
Scalable Meta-Learning with Gaussian Processes

Petru Tighineanu Lukas Grossberger Paul Baireuther Kathrin Skubch
Stefan Falkner Julia Vinogradska Felix Berkenkamp

Bosch Center for Artificial Intelligence, Renningen, Germany

Abstract

Meta-learning is a powerful approach that
exploits historical data to quickly solve new
tasks from the same distribution. In the low-
data regime, methods based on the closed-
form posterior of Gaussian processes (GP)
together with Bayesian optimization have
achieved high performance. However, these
methods are either computationally expensive
or introduce assumptions that hinder a princi-
pled propagation of uncertainty between task
models. This may disrupt the balance be-
tween exploration and exploitation during op-
timization. In this paper, we develop ScaML-
GP, a modular GP model for meta-learning
that is scalable in the number of tasks. Our
core contribution is carefully designed multi-
task kernel that enables hierarchical training
and task scalability. Conditioning ScaML-
GP on the meta-data exposes its modular na-
ture yielding a test-task prior that combines
the posteriors of meta-task GPs. In synthetic
and real-world meta-learning experiments, we
demonstrate that ScaML-GP can learn effi-
ciently both with few and many meta-tasks.

1 INTRODUCTION

Meta-learning improves a learning system’s perfor-
mance on a new task by leveraging data from simi-
lar tasks (Finn et al., 2017). This powerful learning
paradigm has enabled numerous new applications in op-
timization (Rothfuss et al., 2022), reinforcement learn-
ing (Wang et al., 2016) and other domains (Hariharan
and Girshick, 2017). While meta-learning approaches
that build on neural networks are highly successful in

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

the large data setting, probabilistic models that extract
more information out of scarce data have an advantage
in the low data regime. In particular, methods that
combine probabilistic priors in the form of Gaussian
process (GP) models (Rasmussen and Williams, 2006)
with Bayesian optimization (BO) (Shahriari et al., 2016)
have been shown to achieve high performance in the
small data setting (Tighineanu et al., 2022). Several
important problems fall into this category of scarce
data tasks, e.g., optimizing the hyperparameters (HPs)
of machine learning models (Snoek et al., 2012), mate-
rials design (Zhang et al., 2020), or tuning controller
gains (Calandra et al., 2016). These tasks have in com-
mon that obtaining new data on the test-task is costly,
e.g., due to materials or compute cost, wear-and-tear
of a physical system, or manual effort involved. At the
same time, data from many similar tasks are typically
available and can be leveraged to speed up learning.

In this setting, a joint Bayesian treatment of the test
data and the data from the meta-tasks is beneficial,
since it accounts for uncertainty across different task
functions. This handling of uncertainty is crucial: while
there may be a large meta-data set, the data for each
of the meta-tasks is typically scarce so that neglecting
the meta-task uncertainty often leads to overconfident
models. To this end, several GP-based models have
been introduced that model the joint distribution across
tasks (Swersky et al., 2013; Joy et al., 2016; Shilton
et al., 2017). However, they are computationally costly.
Instead, Feurer et al. (2018); Wistuba et al. (2018)
propose to use ensembles of GPs, which scale more fa-
vorably. However, by not defining a joint Bayesian task
model, hyperparameter inference is done heuristically.

Contribution We present Scalable Meta-Learning
with Gaussian Processes (ScaML-GP), a modular GP
for meta-learning that is scalable in the number of
tasks. In contrast to previous GP models, we introduce
assumptions on the correlation between meta- and test-
tasks and show that these lead to a posterior model
that scales linearly in the number of meta-tasks and can
thus be learned efficiently. Our experiments indicate
that ScaML-GP outperforms existing methods in the

Scalable Meta-Learning with Gaussian Processes

low-data setting that we focus on.

2 RELATED WORK

Meta-learning involves learning how to speed up learn-
ing new tasks given data from similar tasks (Schmid-
huber, 1987; Bengio et al., 1991). There exists a
large body of literature on meta-learning different
key components of optimization: meta-learning the
whole optimizer (Chen et al., 2017; Li and Malik, 2017;
Andrychowicz et al., 2016; Metz et al., 2019), the model
(Finn et al., 2017; Perrone et al., 2018; Flennerhag et al.,
2019; Wistuba and Grabocka, 2021), or the acquisition
function (Volpp et al., 2020). While these methods are
powerful when data is abundant, they are not suited for
the low-data regime of global black-box optimization
of expensive functions.

In the low-data regime, GP-based approaches are dom-
inant due to their sample efficiency. The uncertainty
estimates of GP posteriors are highly informative for
identifying interesting regions of the search space. How-
ever, well-calibrated uncertainty estimates come at the
price of training a GP on the full meta- and test-data
jointly. Approaches that follow this path perform fa-
vorably with little meta-data (Swersky et al., 2013;
Yogatama and Mann, 2014; Poloczek et al., 2017; Joy
et al., 2016; Shilton et al., 2017). However, their com-
putational cost is cubic in the overall number of data
points and quickly becomes prohibitive for common
meta-learning scenarios. While several approximations
that scale GPs to larger data sets exist (Liu et al.,
2020) and can in principle be combined with the above
approaches, none of these directly apply to the meta-
learning scenario that we consider in this paper. An
interesting approach to achieve task scalability learns
a parametric GP prior on the meta-data (Wang et al.,
2021).

Another way to ensure scalability is training GP models
for each meta- and test-task individually and combining
their predictions to inform the search for the global
optimum. Dai et al. (2022) set the acquisition function
as a weighted sum of task-based acquisition functions
with heuristic weights for the relative importance of
the meta- and test tasks. Instead, Golovin et al. (2017)
build a hierarchical model where only the information
about the mean prediction is propagated from the meta-
tasks, while Feurer et al. (2018); Wistuba et al. (2018)
build a GP ensemble with ranking-based weights for all
task GPs. These methods account for some uncertainty
propagation from the meta-tasks in a heuristic way.
Our method combines the best of both worlds by being
scalable in the number of meta-tasks and having a
well-calibrated uncertainty estimate by defining a joint
probability distribution over all data.

3 PROBLEM STATEMENT

We consider a meta-learning setup, where the task
at test time is to efficiently maximize a function
ft : D → R with ft sampled from some unknown dis-
tribution. To maximize ft, we sequentially eval-
uate parameters xn to obtain noisy observations
yn = ft(xn) + ωn, where ωn ∼ N (0, σ2

t) is i.i.d. zero-
mean Gaussian noise. To this end, we use the Nt

previous observations Dt = {xn, yn}Nt
n=1 to build a

probabilistic model for ft. Specifically, we focus on
GPs (Rasmussen and Williams, 2006), ft ∼ GP(m, k),
which model function values via a joint Gaussian dis-
tribution that is parametrized through a prior mean
function m(·) and a kernel k(·, ·). Conditioned on the
data Dt, the posterior is another GP with mean and
covariance at a query parameter x given by

µt(x) = m(x) + k(x,Xt)

×
(
k(Xt,Xt) + σ2

t I
)−1

(yt −m(x)) ,

Σt(x,x
′) = k(x,x′)− k(x,Xt)

×
(
k(Xt,Xt) + σ2

t I
)−1

k(Xt,x
′),

(1)

where Xt = (x1, . . . ,xNt
) and yt = (y1, . . . , yNt

) is the
vector of noisy observations. To improve the model
we assume access to meta-data from M related tasks
m ∈ M = {1, . . . ,M} that come from the same dis-
tribution of tasks. For each of those we have access
to a dataset Dm = {xm,n, ym,n}Nm

n=1 that is based on
Nm noisy observations ym,n = fm(xm,n) + ωm,n of the
corresponding task corrupted by different noise levels
ωm,n ∼ N (0, σ2

m). Together, these datasets form the
meta-data D1:M = ∪m∈MDm. This meta-data can be
incorporated in the GP by considering a joint model
over the meta- and test-tasks. Multi-task GP (MTGP)
models are defined through an extended kernel that
additionally models similarities across tasks,

k((x, ν), (x′, ν′)) =
∑

m∈M∪{t}
[Wm](ν,ν′) km(x,x′), (2)

where km are arbitrary kernel functions and Wm are
positive semi-definite matrices called coregionalization
matrices whose entries [Wm](ν,ν′) model the covariance
between two tasks ν and ν′ (Álvarez et al., 2012). By
conditioning this joint model on both D1:M and Dt we
obtain a tighter posterior on ft through the typical
GP equations in (7). However, these models are com-
putationally expensive with a complexity that scales
cubically in the number of all data points and are dif-
ficult to train in practice due to the large number of
HPs, which scale at best quadratic in the number of
tasks (Bonilla et al., 2008; Tighineanu et al., 2022). For
notational convenience, we index the test-task as the
M + 1th task, t = M + 1, in the following.

Tighineanu, Grossberger, Baireuther, Skubch, Vinogradska, Berkenkamp

Given a prior over the function ft, BO methods use the
posterior in (7) to sequentially query a new parameter
xNt+1 that is informative about the optimum of ft by
solving an auxiliary optimization problem based on an
acquisition function α,

xNt+1 = argmax
x∈D

α(ft | x,Dt,D1:M). (3)

Several choices for α exist in the literature (Jones et al.,
1998; Srinivas et al., 2010). The performance of these
methods commonly depend on the quality of the test-
model, which is the focus of this paper.

4 SCALABLE MULTI-TASK
KERNEL

In this section, we present ScaML-GP, a modular
meta-learning model that is efficient to train and eval-
uate. We introduce two assumptions on the MTGP
model in (2) that restrict learning only to the most rel-
evant covariances and lead to a modular GP posterior
that can be evaluated efficiently. The first assumption
neglects the correlations between meta-tasks. The num-
ber of these correlations scales quadratically with the
number of meta-tasks and learning them is challenging
in the regime of many meta-tasks with scarce data. For
convenience, we write Cov (fm, fm′) = c for some c ≥ 0
to focus on covariance between meta-tasks, instead of
the more explicit Cov (fm(x), fm′(x′)) = c km(x,x′).
Assumption 1. Cov (f1:M , f1:M) = I.

