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Abstract

Active learning of physical systems must com-
monly respect practical safety constraints,
which restricts the exploration of the design
space. Gaussian Processes (GPs) and their
calibrated uncertainty estimations are widely
used for this purpose. In many technical appli-
cations the design space is explored via contin-
uous trajectories, along which the safety needs
to be assessed. This is particularly challeng-
ing for strict safety requirements in GP meth-
ods, as it employs computationally expensive
Monte-Carlo sampling of high quantiles. We
address these challenges by providing prov-
able safety bounds based on the adaptively
sampled median of the supremum of the pos-
terior GP. Our method significantly reduces
the number of samples required for estimating
high safety probabilities, resulting in faster
evaluation without sacrificing accuracy and
exploration speed. The effectiveness of our
safe active learning approach is demonstrated
through extensive simulations and validated
using a real-world engine example.

1 INTRODUCTION

Active learning is a machine learning technique that
involves selecting the most informative examples from
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a large unlabeled dataset and requesting their labels
from an oracle, e.g., a human annotator or a costly
experiment, to improve the performance of a learning
algorithm (Settles, 2009; Tharwat and Schenck, 2023).
The goal of active learning is to reduce the number of
labeled examples needed to achieve high accuracy.

In many engineering scenarios, the next experiment
must not only be informative, but also adhere to prac-
tical safety constraints (Sui et al., 2018; Berkenkamp
et al., 2016; Baumann et al., 2021). For example, we
consider the control of a high-pressure fluid system for
fuel injection in combustion engines, see Section 5.3.
The experimental conditions need to be chosen such
that a critical pressure threshold is not exceeded. Chal-
lengingly, the exact effect of the controls on the pres-
sure in the system is unknown and needs to be learned
simultaneously. Safe active learning aims to balanc-
ing the trade-off between exploration performance and
safety, ensuring that the selected examples are not only
informative but can also be obtained securely.

An established approach in safe active learning is to
model the unknown functional relation via Gaussian
processes (GPs) (Rasmussen et al., 2006). This allows
for Bayesian uncertainty quantification and, hence, for
informed decisions about where to sample next (Schre-
iter et al., 2015; Zimmer et al., 2018; Li et al., 2022).
This makes GPs a powerful tool for maximizing physi-
cal experiments’ information while minimizing risk.

A typical additional challenge is exploring dynamical
systems, where exploration along trajectories instead
of single datapoints is necessary. In our engine exam-
ple a controller continuously adapts engine speed and
rail pressure, and similarly the path in robot explo-
ration needs to be safe. In such applications, the entire
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Figure 1: By providing better estimates, we obtain accurate error bounds with much fewer MC samples. This
reduction in computation time for the safety evaluation allows more time to obtain measurements for Safe Active
Learning. The three left columns present visual representations of a Safe Active Learning task. Each column
corresponds to a different algorithm runtime t, along with the respective number of training points n, resulting in
n− 1 explored trajectories. In these plots, the green dashed region marks the area classified as safe by the GP,
while the space outside the red boundary indicates the ground truth unsafe region. The rightmost column provides
comparisons of two crucial metrics, contingent on the number of iterations. These comparisons underscore the
superiority of our approach in enhancing the effectiveness of the Safe Active Learning process by allowing more
iteration in the same time.

trajectory needs to be safe.

GPs are again attractive for exploration along trajecto-
ries. They naturally induce a univariate GP as posterior
of the safety constraint along the trajectory. Now, the
safety probability is the probability of this univariate
GP being safe which is analytically intractable. The
state of the art approach is to estimate the safety of
paths by generating enough Monte-Carlo (MC) sam-
ples from the GP on a finite set of points on the path
(Zimmer et al., 2018, 2020).

However, this has a major drawback: obtaining high
safety guarantees requires a large number of MC sam-
ples, as one needs enough samples in the tails of the
distribution. This exposes a trade-off between the
safety of the trajectory, the confidence in the safety
assessment, and the computational costs. The latter
is especially important if decisions need to be taken
quickly, as otherwise costly measurement equipment
and staff is idly waiting (Sandmeier, 2022; Thewes et al.,
2016).

This paper tackles this trade-off by a novel, compara-
tively tight, and computationally efficient algorithms
to compute provable probabilistic upper bounds on GP
maxima evaluated on a discretization. We develop a

variant of the Borell-TIS bound, make it well-suited
for practical applications, and adapt this bound to al-
low for non-centered GPs. The Borell-TIS inequality
allows us to draw conclusions about the far tails of
the posterior distribution based on the median and the
maximal variance, which can be estimated adaptively
and reliably with comparatively few MC samples. Our
algorithm uses this inequality adaptively, and hence
achieves high precision with minimal computational
overhead, enabling faster and more efficient learning.
This paper makes the following contributions:

• We reduce the safety assessment for a non-centered
GP to a centered GP, see Remark 3 and Figure 2.

• We propose a computationally efficient method
for the safety assessment using an adaptive MC
sampling scheme.

• We rigorously prove in Section 4 and empirically
demonstrate on various examples in Section 5 the
safety guarantees of our approach.

• We demonstrate that our approach is significantly
faster to compute than state-of-the-art safe ac-
tive learning techniques, hence it enables more
exploration in the same time (see Section 5).



Tebbe, Zimmer, Steland, Lange-Hegermann, Mies

2 PRELIMINARIES

2.1 Gaussian processes (GPs)

A Gaussian process (GP) g = GP(µ, k) is a stochastic
process characterized by its mean function µ : Rd → R
and covariance function k : Rd×Rd → R. Conditioning
g = GP(µ, k) on a dataset (x, y) ∈ Rn×(d+1) yields a
posterior GP with mean and covariance functions

µ∗(x∗) = µ(x∗) + k(x∗, x)(K + σ2
nI)−1y

Σ(x1, x2) = k(x1, x2)− k(x1, x)(K + σ2
nI)−1k(x, x2)

with covariance matrix K = (k(xi, xj))i,j ∈ Rn×n, and
k(x∗, x) ∈ R1×n, k(x1, x) ∈ R1×n, k(x, x2), k(x, x∗) ∈
Rn×1 and noise variance σ2

n (Rasmussen et al., 2006).
In practice, GPs are parameterized by hyperparameters
θ ∈ Rp. These hyperparameters are adapted to data
by minimizing the negative log-likelihood p(y|x, θ). We
use the squared exponential covariance function

kSE(x1, x2) = σ2
f exp

(
−1

2

(x1 − x2)2

`2

)
for the GP priors.

