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Abstract

Estimating the structure of directed acyclic
graphs (DAGs) from observational data re-
mains a significant challenge in machine
learning. Most research in this area concen-
trates on learning a single DAG for the en-
tire population. This paper considers an al-
ternative setting where the graph structure
varies across individuals based on available
“contextual” features. We tackle this con-
textual DAG problem via a neural network
that maps the contextual features to a DAG,
represented as a weighted adjacency matrix.
The neural network is equipped with a novel
projection layer that ensures the output ma-
trices are sparse and satisfy a recently devel-
oped characterization of acyclicity. We de-
vise a scalable computational framework for
learning contextual DAGs and provide a con-
vergence guarantee and an analytical gradi-
ent for backpropagating through the projec-
tion layer. Our experiments suggest that the
new approach can recover the true context-
specific graph where existing approaches fail.

1 INTRODUCTION

Directed acyclic graphs (DAGs)—graphs with directed
edges and no cycles—are a core tool for probabilistic
graphical modeling (see, e.g., Murphy 2023). Their
ability to represent complex multivariate relationships
makes them valuable across a broad range of domains,
including psychology (Foster 2010), economics (Im-
bens 2020), and epidemiology (Tennant et al. 2021).
Though DAGs have a long and rich history in machine
learning and statistics (Lauritzen and Spiegelhalter

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

1988; Pearl 1988), they have recently attracted signif-
icant attention due to a computational breakthrough
by Zheng et al. (2018) that reframed the combinato-
rial DAG structure learning problem as a continuous
optimization problem. This and subsequent continu-
ous reformulations of the DAG problem have enabled
scalable structure learning for applications that were
considered intractable. See Vowels, Camgoz, and Bow-
den (2022) for a recent review of this work.

A major focus of the structure learning literature, both
recent and past, is on estimating a single DAG for the
entire population. Although these “fixed DAGs” are
suitable in standard settings, they can fail in hetero-
geneous or non-stationary environments (Huang et al.
2020; Zhou, He, and Ni 2022) and in the presence of
external modifying effects (Ni, Stingo, and Baladan-
dayuthapani 2019). An important application where
these types of problems arise is that of understand-
ing recreational drug consumption patterns. The con-
sumption patterns can be represented as a DAG whose
structure is dictated according to individual personal-
ity traits. As traits differ across individuals, so does
the graph structure—an edge between a pair of drugs
present for one individual might be absent for another.
Furthermore, an edge may point in opposite directions
for different individuals. The personality traits in this
example represent information that encodes context
into the graph. DAGs that change with context, which
we refer to as “contextual DAGs,” lie beyond the ca-
pability of existing structure learning methods.

Our paper demonstrates that it is possible to learn
contextual DAGs using available contextual informa-
tion. Let x = (x1, . . . , xp)

> be a vector of continuous
variables (nodes) and z = (z1, . . . , zm)> be a vector
of contextual features. We study linear DAGs on x,
which can be represented via a p × p weighted adja-
cency matrix W = (wjk) such that wjk is non-zero if
and only if a directed edge exists from node j to node
k. We define a fixed DAG as a graph such that W
is independent of z and a contextual DAG as a graph
where W is a function of z. Via the weighted adjacency
representation, a contextual DAG can be expressed in
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(a) Graph conditional on z = z1. (b) Graph conditional on z = z2.

Figure 1: Illustration of the contextual DAG. The true graph is a function of the features z. The left three
graphs correspond to one realization of z, and the right three correspond to a second independent realization.

terms of a (linear) structural equation model:

xk =

p∑
j=1

xjwjk(z) + εk, k = 1, . . . , p, (1)

where ε = (ε1, . . . , εp)
> is a zero mean stochastic noise

vector. Given the contextual features z, the weighted
adjacency function W (z) := [wjk(z)] encodes the par-
ents of xk (the js such that wjk(z) is non-zero) and
the effects of those parents. A key property of a DAG
is that its nodes can be sorted such that parents come
before children, known as a topological ordering (see,
e.g., Murphy 2023, §4.2). Thus, a contextual DAG al-
lows both the topological ordering and weights to be
functions of the contextual features. A fixed DAG is a
special case where these functions are constant.

Estimating the structural equation model (1) is chal-
lenging, even in the fixed case, because of the combi-
natorial nature of the search space. Leveraging recent
breakthroughs in continuous optimization routines for
fixed DAGs (Zheng et al. 2018; Bello, Aragam, and
Ravikumar 2022), we devise a neural network archi-
tecture that learns to map from the contextual feature
space to the space of DAGs. It achieves this task us-
ing a novel layer that projects a simple directed graph1

from a feedforward neural network onto the space of
acyclic graphs. This “projection layer” simultaneously
induces sparsity over the graph by constraining it to an
`1 ball of appropriate size, leading to a parsimonious
representation of the data with as few edges as feasible.
Although the projection layer constitutes an iterative
optimization algorithm, we establish its convergence
properties and show that it can be solved in parallel
on a GPU, allowing for efficient forward passes. We
also derive an analytical form for the layer’s gradients
to facilitate efficient backpropagation during training.

To briefly illustrate our proposal, we consider a small-
1A simple directed graph is a directed graph with no

self-loops (an edge directed from a node back to itself) and
at most one edge in each direction between any pair of
nodes.

scale Gaussian model with five variables generated by
a graph whose node ordering depends on a contextual
feature vector z ∈ R2. The number of edges also varies
with the contextual features, so graphs for different
realizations of z need not have the same sparsity. Fig-
ure 1 compares the true DAG under this model with
the contextual and fixed DAG estimates for two inde-
pendent draws of z. The topological ordering of the
true graph under z1 is distinct from that under z2.
For instance, the direction of the edge between x1 and
x5 changes from z1 to z2. The number of edges also
varies—three edges under z1 and four under z2. By
learning to predict a graph from the contextual fea-
tures, the contextual DAG captures these evolving de-
pendencies and recovers the true graph in both cases.
Conversely, the fixed DAG, which assumes the struc-
ture is unchanging, fails to recover either graph.

This paper makes four contributions:

1. We introduce a new neural network architecture
that learns to predict context-specific DAGs.

2. We establish a theoretical convergence guarantee
for the network’s projection layer and derive its
analytical gradient, avoiding the expense of auto-
matically differentiating through the optimizer.

3. We analyze our approach in numerical experi-
ments that show it is the best available tool for
structure learning in the contextual setting.

4. We provide the structure learning community
with ContextualDAG, an open-source Julia imple-
mentation that scales well on GPUs.

Before proceeding, we remark that we do not seek to
causally interpret contextual DAGs in this paper, and
hence make no causal assumptions (e.g., causal suffi-
ciency). We instead focus on the core learning problem
of finding a contextual DAG that fits the data well.
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Figure 2: Neural network architecture of the contextual DAG. The features z pass through hidden layers to
produce a simple directed graph W̃ . The projection layer makes W̃ acyclic and sparse, resulting in a DAG W ?.

2 CONTEXTUAL DAGS

To facilitate exposition, it is helpful to rewrite the
structural equation model (1) more compactly as

x = W (z)>x+ ε, (2)

where the function W (z) : Rm → DAG maps the con-
textual features z onto the space of acyclic weighted
adjacency matrices. More precisely, the sparsity pat-
tern of the matrix produced by W (z), corresponding
to the set of edges, changes with z under the constraint
that the pattern never contains a directed cycle.