While Assumption 1 is usually violated in practice, this
does not prohibit learning when the amount of data
per meta-task is sufficient to allow for a probabilistic
description of the meta-task function. This is usually
the case in many real-world applications. Note that
meta-tasks are uncorrelated only in their prior distri-
bution: since each meta-task can affect the test-task,
conditioning on the test-data Dt induces correlations
between meta-tasks via the explaining-away effect. The
assumption that Cov (fm, fm) = 1 ensures that each
kernel km in (2) models the marginal distribution of
the corresponding meta-task fm. Together, these two
properties are critical to make our model efficient to
learn for large number of meta-tasks.

With the second assumption we restrict the test-task
model to be additive in the marginal models of each
meta-task. While additive models have been considered
before, e.g., by Duvenaud et al. (2011); Marco et al.
(2017), these have been framed as ft being a direct
sum of meta-task models. In contrast, we require the
weaker assumption that ft is additive in functions that
(anti-)correlate perfectly with the meta-task models.
As for the covariance, we introduce the short-hand
notation Corr (fm, fm′) = Corr (fm(x), fm′(x)).

Assumption 2. The test-task model can be writ-
ten as ft = f̃t +

∑
m∈M f̃m, with

∣∣Corr(f̃m, fm
)∣∣ = 1,

Cov
(
f̃t, ft

)
= 1 and Cov

(
f̃t, fm

)
= 0 for all m ∈M.

By restraining the components of the test-task f̃m
and meta-task fm models to correlate perfectly, we
directly model the intuition that parts of the meta-task
functions should be reflected in the test-task. Only
the scale of these functions remains a free parameter
that is learned. The residual model f̃t is independent
of the meta-tasks and models parts of the test-task
that cannot be explained by the meta-task models.
Together, Assumptions 1 and 2 enforce structure on
the coregionalization matrices in (2). Assumption 1
enforces [Wm](m,m′) to be zero when m ̸= m′, while
Assumption 2 enforces [Wm](m,m) = 1, so that the
variation of each meta-task is modeled directly by the
corresponding kernel km. The assumption about the
correlation additionally leads to matrices Wm that are
parametrized by an unconstrained scalar parameter
wm ∈ R for each meta-task m ∈ M. Concretely, the
matrices have all zero entries except

[Wt](t,t) = [Wm](m,m) = 1,

[Wm](m,t) = [Wm](t,m) = wm,

[Wm](t,t) = w2
m.

(4)

As an example, for one meta-task M = 1 we have

W1 =

[
1 w1

w1 w2
1

]
, Wt =

[
0 0
0 1

]
.

It is easy to verify that both matrices are positive
semi-definite (see Appendix A) and that we have
|Corr(f̃1, f1)| = |w1/

√
12 × w2

1| = 1. Thus, while we
constrain the meta- and test functions to be perfectly
correlated, the magnitude of wm determines to what
extent the meta-task is relevant for the test-task: The
prior for ft is w2

1km(·, ·)+kt(·, ·) and in the limit w1 → 0
they are modeled as being independent. The same rea-
soning holds for multiple tasks.
Lemma 1. Assumptions 1 and 2 with wm ∈ R for
m ∈M yield a valid multi-task kernel given by

kjointScaML((x, ν), (x
′, ν′)) = δν=tδν′=tkt(x,x

′)

+
∑

m∈M
gm(ν)gm(ν′)km(x,x′),

(5)
where gm(ν) is equal to wm if ν = t, one if ν = m, and
zero otherwise. δi=j is the Dirac-delta.

Based on Lemma 1, we have a valid joint kernel over
meta- and test-tasks that is parameterized by the
scalars wm ∈ R. This successfully limits the number
of parameters to scale linearly in the number of meta-
tasks. The scalable and modular nature of ScaML-GP
is revealed by conditioning (5) on the meta-data.

Scalable Meta-Learning with Gaussian Processes

Theorem 1. Under a zero-mean GP prior with
multi-task kernel given by (5), the test-task dis-
tribution conditioned on the meta-data is given by
ft | D1:M ∼ GP(mScaML,ΣScaML) with

mScaML(x) =
∑

m∈M
wmµm(x),

kScaML(x,x
′) = kt(x,x

′) +
∑

m∈M
w2

mΣm(x,x′),
(6)

where µm(x) and Σm(x,x′) are the per-task posterior
mean and covariance conditioned on Dm.

Following Theorem 1 we can model each meta-task
m with an individual GP based on a kernel km. The
resulting prior distribution of the test-task ft is a GP
given by the weighted sum of meta-task posteriors
according to (6). ScaML-GP thus models a full joint
distribution over tasks and yields a prior on the test
function that can be conditioned on Dt through (7) in
order to obtain the test-task posterior

p(ft | x,Dm,Dt) = N (µt(x),Σt(x,x)) (7)

based on the prior mean and kernel from Theorem 1.
Next to enabling a Bayesian treatment of uncertainty,
this also allows us to determine the meta-task weights
wm by maximizing the likelihood. In light of Theo-
rem 1, ScaML-GP reduces the complexity of the orig-
inal MTGP from cubic in the total number of points
to linear in the number of tasks. We achieve this solely
by enforcing Assumptions 1 and 2 and without intro-
ducing numerical approximations. We illustrate the
inner workings of ScaML-GP in Figure 1.

Likelihood optimization So far we have assumed
the HPs θm of the meta-task kernels km, and the test-
task HPs θt of kt together with the weights wm, to
be given. In practice, they are inferred from the data
D1:M and Dt. Naive evaluation of the likelihood of the
joint task model in (5) is expensive, O((Nt +MNm)3)
with Nm = maxm∈M Nm, since it depends on all data.
However, any model that complies with Assumption 1
is scalable in M since

log p (yt,y1:M | Xt,X1:M , θt, θ1:M) = (8)

log p (yt | D1:M ,Xt, θt, θ1:M) +
∑

m∈M
log p (ym | Xm, θm) .

The second term is the per-meta-task likelihood that
can be computed at cost O(MN

3

m), while the first is the
likelihood under the test-task prior given by Theorem 1.
Given the already inverted meta-task kernel matrices,
computing the posterior meta-task covariances at test-
task points Xt is of complexity O(M(N2

t Nm+NtN
2

m)).
Together with the resulting test-task likelihood, O(N3

t),

Algorithm 1 ScaML-GP

1: Input: meta-data D1:M = ∪m∈MDm

2: Train individual GP models per meta-task and
optimize θm

3: Construct the test-task prior as in (6), and cache
µm(Xt) and Σm(Xt,Xt)

4: Optimize the test-task HPs θt as in (9)
5: Condition the prior on Dt as in (7) to obtain the

posterior distribution for ft

this yields a total complexity of O(M(N
3

m +N2
t Nm +

NtN
2

m) +N3
t), which is linear in the number of meta-

tasks M and thus enables scalable optimization.

In practice, the number of test parameters in Xt is usu-
ally smaller than the available meta-data since the meta-
prior already contains significant information. This
leads to a weak dependence between the meta-model
parameters θm and the test data yt. This is espe-
cially true for ScaML-GP, since the marginal per-task
model only depends on km and is thus independent of
θt. We therefore suggest to modularize ScaML-GP
by assuming conditional independence between θm and
Dt (Bayarri et al., 2009):

Assumption 3. For all meta-tasks m ∈M, we have
p (θm | Dm,Dt) = p (θm | Dm).

Assumption 3 allows us to infer the meta-task HPs θ1:M
independently of the test-task HPs θt. Thus, we can op-
timize the meta-task GPs in parallel based only on their
individual data, θ⋆m = argmaxθm log p(ym | Xm, θm).
Afterwards, we compute and cache the meta-task
GP posterior mean µm(Xt) and covariance matrix
Σm(Xt,Xt). Finally, we optimize the test-task likeli-
hood solely with respect to θt in light of Assumption 3,

θ⋆t = argmax
θt

log p (yt | D1:M ,Xt, θt, θ
⋆
1:M) , (9)

at cost of only O(MN2
t +N3

t), which is cheap to eval-
uate. Together, this enables scalable meta-learning
with Gaussian processes (ScaML-GP) and we use this
simplification in our experiments. We summarize the
algorithm in Algorithm 1.

Discussion and limitations Theorem 1 provides a
scalable and structured way to distill meta-information
into a prior for a test-task GP. The key component
for this is Assumption 2, which assumes an additive
model. While these models reflect many real-world
situations, more flexible meta-learning models based
on neural networks are in principle able to learn more
complex relationships between the meta- and test-tasks.
However, by relaxing the model assumptions these
methods also require significantly more data. Thus

Tighineanu, Grossberger, Baireuther, Skubch, Vinogradska, Berkenkamp

x

f(
x)

Meta-data and meta-models

x

Test-task prior

x

Test-task posterior

Figure 1: Illustration of ScaML-GP. We train individual GPs per meta-task (left), which combine with the
task kernel kt and the task-weights wm to form the test-task prior. The HPs are inferred via MAP-inference
to obtain the figure in the middle, where the shaded colors correspond to the meta-tasks contribution to the
standard deviation. The posterior can then be obtained by conditioning the test-task prior distribution on Dt via
(7) (right). Notice the decreased uncertainty estimate of the test posterior at the location of the meta-data.

ScaML-GP is most suitable when the amount of data
per task is relatively scarce. We discuss the practical
implications of Assumptions 1–3 in Appendix C.3.

While the overall approach scales linearly with the
number of meta-tasks and enables parallel optimiza-
tion, each model is still a standard Gaussian process,
which scales cubically in the number of points per
task. For large number of data points per task, Nm or
Nt, the modular nature of ScaML-GP allows for full
scalability in the number of points by employing scal-
able approximations for the task GPs (Lázaro-Gredilla
et al., 2010). While an interesting direction, we focus
on closed-form inference here and leave the exploration
of full scalability for future work.

5 EXPERIMENTS

We evaluate our method (ScaML-GP) on several op-
timization problems against the following baselines:
standard GP-based BO (GPBO) without any meta-
data, RGPE (see Appendix C.4 for implementation
details) and SGPT (Wistuba et al., 2018), both of
which model the test function as a weighted sum of
the predictions of all task GPs, the method by Golovin
et al. (2017), which we dub StackGP, since it trains a
vertical stack of GPs and the posterior mean function
of each GP is used as the prior mean function of the
next GP, ABLR (Perrone et al., 2018), where Bayesian
linear regression is performed on the deep features
learned from the meta-data, RM-GP-UCB (Dai et al.,
2022), where the acquisition function is a weighted sum
of individual acquisition functions of each model (see
Appendix C.5 for implementation details), HyperBO
(H-NLL variant) (Wang et al., 2023) and FSBO (Wis-
tuba and Grabocka, 2021), which can be viewed as
an adaptation of MAML to GPs, and GC3P (Salinas
et al., 2020) in which a Gaussian Copula regression

model with a parametric prior is used to scale to large
data. We implement the models and perform Bayesian
Optimization (BO) using BoTorch (Balandat et al.,
2020), except for HyperBO, where we utilize the au-
thors’ implementation by wrapping their code Wang
et al. (2023). In all experiments we use the Upper
Confidence Bound acquisition function with the ex-
ploration coefficient β1/2 = 3. Additional information
regarding the experimental setup can be found in Ap-
pendix C. We provide code to reproduce the results of
ScaML-GP on GitHub1.