Sampling a GP g = GP(µ, k) at a finite number of
points x∗1, . . . , x∗m ∈ Rd amounts to sampling from
the m-dimensional Gaussian distribution N (v,K∗)
with vi = µ(x∗i ) and (K∗)i,j = k(x∗i , x

∗
j ) for i, j ∈

{1, . . . ,m}. The computational costs for generating M
samples consist of O(m3) operations for a preliminary
Cholesky decomposition of the covariance matrix K∗
and O(Mm2) operations to simulate the samples, in
addition to the cost of computing the posterior.

2.2 Safe Active Learning

Safe Active Learning selects sample locations x1, . . . , xn
that maximize information content, constrained on
safety (Schreiter et al., 2015; Zimmer et al., 2018; Li
et al., 2022). Entropy is a measure of information that
is particularly suited for GPs as the entropy of a new
point x∗ is in monotonous bijection to its predictive
variance σ2(x∗). Therefore, the core of safe active
learning is a constrained optimization problem:

xn+1 = argmaxx∗∈X σ(x∗) s.t. Punsafe(x
∗) ≤ α

where a small 0 < α ≤ 1 denotes the maximal desired
probability of unsafety and X ⊆ Rd is the operation
area of the system. We consider the usual case that
the safety of a point x∗ characterized in terms of a
(unknown) safety indicator function f : Rd :→ R. That
is, an operational setting x∗ is safe if z = f(x∗) ≥ zmin.
By shifting the mean value accordingly, we may set
zmin = 0 without loss of generality. We assume the

safety indicator to be experimentally measurable, so
that we can model it via a posterior GP f̂ ∼ GP (µ̂, Σ̂),
where the posterior parameters µ̂ and Σ̂ depend on
the previously explored samples x1, . . . , xn and their
evaluations zi = f(xi), as described in Section 2.1.
Then we denote by Punsafe(x

∗) the posterior probability

Punsafe(x
∗) = 1−

∫
z≥0

N (z; µ̂(x∗), Σ̂(x∗, x∗))dz. (1)

In case of active learning in dynamic systems (Zimmer
et al., 2018), the exploration is usually conducted along
parameterized trajectories τ(t)t∈[0,1] instead of points
x∗, e.g. the trajectory τ can be a linear ramp leading
to some end point of interest. The active learning
task then consists in choosing a sequence τ1, τ2, . . .
of trajectories which maximize information content,
constrained by the safety requirement Punsafe ≤ α.
A measurement is conducted at the endpoint of the
trajectory τ , and information is then measured with
the posterior GPs f̂ predictive variance σ̂(τ(1)). The
considered probability of the trajectory being unsafe is

Punsafe(τ) = P

(
inf

t∈[0,1]
Zt ≤ 0

)
, (2)

where Zt is a sample of the posterior GP.

In the same framework, it is also possible to con-
duct measurements along the trajectory at locations
τ(t1), . . . , τ(tm) for t1, . . . , tm ∈ [0, 1]. The information
of these measurements may be expressed in terms of
the predictive covariance matrix Σ̂(τ(t1), . . . , τ(tm)),
and quantified via its trace or determinant.

3 RELATED WORK

Estimating bounds for a GP is a crucial task for ex-
ploration in safety critical environments. Other ap-
proaches in the literature consider a bound of the RKHS
norm of the safety function in order to create confi-
dence intervals. While Sui et al. (2018) propose to
additionally use estimated Lipschitz-constants of the
safety function, Bottero et al. (2022) overcomes this
practically strong assumption. In Lederer et al. (2019),
the authors provide uniform error bounds based on
Lipschitz constants estimations. Schreiter et al. (2015)
proposes a method to obtain pointwise safety in safe ac-
tive learning. All these works consider pointwise safety
instead of safety on continuous trajectories, Zimmer
et al. (2018) extend safety consideration to trajectories.
This is improved in Zimmer et al. (2020) by an adap-
tive discretization scheme. Our novel approaches are
compatible with both these papers and for simplicity
we compare ourselves to the former one.

Moreover, Cardelli et al. (2019) consider safety for
compact sets to detect adversarial attacks on the data.
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For this purpose they use a variant of the Borell-TIS
inequality (Adler and Taylor, 2007) which bounds the
mean of the supremum of a GP using Dudley’s theorem
(Dudley, 1967). We show in Section 5.1, that these
bounds are inferior, compared to our proposed method.

While our experiments use standard GPs with squared
exponential covariance function, our methods directly
extend to usual variants and approximations to GPs.
This includes any separable covariance function, in-
cluding specific ones constructed from kernel search
(Duvenaud et al., 2013; Bitzer et al., 2022), geometry
(Borovitskiy et al., 2020), differential equations (Besgi-
now and Lange-Hegermann, 2022; Härkönen et al.,
2023), for high dimensional modeling (Duvenaud et al.,
2011), kernels building on Fourier frequencies (Lázaro-
Gredilla et al., 2010), or symmetry (Holderrieth et al.,
2021). Furthermore, this includes GPs for big data,
be it via variational approximations (Titsias, 2009;
Hensman et al., 2013, 2017), via kernel approximations
(Wilson and Nickisch, 2015), or improved linear algebra
(Gardner et al., 2018; Wang et al., 2019).

The safety assessment in (1) reduces to a Gaussian
integral under linear constraints which has been consid-
ered by Genz (1992). This method has been extended
to high dimensional integrals (m > 100) of mainly
small areas (Botev, 2017; Gessner et al., 2020). These
methods use variants of Monte-Carlo sampling, but
prior experiments indicate that they have inferior per-
formance as our proposed methods.

Adaptive stopping Monte-Carlo schemes have been used
in the literature for estimating statistical quantities
(Mnih et al., 2008). Our stopping scheme extends via
exploiting an additional binomial structure.