2.1 Fixed DAG Problem

Before considering the estimation problem correspond-
ing to the model (2), it is useful to review the learning
problem for a fixed DAG where z is absent:

min
W∈Rp×p

Ex

[
‖x−W>x‖22

]
s. t. W ∈ DAG

‖W‖`1 ≤ λ.

(3)

Here, ‖W‖`1 := ‖ vec(W )‖1 is the sum of absolute val-
ues of the elements of W . The first constraint in (3)
states that W cannot contain cycles (i.e., it must be
acyclic), while the second constraint is an `1 regular-
izer that promotes sparsity in W . A sparse W implies
a parsimonious graph with few edges.

2.2 Contextual DAG Problem

In the contextual setting, W is no longer a fixed matrix
but instead a function of the random variable z:

min
W∈F

Ex,z

[
‖x−W (z)>x‖22

]
s. t. W (z) ∈ DAG for all z ∈ Rm

Ez [‖W (z)‖`1 ] ≤ λ,

(4)

where the set F is some class of functions that define
feasible solutions (e.g., neural networks). The DAG

constraint is now a statement that the (random) ma-
trix W (z) must correspond to a DAG over the entire
support of z. Said differently, for all realizations of z,
the weighted adjacency matrix must be acyclic. The
`1 regularizer continues to impose sparsity, but now
on the expectation of W (z), meaning that the graph’s
sparsity can change. It may contain fewer edges for
some realizations of z and more edges for other z.

Given a sample of observations (xi, zi)
n
i=1, the data

version of (4) replaces the population expectations
with their sample counterparts:

min
W∈F

1

n

n∑
i=1

‖xi −W (zi)
>xi‖22

s. t. W (z) ∈ DAG for all z ∈ Rm

1

n

n∑
i=1

‖W (zi)‖`1 ≤ λ.

To realize this estimator, we take the function class
F = {Wθ(z) : θ ∈ Rd} with Wθ(z) a certain architec-
ture of feedforward neural networks parameterized by
weights θ. This choice results in our proposal:

min
θ∈Rd

1

n

n∑
i=1

‖xi −Wθ(zi)
>xi‖22

s. t. Wθ(z) ∈ DAG for all z ∈ Rm

1

n

n∑
i=1

‖Wθ(zi)‖`1 ≤ λ.

(5)

Next, we present a novel neural network architecture
that restricts the network’s co-domain to the con-
straint set of (5), a difficult task in general.

2.3 Neural Network Architecture

Figure 2 illustrates our neural network architecture.
The network has two main components: hidden layers
and a projection layer. The hidden layers are standard
linear transformations followed by non-linear activa-
tion functions (e.g., rectified linear units), except for
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the final hidden layer, which has no activation. The
purpose of the hidden layers is to capture any non-
linear effects of the contextual features. Their out-
put is a simple directed graph in the form of a p × p
weighted adjacency matrix, denoted W̃ . Recall that a
simple directed graph has directed edges but no self-
loops, so the diagonal of W̃ is zero. Hence, the final
hidden layer has p × (p − 1) neurons. The network’s
second major component—the projection layer—is re-
quired because it is impossible to obtain an acyclic or
sparse graph using only the hidden layers.

2.4 Projection Layer

The role of the projection layer is to transform the
(dense) simple directed graph W̃ into a (sparse) DAG
W ?. During training, n weighted adjacency matrices
W̃1, . . . , W̃n are projected onto the feasible set each
time a forward pass is performed. This projection is a
solution to a constrained optimization problem:

min
W1,...,Wn∈Rp×p

1

2

n∑
i=1

‖W̃i −Wi‖2F

s. t. Wi ∈ DAG, i = 1, . . . , n

1

n

n∑
i=1

‖Wi‖`1 ≤ λ.

(6)

The subscript F in the objective function denotes the
Frobenius norm. Due to the combinatorial DAG con-
straint, the feasible set of (6) is non-convex. The num-
ber of possible DAGs on p nodes is super-exponential
in p, limiting the scalability of exact combinatorial ap-
proaches. In our setting, where the projection operates
on n weighted adjacency matrices at every forward
pass, scalability issues are only further exacerbated.

Recently, Zheng et al. (2018), Bello, Aragam, and
Ravikumar (2022), and others proposed continuous
characterizations of acyclicity in the form of h(W ) = 0
for some function h(W ) having the property

h(W ) = 0 ⇐⇒ W ∈ DAG.

In particular, Bello, Aragam, and Ravikumar (2022)
showed that for all matrices W whose element-wise
square W ◦ W has spectral radius less than s > 0, a
well-suited choice of the function h(W ) is

hs(W ) := − log det(sI −W ◦W ) + p log(s). (7)

This characterization of acyclicity, known as DAGMA,
allows us to replace the combinatorial DAG constraint

with its equivalent log determinant characterization:

min
W1,...,Wn∈Ws

1

2

n∑
i=1

‖W̃i −Wi‖2F

s. t. hs(Wi) = 0, i = 1, . . . , n

1

n

n∑
i=1

‖Wi‖`1 ≤ λ,

(8)

where Ws := {W ∈ Rp×p : ρ(W ◦ W ) < s} and ρ(·)
is the matrix’s spectral radius. Though (8) remains a
non-convex problem, the constraint function hs(W ) is
continuous and differentiable, enabling applications of
scalable first-order optimization methods.

3 PROJECTION ALGORITHMS

A forward pass through the neural network performs
the projection (8) onto the intersection of a non-convex
set (the log det level set) and a convex set (the `1 ball).
We split this projection into two steps for efficient com-
putation: (1) projection onto the log det level set and
(2) projection onto the `1 ball. Proposition 1 states
that this approach yields a feasible solution to the orig-
inal problem. Its proof is in Appendix A.
Proposition 1. Let W̃ ∈ Rp×p, Ŵ be the projection
of W̃ onto the log det level set, and W ? the projection
of Ŵ onto the `1 ball. Then W ? lies on the intersection
of the log det level set and the `1 ball.

3.1 log det Projection

The optimization problem of the log det projection
readily separates into n identical subproblems. We
therefore focus on this subproblem for simplicity:

min
W∈Ws

1

2
‖W̃ −W‖2F

s. t. hs(W ) = 0.

(9)

The projection (9) is a complex problem for which no
analytical solution is available. Bello, Aragam, and
Ravikumar (2022) devised a path-following algorithm
for general log det constrained problems that shifts the
constraint function to the objective and then treats the
original loss function as a penalty that is progressively
annealed towards zero. In our setting, the objective
function corresponding to this approach is

fµ,s(W ; W̃ ) :=
µ

2
‖W̃ −W‖2F + hs(W ), (10)

where the coefficient µ > 0 is successively decreased
along the path. Lemma 6 of Bello, Aragam, and
Ravikumar (2022) states that the limiting solution as
µ → 0 satisfies the original log det constraint.
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Algorithm 1 uses the formulation (10) to provide a
method for projecting onto the log det level set.