5.1 Synthetic Benchmarks

Our synthetic-benchmark consists of conventional
benchmark functions, where we place priors on some of
their parameters. We consider the two-dimensional
Branin, three-dimensional Hartmann 3D, and six-
dimensional Hartmann 6D and provide details on
the function families and the priors in Appendix C.7.
Note that these are generic meta-learning benchmarks
that are not designed to fulfill Assumptions 1–3.
We evaluate performance based on the simple regret
r = maxx∈D ft(x)−maxn≤Nt

ft(xn) ≥ 0, which is the
difference between the true optimum and the best func-
tion value obtained during the current optimization
run. For each benchmark, we conduct 128 independent
runs and report mean and standard error in our figures.
For each run, the meta-data is consistent across all
baselines for comparability.

The performance of the different baselines on the syn-
thetic benchmarks for M = 8 (top row) and M = 32
(bottom row) meta-tasks is visualized in Figure 2.
The regret of GPBO converges in about 40 iterations
for the two- and three-dimensional benchmarks and
needs more than 80 iterations for Hartmann 6D. As

1https://github.com/boschresearch/
Scalable-Meta-Learning-with-Gaussian-Processes

https://github.com/boschresearch/Scalable-Meta-Learning-with-Gaussian-Processes
https://github.com/boschresearch/Scalable-Meta-Learning-with-Gaussian-Processes

Scalable Meta-Learning with Gaussian Processes

10−1

100

101

R
eg

re
t

Branin
M = 8 Nm = 32

10−2

10−1

100

Hartmann 3D
M = 8 Nm = 32

10−1

100

Hartmann 6D
M = 8 Nm = 128

1 20 40

Iteration

10−1

100

101

R
eg

re
t

M = 32 Nm = 32

1 20 40

Iteration

10−2

10−1

100
M = 32 Nm = 32

1 25 50 75

Iteration

10−1

100
M = 32 Nm = 128

ScaML-GP

StackGP

SGPT

RGPE

GC3P

GPBO

ABLR

FSBO

RM-GP-UCB

HyperBO

Figure 2: Experimental results on the synthetic benchmarks for two different meta-data configurations: M = 8
and 32 meta-tasks in the top and bottom row, respectively. The meta-data are sampled uniformly at random and
contain Nm = 32 points per meta-task for Branin and Hartmann 3D, and 128 for Hartmann 6D, respectively.
ScaML-GP consistently achieves the lowest simple regret across all tasks. We provide a more detailed analysis
on the effect of M and Nm on the performance in Figure 3.

expected, most meta-learning baselines converge faster
than GPBO, since they can leverage additional infor-
mation. In general, different baselines excel in different
data-regimes. For instance, RGPE is among the best
for the Hartmann families, ABLR provides competi-
tive performance on Branin after about ten iterations,
while HyperBO excels with many meta-tasks (M = 32)
on the Hartmann benchmarks. In contrast, ScaML-
GP, consistently demonstrates fast task adaptation
and achieves the lowest regret at the end of each ex-
periment compared to most baseline methods. This
demonstrates that there is an advantage to employ-
ing a joint Bayesian model across tasks. For ABLR
and HyperBO, the performance improves significantly
as we increase the number of meta-tasks, and thus
the overall amount of meta-data, in the bottom row.
In contrast, ScaML-GP performs consistently across
both domains, which aligns with the findings of Tigh-
ineanu et al. (2022) that GP-based methods have an
advantage when meta-data is scarce.

Ablation on meta-data We now study in detail
how the performance of all methods depends on the
amount of meta-data. In particular, we independently

vary the amount of meta-data per task and the number
of meta-tasks on the Branin and Hartmann 6D tasks.
As we increase the number of tasks we get better cov-
erage of the task distribution, whereas increasing the
number of observations per task allows us to learn
more about each individual meta-task. We present a
condensed version of this ablation study in Figure 3,
where we plot the cumulative regret at the end of the
optimization. More information including the simple
regret plots are available in Appendix D. As in Figure 2,
we observe that most meta-learning baselines outper-
form standard GPBO throughout the ablation range.
Similarly, as we increase the amount of meta-data,
meta-learning methods generally improve performance
since they have more information about the task family.
The exception to this rule is StackGP, which unlike
other methods does not scale to many tasks M (top
left), since it builds a hierarchical sequential model
based on mean functions only and is thus not able to
convey uncertainty information effectively. This effect
is most pronounced for Branin, where the the opti-
mum of different tasks varies continuously, while for
Hartmann 6D they are restricted to four discrete loca-
tions. For Branin we can observe in the top-right figure

Tighineanu, Grossberger, Baireuther, Skubch, Vinogradska, Berkenkamp

101

102

103

C
u

m
.

re
g
re

t
Branin Branin

4 16 64

Num. meta-tasks (M)

101

102

C
u

m
.

re
g
re

t

Hartmann 6D

16 64 256

Num. obs. per task (Nm)

Hartmann 6D

ScaML-GP

StackGP

SGPT

RGPE

GC3P

GPBO

ABLR

FSBO

RM-GP-UCB

HyperBO

Figure 3: Performance summary of the meta-learning baselines on two synthetic benchmarks, Branin (top) and
Hartmann 6D (bottom), as a function of the number of meta-tasks M for a fixed number of points per task
(Nm = 32 and 128 for Branin and Hartmann 6D, respectively) on the left side, and as a function of the number of
points per task Nm for a fixed number of M = 8 meta-tasks on the right side. Each data point denotes the mean
and standard error of the cumulative regret at the end of the optimization. ScaML-GP consistently achieves the
lowest cumulative regret across all data domains, which indicates that it is well suited for the low-data domain,
but can also effectively scale to many tasks.

that starting at about a hundred observations per task
performance starts to saturate, since that is sufficient
information to train confident meta-task models. Over-
all ScaML-GP outperforms other baselines across all
data domains. While other methods can match the
performance in some settings, ScaML-GP performs
consistently well across all settings.

5.2 HPO Benchmarks

We compare all methods on a set of tasks where we have
to optimize the HPs of machine-learning models. Each
benchmark considers a specific machine learning model
and a task consists of adapting the model’s HPs in order
to minimize the expected loss on a given dataset across
several random seeds. To facilitate fast exploration,
we base our study on the tabular benchmarks avail-
able as part of the HPOBench library (Eggensperger
et al., 2021). For each task, it provides a lookup ta-
ble that maps HP configurations to the corresponding
loss. For BO, we restrict the parameter space of each
benchmark to contain only the discrete values in the

lookup table. We consider HP optimization tasks for a
support-vector-machine (SVM) model, logistic regres-
sion (LR), XGBoost model (XGB), random forest (RF),
and neural-network (MLP) model. We randomly assign
one of the tasks to be our test function for a single
independent run, while the remaining tasks are used
for meta-learning. We sub-sample the meta-data to
Nm = 64 points per task for the two-dimensional SVM
and LR, and to Nm = 128 points per task for the four-
dimensional XGB and RF, and five-dimensional MLP
benchmarks. In addition, we provide results on the
tabular FC-Net benchmarks Slice Localization, Protein
Structure, Naval Propulsion, and Parkinson’s Telemon-
itoring (Eggensperger et al., 2021). For each of the
four, we use one as test task and the other three as
meta-tasks. We subsample 256 points for each meta-
task in the six-dimensional search space. Finally, we
also evaluate the performance of our baselines on PD1,
a tabular HPO benchmark for optimizing deep-learning
models (Wang et al., 2023). As above, we randomly
pick one test task and use all others for meta-learning.
Here, we subsample the data of each meta-task to 128

Scalable Meta-Learning with Gaussian Processes

10−3

10−2

10−1

R
eg

re
t

SVM
M = 28 Nm = 64

10−2

10−1

MLP
M = 7 Nm = 128

10−3

10−2

XGB
M = 19 Nm = 128

1 20 40 60

Iteration

10−4

10−3

10−2

R
eg

re
t

RF
M = 27 Nm = 128

1 20 40 60

Iteration

10−3

10−2

LR
M = 28 Nm = 64

1 20 40 60

Iteration

10−1

PD1
M = 22 Nm = 128

ScaML-GP

StackGP

SGPT

RGPE

GC3P

GPBO

ABLR

FSBO

RM-GP-UCB

HyperBO

Figure 4: Performance evaluation on six tabular hyperparameter optimization problems for machine learning
models. Five are sourced from HPOBench, involving SVM, MLP, XGB, RF, and LR. Additionally, we provide
results on the PD1 benchmark involving HPO of deep-learning models. For each optimizer, training runs
on different datasets are used as meta-data with Nm points per each of the M meta-tasks to better inform
hyperparameter choices on a new test-task dataset.

points in the four-dimensional search space. We report
the mean simple regret together with the standard er-
ror of the mean computed over 256 independent runs.
We provide further details about the HPO benchmarks
in Appendix C.8.

In Figure 4, we present a comparative analysis on six
HPO benchmarks, focusing on the optimization of clas-
sical models such as SVM, RF, LR, and XGB, along-
side deep-learning models like MLP and PD1. The
performance on the four FC-Net benchmarks is shown
in Figure 5. Most meta-learning baselines successfully
leverage the meta-data and achieve smaller regrets than
GPBO early in the optimization. Towards the end of
the optimization process, some baselines perform worse
than GPBO, which is most likely related to the induc-
tive bias in the meta-data. Crucially, the threshold
from better to worse varies among benchmarks, e.g.,
about ten iterations for XGB and thirty for RF. In
practice, this threshold is not known in advance and
makes it challenging to estimate the iteration budget or
be confident in superior performance for a fixed budget.