4 UNIFORM TAIL BOUNDS FOR
GAUSSIAN PROCESSES

When exploring the experimental space along a tra-
jectory (τ(t))t∈[0,1] ∈ Rd, we want to be reasonably
certain that a safety indicator f(τ(t)) does not fall
below a critical threshold zmin = 0. Denote the trajec-
tories of the posterior distribution for f(τ(t))t∈[0,1] by
(Zt)t∈[0,1], i.e. Zt is a GP with one-dimensional input,
mean function E(Zt) = µt ∈ R, t ∈ [0, 1], and covari-
ance function Cov(Zs, Zt) = Σs,t, derived according to
the formulas in Section 2.1. Hence, the (posterior) prob-
ability Punsafe of the trajectory τ being unsafe is given
by (2). For computational purposes, the continuous
trajectory τ(t) needs to be discretized by considering
only a subset T ⊂ [0, 1], such that

Punsafe(τ) ≈ P
(

inf
t∈T

Zt ≤ 0

)
=: P ∗(τ).

Typically, T = {t1, . . . , tm} is a finite set for compu-
tational purposes. However, we want to emphasize
that our adaptive sampling scheme and the analyti-
cal bounds presented in Section 4.2 also hold for the
continuous case T = [0, 1].

For safe exploration, we want to accept the trajectory
τ(t)t∈T as being safe only if P ∗(τ) ≤ α, for some
small α ∈ (0, 1]. This section describes reliable upper
bounds on P ∗ which should be (i) fast to evaluate
computationally and (ii) as sharp as possible.

4.1 Adaptive Monte-Carlo Sampling (AMC)

The state of the art chooses a potentially non-
equidistant discretization of [0, 1] given by 0 ≤ t1 <
. . . < tm ≤ 1 and simulate a potentially large number,
M , of trajectories Zt,1, . . . , Zt,M evaluated only on the
discretization T = {t1, . . . , tm}. The computational
cost is dominated by O(Mm2) for large enough M ,
see Section 2.1. We estimate the probability of un-
safe trajectories by their proportion in the sampled
trajectories

P̂MC(τ,M) =
1

M

M∑
i=1

1

(
min

j=1,...,m
Ztj ,i ≤ 0

)
.

How many MC samples M are necessary? Since
Var(P̂MC) ≤ P ∗/M , the relative error compared to
the safety threshold is of the order

|P̂MC − PMC|/α = O(
√
P ∗/
√
M α).

Thus, for trajectories which are barely safe, P ∗ ≈ α,
we should perform M � α−1 MC iterations. That
is, for strict safety requirements α ≈ 0, the MC ap-
proach is computationally expensive. Determining the
exact number of required MC samples is non-trivial:
If P ∗ � α, i.e. if the trajectory is very safe, then few
samples suffice as the variance of P̂MC is small. If, on
the other hand, P ∗ � α, it is also sufficient to draw
rather few samples, as the mean of P̂MC is far away
from the decision boundary. Specifically in the critical
regime P ∗ = α + O(δ) for some small |δ| it is hard
to decide whether the trajectory τ is indeed safe or
unsafe; the smaller |δ|, the more samples are needed.
Unfortunately, given a candidate trajectory τ , we do
not know P ∗ in advance.

We suggest to determine the sample size adaptively:
generate the MC samples sequentially and perform an
online test for the hypothesis H0 : P ∗(τ) ≥ α, and to
stop sampling as soon as H0 is rejected, classifying the
trajectory as safe. At the same time, we stop when
H ′0 : P ∗(τ) ≤ α is rejected, classifying the trajectory as
unsafe. We suggest to sequentially increase the sample



Tebbe, Zimmer, Steland, Lange-Hegermann, Mies

size M1 < M2 < . . ., and to stop sampling at step r∗
with sample size Mr∗ for

r∗ = inf
{
r : P̂+

MC(τ,Mr, r, ε, α) < α or

P̂−MC(τ,Mr, r, ε, α) > α)
}
,

P̂+
MC(τ,Mr, r, ε, α) :=P̂MC(τ,Mr) +

√
α(1− α)cr,

P̂−MC(τ,Mr, r, ε, α) :=P̂MC(τ,Mr)−
c2r
4
− cr
√
α,

with cr =

√
2

Mr

∣∣∣∣log
6ε

π2r2

∣∣∣∣
where ε > 0 should be small. Stopping due to P̂+

MC
resp. P̂−MC classifies τ as safe resp. unsafe. Indeed,
this procedure can control the probability of falsely
classifying an unsafe trajectory as safe and vice versa.
Theorem 1. Let Q denote the probability w.r.t. the
MC sampling and let ε ∈ (0, 1). If P ∗(τ) ≥ α then

Q
(
∃r ∈ N : P̂+

MC(τ,Mr, r, ε, α) < α
)
≤ ε

and if P ∗(τ) ≤ α, then

Q
(
∃r ∈ N : P̂−MC(τ,Mr, r, ε, α) > α

)
≤ ε.

We call this method Adaptive Monte-Carlo (AMC).
Since cr → 0 and P̂MC(τ,Mr) → P ∗, the stopping
time r∗ is almost surely finite if P ∗ 6= α. Theorem 1
guarantees the above method decides correctly with
probability 1− ε if P ∗ 6= α; we may choose ε small. On
the other hand, Theorem 1 also implies that P (r∗ =
∞) ≥ 1 − ε for the edge case P ∗ = α. Thus, in
practice, we impose an upper bound on r∗ and classify
a trajectory as unsafe if this bound is exceeded.

4.2 Analytical bound

We suggest to bound P ∗ via the Borell-TIS inequality
for GPs. It asserts the remarkable result that the
supremum of a GP shifted by the mean or median of
suprema of samples has subgaussian tails.
Theorem 2 (Borell-TIS inequality). Let Xt, t ∈ T , be
a centered separable GP with index set T , and maxi-
mal pointwise variance σ2 = supt∈T Var(Xt). Denote
m(X) = median (supt∈T Xt), µ(X) = E (supt∈T Xt)
and Φ as the standard Gaussian distribution function.
Then, for any u ≥ 0,

P

[
sup
t∈T

Xt > u+m(X)

]
≤ [1− Φ(u/σ)] (B.1)

≤ 1
2 exp(− 1

2u
2/σ2), (B.2)

P

[
sup
t∈T

Xt > u+ µ(X)

]
≤ exp(− 1

2u
2/σ2). (B.3)

Typically, (B.1) is the sharpest of the bounds of The-
orem 2; cf. Figure 3 for a numerical comparison. See
van der Vaart and Wellner (1996) for a proof of The-
orem 2. Note that the sharpest inequality (B.1) is
derived in the proof of Lemma A.2.2 therein.
Remark 3. In our setting, Theorem 2 is not directly
applicable because Z = GP(µ,Σ) is usually conditioned
on previously obtained data and hence of variable mean.
We remedy this technical problem as follows: suppose
that µt > 0 for all t ∈ T , since otherwise P ∗ ≥ 1

2 which
is a too high risk of failure. Then, we may rewrite

inf
t∈T

Zt ≥ 0 ⇐⇒ Xt :=
Zt − µt
−µt

≤ 1 ∀t ∈ T.