Algorithm 1: log det projection
input : Adjacency matrix W̃ ∈ Rp×p, log det

parameter s > 0, path coefficient µ > 0,
decay factor α ∈ (0, 1), step count T ∈ N

Set W (0) ← 0
for t = 0, 1, . . . , T − 1 do

Initialize W at W (t) and solve

W (t+1) ← arg min
W∈Ws

fµ,s(W ; W̃ ) (11)

Set µ← αµ
end
output: Adjacency matrix Ŵ = W (T )

In the experiments, we set the path coefficient µ = 1,
decay factor α = 0.5, and step count T = 10. These
default values generally work well in our experience.

The performance of Algorithm 1 depends critically on
efficiently solving the inner optimization problem (11)
at each step along the path, i.e., minimizing the ob-
jective function (10) for a fixed value of µ. Recall that
the gradient of log det(X) is X−>, so that

∇hs(W ) = 2(sI −W ◦W )−> ◦W,

where hs(W ) is defined in (7). The gradient
∇fµ,s(W ; W̃ ) of the objective function immediately
follows. Using these gradients, the inner optimization
problem can be solved by first-order methods such as
gradient descent. To characterize the behavior of gra-
dient descent on this problem, Theorem 1 presents its
convergence properties. The proof is in Appendix B.
Theorem 1. Let W (0) = 0, W̃ ∈ Rp×p with |w̃jk| ≤ 1,
s ≥ 1 + max(‖W̃‖1, ‖W̃‖∞), and µ > 0. Define the
gradient descent update

W (k+1) = W (k) − 1

c̄
∇fµ,s(W

(k); W̃ ).

Then, for any c̄ ≥ c = max(µ/2, 2
√
p + 4p‖W̃‖F ),

the sequence {fµ,s(W (k); W̃ )}k∈N decreases, converges,
and satisfies the inequality

fµ,s(W
(k); W̃ )− fµ,s(W

(k+1); W̃ ) ≥
c̄− c

2
‖W (k+1) −W (k)‖2F .

Theorem 1 establishes that gradient descent applied to
the inner optimization problem (11) generates a con-
vergent sequence of objective values. This result is not
trivial to prove and relies on showing Lipschitz conti-
nuity of fµ,s(W ; W̃ ) under the theorem’s conditions.
The condition |w̃jk| ≤ 1 is readily satisfied by scaling
the algorithm’s inputs (and rescaling its outputs).

The step size 1/c̄ implied by Theorem 1 can be quite
small in practice, slowing convergence. Likewise, the
implied log det parameter s can be quite large, also
slowing convergence. It is unclear if these conservative
values are an artifact of the proof strategy. Our nu-
merical experience is that a more aggressive step size
with c̄ = p and s = 1 typically leads to convergence.

3.2 `1 Projection

Let Ŵ1, . . . , Ŵn be the output of the log det projec-
tion. With these matrices, the `1 projection solves

min
W1,...,Wn∈Rp×p

1

2

n∑
i=1

‖Ŵi −Wi‖2F

s. t.
1

n

n∑
i=1

‖Wi‖`1 ≤ λ.

(12)

It is straightforward to show that the projection (12) is
solved by thresholding Ŵ1, . . . , Ŵn element-wise using

Sκ(w) := sign(w)max(|w| − κ, 0),

where the threshold κ ≥ 0 is derived from Ŵ1, . . . , Ŵn.
Duchi et al. (2008) provide a non-iterative algorithm
involving only a few low-complexity operations for
computing κ in the case of vector arguments. As de-
scribed in Appendix C, their algorithm readily extends
to matrix arguments. The computation of κ is per-
formed only during training. For inference, the κ from
the training set is used. This projection yields the
neural network’s final output W ?

1 , . . . ,W
?
n .

4 SCALABLE COMPUTATION

Even with a first-order method for the projection layer,
scaling contextual DAGs to large sample sizes requires
careful treatment of the forward and backward passes
through the network. We now propose some novel,
efficient methods and evaluate their scalability.

4.1 Forward Pass

At each forward pass during training, the projection
layer acts on all n observations in the sample. These
projections, in turn, each involve inverting a p × p
matrix at every gradient descent iteration, which has
complexity O(p3). Though cubic complexity is typi-
cal of existing structure learning methods (e.g., Zheng
et al. 2018; Bello, Aragam, and Ravikumar 2022), it
makes it prohibitive to carry out the projections in
sequence, as a naive implementation might do. For
this reason, we implement Algorithm 1 as a batched
solver that handles all n problems in parallel. Batched
BLAS (Dongarra et al. 2017) and its CUDA equivalent
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Figure 3: Run times in seconds for 10 epochs of a contextual DAG on an NVIDIA RTX 4090 over 10 synthetic
datasets. The number of nodes p = 20 in the left plot and the sample size n = 1000 in the right plot. The
number of contextual features m = 2. The solid points are averages and the error bars are one standard errors.

expose batched linear algebra routines and, critically,
batched linear algebra solvers to perform parallel ma-
trix inversions. Via these routines, our implementation
can perform forward passes in reasonable run times for
n in the order of thousands or tens of thousands.

4.2 Backward Pass

The second consideration during training is the back-
ward pass, where gradients are propagated backward
through the network. The presence of the projection
layer complicates this step because we require the gra-
dients of the output W ?

1 , . . . ,W
?
n from this layer with

respect to the input W̃1, . . . , W̃n to backpropagate suc-
cessfully. Despite the layer involving a complex opti-
mization problem, Theorem 2 gives an analytical ex-
pression for its gradients. The proof is in Appendix D.
Theorem 2. Let W̃1, . . . , W̃n ∈ Rp×p. Define
W ?

1 , . . . ,W
?
n ∈ Rp×p as a solution to the projection

(8). Let A := {(i, j, k) : w?
ijk 6= 0} be the active set of

edges, where w?
ijk is the element of W ?

i at the jth row
and kth column. Then, if the `1 constraint is binding
(i.e., n−1

∑n
i=1 ‖W ?

i ‖`1 = λ), the gradient of w?
ijk with

respect to w̃lqr is given by

∂w?
ijk

∂w̃lqr
=

δlqrijk −
sgn(w?

lqr) sgn(w
?
ijk)

|A|
if (i, j, k) ∈ A

0 otherwise,

where δlqrijk := 1[(i, j, k) = (l, q, r)] and |A| is the car-
dinality of A. If the `1 constraint is not binding, the
gradient is given by

∂w?
ijk

∂w̃lqr
=

{
δlqrijk if (i, j, k) ∈ A
0 otherwise.

Theorem 2 states that the elements of W ?
1 , . . . ,W

?
n

that are zero (i.e., the non-existent edges) have gradi-
ent zero, while the gradients of the remaining non-zero
elements depend on their respective signs. The de-
pendence vanishes as the number of non-zero elements

grows. Importantly, the gradient only requires knowl-
edge of the projection layer’s output W ?

1 , . . . ,W
?
n .

Once the forward pass produces these outputs, the
gradient needed for the backward pass comes with vir-
tually no additional computation. The alternative,
which is to automatically differentiate through the
layer’s gradient descent routine, is exceptionally ex-
pensive due the algorithm’s iterative nature.

4.3 Complexity

With a fixed number of hidden-layer neurons, the for-
ward or backward pass through the hidden layers,
which input m contextual features and output a p× p
matrix, takes O(nm+np2) operations. A forward pass
through the projection layer takes O(np3) operations,
while the backward pass only takes O(np2) operations
(based on Theorem 2). The total complexity of train-
ing the network is O(nm + np3). Hence, the training
time is linear in the sample size n and the number
of contextual features m, and cubic in the number of
nodes p. We emphasize again that cubic complexity
on p is typical of continuous structure learning algo-
rithms. Figure 3 plots the average run times for train-
ing a contextual DAG as a function of n and p. The
run time as a function of n is indeed fairly linear. The
run time as a function of p is non-linear but not quite
cubic. Of course, cubic complexity is worst-case.