In contrast, ScaML-GP is consistently competitive
across all benchmarks in all optimization stages. This

evidence is in line with the performance on the synthetic
benchmarks in Figure 2. The exception where ScaML-
GP performs subpar is the FC-Net Protein benchmark.
Our analysis indicates that this is because no linear
combination of the three meta-task models yields a
useful test-task prior, thus violating Assumption 2, see
Appendix C.3 for a detailed discussion. We believe
that the strong overall performance of ScaML-GP is
a result of the principled Bayesian approach together
with assumptions that enable task scalability.

6 CONCLUSION

We have presented ScaML-GP, a scalable GP for
meta-learning. It is a specific instance of a multi-task
GP model in (2), but based on explicit assumptions on
the model structure in order to obtain a method that is
scalable in the number of meta-tasks M . In particular,
our test-prior is a weighted linear combination of the
per-meta-task GP posterior distributions together with
a residual model that accounts for test-functions that
cannot be explained through the meta-data. In contrast
to ensemble methods like RGPE, this joint Bayesian
model allows us to use maximum likelihood optimiza-

Tighineanu, Grossberger, Baireuther, Skubch, Vinogradska, Berkenkamp

10−4

10−3

10−2

R
eg

re
t

Slice
M = 3 Nm = 256

10−3

10−2

10−1

Protein
M = 3 Nm = 256

1 20 40 60

Iteration

10−5

10−3

R
eg

re
t

Naval
M = 3 Nm = 256

1 20 40 60

Iteration

10−2

10−1

Parkinson’s
M = 3 Nm = 256

ScaML-GP

StackGP

SGPT

RGPE

GC3P

GPBO

ABLR

FSBO

RM-GP-UCB

HyperBO

Figure 5: Performance evaluation on four tabular FC-Net benchmarks (Slice, Protein, Naval, and Parkinson’s).
For each optimizer, training runs on different datasets are used as meta-data with Nm points per each of the M
meta-tasks to better inform the chosen hyperparameter values on a new test-task dataset.

tion in order to determine the weights. Moreover, we
showed that hyperparameter inference in ScaML-GP
can be parallelized in order to enable efficient learn-
ing. Finally, we compared our method against a set
of GP-based and neural-network-based meta-learning
methods. ScaML-GP consistently performed well
across various benchmarks and number of meta-tasks.

Scalable Meta-Learning with Gaussian Processes

References

Marcin Andrychowicz, Misha Denil, Sergio Gómez Col-
menarejo, Matthew W. Hoffman, David Pfau, Tom
Schaul, Brendan Shillingford, and Nando de Freitas.
Learning to learn by gradient descent by gradient
descent. In Proceedings of the 30th International
Conference on Neural Information Processing Sys-
tems, page 3988–3996, Red Hook, NY, USA, 2016.
Curran Associates Inc.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang,
Samuel Daulton, Benjamin Letham, Andrew Gordon
Wilson, and Eytan Bakshy. BoTorch: A Frame-
work for Efficient Monte-Carlo Bayesian Optimiza-
tion. In Advances in Neural Information Processing
Systems 33, 2020. URL http://arxiv.org/abs/
1910.06403.

M. J. Bayarri, J. O. Berger, and F. Liu. Modularization
in Bayesian analysis, with emphasis on analysis of
computer models. Bayesian Analysis, 4(1):119 – 150,
2009. doi: 10.1214/09-BA404.

Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier.
Learning a synaptic learning rule. In Proceedings of
the International Joint Conference on Neural Net-
works, pages II–A969, Seattle, USA, 1991.

Edwin V Bonilla, Kian Chai, and Christopher Williams.
Multi-task gaussian process prediction. In J. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances
in Neural Information Processing Systems, volume 20.
Curran Associates, Inc., 2008.

Roberto Calandra, André Seyfarth, Jan Peters, and
Marc Peter Deisenroth. Bayesian optimization for
learning gaits under uncertainty. Annals of Mathe-
matics and Artificial Intelligence, 76(1):5–23, 2016.

Yutian Chen, Matthew W. Hoffman, Sergio Gómez Col-
menarejo, Misha Denil, Timothy P. Lillicrap, Matt
Botvinick, and Nando de Freitas. Learning to learn
without gradient descent by gradient descent. In
Doina Precup and Yee Whye Teh, editors, Proceed-
ings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 748–756. PMLR, 06–11
Aug 2017.

Zhongxiang Dai, Yizhou Chen, Haibin Yu, Bryan
Kian Hsiang Low, and Patrick Jaillet. On provably
robust meta-bayesian optimization. In Uncertainty in
Artificial Intelligence, pages 475–485. PMLR, 2022.

David K Duvenaud, Hannes Nickisch, and Carl Ras-
mussen. Additive gaussian processes. Advances in
neural information processing systems, 24, 2011.

Katharina Eggensperger, Philipp Müller, Neeratyoy
Mallik, Matthias Feurer, Rene Sass, Aaron Klein,
Noor Awad, Marius Lindauer, and Frank Hutter.

HPOBench: A collection of reproducible multi-
fidelity benchmark problems for HPO. In Thirty-fifth
Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track (Round 2),
2021. URL https://openreview.net/forum?id=
1k4rJYEwda-.

Matthias Feurer, Benjamin Letham, and Eytan Bakshy.
Scalable meta-learning for Bayesian optimization
using ranking-weighted Gaussian process ensembles.
In AutoML Workshop at ICML, volume 7, 2018.

Matthias Feurer, Benjamin Letham, Frank Hut-
ter, and Eytan Bakshy. Practical transfer learn-
ing for bayesian optimization. arXiv preprint
arXiv:1802.02219v3, 2022.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep
networks. In Doina Precup and Yee Whye Teh, edi-
tors, Proceedings of the 34th International Confer-
ence on Machine Learning, volume 70 of Proceed-
ings of Machine Learning Research, pages 1126–1135.
PMLR, 06–11 Aug 2017.

Sebastian Flennerhag, Pablo Garcia Moreno, Neil
Lawrence, and Andreas Damianou. Transferring
knowledge across learning processes. In International
Conference on Learning Representations, 2019.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra,
Greg Kochanski, John Karro, and D Sculley. Google
vizier: A service for black-box optimization. In Pro-
ceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining,
pages 1487–1495, 2017.

Bharath Hariharan and Ross Girshick. Low-shot visual
recognition by shrinking and hallucinating features.
In Proceedings of the IEEE international conference
on computer vision, pages 3018–3027, 2017.

Donald R Jones, Matthias Schonlau, and William J
Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization,
13(4):455–492, 1998.

Tinu Theckel Joy, Santu Rana, Sunil Kumar Gupta,
and Svetha Venkatesh. Flexible Transfer Learning
Framework for Bayesian Optimisation. In James
Bailey, Latifur Khan, Takashi Washio, Gill Dobbie,
Joshua Zhexue Huang, and Ruili Wang, editors, Ad-
vances in Knowledge Discovery and Data Mining.
Springer International Publishing, 2016.

Miguel Lázaro-Gredilla, Joaquin Quinonero-Candela,
Carl Edward Rasmussen, and Aníbal R Figueiras-
Vidal. Sparse spectrum Gaussian process regression.
The Journal of Machine Learning Research, 11:1865–
1881, 2010.

Ke Li and Jitendra Malik. Learning to optimize. In In-
ternational Conference on Learning Representations,

http://arxiv.org/abs/1910.06403
http://arxiv.org/abs/1910.06403
https://openreview.net/forum?id=1k4rJYEwda-
https://openreview.net/forum?id=1k4rJYEwda-

Tighineanu, Grossberger, Baireuther, Skubch, Vinogradska, Berkenkamp

2017. URL https://openreview.net/forum?id=
ry4Vrt5gl.

Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei
Cai. When gaussian process meets big data: A
review of scalable gps. IEEE Transactions on Neural
Networks and Learning Systems, 31(11):4405–4423,
2020.

Neeratyoy Mallik. LogisticRegression. 8 2021a.
doi: 10.6084/m9.figshare.15098283.v3. URL
https://figshare.com/articles/dataset/
LogisticRegression/15098283.

Neeratyoy Mallik. RandomForest. 8 2021b.
doi: 10.6084/m9.figshare.15173517.v3. URL
https://figshare.com/articles/dataset/
RandomForest/15173517.

Neeratyoy Mallik. SupportVectorMachine. 8
2021c. doi: 10.6084/m9.figshare.15098280.v3.
URL https://figshare.com/articles/dataset/
SupportVectorMachine/15098280.

Neeratyoy Mallik. XGBoost. 8 2021d. doi: 10.6084/
m9.figshare.15155919.v3. URL https://figshare.
com/articles/dataset/XGBoost/15155919.

Alonso Marco, Felix Berkenkamp, Philipp Hennig, An-
gela P. Schoellig, Andreas Krause, Stefan Schaal,
and Sebastian Trimpe. Virtual vs. Real: Trading
Off Simulations and Physical Experiments in Rein-
forcement Learning with Bayesian Optimization. In
Proc. of the International Conference on Robotics
and Automation (ICRA), pages 1557–1563, 2017.

Luke Metz, Niru Maheswaranathan, Brian Cheung, and
Jascha Sohl-Dickstein. Learning unsupervised learn-
ing rules. In International Conference on Learning
Representations, 2019.

Andrei Paleyes, Mark Pullin, Maren Mahsereci, Neil
Lawrence, and Javier González. Emulation of phys-
ical processes with emukit. In Second Workshop
on Machine Learning and the Physical Sciences,
NeurIPS, 2019.

Valerio Perrone, Rodolphe Jenatton, Matthias W
Seeger, and Cedric Archambeau. Scalable hyperpa-
rameter transfer learning. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 31. Curran Associates,
Inc., 2018.

Matthias Poloczek, Jialei Wang, and Peter Frazier.
Multi-information source optimization. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

Carl E. Rasmussen and Christopher K. I. Williams.
Gaussian Processes for Machine Learning. Adaptive
Computation and Machine Learning. MIT Press,
Cambridge, MA, USA, January 2006.

Jonas Rothfuss, Christopher Koenig, Alisa Rupenyan,
and Andreas Krause. Meta-learning priors for safe
bayesian optimization. In 6th Annual Conference on
Robot Learning, 2022.

David Salinas, Huibin Shen, and Valerio Perrone. A
quantile-based approach for hyperparameter transfer
learning. In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Ma-
chine Learning Research, pages 8438–8448. PMLR,
13–18 Jul 2020.