Figure 2 exemplifies this centering transformation. Con-
sidering X = µ−Z

µ = GP
(

0, (s, t) 7→ Σ(s,t)
µ(s)µ(t)

)
, it suf-

fices to derive upper tail bounds for

P ∗ = P

(
inf
t∈T

Zt ≤ 0

)
= P

(
sup
t∈T

Xt ≥ 1

)
.

This discussion, together with Theorem 2 proves the
following analytical bound on P ∗.
Theorem 4. Let Zt, t ∈ T , be a separable GP with
index set T and mean function µt > 0. Then, if m̃ =
median (supt∈T (µt − Zt)/µt) ≤ 1, we have

P ∗(τ) ≤ P †(τ) = 1− Φ
(

1−m̃
σ̃

)
for σ̃2 = supt∈T Var(Zt)/µ2

t .

4.3 Semi-analytical bound (AB)

In Theorem 4, the median m̃ and the maximal variance
σ̃2 cannot be computed in closed form. We approximate
them via MC sampling along a discretization of Zt
resp. Xt. Thereby, we replace MC sampling of events
in tails of probability distributions by much easier MC
sampling of a median of the same distribution. This is
possible because the Gaussianity of the process allows
us to extrapolate to the tail of the distribution using
data from the center of its mass, via Theorem 4. As a
consequence, we can drastically decrease the number
of MC samples required for reliable tail bounds.

Again, we suggest to determine the MC sample size
adaptively. To this end, we make use of exact finite sam-
ple confidence intervals for the median as follows. Based
on M ∈ N samples, denote the simulated maxima
by Si = maxj Xtj ,i and let qβ,M = qβ,M (S1, . . . , SM )
the empirical β-quantile, i.e. the bMβc-th order statis-
tic. For any M , r, and ε > 0, and a confidence level
χ = χ(r, ε) = 1 − 6ε

π2r2 , there exist β± = β±(M, r, ε),
with β− ≤ β+, such that

P
(
m̃ ∈ [qβ−,Mr

,∞)
)
≥ χ,

P
(
m̃ ∈ (−∞, qβ+,Mr

]
)
≥ χ.
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Figure 2: The left diagram illustrates the GP Zt from Subsection 5.1 via its mean function and pointwise
two sigma bands; the right diagram shows the corresponding centered GP Xt resulting from Remark 3. The
safety-relevant information of the mean of the original GP Z moves to the covariance of the centered GP X. In
particular, the variance of the centered GP X rises where the mean of Z approaches the safety bound zero.

We can use the asymptotic approximation β± ≈ 1
2 ±

Φ−1(χ)/
√

4M (Conover, 1999, p. 144). Thus, as in
Section 4.1, we suggest to sequentially increase the
sample size M1 < M2 < . . ., and to stop sampling at
step r′ with sample size Mr′ for

r′ = inf
{
r : P̂ †−(Mr, r, ε) > α or P̂ †+(Mr, r, ε) < α

}
,

where P̂ †±(Mr, r, ε) := 1− Φ
(

1−qβ±,Mr
σm

)
.

Theorem 5. If P †(τ) ≥ α, then for any ε ∈ (0, 1)

Q
(
∃r ∈ N : P̂ †+(Mr, r, ε) < α

)
≤ ε

and if P †(τ) ≤ α, then

Q
(
∃r ∈ N : P̂ †−(Mr, r, ε) > α

)
≤ ε.

where Q denotes probability w.r.t. the MC sampling.

We call this method Adaptive Borell (AB). A general
adaptive algorithm is provided in Algorithm 1, while
method specific versions are in the supplement.

4.4 Hybrid adaptive sampling (ABM)

If the assessed trajectory is either clearly safe (P ∗ � α)
or clearly unsafe (P ∗ � α), the adaptive MC scheme
might terminate earlier than the semi-analytical proce-
dure. As both methods use the same samples, there is
minimal computational overhead to run both schemes
in parallel, with remaining uncertainty ε/2 instead of
ε, and stop as soon as one of them reaches a decision.

Moreover, AB provides an upper bound on the unsafe-
ness probability, P † ≥ P ∗. That is, even if P † > α
(AB bound classifies a trajectory as unsafe), we might

Algorithm 1 Adaptive Safety evaluation
Require: Safety threshold: α > 0,
Threshold for confidence intervals: ε > 0,
Discretization: t1, . . . , tm,
Sample sizes: 0 = M0 < M1 < . . . < MR,
Posterior GP: Xt.
P̂ ← 0
for r = 1, . . . , R do

for i = Mr−1 + 1, . . . ,Mr do
Simulate (Xtj ,i)j=1,...,m

Si ← maxj=1,...,mXtj ,i

Update P̂ given Si
Compute confidence intervals [P̂−, P̂+]

if P̂+ ≤ α then
return safe

else if P̂− ≥ α then
return unsafe

return unsafe

still have α ≥ P ∗ (trajectory is indeed safe). Thus, the
AB method is overly confident, which maintains safety,
but hinders exploration. As a further improvement, we
suggest to run both adaptive methods in parallel, and
use the Borell-TIS bound only to conclude safety, but
not unsafety. More precisely, we stop sampling at step

r� = inf
{
r : P̂ †+(Mr, r,

ε
2 ) < α

or P̂+
MC(τ,Mr,

ε
2 , α) < α

or P̂−MC(τ,Mr, ε, α) > α)
}
.