4.4 Implementation

Our algorithmic framework is provided in the
Julia (Bezanson et al. 2017) implementation
ContextualDAG using the deep learning library Flux
(Innes et al. 2018). We devise a custom pathwise
optimization strategy to speed up training, described
in Appendix E. ContextualDAG is available at

github.com/ryan-thompson/ContextualDAG.jl.

http://github.com/ryan-thompson/ContextualDAG.jl
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5 RELATED WORK

To the best of our knowledge, no existing methods are
available for learning DAGs with varying structure as
general as our proposal. The closest work to ours is
Ni, Stingo, and Baladandayuthapani (2019), whose ap-
proach also allows some components of the DAG struc-
ture to vary as a function of external features, albeit
with two crucial differences. First, the approach in
Ni, Stingo, and Baladandayuthapani (2019) assumes
the ordering of the nodes is fixed and known by the
user. In contrast, our approach implicitly learns this
ordering from the data directly and does not assume it
is fixed. Second, Ni, Stingo, and Baladandayuthapani
(2019) learn the map from the contextual features to
the DAG using splines rather than using a neural net-
work as we do. Though splines are computationally
appealing, they do not generalize well beyond low-
complexity function classes (i.e., smooth functions),
which can lead them to underperform relative to neu-
ral networks in practice (see, e.g., Agarwal et al. 2021).

Several other papers have explored ideas that relate
more generally to contextual DAGs. Boutilier et al.
(1996) studied the notion of “context-specific inde-
pendence” wherein dependencies between nodes in a
DAG (of fixed topological ordering) can depend on the
states of other nodes. Geiger and Heckerman (1996)
considered a related class of models—similarity net-
works and multinets—which also represent varying in-
dependencies. Oates et al. (2016) devised a method
for learning subject-specific graphs whereby multiple
graphs are trained simultaneously under a regularizer
that penalizes distances between the graphs. A depen-
dency network is used to describe the relations between
subjects. In another line of work, Ahmed et al. (2022)
proposed semantic probabilistic layers for neural net-
works, which could be applied to impose constraints
such as acyclicity to produce context-specific DAGs.
However, their approach requires the true structure
during training, which is unavailable in our setting.

Undirected graphical models with varying structure
have received more attention than their directed coun-
terparts. See the recent papers Ni, Stingo, and Bal-
adandayuthapani (2022), Niu et al. (2023), and Zhang
and Li (2023), and references therein. Whereas we
constrain our model’s co-domain to acyclic matrices,
undirected graphical models that vary with external
features typically constrain the co-domain to positive
definite matrices. This constraint is comparatively
straightforward to handle as it does not require itera-
tive algorithms that are necessary for enforcing acyclic-
ity. These works also focus on low-complexity (lin-
ear or piecewise linear) maps from the external fea-
tures to graphs, restricting their expressiveness. We

are unaware of any existing work on graphical models
that employ neural networks for this task. However,
Thompson, Dezfouli, and Kohn (2023) showed that
neural networks can successfully incorporate external
features into non-graphical (sparse linear) models.

More broadly, our paper complements the literature on
fixed DAG learning. Zheng et al. (2018) introduced the
NOTEARS framework, which was the first to provide
a continuous characterization of the DAG constraint.
Subsequent work, including DAGMA (Bello, Aragam,
and Ravikumar 2022)—used in this paper—as well as
Ng, Ghassami, and Zhang (2020), Yu et al. (2021),
and Gillot and Parviainen (2022) refined the contin-
uous optimization approach. See also the extensions
and applications in Yu et al. (2019), Lachapelle et al.
(2020), Pamfil et al. (2020), Geffner et al. (2022), and
Gong et al. (2023). The appeal of continuous algo-
rithms is that they scale gracefully to large graphs and
can be augmented with more complex combinatoric
approaches if needed (Manzour et al. 2021; Deng et al.
2023). Our work sits parallel to this line of research.
We build a neural network architecture around these
algorithms to enable the otherwise fixed structure of
DAGs to vary flexibly with contextual features.

6 SYNTHETIC EXPERIMENTS

Here, we evaluate our approach on synthetic data. We
compare against a fixed DAG that estimates a single
graph over the entire sample. We also include two
“sorted DAGs” that allow the graph structure to vary
but assume the ordering of the nodes is given. The
first uses a fixed topological order (as in Ni, Stingo,
and Baladandayuthapani 2019) taken from the esti-
mated fixed DAG. The second uses the true varying
topological order, representing an idealized case and
a bound on what our approach can achieve. The two
sorted DAGs employ the same architecture as the con-
textual DAG but use binary masking matrices rather
than an acyclicity projection to encode the topological
orderings. Finally, we include a “clustered DAG” that
assigns observations on z into dn/100e clusters using
k-means and fits a fixed DAG to each cluster. All ap-
proaches use the DAGMA acyclicity characterization
of Bello, Aragam, and Ravikumar (2022). Appendix F
provides the details of their implementation.

We generate synthetic datasets according to the struc-
tural equation model (2) using Erdős-Rényi and scale-
free graphs where the edge weights, node ordering,
and number of edges vary with the contextual fea-
tures. Appendix G details the full simulation design.
As structure recovery metrics, we measure the struc-
tural Hamming distance and F1-score averaged over
all the graphs predicted for a testing set generated in-
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(a) Structure recovery as a function of the sample size n for m ∈ {2, 5} contextual features.
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(b) Structure recovery as a function of the number of nodes p for m ∈ {2, 5} contextual features.

Figure 4: Structure recovery performance on varying Erdős-Rényi graphs over 10 synthetic datasets. The number
of nodes p = 20 in the top row and the sample size n = 1000 in the bottom row. The solid points are averages
and the error bars are one standard errors. The sorted DAG (truth) uses the ground truth topological order.

dependently and identically to the training set.

Figure 4a reports the results as function of n for the
Erdős-Rényi graphs. Besides the true sorted DAG,
the contextual DAG is the only method to recover the
context-specific graphs accurately as n grows large. Its
neural network–enabled by the projection layer—is in-
creasingly able to well-approximate the true function.
The gap between the contextual DAG and true sorted
DAG, representing the cost of not knowing the topo-
logical order a priori, vanishes with growing n.

The fixed sorted DAG, which allows the edge weights
and sparsity of the graph to change but not the topo-
logical ordering, also improves with n but at a slower
rate. However, its performance eventually plateaus
well-short of the contextual DAG due to its inability to
learn the varying ordering. The clustered DAG, which
fits discrete DAGs to different clusters of z, likewise
underperforms our continuous approach. Unsurpris-
ingly, the fixed DAG fails to improve as n increases.

Figure 4b plots the results for Erdős-Rényi graphs as a
function of p. All approaches naturally witness wors-
ening performance as p grows. In any case, the contex-
tual DAG remains highly competitive with both sorted
DAGs, the clustered DAG, and the fixed DAG.