Jürgen Schmidhuber. Evolutionary principles in self-
referential learning, or on learning how to learn:
The meta-meta-... hook. Diplomarbeit, Technische
Universität München, München, 1987.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P.
Adams, and Nando de Freitas. Taking the human
out of the loop: A review of bayesian optimization.
Proceedings of the IEEE, 104(1):148–175, 2016.

Alistair Shilton, Sunil Gupta, Santu Rana, and Svetha
Venkatesh. Regret Bounds for Transfer Learning in
Bayesian Optimisation. In Aarti Singh and Jerry
Zhu, editors, Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics,
volume 54 of Proceedings of Machine Learning Re-
search, pages 307–315, Fort Lauderdale, FL, USA,
20–22 Apr 2017. PMLR.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
Practical Bayesian Optimization of Machine Learn-
ing Algorithms. In F. Pereira, C. J. C. Burges, L. Bot-
tou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and
Matthias Seeger. Gaussian process optimization in
the bandit setting: No regret and experimental de-
sign. In Proc. International Conference on Machine
Learning (ICML), 2010.

Kevin Swersky, Jasper Snoek, and Ryan P Adams.
Multi-Task Bayesian Optimization. In C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems, volume 26. Curran
Associates, Inc., 2013.

Petru Tighineanu, Kathrin Skubch, Paul Baireuther,
Attila Reiss, Felix Berkenkamp, and Julia Vinograd-
ska. Transfer learning with gaussian processes for
bayesian optimization. In International Conference

https://openreview.net/forum?id=ry4Vrt5gl
https://openreview.net/forum?id=ry4Vrt5gl
https://figshare.com/articles/dataset/LogisticRegression/15098283
https://figshare.com/articles/dataset/LogisticRegression/15098283
https://figshare.com/articles/dataset/RandomForest/15173517
https://figshare.com/articles/dataset/RandomForest/15173517
https://figshare.com/articles/dataset/SupportVectorMachine/15098280
https://figshare.com/articles/dataset/SupportVectorMachine/15098280
https://figshare.com/articles/dataset/XGBoost/15155919
https://figshare.com/articles/dataset/XGBoost/15155919

Scalable Meta-Learning with Gaussian Processes

on Artificial Intelligence and Statistics, pages 6152–
6181. PMLR, 2022.

Michael Volpp, Lukas P. Fröhlich, Kirsten Fischer, An-
dreas Doerr, Stefan Falkner, Frank Hutter, and Chris-
tian Daniel. Meta-Learning Acquisition Functions for
Transfer Learning in Bayesian Optimization. In In-
ternational Conference on Learning Representations,
2020.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala,
Hubert Soyer, Joel Z Leibo, Remi Munos, Charles
Blundell, Dharshan Kumaran, and Matt Botvinick.
Learning to reinforcement learn. arXiv preprint
arXiv:1611.05763, 2016.

Zi Wang, George E Dahl, Kevin Swersky, Chansoo
Lee, Zelda Mariet, Zachary Nado, Justin Gilmer,
Jasper Snoek, and Zoubin Ghahramani. Pre-trained
gaussian processes for bayesian optimization. arXiv
preprint arXiv:2109.08215, 2021.

Zi Wang, George E. Dahl, Kevin Swersky, Chansoo
Lee, Zachary Nado, Justin Gilmer, Jasper Snoek,
and Zoubin Ghahramani. Pre-trained Gaussian pro-
cesses for Bayesian optimization. arXiv preprint
arXiv:2109.08215, 2023.

Martin Wistuba and Josif Grabocka. Few-shot bayesian
optimization with deep kernel surrogates. In Inter-
national Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=
bJxgv5C3sYc.

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-
Thieme. Scalable Gaussian process-based transfer
surrogates for hyperparameter optimization. Ma-
chine Learning, 107(1):43–78, 2018.

Dani Yogatama and Gideon Mann. Efficient Trans-
fer Learning Method for Automatic Hyperparameter
Tuning. In Samuel Kaski and Jukka Corander, ed-
itors, Proceedings of the Seventeenth International
Conference on Artificial Intelligence and Statistics,
volume 33 of Proceedings of Machine Learning Re-
search, pages 1077–1085, Reykjavik, Iceland, 22–25
Apr 2014. PMLR.

Yichi Zhang, Daniel W Apley, and Wei Chen. Bayesian
optimization for materials design with mixed quan-
titative and qualitative variables. Scientific reports,
10(1):1–13, 2020.

Mauricio A. Álvarez, Lorenzo Rosasco, and Neil D.
Lawrence. Kernels for vector-valued functions: A re-
view. Foundations and Trends in Machine Learning,
4(3):195–266, 2012.

https://openreview.net/forum?id=bJxgv5C3sYc
https://openreview.net/forum?id=bJxgv5C3sYc

SUPPLEMENTARY MATERIAL
In the appendix we provide the detailed proofs for all claims in the paper, complexity analysis, ablation studies,
and details on experiments. An overview is shown below.

Table of Contents
A KERNEL PROPERTIES 14

B COMPLEXITY ANALYSIS 16

C DETAILS ON EXPERIMENTS 17
C.1 Data Normalization . 17
C.2 Implementation Details of ScaML-GP . 17
C.3 Importance of Satisfying the Assumptions of ScaML-GP in Practice 17
C.4 Implementation Details of RGPE . 18
C.5 Implementation Details of RM-GP-UCB . 18
C.6 Choices of Prior Distributions and Constraints for GP Hyperparameters 18
C.7 Synthetic Benchmarks . 19
C.8 Meta-Learning and Bayesian Optimization on Tabular Benchmarks 20
C.9 Computational Resources . 22

D ADDITIONAL EXPERIMENTS 23
D.1 Ablation studies on the Branin benchmark . 23
D.2 Ablation studies on the Hartmann6 benchmark . 25

Scalable Meta-Learning with Gaussian Processes

A KERNEL PROPERTIES

We start by showing that for a single meta-task, the coregionalization is indeed positive semi-definite.

Lemma 2. For any wm ∈ R

Wm =

[
1 wm

wm w2
m

]
(10)

is positive semi-definite.

Proof. Let x = (x1, x2) ∈ R2, then xTWmx = x2
1 + 2wmx1x2 + w2

mx2
2 = (x1 + wmx2)

2 ≥ 0, i.e. Wm is positive
semi-definite.

Lemma 3. For any wm ∈ R the coregionalization matrices specified by (4) are positive semi-definite.

Proof. Each matrix Wm has the same form as in Lemma 2, but with additional zero rows and columns added.
That is, from Lemma 2 for any x = (x1, . . . ,xM+1) ∈ RM+1 we have

xTWmx = (xm, xM+1)
T

[
1 wm

wm w2
m

]
(xm, xM+1) ≥ 0. (11)

According to (4), we have

Wt =

[
0 0
0 1

]
∈ R(M+1)×(M+1),

from which we obtain xTWtx = x2
M+1 ≥ 0 for any x = (x1, . . . ,xM+1) ∈ RM+1.

Lemma 1. Assumptions 1 and 2 with wm ∈ R for m ∈M yield a valid multi-task kernel given by

kjointScaML((x, ν), (x
′, ν′)) = δν=tδν′=tkt(x,x

′)

+
∑

m∈M
gm(ν)gm(ν′)km(x,x′), (5)

where gm(ν) is equal to wm if ν = t, one if ν = m, and zero otherwise. δi=j is the Dirac-delta.

Proof. We begin by showing that the coregionalization matrices in (4) are uniquely defined by Assumptions 1
and 2. To see this, we first collect all terms in (2):

k((x,m), (x′,m)) = Cov (fm(x), fm(x′)) = km(x, x′), (Assumption 1) (12)
k((x,m), (x′,m′ ̸= m)) = Cov (fm(x), fm′(x′)) = 0, (Assumption 1) (13)

k((x,m), (x′, t)) = Cov (fm(x), ft(x
′))

= Cov

(
fm(x), f̃t +

∑
m′∈M

f̃m′(x′)

)
(Assumption 2)

= Cov

(
fm(x),

∑
m′∈M

f̃m′(x′)

)
(Assumption 2)

The perfect (anti)correlation Corr
(
fm(x), f̃m(x)

)
= ±1 in Assumption 2 implies that f̃m(x) = wmfm(x)+ c with

wm, c ∈ R. Hence Cov
(
fm(x), f̃m′(x′)

)
= wm′Cov (fm(x), fm′(x′)). Together with Assumption 1 this becomes

Cov
(
fm(x), f̃m′(x′)

)
= δm,m′wmkm(x, x′). Using that the covariance is bilinear it follows that

k((x,m), (x′, t)) =
∑

m′∈M
Cov

(
fm(x), f̃m′(x′)

)
= wmkm(x, x′). (14)

Tighineanu, Grossberger, Baireuther, Skubch, Vinogradska, Berkenkamp

Finally, we have

k((x, t), (x′, t)) = Cov (ft(x), ft(x
′))

= kt(x, x
′) +

∑
m∈M

Cov
(
ft(x), f̃m(x′)

)
(Assumption 2 and kt(x, x

′) = Cov
(
ft(x), f̃t(x

′)
)
)

= kt(x, x
′) +

∑
m∈M

Cov

(
f̃t +

∑
m′∈M

f̃m′(x), f̃m(x′)

)
(Assumption 2)

= kt(x, x
′) +

∑
m∈M

Cov
(
f̃m(x), f̃m(x′)

)
(Assumption 1, Assumption 2)

(15)

Since f̃m(x) = wmfm(x) + c as shown above and using bilinearity of the covariance, we have

k((x, t), (x′, t)) = kt(x, x
′) +

∑
m∈M

w2
mkm(x, x′). (16)

By collecting the coefficients corresponding to the km, kt we obtain the coregionalization matrices.

Further, from Lemma 3 and (Álvarez et al., 2012) we obtain that kjointScaML is positive semi-definite as a linear
combination of positive semi-definite coregionalization matrices and kernels. That is, (4) yield a valid multi-task
kernel.

Finally, from the definition of the Dirac-delta and gm(ν), we have

δν=tδν′=t =

{
1 if ν = ν′ = t,

0 else,
gm(ν)gm(ν′) =

w2

m if ν = ν′ = t,

wm if ν = m, ν′ = t, or ν = t, ν′ = m,

1 if ν = ν′ = m,

0 else.