In the notation of Algorithm 1, we have a sequential
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Figure 3: The diagram considers the toy GP from Section 5.1, see also Figure 2 for a visualization of this GP. It
shows the tail distribution (complementary cumulative distribution function) P (X > x) for different values of x
of different estimations for the supremum of the centered GP. Note, that the safety condition here is P (X < 1)
The MC bound can be seen as optimal estimation of P (X > x). Amongst the upper bounds to P (X > x), we
see, that the strong Borell inequality B.1 is the sharpest one.

confidence interval given by the bounds

P̂ �+(r, ε, α) := min
[
P̂ †+(Mr, r,

ε
2 ), P̂+

MC(τ,Mr,
ε
2 , α)

]
,

P̂ �−(r, ε, α) := P̂−MC(τ,Mr, ε, α).

We call this method Adaptive Borell-Monte-Carlo
(ABM). Theorem 1 and Theorem 5 directly imply that
the proposed hybrid scheme makes no wrong decisions
about safety of a trajectory, with probability 1 − ε,
which proves the following corollary.

Corollary 6. Let Q denote the probability w.r.t. the
MC sampling and let ε ∈ (0, 1). If P ∗(τ) ≥ α then

Q
(
∃r ∈ N : P̂ �+(r, ε, α) < α

)
≤ ε

and if P ∗(τ) ≤ α, then

Q
(
∃r ∈ N : P̂ �−(r, ε, α) > α

)
≤ ε.

5 EXAMPLES

In this section, we test our method using simulated
experiments. For multidimensional examples we use
linear ramps with equidistant points as trajectories,
similar to Zimmer et al. (2018). In our experiments,
the computational time budget for each method is fixed,
and the number of measurements nSAL which can be
taken during one run should be as high as possible.
Moreover, we consider different performance metrics to
compare the classic Monte-Carlo (MC) method to our
novel adaptive Monte-Carlo (AMC) method, adaptive
Borell (AB) method, and adaptive Borell-Monte-Carlo
(ABM) method.
The root-mean-squared error (RMSE) between the ob-
tained GP model and the ground truth indicates the

quality of actively learning the behaviour of the real
world system. As a second performance metric, we
consider the health coverage, defined as the accuracy of
a binary classifier which uses the posterior mean µ(x)
to classify the domain as safe or unsafe, i.e.

ch =

∫
X 1µ(x)≥01z≥0dx+

∫
X 1µ(x)<01z<0dx∫

X 1dx
.

For computational tractability, the integrals are ap-
proximated via a fixed number of discrete evaluations.

5.1 Univariate Toy Example

First, we omit the active learning and only assess
the quality of our safety evaluation. To this end,
we consider the toy example f : [0, 1] → R, x 7→
−0.2 sin(10x) − x + 1.1 with a GP generated by the
squared exponential kernel and hyperparameters σf =
1, `2 = 32−1 and σ2

N = 10−3. The training points
0 = x1 ≤ x2 ≤ . . . ≤ x21 = 1 are equally spaced, and
we consider the safety of the posterior trajectory on
the domain [0, 1]. For a visualization of this GP, see
Figure 2. We compare the bounds from our methods
with what we regard as the true tail probability: the
bound generated by MC sampling with a high number
of samples (M = 106). We discretize the posterior tra-
jectories by 50 equidistant points, i.e. we approximate
Punsafe ≈ P ∗ with T = {0, 1

49 , . . . , 1} The comparison is
depicted in Figure 3. The bound B.1 using the median
performs best and is really close to the MC simulation.
The bounds given by B.2 and B.3 behave poorly in
the tails, as the subgaussian tails are fatter than the
Gaussian tails. These numerical results indicate that
the bound of AB derived from B.1 is rather tight.
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Figure 4: Consider the Himmelblau’s function exploration from Section 5.2. (a) All our three novel adaptive
methods (AMC, AB, ABM) improve upon the current state of the art MC with a sufficient sample size (see
supplement for exact numbers), when considering the RMSE for high safety requirements α = 0.001. (b) Our
method AMC improves over MC consistently in RMSE for three different safety requirements. Our favoured
method ABM improves further over AMC both for (c) RMSE and (d) detecting the safe region correctly via the
health coverage ch. Results are averaged over 10 independent seeds.

5.2 Himmelblau’s function exploration

As an example of an active learning task, we con-
sider exploration of a version of Himmelblau’s function
f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2 (Himmelblau
et al., 2018). In particular, we want to actively learn
the function f in the region [−3, 3]2, with the safety
constraint f(x, y) ≥ 50, for a visualization, see Figure
1. Thus, we have a connected safe area with the unsafe
area only at the boundary of the given square. For fur-
ther details on the GP setting, see the supplementary.

The results are shown in Figure 4. The experiments
support the theoretical claims, that adaptive methods
perform better with rising safety requirements, see
Figure 4 (a). This is based on a fewer runtime per
iteration due to less MC samples needed to make a
provably right decision with high possibility. Indeed,
the methods containing B.1 use to make up to 6.5 times
as many iterations in the same time, see Figure 1.

5.3 Application: Engine control

We consider a dynamic high-pressure fluid system for
fuel injection in combustion engines introduced in Zim-
mer et al. (2018) as a real world example, see Figure 5.
Actuation vk and the engines’ speed nk are inputs every
time step k, and we aim to learn a surrogate model
for the rail pressure ψk. We inherit the assumption
of a nonlinear autoregressive structure ψk = ψ(xk) for
xk = (nk, nk−1, nk−2, nk−3, vk, vk−1, vk−3). The trajec-
tories linearly interpolate two points equidistantly. For
more details about the GP settings, see supplementary.
The results are depicted in Figure 6, in analogy to

Figure 5: High-pressure fluid injection system with con-
trollable inputs vk, nk and measured output ψk (picture
taken from Zimmer et al. (2018); Tietze et al. (2014))

Figure 4. Again, our adaptive methods show improved
performance over standard MC, see Figure 6 (a). Es-
pecially for higher safety requirements, the methods
containing B.1 outperform the others, see Figure 6
(a),(c) and (d). With fewer needed MC samples, AB
and ABM can perform more iterations in the same
runtime, see the supplementary for details.