Appendix H reports the experiments for the scale-free
graphs. Additional experiments for a setting where

the contextual features are irrelevant (i.e., the fixed
DAG’s home court) are available in Appendix I.

7 DRUG CONSUMPTION
DATASET

We consider a dataset from Fehrman et al. (2017) on
the recreational drug consumption patterns of n =
1885 survey participants. The dataset includes mea-
surements on the consumption of p = 18 illicit and
non-illicit drugs in terms of recency of use. In addi-
tion to these variables, the survey also captured the
participants’ personality characteristics. Fehrman et
al. (2017) reported neuroticism and sensation-seeking
as the two most important determinants of drug con-
sumption. Using these m = 2 characteristics as con-
textual features, we apply the contextual DAG to pre-
dict personalized graphs of consumption dependencies.

Figure 5a shows how the graph sparsity changes with
the neuroticism and sensation seeking scores. Low
and moderate scores yield sparser graphs than high
scores, suggesting that individuals with atypical char-
acteristics exhibit more complex and interconnected
consumption patterns. Figures 5b and 5c present the
actual predicted graphs for two individuals: one with
low scores and another with high scores. In the high-
scoring graph, “softer” drugs like cannabis act as im-
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Figure 5: The contextual DAG from the drug consumption dataset. The left plot is the graph sparsity as a
function of the neuroticism/sensation seeking scores. The other plots are the graphs with the scores at low levels
(0.1 quantiles) and high levels (0.9 quantiles). The parameter λ is set to attain five edges on average over z.

portant nodes influencing the use of other substances.
The edge between legal highs and cannabis is ori-
entated differently in each graph, further indicating
nuanced variation. Several edges in the high-scoring
graph correspond to significant correlations identified
in Fehrman et al. (2017), e.g., the edges between heroin
and cocaine and methadone. The findings underscore
the need for individualized risk mitigation strategies.

8 SUMMARY

Our paper introduces contextual DAGs, which relax
the rigidity of fixed DAGs by allowing the graph struc-
ture to vary as a function of contextual features. A
novel projection layer, for which we provide a con-
vergence analysis and analytical gradients, allows us
to learn neural networks that predict context-specific
DAGs. An experimental analysis suggests that our
approach can recover the true context-specific graph
where other approaches fail. Our Julia implementa-
tion ContextualDAG is made publicly available.
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A PROOF OF PROPOSITION 1

Proof. For the proposition to hold, (1) the `1 projection must not introduce any cycles and (2) W ? must be
an element of the set Ws. The first requirement is satisfied because the `1 projection only modifies non-zero
elements and therefore cannot add cycles. To show the second requirement is satisfied, we require Lemma 1.

Lemma 1. Let A = (ajk) ∈ Rp×p and B = (bjk) ∈ Rp×p with 0 ≤ bjk ≤ ajk. Then it holds ρ(B) ≤ ρ(A), where
ρ(·) is the spectral radius of its argument.

Proof. The Collatz-Wielandt formula for a non-negative matrix A (see, e.g., Meyer 2000, §8.3) gives that

ρ(A) = max
x∈Rp:x≥0,x 6=0

min
j:xj 6=0

(Ax)j
xj

. (13)

Now, since B is bounded elementwise by A, we have (Bx)j ≤ (Ax)j for any non-negative vector x 6= 0, and
hence

(Bx)j
xj

≤ (Ax)j
xj

,

for all xj 6= 0. It follows immediately from the above inequality that

min
j:xj 6=0

(Bx)j
xj

≤ min
j:xj 6=0

(Ax)j
xj

.

Taking the maximum over x on both sides gives

max
x∈Rp:x>0,x 6=0

min
j:xj 6=0

(Bx)j
xj

≤ max
x∈Rp:x>0,x 6=0

min
j:xj 6=0

(Ax)j
xj

.

By the Collatz-Wielandt formula (13), the quantity on the left-hand side is ρ(B) and the quantity on the right-
hand side is ρ(A). Hence, ρ(B) ≤ ρ(A).

With Lemma 1 in hand, we take A = Ŵ ◦ Ŵ and B = W ? ◦W ? to get ρ(W ? ◦W ?) ≤ ρ(Ŵ ◦ Ŵ ). Moreover,
since ρ(Ŵ ◦ Ŵ ) < s, it holds ρ(W ? ◦W ?) < s and hence W ? ∈ Ws.

B PROOF OF THEOREM 1

B.1 Preliminary Lemmas

The proof requires several technical lemmas which we state and prove in turn. The first lemma shows that
∇fµ,s(W ; W̃ ) is Lipschitz over a compact set of W . The second lemma provides that the gradient descent
sequence {W (k)}k∈N stays in a compact set when the step size is suitably small. The third lemma ensures
descent under Lipschitz continuity.

To facilitate exposition, we write fµ,s(W, W̃ ) as f(W ) := l(W ) + h(W ), where l(W ) := µ/2‖W − W̃‖2F and
h(W ) is defined as in (7). The gradient ∇f(W ) = ∇l(W ) + ∇h(W ), where ∇l(W ) = −µ/2(W̃ − W ) and
∇h(W ) = 2(sI −W ◦W )−> ◦W . Except for the Frobenius norm, all norms below are induced matrix norms.
Lemma 2. Let W̃ ∈ Rp×p with |w̃jk| ≤ 1 and µ ≥ 0. Define W := {W ∈ Rp×p : |wjk| ≤ |w̃jk|}. Then, for
any s ≥ 1 + max(‖W̃‖1, ‖W̃‖∞), the gradient ∇f(W ) : W → Rp×p is Lipschitz continuous with respect to the
Frobenius norm and has Lipschitz constant c = max(µ/2, 2

√
p+ 4p‖W̃‖F ).

Proof. Recall that a function g(W ) : W → Rp×p is Lipschitz with respect to the Frobenius norm if, for all W1

and W2 in W, it holds
‖g(W1)− g(W2)‖F ≤ c‖W1 −W2‖F , (14)

for some c ≥ 0.

Now, if ∇l(W ) and ∇h(W ) are Lipschitz with constants c1 and c2, then ∇f(W ) is also Lipschitz with constant
c = max(c1, c2). Fix any W1 ∈ W and any W2 ∈ W.
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It is trivial to show that ∇l(W ) satisfies the Lipschitz inequality (14), since

‖∇l(W1)−∇l(W2)‖F =
∥∥∥−µ

2
(W̃ −W1) +

µ

2
(W̃ −W2)

∥∥∥
F

=
µ

2
‖W1 −W2‖F .

Hence, ∇l(W ) is Lipschitz with constant c1 = µ/2.

Next, for ∇h(W ), we have

‖∇h(W1)−∇h(W2)‖F = ‖2(sI −W1 ◦W1)
−> ◦W1 − 2(sI −W2 ◦W2)

−> ◦W2‖F
= 2‖(sI −W1 ◦W1)

−> ◦W1 − (sI −W2 ◦W2)
−> ◦W2‖F .

To simplify the notation, we let Ai = (sI −Wi ◦Wi)
> for i = 1, 2. Observe now that

2‖A−1
1 ◦W1 −A−1

2 ◦W2‖F = 2‖A−1
1 ◦W1 −A−1

1 ◦W2 +A−1
1 ◦W2 −A−1

2 ◦W2‖F
≤ 2‖A−1

1 ◦W1 −A−1
1 ◦W2‖F + 2‖A−1

1 ◦W2 −A−1
2 ◦W2‖F

≤ 2‖A−1
1 ‖F ‖W1 −W2‖F + 2‖W2‖F ‖A−1

1 −A−1
2 ‖F .