(17)

The statement from the Lemma follows from δν=tδν′=t = [Wt](ν,ν′), gm(ν)gm(ν′) = [Wm](ν,ν′) for all ν, ν′ and
the fact that (4) yield a valid kernel.

Theorem 1. Under a zero-mean GP prior with multi-task kernel given by (5), the test-task distribution conditioned
on the meta-data is given by ft | D1:M ∼ GP(mScaML,ΣScaML) with

mScaML(x) =
∑

m∈M
wmµm(x),

kScaML(x,x
′) = kt(x,x

′) +
∑

m∈M
w2

mΣm(x,x′),
(6)

where µm(x) and Σm(x,x′) are the per-task posterior mean and covariance conditioned on Dm.

Proof. According to (5), the joint prior model for the meta-observations ymeta = (y1, . . . ,ymeta) and the test-task
function value at a query point x given by[

ymeta

ft(x)

]
∼ N

(
0,

[
Kmeta kmeta

kT
meta Kt

])
(18)

where

Kmeta = diag
(
k1(X1,X1) + σ2

1I, . . . , kM (XM ,XM) + σ2
MI
)
,

kmeta =
(
w1k1(X1,x), . . . , wMkM (XM ,x)

)
,

Kt =
(
kt(x,x) +

∑
m

w2
mkm(x,x)

)
.

Scalable Meta-Learning with Gaussian Processes

Conditioning on the meta-data D1:M yields

p(ft | D1:M ,x) = N (mScaML(x),ΣScaML(x,x)) , (19)

where the test-task prior mean mScaML and covariance Σ are given by the standard Gaussian conditioning rules

mScaML(x) = kT
metaK

−1
metaymeta,

ΣScaML(x,x) = Kt − kT
metaK

−1
metakmeta.

Now since Kmeta is block-diagonal, we have

K−1
meta = diag

(
(k1(X1,X1) + σ2

1I)
−1, . . . , (kM (XM ,XM) + σ2

MI)−1
)
,

so that

mScaML(x) =
∑
m

wmkm(x,Xm)(km(Xm,Xm) + σ2
mI)−1ym,

=
∑
m

wmµm(x),

where µm(x) is the per meta-task posterior mean after conditioning on the corresponding data Dm. Similarly, for
the covariance we have

ΣScaML(x,x) = Kt − kT
metaK

−1
metakmeta,

= kt(x,x) +
∑
m

w2
mkm(x,x)−

∑
m

wmkm(x,Xm)(km(Xm,Xm) + σ2
mI)−1wmkm(Xm,x),

= kt(x,x) +
∑
m

w2
mkm(x,x)− w2

mkm(x,Xm)(km(Xm,Xm) + σ2
mI)−1km(Xm,x),

= kt(x,x) +
∑
m

w2
m

(
km(x,x)− km(x,Xm)(km(Xm,Xm) + σ2

mI)−1km(Xm,x)
)
,

= kt(x,x) +
∑
m

w2
mΣm(x,x),

where Σm is the corresponding per meta-task posterior covariance.

B COMPLEXITY ANALYSIS

Here we analyze the computational complexity of evaluating the likelihood of the test-data under the prior (7).
We break this down into the complexities for evaluating the posterior mean and the posterior covariance of the
test-task.

As an intermediate step, the kernel matrices of the meta-tasks need to be inverted, which is of complexity
O(
∑

m∈M N3
m). This only needs to happen once and then those inverted matrices can be cached.

To construct the test-task prior we need to evaluate each meta-task posterior mean at all x-values in the test-
task dataset Xt. Given the cached kernel matrices each evaluation costs O(N2

m) multiplications resulting in a
complexity of O(Nt

∑
m∈M N2

m). In addition, we also need to evaluate the posterior covariance at the same
parameters. In contrast to the posterior mean computation, evaluating the covariance matrix at all parameters
Xt jointly results in a lower computational complexity than isolated forward calculation of all N2

t entries. The
corresponding matrix multiplication in (7) is of order O(N2

t Nm +NtN
2
m). The complexities for all meta-tasks

add up to O(N2
t

∑
m∈M Nm +Nt

∑
m∈M N2

m).

Further in the likelihood we also need to evaluate the test-task posterior at the test-task data points. This
requires to evaluate (7) and is dominated by the inversion of the test-task kernel matrix, which is of order O(N3

t).

Summarizing the complexity of evaluating the likelihood is given by the complexity of inverting the meta-task
kernel matrices O(

∑
m∈M N3

m) once and the reoccurring cost of constructing the test-task prior and evaluating
the test-task posterior, which is of order O(N2

t

∑
m∈M Nm +Nt

∑
m∈M N2

m +N3
t).

As mentioned in Section 4, we can use Assumption 3 in order to cache intermediate results in order to further
reduce complexity.

Tighineanu, Grossberger, Baireuther, Skubch, Vinogradska, Berkenkamp

C DETAILS ON EXPERIMENTS

For the experiments on the synthetic benchmarks, the meta and test functions are sampled randomly from a
function family, while the meta-data parameters are sampled uniformly from the task’s domain D. We optimize
the test function from scratch without initial samples. We add i.i.d. zero-mean Gaussian observational noise
during the data generation with a standard deviation of 1.0 for Branin and 0.1 for Hartmann 3D and 6D. This
amount of noise corresponds to about one percent of the output scale of the benchmark in the search space.

We implement all GP models using the squared-exponential kernel with automatic relevance determination. The
GP hyperparameters are optimized at each BO iteration by maximizing the likelihood of the observed data using
the L-BFGS-B optimizer with 5 initial guesses. These guesses are sampled from the prior of the hyperparameter.
We normalize the GP data as explained in Appendix C.1. All other details regarding training and prediction are
kept fixed to BoTorch’s defaults (Balandat et al., 2020).

C.1 Data Normalization

We follow the common practice and normalize the GP data. The search space of the input parameters is
rescaled to the unit hypercube in the data pre-processing pipeline. The observations are normalized to zero-mean
unit-variance individually for each GP. An exception is ScaML-GP’s test-task GP for which observations, yt,
are normalized with respect to the mean and variance of yt ∪ y1:M . We prefer this strategy over normalizing
solely with respect to yt whose statistics are volatile at the start of the optimization.

C.2 Implementation Details of ScaML-GP

We implement ScaML-GP according to Algorithm 1.

1. We train individual GP models on the data of each meta-task and independently optimize the marginal
likelihoods. These meta-data are individually normalized to zero-mean unit-variance.

2. We construct the test-task prior as in Theorem 1 by summing over the posteriors of the GP of each meta-task.
Assumption 3 allows us to cache µm(Xt) and Σm(Xt,Xt).

3. We optimize the hyperparameters, θt, of the test-task GP. For this we normalize yt as explained in
Appendix C.1. This joint normalization implies that yt generally have a non-zero mean and non-unit
variance.

4. We condition the test-task GP on Dt. Since yt are not standardized, the optimum hyperparameters of the
test-task kernel, kt, are distributed differently than those of standard GPs. We consider this when choosing
prior distributions for the GP hyperparameters in Appendix C.6.

C.3 Importance of Satisfying the Assumptions of ScaML-GP in Practice

ScaML-GP is a modular and flexible method for meta-learning that is scalable in the number of tasks. ScaML-
GP can be applied to a wide variety of meta-learning settings as demonstrated in Section 5 and is designed to
excel in the regime of relatively little amount of data per meta-task.

While the assumptions of ScaML-GP may seem restrictive, Assumptions 1–3, empirical results clearly demonstrate
that ScaML-GP performs excellently in most scenarios. This is because ScaML-GP has built-in mechanisms
that can easily handle violations of these assumptions. In particular,

• Assumption 1, independence of the prior distributions of meta-task models, is clearly violated in most use
cases. However, they do not limit learning as long as each meta-task contains sufficient data allowing for a
probabilistic description of the meta-task function. This amount of data can be surprisingly little for GPs as
seen in Figure 3 – as little as 16 points in a six-dimensional search space are enough to significantly improve
over GPBO and other meta-learning baselines.

• Assumption 2, perfect correlation between meta-task models and components of the test-task models, is
likewise violated in most use cases. ScaML-GP can easily handle such violations via the test-task component

Scalable Meta-Learning with Gaussian Processes

of the kernel, kt(x,x
′) (see (6)), which can learn arbitrary non-linear deviations from the prediction of

the meta-task models. In the worst-case scenario in which no linear combination of meta-task functions is
useful, ScaML-GP simply ignores the meta-data and optimizes the process from scratch using the test-task
component of the kernel. Such an example can be seen in Figure 4 (FC-Net Protein benchmark).

• Assumption 3, independence between meta-task HPs, θm, and test-task observations Dt, is motivated by the
meta-learning setting in which meta-data are abundant but test-data are scarce.

Only Assumption 1 is necessary for making our method scalable. Assumption 2 confers an explainable structure to
the kernel and to the test-task prior in (6) but other choices are, in principle, also possible. Finally, Assumption 3
leads to a particularly efficient implementation of ScaML-GP.

C.4 Implementation Details of RGPE

There exist many different variants of RGPEs. We use the variant with bootstrap sampling (S = 512) and
probabilistic pruning, which is described in Feurer et al. (2022), together with an UCB acquisition function
for better comparability with the other methods. In the first optimization step, the weights are 1/M for the
meta-tasks and zero for the target-task. In the second and third optimization step, the weights are equally
distributed with value 1/(M + 1). After that the ranking method is employed.

C.5 Implementation Details of RM-GP-UCB

We implement RM-GP-UCB according to the UCB based algorithm in (Dai et al., 2022) with the following
choices. For ease of implementation and to be consistent with other methods, we set the exploration coefficients
to a constant value βt = τ = 3. For the noise variance σ2 in d̄t,i, we use the average of the noise variance
estimates of the meta-models. To ensure invariance of the acquisition function maximizer under a joint rescaling

of all functions, we divide the bounds on the function gap d̄t,i by
√

1
M

∑M
i=1 σ

2
i , where σ2

i is the variance of the
observations from meta-task i. Finally, we set the hyperparameter δ = 0.05.

C.6 Choices of Prior Distributions and Constraints for GP Hyperparameters

In the following we discuss our choice of the prior distribution of the GP hyperparameters as well as the constraints
we place on them.