6 CONCLUSION

In this paper, we explore the derivation of upper bounds
on the probabilities of sampled Gaussian processes ex-
ceeding prescribed thresholds. Leveraging adaptive
techniques, we achieve significant computational ef-
ficiency enhancements compared to state-of-the-art
Monte-Carlo sampling methods. Furthermore, we ex-
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Figure 6: Consider the engine control exploration from Section 5.3. (a) Both our methods AB and ABM using the
Borell-TIS inequality B.1 improve upon the current state of the art MC and its adaptive version AMC for high
safety requirements α = 0.001. (b) The adaptive version AMC improves over MC in RMSE in particular for the
lax safety requirement α = 0.1. (c) For higher safety requirements α = 0.01 and α = 0.001 our favoured method
ABM improves over AMC and hence also over MC in RMSE. (d) The enhanced RMSE results observed in (c)
can be primarily attributed to the improved health coverage ch. Results are averaged over 10 independent seeds.

tend these advancements by incorporating a variant of
the Borell-TIS inequality in conjunction with classical
Monte-Carlo sampling. While the Borell-TIS inequality
itself entails sampling, it serves to estimate the median
rather than the direct estimation of tail probabilities.
To facilitate the application of the Borell-TIS inequality,
we introduce a centering transformation for Gaussian
processes and offer an insightful interpretation. We
rigorously establish error bounds for all of our proba-
bilistic methods, ensuring their reliability in practical
applications.

Our primary motivation revolves around the domain of
safe active learning in dynamic systems. Although our
Gaussian process bounds tend to be conservative, po-
tentially resulting in slower exploration, the remarkable
reduction in computation time allows for the acquisition
of more data points when employing our methods. This
advantageous trade-off effectively offsets the conserva-
tive nature of our bounds, as empirically demonstrated
in our illustrative examples. Notably, our approach
proves particularly valuable in scenarios with stringent
safety requirements, such as when the trajectory safety
probability must exceed 99.9%.
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Supplementary Materials

1 Discrete and continuous trajectories

The theory and methodology developed in this paper is formulated in terms of continuous-time paths of Gaussian
processes Zt, parameterized by some trajectory τ(t) ∈ Rn, for t ∈ T ⊂ [0, 1]. The set T is introduced to account
for a discretization of the trajectory. Here, we highlight that we could instead describe the discretization by
keeping T = [0, 1] and considering the alternative trajectory

τ(t) =


τ1, t ∈ [0, t2),

τi, t ∈ [ti, ti+1), i = 1, . . . ,m− 1

τm, t ∈ [tm, 1].

Here, τi ∈ Rn are the discrete points of the trajectory, and 0 ≤ t1 ≤ τ2 ≤ . . . ≤ τm ≤ 1 are breakpoints of the
step function. As Zt is the posterior GP of f(τ(t)), its paths are also step functions, and it holds that

inf
t∈[0,1]

Zt = min
j=1,...,m

Ztj , and P ∗(τ) = P

(
min

j=1,...,m
Ztj ≤ 0

)
.

Thus, all of our results readily transfer to finite discretizations of the trajectories τ . In particular, our methods
are applicable for the discretizations chosen in Section 5.

2 Proofs

2.1 Proof of Theorem 1

Observe that M · P̂MC(M, τ) admits a Binomial distribution with M trials and success probability p = P ∗(τ).
Moreover, let Yr be a binomially distributed random variable with Mr trials and success probability α, and set
X = Yr/Mr. First, consider the case p ≥ α, such that in particular Xr is stochastically smaller than P̂MC(Mr, τ).
We now use Okamoto’s exponential bounds (Okamoto, 1959, Thm. 2) for the Binomial distribution: As α ≤ 1/2,

for each z > 0 it holds Q(Xr − α ≤ −z) ≤ exp(− Mrz
2

2α(1−α) ). Thus, the union bound yields

Q
(
∃r ∈ N : P̂+

MC(τ,Mr, r, ε, α) < α
)
≤
∞∑
r=1

Q
(
P̂MC(Mr, τ) < α−

√
α(1− α)cr

)
≤
∞∑
r=1

Q
(
Xr − α < −

√
α(1− α)cr

)
≤
∞∑
r=1

exp

(
−Mrc

2
r

2

)

=

∞∑
r=1

6ε

π2r2
= ε.
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For the case p ≤ α ≤ 1
2 , the random variable Xr is stochastically larger than P̂MC(Mr, τ). Hence, we obtain

Q
(
∃r ∈ N : P̂−MC(τ,Mr, r, ε, α) > α

)
≤
∞∑
r=1

Q

(
P̂MC(Mr, τ) > α+

c2r
4

+ cr
√
α

)

=

∞∑
r=1

Q

(
P̂MC(Mr, τ) >

(√
α+

cr
2

)2)

≤
∞∑
r=1

Q

(
Xr >

(√
α+

cr
2

)2)
.

Now we use another bound of Okamoto (Okamoto, 1959, Thm. 3): Q(Xr > (
√
α+ z)2) ≤ exp(−2Mrz

2). Hence,

Q
(
∃r ∈ N : P̂−MC(τ,Mr, r, ε, α) > α

)
≤
∞∑
r=1

Q

(
Xr >

(√
α+

cr
2

)2)

≤
∞∑
r=1

exp

(
−Mrc

2
r

2

)

=

∞∑
r=1

6ε

π2r2
= ε.

This completes the proof.

2.2 Proof of Theorem 5

Suppose that P †(τ) ≥ α. Our choice of β+ ensures that

Q
(
m̃ ≤ qβ+,Mr

)
≥ χ(r, ε) = 1− 6ε

π2r2

⇐⇒ Q
(
m̃ > qβ+,Mr

)
≤ 6ε

π2r2
.

Hence,

Q
(
P̂ †+(Mr, r, ε) < α

)
= Q

(
1− Φ

(
1−qβ+,Mr

σ̃

)
< α ≤ P †(τ)

)
≤ Q

(
1− Φ

(
1−qβ+,Mr

σ̃

)
< P †(τ)

)
= Q

(
1− Φ

(
1−qβ+,Mr

σ̃

)
< 1− Φ

(
1−m̃
σ̃

))
= Q

(
qβ+,Mr

< m̃
)

≤ 6ε

π2r2
.

The union bound yields

Q
(
∃r ∈ N : P̂ †+(Mr, r, ε) < α

)
≤

∞∑
r=1

Q
(
P̂ †+(Mr, r, ε) < α

)
≤

∞∑
r=1

6ε

π2r2
≤ ε.

This proves the first claim, and the second claim may be derived analogously.