(15)

The first and second inequalities follow from the Frobenius norm being sub-additive and sub-multiplicative,
respectively.

Consider the first term on the far right-hand side of (15). The requirements that s ≥ 1 + max(‖W̃‖1, ‖W̃‖∞)
and W1 ∈ W mean that A1 is row-wise and column-wise diagonally dominant with a dominance factor of at
least one. Then Corollary 2 of Varah (1975) applies and gives ‖A−1

1 ‖2 ≤ 1. This result in combination with the
inequality ‖A−1

1 ‖F ≤ √
p‖A−1

1 ‖2 yields

‖A−1
1 ‖F ‖W1 −W2‖F ≤ √

p‖W1 −W2‖F . (16)

Consider now the second term on the far right-hand side of (15). It holds

‖W2‖F ‖A−1
1 −A−1

2 ‖F = ‖W2‖F ‖A−1
1 (A1 −A2)A

−1
2 ‖F

≤ ‖W2‖F ‖A−1
1 ‖F ‖A−1

2 ‖F ‖A1 −A2‖F
≤ p‖W2‖F ‖A1 −A2‖F
= p‖W2‖F ‖W1 ◦W1 −W2 ◦W2‖F
≤ 2p‖W2‖F ‖W1 −W2‖F .

The last inequality follows from the fact that W1 and W2 have elements bounded in absolute value by one, since

‖W1 ◦W1 −W2 ◦W2‖F =

√√√√ p∑
j=1

p∑
k=1

(w2
1jk − w2

2jk)
2

=

√√√√ p∑
j=1

p∑
k=1

(w1jk + w2jk)2(w1jk − w2jk)2

≤

√√√√ p∑
j=1

p∑
k=1

4(w1jk − w2jk)2

= 2‖W1 −W2‖F .

Now, using that ‖W‖F ≤ ‖W̃‖F for any W ∈ W, it follows

‖W2‖F ‖A−1
1 −A−1

2 ‖F ≤ 2p‖W̃‖F ‖W1 −W2‖F . (17)

Plugging the bounds (16) and (17) into (15), we arrive at

‖∇h(W1)−∇h(W2)‖F ≤ (2
√
p+ 4p‖W̃‖F )‖W1 −W2‖F .
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Hence, ∇h(W ) is Lipschitz with constant c2 = 2
√
p+ 4p‖W̃‖F .

The claim of the lemma now follows since ∇f(W ) must also be Lipschitz with constant c = max(c1, c2) =
max(µ/2, 2

√
p+ 4p‖W̃‖F ).

Lemma 3. Let W̃ ∈ Rp×p with |w̃jk| ≤ 1, µ ≥ 0, and c ≥ max(µ/2, 1). Define W := {W ∈ Rp×p : |wjk| ≤ |w̃jk|}.
Then, for all W (k) ∈ W and any s ≥ 1 + max(‖W̃‖1, ‖W̃‖∞), it holds W (k+1) ∈ W, where

W (k+1) = W (k) − 1

c
∇f(W (k)).

Proof. Assume without loss of generality that all elements of W̃ are non-negative. We aim to show that for any
W (k) ∈ W = {W ∈ Rp×p : 0 ≤ wjk ≤ w̃jk}, the gradient descent update W (k+1) is also in W. We break the
proof into two parts: (1) we prove that w

(k+1)
jk ≤ w̃jk and (2) we prove that w

(k+1)
jk ≥ 0.

Fix any W(k) ∈ W. For the upper bound (1), we have

W (k+1) = W (k) − 1

c
∇f(W (k))

= W (k) − 1

c

(
∇l(W (k)) +∇h(W (k))

)
≤ W (k) − 1

c
∇l(W (k))

= W (k) +
µ

2c
(W̃ −W (k))

≤ W (k) + W̃ −W (k)

= W̃ .

(18)

The first inequality follows from ∇h(W (k)) ≥ 0, since sI −W (k) ◦W (k) is a non-singular M matrix and hence
its inverse is non-negative. The last inequality follows from µ/(2c) ≤ 1 and the elements of W̃ − W (k) being
non-negative, since W (k) ∈ W.

For the lower bound (2), it holds

W (k+1) = W (k) − 1

c
∇f(W (k))

= W (k) − 1

c

(
∇l(W (k)) +∇h(W (k))

)
= W (k) − 1

c

(µ
2
(W (k) − W̃ ) +∇h(W (k))

)
= W (k) +

µ

2c
(W̃ −W (k))− 1

c
∇h(W (k))

≥ W (k) − 1

c
∇h(W (k))

≥ W (k) −∇h(W (k))

= W (k) − (sI −W (k) ◦W (k))−> ◦W (k).

The first inequality follows again from W̃ −W (k) ≥ 0. The second inequality follows from 1/c ≤ 1 and ∇h(W (k))
having non-negative elements. Now, observe that for a matrix B = (bjk) ∈ Rp×p, it holds

|bjk| = |e(j)>Be(k)| ≤ ‖e(j)‖2‖Be(k)‖2 = ‖Be(k)‖2 ≤ max
x∈Rp:‖x‖2=1

‖Bx‖2 = ‖B‖2,

where e(j) is a standard basis vector (one in the jth position and zero elsewhere). The last equality follows from
the definition of the spectral norm. Letting B = (sI−W (k) ◦W (k))−>, we have |bjk| ≤ ‖B‖2 ≤ 1 along the same
lines as the argument for (16) in Lemma 2. Combining this result with the previous inequality on W (k+1) gives

W (k+1) ≥ W (k) − (sI −W (k) ◦W (k))−> ◦W (k)

≥ 0.
(19)
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Combining the inequalities (18) and (19) gives the desired bound 0 ≤ W (k+1) ≤ W̃ .

Lemma 4. Let g(W ) : Rp×p → R. Suppose ∇g(W ) is Lipschitz in Frobenius norm with Lipschitz constant
c > 0. Then, for any W ∈ Rp×p and any V ∈ Rp×p, it holds

g(V ) ≤ g(W ) + 〈∇g(W ), V −W 〉+ c

2
‖V −W‖2F ,

where 〈·, ·〉 is the Frobenius inner product.

Proof. See the proof of Lemma 10 in Minsker and Wang (2022).

B.2 Proof of Main Result

We now prove Theorem 1.

Proof. Take c̄ ≥ c as an upper bound to the Lipschitz constant c. The objective f(W ) can be lower bounded as

f(W ) = f(W ) + 〈∇f(W ),W −W 〉+ c̄

2
‖W −W‖2F

≥ inf
V ∈Rp×p

(
f(W ) + 〈∇f(W ), V −W 〉+ c̄

2
‖V −W‖2F

)
= inf

V ∈Rp×p

(
f(W )− 1

2c̄
‖∇f(W )‖2F +

c̄

2

∥∥∥∥V −
(
W − 1

c̄
∇f(W )

)∥∥∥∥2
F

)
.

Observe that the infimum is attained at the gradient descent update

Ŵ = W − 1

c̄
∇f(W ).

