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Abstract

The zero-sum game in generative adversar-
ial networks (GANs) for learning the distri-
bution of observed data is known to reduce
to the minimization of a divergence measure
between the underlying and generative mod-
els. However, the current theoretical un-
derstanding of the role of the target diver-
gence in the characteristics of GANs’ gen-
erated samples remains largely inadequate.
In this work, we aim to analyze the influ-
ence of the divergence measure on the local
optima and convergence properties of diver-
gence minimization problems in learning a
multi-modal data distribution. We show a
mode-seeking f -divergence, e.g. the Jensen-
Shannon (JS) divergence in the vanilla GAN,
could lead to poor locally optimal solutions
missing some underlying modes. On the
other hand, we demonstrate that the op-
timization landscape of 1-Wasserstein dis-
tance in Wasserstein GANs does not suffer
from such suboptimal local minima. Further-
more, we prove that a randomly-initialized
gradient-based optimization of the Wasser-
stein distance will, with high probability, cap-
ture all the existing modes. We present nu-
merical results on standard image datasets,
revealing the success of Wasserstein GANs
compared to JS-GANs in avoiding subopti-
mal local optima under a mixture model.

1 INTRODUCTION

Generative adversarial networks (GANs) (Goodfellow
et al., 2014) have achieved remarkable results in var-
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ious tasks in computer vision (Brock et al., 2018),
speech processing (Donahue et al., 2018), and com-
putational biology (Gupta and Zou, 2019). The GAN
framework is based on a zero-sum game between a gen-
erator G aiming to map a random input Z to a real-like
sample and discriminator D distinguishing generated
samples from real data X. GANs are usually formu-
lated as a min-max optimization problem to optimize
the two involved players:

min
G∈G

max
D∈D

V (G,D). (1)

Here G, D represent the function sets for the gener-
ator and discriminator players, respectively, and the
min-max objective function V (G,D) is designed to be
D’s assigned dissimilarity score between G’s generated
samples and training data.

A standard approach to formulate the GAN objective
function V (G,D) is to utilize the dual representation
of a divergence function d(PX , PG(Z)) between the dis-
tribution of real data PX and generative model PG(Z).
For example, the vanilla GAN (VGAN) (Goodfellow
et al., 2014) is based on the Jensen-Shannon (JS) di-
vergence; f -GAN (Nowozin et al., 2016) optimizes a
general f -divergence; Wasserstein GAN (WGAN) (Ar-
jovsky et al., 2017; Gulrajani et al., 2017) minimizes
the 1-Wasserstein distance; Lipschitz GANs such as
DRAGAN (Kodali et al., 2017) and SN-GAN (Miyato
et al., 2018) minimize a hybrid of Wasserstein distance
and JS-divergence according to (Farnia and Tse, 2018).

Considering the GAN formulations optimizing differ-
ent divergence scores, a natural question is what the
effects of a target divergence are on the properties of
the trained generative model. In other words, we seek
to understand the consequences of optimizing differ-
ent divergence measures and study the induced prop-
erties of the trained generative model. Addressing this
question is the key to the proper selection of a GAN
formulation for a specific application of interest.

The above question has been numerically investi-
gated in (Lucic et al., 2018; Sajjadi et al., 2018;
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Kynkäänniemi et al., 2019; Naeem et al., 2020). These
studies propose a set of evaluation metrics to assess the
quality and diversity of the GAN’s generated data, and
compare different GAN formulations based on their
achieved empirical scores. On the other hand, the the-
oretical studies of the question have mostly focused on
the effect of divergence measures on the training stabil-
ity and generalization in GAN min-max optimization
(Arjovsky et al., 2017; Kodali et al., 2017; Arjovsky
and Bottou, 2017; Feizi et al., 2020) and have not ad-
equately compared the properties of the optimal gen-
erator following from different divergence measures.

In this work, we carry out a theoretical study on the
influence of divergence measures on the local optima of
divergence minimization problems. In our theoretical
analysis, we consider the local minima of the diver-
gence cost function and attempt to evaluate the di-
versity performance of the trained generative model.
Since GANs are commonly trained via first-order op-
timization methods, the existence of poor local optima
would lead to suboptimal generator functions with un-
satisfactory diversity and quality performance.

Specifically, we consider multi-modal underlying distri-
butions comprised of multiple separate modes, where
the learner searches for the center points of the modes.
Our first result shows that under bounded and well-
separated modes, the optimization landscape of the
Wasserstein distance does not suffer from poor locally
optimal solutions for gradient-based methods missing
any mode present in the data distribution. Addition-
ally, we prove that a randomly-initialized gradient-
based minimization of the 1-Wasserstein distance over
a multi-modal generative model is expected to discover
all the underlying mode centers. This theoretical re-
sult suggests the power of Wasserstein GANs in cap-
turing the diversity of a multi-modal distribution.

On the other hand, we prove that for a class of f -
divergence measures characterized as “mode-seeking”
in the recent paper (Li and Farnia, 2023), such as the
JS-divergence, the divergence minimization problem
for finding the modes’ center will suffer from poor lo-
cal optima missing one or multiple center points in
the underlying distribution. This result not only indi-
cates the possibility of mode collapse in mode-seeking
f -GANs, but also indicates that a trained generator
via mode-seeking f -GANs may produce high-quality
samples from a subset of modes while missing some
modes in the underlying mixture distribution. There-
fore, our theoretical study implies the challenges of ap-
plying mode-seeking f -GANs, e.g. VGAN minimizing
the JS-divergence, to learn a multi-modal distribution,
a phenomenon that has also been numerically observed
in (Lucic et al., 2018; Li and Farnia, 2023).