Lengthscale The prior of the lengthscale hyperparameter, θl, is kept fixed to BoTorch’s default, θl ∼ Γ(3, 6),
where Γ denotes the Gamma distribution. This corresponds to a 5-95% quantile range of 0.14 – 1.05. Exception
to this is the test-task kernel of StackGP and ScaML-GP, kt, with log(θl) ∼ N (0.5, 1.5) with a 5-95% quantile
range of 0.14 – 19.44. With this broader distribution we introduce less inductive bias while keeping the risk of
over-fitting low owing to the existence of an informative prior from the models of the meta-tasks. The lengthscale
parameter is constrained to lie between 10−4 − 102 to avoid running into numerical issues.

Outputscale The prior of the outputscale hyperparameter (signal variance), θo, is also kept fixed to BoTorch’s
default, θo ∼ Γ(2.0, 0.15) with a 5-95% quantile range of 2.4 – 31.8. Exception to this is the test-task kernel of
ScaML-GP due to the different normalization strategy discussed in Appendix C.1. We choose a less biased
distribution to accommodate this change in data normalization, log(θo) ∼ N (−2.0, 3.0) with a 5-95% quantile
range of 10−3 − 18.8. The outputscale parameter is constrained to lie between 10−4 − 102 to avoid running into
numerical issues.

Observation noise The prior of the observational-noise hyperparameter (noise variance), θn, is set to log(θn) ∼
N (−8, 2) with 5-95% quantile range of 1.25 · 10−5 − 9 · 10−3. The noise parameter is constrained to lie between
10−8 − 10−2 to avoid running into numerical issues.

Weights of ScaML-GP We choose a generic prior distribution for the weights, wm ∼ Γ(1, 1), independently
for each meta-task m. This distribution is flat and thus unbiased for wm ≲ 1, and decaying quickly for wm ≳ 1.
We constrain the weights to be strictly positive, wm > 0, implying that we only learn correlations and ignore
anti-correlations.

Tighineanu, Grossberger, Baireuther, Skubch, Vinogradska, Berkenkamp

C.7 Synthetic Benchmarks

The Branin Benchmark The Branin function is a two-dimensional function with three global optima defined
as

f(x1, x2; a, b, c, r, s, t) = a(x2 − bx2
1 + cx1 − r) + s(1− t) cos(x1) + s, x1 ∈ [−5, 10] , x2 ∈ [0, 15] (20)

We convert it to a meta-learning benchmark by choosing the following probability distributions for the parameters
(a, b, c, r, s, t):

a ∼ U(0.5, 1.5),
b ∼ U(0.1, 0.15),
c ∼ U(1, 2),
r ∼ U(5, 7),
s ∼ U(8, 12),
t ∼ U(0.03, 0.05).

(21)

The Branin meta-learning benchmark is thus defined over a six-dimensional uniform distribution. For generating
the data of ns meta-tasks, we draw ns random tasks using (21), and sample a given number of parameters per
task uniformly at random.

The Hartmann 3D Benchmark The Hartmann 3D function is a sum of four three-dimensional Gaussian
distributions and is defined by

f(x;α) = −
4∑

i=1

αi exp

− 3∑
j=1

Ai,j (xj − Pi,j)
2

 , x ∈ [0, 1]
3
, (22)

with

A =

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

 , P = 10−4

3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

 .

The original Hartmann 3D function is given by α = (1.0, 1.2, 3.0, 3.2)T . In this paper, a family of functions is
formed by choosing the following probability distributions for the parameters α = (α1, α2, α3, α4)

T :

α1 ∼ U(1.00, 1.02), α2 ∼ U(1.18, 1.20), α3 ∼ U(2.8, 3.0), α4 ∼ U(3.2, 3.4). (23)

The Hartmann 3D family therefore spans a four-dimensional uniform distribution. For generating the data of M
meta-tasks, we draw M random tasks using (23), and sample a given number of parameters per task uniformly at
random.

The Hartmann 6D Benchmark The Hartmann 6D function is a sum of four six-dimensional Gaussian
distributions with six local optima and one global optimum and is defined by

f(x;α) = −
4∑

i=1

αi exp

− 6∑
j=1

Ai,j (xj − Pi,j)
2

 , x ∈ [0, 1]
6
, (24)

with

A =

10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 ,

P = 10−4

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

 .

Scalable Meta-Learning with Gaussian Processes

The original Hartmann 6D function is given by α = (1.0, 1.2, 3.0, 3.2)T . We convert it to a meta-learning benchmark
by placing the following probability distributions for α = (α1, α2, α3, α4)

T based on the emukit (Paleyes et al.,
2019) implementation2:

α1 ∼ U(1.00, 1.02), α2 ∼ U(1.18, 1.20), α3 ∼ U(2.8, 3.0), α4 ∼ U(3.2, 3.4). (25)

The Hartmann 6D meta-learning benchmark is therefore defined over a four-dimensional uniform distribution.
For generating the data of M meta-data sets, we draw M random tasks using (25), and sample a given number
of parameters per meta-task uniformly at random.

C.8 Meta-Learning and Bayesian Optimization on Tabular Benchmarks

For the machine learning hyperparameter optimization benchmarks we use tabular benchmarks from the HPOBench
framework (Eggensperger et al., 2021) from the Git branch "master" at commit 47bf141 (licensed under Apache-
2.0). The objective values reported to each optimizer are average objective values over all available seeds in the
look up table for each configuration respectively, i.e. no specific seed is given to HPOBench’s objective function.
All search spaces consist of ordinal parameters due to the tabular nature of the benchmark and do not contain
any conditions, i.e., levels hierarchy. We carry out meta-learning and Bayesian optimization on these tabular
benchmarks according to Algorithm 2.

Algorithm 2 Meta-Learning and Bayesian Optimization on Tabular Benchmarks

1: Input: budget T , tabular data D = {X,Y }, task-ID set I, num. parameters per meta-task Nm

2: Sample meta-tasks, Im, m ∈M = {1, 2, . . . ,M}, and test-task, It, IDs from I.
3: Generate the meta-data, Dm = D ∩ Im, and test-data, Dt = D ∩ It.
4: For each meta-task, randomly sub-sample the meta-data to obtain Nm points per meta-task.
5: Condition the model on the meta-data D1:M .
6: Dt = ∅
7: for i ∈ {1, . . . , T} do
8: Calculate xi with (3) by maximizing the acquisition function over the discrete search space.
9: Optimize likelihood function and condition the model on Dt ← Dt ∪ {xi, yi(xi)} as in (7).

10: end for

Each of the following subsections contains the details for the respective task families.

C.8.1 Random Forest (RF)

The (meta-)tasks were sampled from the following HPOBench task IDs: 10101, 12, 146195, 146212, 146606,
146818, 146821, 146822, 14965, 167119, 167120, 168329, 168330, 168331, 168335, 168868, 168908, 168910, 168911,
168912, 3, 31, 3917, 53, 7592, 9952, 9977, 9981

The tabular data version used by HPOBench was (Mallik, 2021b).

We fixed the benchmark’s fidelities to the default fidelities provided by HPOBench since the multi-fidelity scenario
was not considered in our experiments: n_estimators = 512, subsample = 1.

The search space contained the following parameters with their respective ordinal values (truncated after the
third decimal place for readability).

Name Values
max_depth 1.0, 2.0, 3.0, 5.0, 8.0, 13.0, 20.0, 32.0, 50.0

max_features 0.0, 0.111, 0.222, 0.333, 0.444, 0.555, 0.666, 0.777, 0.888, 1.0

min_samples_leaf 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0, 20.0

min_samples_split 2.0, 3.0, 5.0, 8.0, 12.0, 20.0, 32.0, 50.0, 80.0, 128.0

2https://web.archive.org/web/20230126095651/https://github.com/EmuKit/emukit/blob/
b4e59d0867c3a36b72451e7ec5864491d3c11bbe/emukit/test_functions/multi_fidelity/hartmann.py

https://web.archive.org/web/20230126095651/https://github.com/EmuKit/emukit/blob/b4e59d0867c3a36b72451e7ec5864491d3c11bbe/emukit/test_functions/multi_fidelity/hartmann.py
https://web.archive.org/web/20230126095651/https://github.com/EmuKit/emukit/blob/b4e59d0867c3a36b72451e7ec5864491d3c11bbe/emukit/test_functions/multi_fidelity/hartmann.py

Tighineanu, Grossberger, Baireuther, Skubch, Vinogradska, Berkenkamp

C.8.2 Logistic Regression (LR)

The (meta-)tasks were sampled from the following HPOBench task IDs: 10101, 146195, 146606, 146821, 14965,
167120, 168330, 168335, 168908, 168910, 168912, 31, 53, 9952, 9981, 12, 146212, 146818, 146822, 167119, 168329,
168331, 168868, 168909, 168911, 3, 3917, 7592, 9977

The tabular data version used by HPOBench was (Mallik, 2021a).

We fixed the benchmark’s fidelities to the default fidelities provided by HPOBench since the multi-fidelity scenario
was not considered in our experiments: iter = 1000, subsample = 1.0

The search space contained the following parameters with their respective ordinal values (truncated after the
sixth decimal place for readability).

Name Values
alpha 0.000009, 0.000016, 0.000026, 0.000042, 0.000068, 0.000110, 0.000177, 0.000287,

0.000464, 0.000749, 0.001211, 0.001957, 0.003162, 0.005108, 0.008254, 0.013335,
0.021544, 0.034807, 0.056234, 0.090851, 0.146779, 0.237137, 0.383118, 0.618965,
1.0

eta0 0.000009, 0.000016, 0.000026, 0.000042, 0.000068, 0.000110, 0.000177, 0.000287,
0.000464, 0.000749, 0.001211, 0.001957, 0.003162, 0.005108, 0.008254, 0.013335,
0.021544, 0.034807, 0.056234, 0.090851, 0.146779, 0.237137, 0.383118, 0.618965,
1.0

C.8.3 Support Vector Machine (SVM)

The (meta-)tasks were sampled from the following HPOBench task IDs: 10101, 146195, 146606, 146821, 14965,
167120, 168330, 168335, 168908, 168910, 168912, 31, 53, 9952, 9981, 12, 146212, 146818, 146822, 167119, 168329,
168331, 168868, 168909, 168911, 3, 3917, 7592, 9977

The tabular data version used by HPOBench was Mallik (2021c).

We fixed the benchmark’s fidelity to the default fidelity provided by HPOBench since the multi-fidelity scenario
was not considered in our experiments: subsample = 1.0

The search space contained the following parameters with their respective ordinal values (truncated after the
fourth decimal place for readability).