Substituting Ŵ into the previous inequality gives

f(W ) ≥ f(W )− 1

2c̄
‖∇f(W )‖2F +

c̄

2

∥∥∥∥Ŵ −
(
W − 1

c̄
∇f(W )

)∥∥∥∥2
F

= f(W ) + 〈∇f(W ), Ŵ −W 〉+ c̄

2
‖Ŵ −W‖2F

= f(W ) + 〈∇f(W ), Ŵ −W 〉+ c

2
‖Ŵ −W‖2F +

c̄− c

2
‖Ŵ −W‖2F .

(20)

Lemmas 2 and 3 give that ∇f(W ) is Lipschitz under the conditions of the theorem. This result is sufficient to
invoke Lemma 4 and lower bound the first three terms on the right-hand side as

f(W ) + 〈∇f(W ), Ŵ −W 〉+ c

2
‖Ŵ −W‖2F ≥ f(Ŵ ). (21)

Substituting (21) into (20) yields

f(W ) ≥ f(Ŵ ) +
c̄− c

2
‖Ŵ −W‖2F .

Finally, taking W = W (k) and Ŵ = W (k+1), we arrive at

f(W (k))− f(W (k+1)) ≥ c̄− c

2
‖W (k+1) −W (k)‖2F . (22)

Hence, the sequence {f(W (k))}k∈N is decreasing, and because f(W ) is bounded below by zero, it converges.
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C `1 PROJECTION ALGORITHM

Algorithm 2 provides the method for projecting onto the `1 ball by computing the thresholding parameter κ.

Algorithm 2: `1 projection
input : Adjacency matrices Ŵ1, . . . , Ŵn ∈ Rp×p, regularization parameter λ > 0

Set v ← [vec(Ŵ1), . . . , vec(Ŵn)]
Take u as the absolute values of v
Sort u in decreasing order as uj > uk for all j < k

Set kmax ← max
{
k : uk >

(∑k
j=1 uj − nλ

)
/k

}
Set κ←

(∑kmax
j=1 uj − nλ

)
/kmax

Compute W ?
1 , . . . ,W

?
n as w?

ijk ← sgn(ŵijk)max(|ŵijk| − κ, 0) for i = 1, . . . , n and j, k = 1, . . . , p
output: Adjacency matrices W ?

1 , . . . ,W
?
n

The algorithm directly extends that of Duchi et al. (2008) for projecting a vector v̂ ∈ Rp onto the `1 ball:

min
v∈Rp:‖v‖1≤γ

1

2
‖v̂ − v‖22. (23)

Our modified algorithm simply flattens the matrices into a vector and then reshapes the result of the projection.
This approach is valid since (23) is equivalent to

min
W1,...,Wn∈Rp×p: 1n

∑n
i=1 ‖Wi‖`1

≤λ

1

2

n∑
i=1

‖Ŵi −W‖2F

when v̂ = [vec(Ŵ1), . . . , vec(Ŵn)], v = [vec(W1), . . . , vec(Wn)], and γ = nλ.

D PROOF OF THEOREM 2

Proof. To simplify exposition of the proof, we assume n = 1 without loss of generality. We consider the cases
where the `1 constraint is binding and non-binding in turn.

Non-Binding `1 Constraint

In the non-binding case where ‖W ?‖`1 < λ, a solution W ? sets some elements of W̃ to zero via the DAG
constraint and leaves the remaining elements untouched. There is no shrinkage from the `1 constraint.

The w?
jk that are non-zero are an identity function of the input w̃qr when (q, r) = (j, k) and are a null function

otherwise. More precisely, w?
jk(w̃qr) = w̃qr for (q, r) = (j, k) in the active set A. The elements w̃qr for which

(q, r) 6= (j, k) have no effect on w?
jk, so w?

jk(w̃qr) = 0 for (q, r) 6= (j, k). It follows

∂w?
jk

∂w̃qr
= δqrjk, (24)

for all (j, k) ∈ A, where δqrjk equals one if (j, k) = (q, r) and zero otherwise.

The elements (j, k) in the inactive set Ac, where Ac is the complement of A, are a null function in w̃qr, i.e.,
w?
jk(w̃qr) = 0, even if (q, r) = (j, k). It follows

∂w?
jk

∂w̃qr
= 0, (25)

for all (j, k) ∈ Ac.

Combining (24) and (25) yields the gradient for the non-binding case.

Binding `1 Constraint

For the binding case where ‖W ?‖`1 = λ, we derive the gradients by differentiating through the Karush-Kuhn-
Tucker (KKT) conditions of (8), which characterize a solution in terms of W̃ . We need not consider the DAG
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constraint in our analysis of these conditions since it only determines the active set and does not have any effect
on the magnitude of the edge weights, unlike the `1 constraint.

Let ν be the dual variable corresponding to the constraint ‖W‖`1 ≤ λ. Like the primal solution W ?, the dual
solution ν? can be treated a function of W̃ , i.e., ν? = ν?(w̃qr). To simplify the presentation, we omit the
dependence hereafter and write ν? and the same for W ? (or w?

jk).

Recall that the `1-norm is not differentiable but subdifferentiable. We denote the subderivative of a function
f(x) as ∂f(x). With this notation, the KKT conditions for stationarity and complementary slackness are

∂

(
1

2
‖W̃ −W ?‖2F + ν?(‖W ?‖`1 − λ)

)
3 0 (26)

and
ν?(‖W ?‖`1 − λ) = 0. (27)

We consider separately the gradients on the active set A and the gradients on the inactive set Ac. We begin by
deriving the gradients on A. It follows immediately from the complementary slackness condition (27) that

‖W ?‖`1 − λ =
∑

(j,k)∈A

|w?
jk| − λ = 0,

and hence its gradient with respect to w̃qr is

∂

∂w̃qr

 ∑
(j,k)∈A

|w?
jk| − λ

 = 0.

Evaluating the derivative on the left-hand side yields∑
(j,k)∈A

sgn(w?
jk)

∂w?
jk

∂w̃qr
= 0. (28)

Now, evaluating the subderivative on the left-hand side of the stationarity condition (26) leads to the equalities

w?
jk − w̃jk + ν? sgn(w?

jk) = 0,

which hold for all (j, k) ∈ A. Differentiating this expression with respect to w̃qr gives

∂w?
jk

∂w̃qr
− δqrjk +

∂ν?

∂w̃qr
sgn(w?

jk) + ν?
∂

∂w̃qr
sgn(w?

jk) = 0,

which simplifies to
∂w?

jk

∂w̃qr
= δqrjk − ∂ν?

∂w̃qr
sgn(w?

jk). (29)

Substituting (29) into (28) leads to∑
(j,k)∈A

sgn(w?
jk)

(
δqrjk − ∂ν?

∂w̃qr
sgn(w?

jk)

)
= 0,

from which it follows
sgn(w?

qr)−
∂ν?

∂w̃qr

∑
(j,k)∈A

sgn(w?
jk)

2 = 0.

Again, rearranging and simplifying, we have

∂ν?

∂w̃qr
=

sgn(w?
qr)∑

(j,k)∈A sgn(w?
jk)

2
=

1

|A|
sgn(w?

qr). (30)
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Substituting (30) into (29), we obtain

∂w?
jk

∂w̃qr
= δqrjk − 1

|A|
sgn(w?

qr) sgn(w
?
jk), (31)

for all (j, k) ∈ A. This quantity is the gradient of the projection’s output w?
jk with respect to its input w̃qr for

the w?
jk that are non-zero.