2.3 Proof of Corollary 6

Suppose that P ∗(τ) ≥ α. By the definition of P̂ �+(r, ε, α) and the union bound, we find that

Q
(
∃r ∈ N : P̂ �+(r, ε, α) < α

)
≤ Q

(
∃r ∈ N : P̂ †+(Mr, r,

ε
2 ) < α

)
+Q

(
∃r ∈ N : P̂+

MC(τ,Mr, r,
ε
2 , α) < α

)
≤ ε

2 + ε
2 .

The last inequality is due to Theorem 1 and Theorem 5, and establishes the first claim of Corollary 6. The
second claim is identical to Theorem 1.



2.4 Further Proofs

The proof of Theorem 2 can be found in A.2.1 in van der Vaart and Wellner (1996). The proof of Theorem 4 is
given in the main text as a combination of Theorem 2 and Remark 3.

3 Code

The code is provided under github.com/joerntebbe/SafetyBounds4GPinAL with the BSD-2 license. We use
adapted code from Zimmer et al. (2018), which is provided under the MIT license, with a modified version of
the Gaussian Process library from Rasmussen and Nickisch (2010) for MATLAB, which is provided under the
FreeBSD license.
The experiments were carried out using CPU only with an AMD Ryzen 9 5950X driven at 3.4GhZ and 64GB
RAM on MATLAB R2023a.

4 Algorithms

4.1 General implementation details

We use the active learning algorithm proposed in Zimmer et al. (2018) as baseline. Integrating our method into
this algorithm comes with several challenges.
We have to add an immediate rejection of a candidate trajectory, if the mean has a changing sign, since our
method is not applicable in this case. In order to provide meaningful gradients to the optimizer in this case, we
implemented a heuristic to return a safety value which characterizes the trajectory as unsafe but also gives a
metric on how far away the trajectory is from being safe without evaluating a particular bound. This results in
a penalty term which is dependent on the distance from the mean to be classifiable by our method

Punsafe(τt) = 0.5 + ‖max(µt,0m)‖2
with 0m ∈ Rm being a vector of zeros.
Moreover, if our method fails to make a decision with the provided budget of samples per safety evaluation, we
declare the trajectory as unsafe. With the same purpose as before, we want to provide a numerical value which
yields how far away from safe this trajectory is. In order to do so, we provide the lower bound of the confidence
interval as the returning value.

As the sample sizes M1, . . . ,MR we use M1 = 100 and double the size in each iteration, resulting in

Mr = 100 · 2r−1.

For the Himmelblau example we use R = 14, for the engine control example we use R = 17. These values were
chosen based on prior experiments which observed the distribution of required samples to make a decision. In
order to provide a fair comparison, i.e. the MC method respects the safety requirements, we chose the fixed
sample size for the MC method to be MR−1.
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4.2 Adaptive Monte Carlo

Algorithm 1 provides Pseudocode for the adaptive Monte Carlo sampling scheme.

Algorithm 1 Adaptive Monte Carlo sampling

Require: Safety threshold: α > 0, Threshold for confidence intervals ε > 0,
Discretization t1, . . . , tm, sequence of sample sizes 0 = M0 < M1 < . . . < MR, Posterior GP: Xt

for r = 1, . . . , R do
for i = Mr−1 + 1, . . . ,Mr do

Simulate (Xtj ,i)j=1,...,m

Si ← maxj=1,...,mXtj ,i

end for
P̂ ← Mr−1

Mr
P̂ + 1

Mr

∑Mr

i=Mr−1+1 1 (Si > 1)

P̂±MC ← P̂ ±
√

2α(1−α)
Mr

∣∣log 6ε
π2r2

∣∣
if P̂+

MC < α then
return safe

else if P̂−MC > α then
return unsafe

end if
end for
return unsafe

4.3 Adaptive Borell-TIS

Algorithm 2 provides Pseudocode for the safety evaluation using the Borell-TIS inequality and the adaptive
sampling scheme of the median.

Algorithm 2 Adaptive sampling for Borell-TIS

Require: Safety threshold: α > 0, Threshold for confidence intervals ε > 0,
Discretization t1, . . . , tm, sequence of sample sizes 0 = M0 < M1 < . . . < MR, Posterior GP: Xt

for r = 1, . . . , R do
β± ← 1

2 ± Φ−1(1− χ(Mr, ε))/
√

4Mr

for i = Mr−1 + 1, . . . ,Mr do
Simulate (Xtj ,i)j=1,...,m

Si ← maxj=1,...,mXtj ,i

end for
q± ← qβ±(Mr,k,ε),Mr

(S1, . . . SMr
)

P̂ †± ← 1− Φ
(

1−q±
σm

)
if P̂ †+ ≤ α then

return safe
else if P̂ †− ≥ α then

return unsafe
end if

end for
return unsafe



4.4 Hybrid scheme

Algorithm 3 provides Pseudocode for the safety evaluation using the adaptive hybrid scheme described in Section
4.4 of the article.

Algorithm 3 Adaptive hybrid scheme

Require: Safety threshold: α > 0, Threshold for confidence intervals ε > 0,
Discretization t1, . . . , tm, sequence of sample sizes 0 = M0 < M1 < . . . < MR, Posterior GP: Xt

for r = 1, . . . , R do
β± ← 1

2 ± Φ−1(1− χ(Mk, ε))/
√

4Mr

for i = Mr−1 + 1, . . . ,Mr do
Simulate (Xtj ,i)j=1,...,m

Si ← maxj=1,...,mXtj ,i

end for
P̂ ← Mr−1

Mr
P̂ + 1

Mr

∑Mr

i=Mr−1+1 1 (Si > 1)

P̂+
MC ← P̂ +

√
2α(1−α)
Mr

∣∣log 3ε
π2r2

∣∣
P̂−MC ← P̂ −

√
2α(1−α)

M

∣∣log 3ε
π2r2

∣∣ . Critical values based on MC scheme

q+ ← qβ+(Mr,k,
ε
2 ),Mr

(S1, . . . SMr
)

P̂ †+ ← 1− Φ
(

1−q±
σ̃m

)
. Critical value based on Borell-TIS scheme

if min[P̂ †+, P̂
+
MC] ≤ α then

return safe
else if P̂−MC ≥ α then

return unsafe
end if

end for
return unsafe

5 Further information on the examples

In this section we provide further information on the experiments presented in the main text. We observe the
quantities RMSE and ch, as well as the quantities nSAL which is the number of iterations of the active learning
algorithm, and nf , which is defined as the number of training points, that are unsafe due to the ground truth.
A detailed discussion on this can be found in the respective subsections.

