− α)T

∆

)
.

Proof of Theorem 7. Using Lemma E.1, we only need to prove there exists a problem instance leading to a
regret lower bound Ω(di,i∗∆) in two-arm case, where

di,i∗ = min {j ∈ N : E [νi ∧ k] < E [νi∗ ∧ k] ,∀k ≥ j} .

We consider the two arms with sub-optimal arm i and optimal arm i∗. Assume that the optimal arm has a
distribution

P(νi∗ = 0) = 1− p,



and
P(νi∗ = M +∆/p) = p,

while the sub-optimal arm i has a distribution

P(νi = 0) = 1− p,

and
P(νi = M) = p.

Then, M = di,i∗ in this case. For any time t, the policy has to be made according to the history H<t. For
t < M , the two distributions ν|H<t and νi∗ |H<t is totally the same. As a result, before time M , any algorithm
cannot discern the difference between the two arms. Thus, we must have a di,i∗∆ regret. Now we have found
two instances I1 ∈ Iber ⊂ I and I2 ∈ I, in which I is the set of all problem instances, and I1 leads to a regret

lower bound Ω
(

(1−α)T
∆

)
while I2 leads to a lower bound Ω(di,i∗∆). Then, then maximum regret lower bound

in I will be at least Ω( (1−α)T
∆ + di,i∗∆) and hence we complete the proof. □
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