Finally, for the gradients on Ac, we see from (27) that the complementary slackness condition does not involve
the w?

jk such that (j, k) ∈ Ac. The stationarity condition for (j, k) ∈ Ac is

−w̃jk +
∂ν?

∂w̃qr
s 3 0,

where s = [−1, 1] is the subderivative of the absolute value function at zero. Hence, the stationarity condition
also does not involve w?

jk. It follows that
∂w?

jk

∂w̃qr
= 0, (32)

for all (j, k) ∈ Ac. This quantity is the gradient of the projection’s output w?
jk with respect to its input w̃qr for

the w?
jk that are zero.

Combining (31) and (32) yields the gradient for the binding case.

E PATHWISE OPTIMIZATION

It is typical to compute a sequence of graphs corresponding to different sparsity levels from which the user
can select. We take λ as a sequence {λ(t)}Tt=1, where λ(0) imposes no regularization and λ(T ) imposes full
regularization. Except in degenerate cases, the unregularized model with λ = λ(0) contains (p2 − p)/2 edges,
which is the maximum number of edges that an acyclic graph can have. The fully regularized model with λ = λ(T )

contains no edges. Rather than compute these T models independently, we compute them in a pathwise manner
by sequentially warm-starting the optimizer. Specifically, the model for λ(t+1) is trained using the fitted weights
θ̂(t) from the model for λ(t) as an initialization point.

Algorithm 3 presents the details of the pathwise optimization approach.

Algorithm 3: Pathwise optimization
input : Initial network weights θ̂(0) ∈ Rd, step size ϕ > 0, number of regularization parameters T ∈ N
Initialize λ(1) ←∞
for t = 1, . . . , T do

Initialize θ(0) ← θ̂(t−1)

Initialize m← 0
while Not converged do

Update θ(m+1) ← θ(m) − ϕ∇θL(θ(m);λ
(t))

Update m← m+ 1
end
Set θ̂(t) ← θ(m)

if t=1 then
Set λ(1) ← n−1 ∑n

i=1 ‖Wθ̂(1)(zi)‖`1 and λ(T ) = 0

Interpolate T − 2 points between λ(1) and λ(T )

end
end
output: Fitted network weights θ̂(1), . . . , θ̂(T )

To unpack the notation, L(θ;λ) = n−1
∑n

i=1 ‖xi − Wθ(zi)
>xi‖22 is the loss function evaluated at weights θ

and regularization parameter λ. Its gradient is denoted ∇θL(θ;λ). The benefit of pathwise optimization is a
significantly reduced overall runtime. Typically, it only takes a small number of iterations to converge if λ(t+1)

and λ(t) are similar.
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The initial network weights θ̂(0) for Algorithm 3 are computed by training a preliminary neural network that
contains no projection layer. This preliminary network is initialized with random weights and is quick to train.
Using the resulting trained weights as θ̂(0) yields better performance than directly taking θ̂(0) as random weights.

F IMPLEMENTATION OF METHODS

All neural networks are implemented using two hidden layers, each containing 128 neurons with rectified linear
activation functions. For the drug dataset, we use 32 neurons in each hidden layer due to the smaller sample
size. Adam (Kingma and Ba 2015) is used as an optimizer for learning the network weights, with a learning rate
of 0.001. Convergence is monitored on a validation set with the optimizer terminated after 10 iterations without
improvement.

Following Bello, Aragam, and Ravikumar (2022), we apply a final thresholding step to all methods that sets
near-zero edge weights to exact zeros, where the threshold is chosen to guarantee the graphs are acyclic. This
step is necessary for continuous structure learning approaches such as NOTEARS and DAGMA because gradient
descent and related first-order methods seldom produce machine-precision zeros.

For all methods, we sweep the regularization parameter λ over a grid of 20 values and take the final λ that
best approximates the correct sparsity level. This approach fairly compares graphs of the same complexity and
ensures that the results are not confounded by uncertainty arising from model selection. In this regard, we follow
earlier works such as Zheng et al. (2018) and Bello, Aragam, and Ravikumar (2022) that also forgo empirically
estimating λ.

The experiments are performed on a Linux platform with two NVIDIA RTX 4090s.

G DESIGN OF SYNTHETIC DATASETS

We create synthetic datasets of n observations as follows. First, we generate the contextual features z1, . . . , zn
by taking n iid draws uniformly on [−1, 1]m. The noise ε1, . . . , εn is also generated by taking n iid draws from a
p-dimensional N(0, I). The variables x1, . . . , xn are then generated as

xi = (I −W (zi))
−>εi,

which follows from rearranging terms in the model xi = W (zi)
>xi + εi. This process of sampling z1, . . . , zn and

x1, . . . , xn is repeated three times to obtain independent training, validation, and testing sets.

The function W (z) is constructed by randomly sampling an Erdős-Rényi or scale-free graph with 10 edges. This
undirected graph is then oriented according to zi as follows. For each node j, we sample a point cj on [−1, 1]m.
If the graph contains an edge between node j and node k, we direct it from j to k if

‖zi − cj‖2 − ‖zi − ck‖2 > φ,

and remove it otherwise. This scheme imposes a topological ordering where node j is higher than node k in the
ordering if ‖zi − cj‖2 > ‖zi − ck‖2. The parameter φ ≥ 0 controls the expected sparsity of the graph (i.e., the
average number of active edges). Larger values of φ encourage a sparser graph (in expectation), while smaller
values have the opposite effect. We set φ empirically so that 5 of the 10 edges are active in the graph on average.

The edge weight wjk is also allowed to vary with z when non-zero. Specifically, for all edges between nodes j
and k, we set

wjk(z) =

{
‖zi − cj‖2 − ‖zi − ck‖2 if ‖zi − cj‖2 − ‖zi − ck‖2 > φ

0 otherwise.

For all other pairs of nodes j and k, we set wjk(z) = 0.

H SCALE-FREE RESULTS

Figure 6 reports the scale-free graph results, analogous to the Erdős-Rényi graphs in Section 6. The findings
are quite similar to those for the Erdős-Rényi graphs—the contextual DAG is highly competitive at structure
recovery. Its consistent performance across both settings indicates that it is reliable for multiple graph types.
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(a) Structure recovery as a function of sample size n for m ∈ {2, 5} contextual features.
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(b) Structure recovery as a function of number of nodes p for m ∈ {2, 5} contextual features.

Figure 6: Structure recovery performance on varying scale-free graphs over 10 synthetic datasets. The number
of nodes p = 20 in the top row and the sample size n = 1000 in the bottom row. The solid points are averages
and the error bars are one standard errors. The sorted DAG (truth) uses the ground truth topological sort.

I FIXED GRAPH RESULTS

Figure 7 reports the fixed graph results where the contextual features are irrelevant, i.e., W (z) is constant in z.
Although the inductive bias of methods that assume a single population DAG does have an impact, the contextual
DAG remains competitive and still recovers the ground truth for large n despite z having no predictive value
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Figure 7: Structure recovery performance on fixed Erdős-Rényi graphs over 10 synthetic datasets. The x-axis
is sample size n. The number of contextual features m ∈ {2, 5} and the number of nodes p = 20. The solid
points are averages and the error bars are one standard errors. The sorted DAG (truth) uses the ground truth
topological sort.
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