5.1 Himmelblau’s function exploration

Table 1: Quantities for Himmelblau’s function exploration:
method / α nSAL RMSE ch nf

MC / 0.1 10.9 ± 1.7 0.2873 ± 0.0669 0.4906 ± 0.0540 0.0000 ± 0.0000
AMC (Ours) / 0.1 38.2 ± 7.4 0.1553 ± 0.0543 0.7724 ± 0.0630 0.2000 ± 0.6325
AB (Ours) / 0.1 65.1 ± 7.4 0.1080 ± 0.0302 0.8621 ± 0.0326 0.7000 ± 1.4944

ABM (Ours) / 0.1 59.6 ± 9.5 0.1511 ± 0.0801 0.8067 ± 0.0625 1.1000 ± 3.1429
MC / 0.01 10.5 ± 1.9 0.3356 ± 0.0906 0.4476 ± 0.0711 0.0000 ± 0.0000

AMC (Ours) / 0.01 26.3 ± 3.9 0.2194 ± 0.0798 0.6078 ± 0.0521 0.0000 ± 0.0000
AB (Ours) / 0.01 50.8 ± 5.1 0.1745 ± 0.0812 0.7338 ± 0.0637 0.0000 ± 0.0000

ABM (Ours) / 0.01 70.1 ± 3.0 0.1771 ± 0.0498 0.7332 ± 0.0569 0.0000 ± 0.0000
MC / 0.001 10.6 ± 2.3 0.3482 ± 0.0648 0.4352 ± 0.0634 0.0000 ± 0.0000

AMC (Ours) / 0.001 31.4 ± 6.0 0.2434 ± 0.0793 0.6457 ± 0.0556 0.0000 ± 0.0000
AB (Ours) / 0.001 59.1 ± 10.5 0.1619 ± 0.0924 0.7895 ± 0.0631 0.1000 ± 0.3162

ABM (Ours) / 0.001 64.6 ± 6.4 0.1738 ± 0.0934 0.7470 ± 0.0887 0.3000 ± 0.9487
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Figure 1: Himmelblau’s function exploration: These plots show the RMSE for three different values of α and the
four algorithms. The results are averaged over ten independent seeds and regions are 2σ confidence intervals.
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Figure 2: Himmelblau function exploration health coverage: These plots show the health coverage ch for three
different values of α and the four algorithms. The results are averaged over ten independent seeds and regions
are 2σ confidence intervals.

We use fixed hyperparameters without optimization. The hyperparameters are `21 = `22 = 1.0, σ2
f = 1 and

σn = 0.01. We scale the function with a factor of 0.01 and add normal distributed noise with zero mean and a
standard deviation of 0.01 which coincides with σn. We discretize the trajectories with m = 5, but only use the
endpoint of an explored trajectory as new measurement which is added to the training points. We present the
additional results in Figures 1 and 2, and Table 1. We see, that our proposed algorithms using the (B.1) bound
perform the best with AMC (Ours) also outperforming MC. This results in much more iterations made by the
safe active learning algorithm due to fewer samples needed for safety evaluation.

5.2 Engine control



Efficiently Computable Safety Bounds for Gaussian Processes in Active Learning

Table 2: Quantities for engine control
method / α nSAL RMSE ch nf

MC / 0.1 12.7 ± 1.4 11.6250 ± 0.2191 0.5075 ± 0.0280 1.5000 ± 2.1213
AMC (Ours) / 0.1 74.8 ± 9.8 10.8945 ± 0.2759 0.6045 ± 0.0220 10.1000 ± 10.3220
AB (Ours) / 0.1 111.0 ± 7.7 10.5050 ± 0.4379 0.6643 ± 0.0306 16.7000 ± 11.7004

ABM (Ours) / 0.1 72.7 ± 9.2 10.8287 ± 0.3261 0.6262 ± 0.0300 9.1000 ± 8.5823
MC / 0.01 12.2 ± 1.7 11.6765 ± 0.2750 0.5007 ± 0.0358 1.1000 ± 1.4491

AMC (Ours) / 0.01 98.1 ± 7.2 11.2986 ± 0.1837 0.5815 ± 0.0253 6.6000 ± 4.4771
AB (Ours) / 0.01 129.3 ± 4.4 10.9095 ± 0.2787 0.6258 ± 0.0215 5.3000 ± 2.8304

ABM (Ours) / 0.01 135.9 ± 3.0 10.8500 ± 0.2597 0.6387 ± 0.0289 15.0000 ± 13.6870
MC / 0.001 12.5 ± 1.7 11.7215 ± 0.2253 0.4982 ± 0.0333 1.2000 ± 1.5492

AMC (Ours) / 0.001 94.9 ± 7.1 11.5351 ± 0.2537 0.5600 ± 0.0356 6.1000 ± 6.7897
AB (Ours) / 0.001 131.1 ± 2.1 11.0656 ± 0.3132 0.6111 ± 0.0361 7.8000 ± 4.0222

ABM (Ours) / 0.001 134.3 ± 2.8 10.9203 ± 0.3193 0.6161 ± 0.0240 10.8000 ± 6.7626
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Figure 3: Engine control RMSE: These plots show the RMSE for three different values of α and the four
algorithms. The results are averaged over ten independent seeds and regions are 2σ confidence intervals.
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Figure 4: Engine control health coverage: These plots show the health coverage ch for three different values of
α and the four algorithms. The results are averaged over ten independent seeds and regions are 2σ confidence
intervals.

We perform constrained hyperparameter optimization in each iteration. The initial hyperparameters, as well as
the lower and upper bounds for the constrained optimization are taken from Zimmer et al. (2018). We use a
discretization of m = 5 and add each of these points to the training points after exploration. Furthermore we
add another heuristic to the algorithms containing the B.1 bound. If we cannot compute the lower bound for
the confidence interval, since we are out of the feasible interval, we classify the point as unsafe.

We present further results on the experiments of the main text in Figure 3 and 4, and Table 2. The number of
unsafe training points nf is significantly higher than for the first example. We explain this with the significant
higher modeling error of the GP which can also be seen in the RMSE. Since our safety estimation relies on the
GP, these errors cannot be avoided in the generation of safety bounds for dynamic systems.
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