Name Values
C 0.0009, 0.0019, 0.0039, 0.0078, 0.0156, 0.0312, 0.0625, 0.125, 0.25, 0.5, 1.0, 2.0,

4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0, 512.0, 1024.0

gamma 0.0009, 0.0019, 0.0039, 0.0078, 0.0156, 0.0312, 0.0625, 0.125, 0.25, 0.5, 1.0, 2.0,
4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0, 512.0, 1024.0

C.8.4 XGBoost (XGB)

The (meta-)tasks were sampled from the following HPOBench task IDs: 10101, 12, 146212, 146606, 146818,
146821, 146822, 14965, 167119, 167120, 168911, 168912, 3, 31, 3917, 53, 7592, 9952, 9977, 9981

The tabular data version used by HPOBench was Mallik (2021d).

We fixed the benchmark’s fidelities to the default fidelities provided by HPOBench since the multi-fidelity scenario
was not considered in our experiments: n_estimators = 2000, subsample = 1

The search space contained the following parameters with their respective ordinal values (truncated after the
fourth decimal place for readability).

Scalable Meta-Learning with Gaussian Processes

Name Values
colsample_bytree 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

eta 0.0009, 0.0021, 0.0045, 0.0098, 0.0212, 0.0459, 0.0992, 0.2143,
0.4629, 1.0

max_depth 1.0, 2.0, 3.0, 5.0, 8.0, 13.0, 20.0, 32.0, 50.0

reg_lambda 0.0009, 0.0045, 0.0212, 0.0992, 0.4629, 2.1601, 10.0793, 47.0315,
219.4544, 1024.0

C.8.5 FC-Net

We ran the following scenarios: Slice Localization (Slice), Protein Structure (Protein), Naval Propulsion (Naval),
Parkinson’s Telemonitoring (Parkinson’s). We used these in a leave-one-out meta-learning setup, where one is
the test-task and the other three the meta-tasks. To keep the search space non-hierarchical, we fixed the two
activation function parameters to "relu" and the learning rate schedule to "cosine", which corresponds to the
most optimal value across all benchmarks and yields the following, fully ordinal search space.

Name Values
batch_size 8, 16, 32, 64

dropout_1 0.0, 0.3, 0.6

dropout_2 0.0, 0.3, 0.6

init_lr 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1

n_units_1 16, 32, 64, 128, 256, 512

n_units_2 16, 32, 64, 128, 256, 512

The fidelity was fixed to the maximum value (usually 100 epochs) and the average for objective values across all
available seeds was used.

C.8.6 PD1

We ran the PD1 benchmark as described in its companion paper (Wang et al., 2023). We dropped the incomplete
task "ImageNet ResNet50 1024" and used the remaining 23 tasks in a leave-one-out meta-learning setup.

C.9 Computational Resources

We conducted our experiments on Azure’s Standard_D64s_v3 instances, which offer 64 virtual cores and are
powered by "Intel(R) Xeon(R) CPU E5-2673 v4". All experiments and results shown in the paper and appendix
took approximately 20 days worth of sequential compute in total.

Tighineanu, Grossberger, Baireuther, Skubch, Vinogradska, Berkenkamp

D ADDITIONAL EXPERIMENTS

We provide the simple-regret plots of the ablation study discussed in Figure 3. In this study we explore the
performance of the different baselines on the synthetic benchmarks for various configurations in the meta-data.

D.1 Ablation studies on the Branin benchmark

10−1

101

R
eg

re
t

Branin
M = 2 Nm = 32

Branin
M = 4 Nm = 32

Branin
M = 8 Nm = 32

1 20 40

Iteration

10−1

101

R
eg

re
t

Branin
M = 16 Nm = 32

1 20 40

Iteration

Branin
M = 32 Nm = 32

1 20 40

Iteration

Branin
M = 64 Nm = 32

ScaML-GP

StackGP

SGPT

RGPE

GC3P

GPBO

ABLR

FSBO

RM-GP-UCB

HyperBO

Figure 6: Experimental results on the Branin benchmark for different number of meta-tasks. Each meta-task is
endowed with 32 points sampled uniformly at random from the task function’s domain D.

Scalable Meta-Learning with Gaussian Processes

100

102

R
eg

re
t

Branin
M = 8 Nm = 8

Branin
M = 8 Nm = 16

Branin
M = 8 Nm = 32

1 20 40

Iteration

100

102

R
eg

re
t

Branin
M = 8 Nm = 64

1 20 40

Iteration

Branin
M = 8 Nm = 128

1 20 40

Iteration

Branin
M = 8 Nm = 256

ScaML-GP

StackGP

SGPT

RGPE

GC3P

GPBO

ABLR

FSBO

RM-GP-UCB

HyperBO

Figure 7: Experimental results on the Branin benchmark for different number of points per task, which are
sampled uniformly at random from the task function’s domain D. Here, we keep the number of meta-tasks fixed
to eight.

Tighineanu, Grossberger, Baireuther, Skubch, Vinogradska, Berkenkamp

D.2 Ablation studies on the Hartmann6 benchmark

10−1

100

R
eg

re
t

Hartmann 6D
M = 2 Nm = 128

Hartmann 6D
M = 4 Nm = 128

Hartmann 6D
M = 8 Nm = 128

1 25 50 75

Iteration

10−1

100

R
eg

re
t

Hartmann 6D
M = 16 Nm = 128

1 25 50 75

Iteration

Hartmann 6D
M = 32 Nm = 128

1 25 50 75

Iteration

Hartmann 6D
M = 64 Nm = 128

ScaML-GP

StackGP

SGPT

RGPE

GC3P

GPBO

ABLR

FSBO

RM-GP-UCB

HyperBO

Figure 8: Experimental results on the Hartmann6 benchmark for different number of meta-tasks. Each meta-task
is endowed with 128 points sampled uniformly at random from the task function’s domain D.

Scalable Meta-Learning with Gaussian Processes

10−1

100

R
eg

re
t

Hartmann 6D
M = 8 Nm = 16

Hartmann 6D
M = 8 Nm = 32

Hartmann 6D
M = 8 Nm = 64

1 25 50 75

Iteration

10−1

100

R
eg

re
t

Hartmann 6D
M = 8 Nm = 128

1 25 50 75

Iteration

Hartmann 6D
M = 8 Nm = 256

1 25 50 75

Iteration

Hartmann 6D
M = 8 Nm = 512

ScaML-GP

StackGP

SGPT

RGPE

GC3P

GPBO

ABLR

FSBO

RM-GP-UCB

HyperBO

Figure 9: Experimental results on the Hartmann6 benchmark for different number of points per task, which are
sampled uniformly at random from the task function’s domain D. Here, we keep the number of meta-tasks fixed
to eight.

Tighineanu, Grossberger, Baireuther, Skubch, Vinogradska, Berkenkamp

Checklist

1. For all models and algorithms presented, check if you include:

(a) A clear description of the mathematical setting, assumptions, algorithm, and/or model. [Yes] Mathe-
matical setting and assumptions are discussed in Section 3 and Assumptions 1–3, respectively.

(b) An analysis of the properties and complexity (time, space, sample size) of any algorithm. [Yes] The
complexity of our method is discussed in Section 4 and detailed in Appendix B.

(c) (Optional) Anonymized source code, with specification of all dependencies, including external libraries.
[Yes] https://github.com/boschresearch/Scalable-Meta-Learning-with-Gaussian-Processes

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all theoretical results. [Yes] See Assumptions 1–3.
(b) Complete proofs of all theoretical results. [Yes] Lemma 1 and Theorem 1 are proved in Appendix A.
(c) Clear explanations of any assumptions. [Yes] Clear explanations are given when discussing Assumptions 1–

3 in the main text as well as in Appendix C.3.

3. For all figures and tables that present empirical results, check if you include:

(a) The code, data, and instructions needed to reproduce the main experimental results (either in the
supplemental material or as a URL). [Yes] We will provide code that reproduces our results after the
acceptance of the paper.

(b) All the training details (e.g., data splits, hyperparameters, how they were chosen). [Yes] Details of our
experimental setup are discussed in Section 5 and in Appendix C in more detail.

(c) A clear definition of the specific measure or statistics and error bars (e.g., with respect to the random seed
after running experiments multiple times). [Yes] We specify this in our experiments section, Section 5.

(d) A description of the computing infrastructure used. (e.g., type of GPUs, internal cluster, or cloud
provider). [Yes] We provide details in Appendix C.9.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets, check if you
include:

(a) Citations of the creator If your work uses existing assets. [Yes]
(b) The license information of the assets, if applicable. [Yes]
(c) New assets either in the supplemental material or as a URL, if applicable. [Not Applicable]
(d) Information about consent from data providers/curators. [Not Applicable]
(e) Discussion of sensible content if applicable, e.g., personally identifiable information or offensive content.

[Not Applicable]

5. If you used crowdsourcing or conducted research with human subjects, check if you include:

(a) The full text of instructions given to participants and screenshots. [Not Applicable]
(b) Descriptions of potential participant risks, with links to Institutional Review Board (IRB) approvals if

applicable. [Not Applicable]
(c) The estimated hourly wage paid to participants and the total amount spent on participant compensation.

[Not Applicable]

https://github.com/boschresearch/Scalable-Meta-Learning-with-Gaussian-Processes

	INTRODUCTION
	RELATED WORK
	PROBLEM STATEMENT
	SCALABLE MULTI-TASK KERNEL
	EXPERIMENTS
	Synthetic Benchmarks
	HPO Benchmarks

	CONCLUSION
	 SUPPLEMENTARY MATERIAL
	KERNEL PROPERTIES
	COMPLEXITY ANALYSIS
	DETAILS ON EXPERIMENTS
	Data Normalization
	Implementation Details of ScaML-GP
	Importance of Satisfying the Assumptions of ScaML-GP in Practice
	Implementation Details of RGPE
	Implementation Details of RM-GP-UCB
	Choices of Prior Distributions and Constraints for GP Hyperparameters
	Synthetic Benchmarks
	Meta-Learning and Bayesian Optimization on Tabular Benchmarks
	Random Forest (RF)
	Logistic Regression (LR)
	Support Vector Machine (SVM)
	XGBoost (XGB)
	FC-Net
	PD1

	Computational Resources

	ADDITIONAL EXPERIMENTS
	Ablation studies on the Branin benchmark
	Ablation studies on the Hartmann6 benchmark