Finally, we present the results of several numerical ex-
periments to validate our theoretical findings. In our
experiments, we consider synthetic Gaussian mixture
data as well as standard image datasets to support the
theoretical statements. Our empirical results suggest
that Wasserstein GANs manage to capture the exist-
ing modes in the dataset, while the vanilla GAN mini-
mizing the JS-divergence could fail in detecting all the
existing modes and in multiple cases could completely
ignore some of the underlying components. In con-
trast, we numerically show that the Lipschitz GANs
minimizing the hybrid divergence of Wasserstein dis-
tance and JS-divergence can successfully capture the
variety in the training set. In summary, the followings
are this work’s main contributions:

• A theoretical study of the influence of a divergence
measure on the local minima in divergence mini-
mization problems.

• Proving a theoretical guarantee for the convergence
of gradient-basedWasserstein distance minimization
under a multi-modal distribution.

• Demonstrating the existence of poor locally opti-
mal solutions in mode-seeking f -divergence mini-
mization problems.

• Providing a numerical evaluation of GAN models
with different divergence measures in application to
multi-modal underlying distributions.

2 RELATED WORK

Convergence and Stability in GAN Training.
Multiple studies have been conducted to investigate
the convergence properties of different GAN for-
mulations. Generally, there is no guarantee that
the nonconvex-nonconcave min-max optimization of
GANs will converge to a global saddle point (Nash
equilibrium) (Farnia and Ozdaglar, 2020), and the ex-
isting results only guarantee convergence to local min-
max optima (Heusel et al., 2017). Also, it was shown
in (Nagarajan and Kolter, 2017) that a simplified lin-
earized GAN optimization via gradient descent is lo-
cally stable. It was hypothesized in (Kodali et al.,
2017) that suboptimal local equilibria in GANs are re-
sponsible for mode collapse. In another related work
(Liu et al., 2017), the relative strength of the conver-
gence of various adversarial formulations of divergence
measures is investigated. We note that unlike our anal-
ysis, the mentioned works do not focus on the local op-
tima of the GAN’s target divergence measure, which
is in general different from the set of local min-max
optima in the GAN optimization.
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A discussed advantage of Wasserstein GANs in the lit-
erature is their training stability (Arjovsky and Bot-
tou, 2017; Arjovsky et al., 2017). Nevertheless, it
was shown in (Nagarajan and Kolter, 2017; Mescheder
et al., 2018) that a simplified linearized formulation
of the Wasserstein GAN can have non-convergent
limit cycles in the min-max optimization. We remark
that the non-convergent cycles in the linearized min-
max GAN problem do not correspond to the critical
points of the Wasserstein distance that are analyzed
in our work, and also the cycles may not appear in
a more precise formulation based on the entire set
of 1-Lipschitz discriminators. Regarding the stabil-
ity of Wasserstein GANs, (Feizi et al., 2020) shows
that training of the 2-Wasserstein GAN enjoys global
stability in a simplified setting with a linear gener-
ator and a quadratic discriminator. (Farnia et al.,
2023) shows convergence to local stationary minimax
solutions for 2-Wasserstein GANs in learning a mix-
ture of two symmetric Gaussians. For other relevant
works, a smoothed Wasserstein GAN that is guaran-
teed to converge to a stationary point was proposed in
(Sanjabi et al., 2018). The convergence properties of
sliced Wasserstein distance minimization were studied
in (Kolouri et al., 2018; Nadjahi et al., 2019).

Mode-seeking and Mode-covering Divergence
Measures. Under a multi-modal data distribution,
different choices of divergence measures in the GAN
optimization objective could lead to highly different
fitted distributions. Divergence measures can be di-
vided into two classes: mode-seeking divergence mea-
sures (e.g. reverse KL-divergence) which tend to fa-
vor the quality of the samples over their diversity
(Bishop, 2006; Huszár, 2015), and mode-covering di-
vergence measures (e.g. KL-divergence) which tend to
favor diversity over quality (Bishop, 2006; Poole et al.,
2016; Lucas et al., 2019). Theoretical aspects of mode-
seeking and mode-covering divergence measures were
studied in (Shannon et al., 2020; Li and Farnia, 2023).
In (Li and Farnia, 2023), precise theoretical charac-
terizations of mode-seeking f -divergences and perfor-
mance guarantees are given. This will be elaborated
in Section 3.3. The 1-Wasserstein distance often ex-
hibits mode-covering behavior, and is shown not to be
mode-seeking (Li and Farnia, 2023).

3 PRELIMINARIES

3.1 Wasserstein Distance and WGANs

A family of GAN problems was studied in (Arjovsky
et al., 2017), where the 1-Wasserstein distance between
the data and generative models is minimized. The def-
inition of the q-Wasserstein distance between distribu-
tions P and Q is the following for every q ≥ 1 (Villani,

2003):

Wq

(
P,Q

)
:= inf

M∈Π(P,Q)
E(X,X′)∼M

[∥∥X−X′∥∥q]1/q,
(2)

where Π(P,Q) is the set of all couplings on (X,X ′)
marginally distributed as X ∼ P and X ′ ∼ Q. Ap-
plying the Kantorovich-Rubinstein duality (Villani,
2003), (Arjovsky et al., 2017) formulates the min-max
Wasserstein GAN (WGAN) problem that is equiva-
lent to minimizing W1-distance between PX and PG(Z)

when D is the set of all 1-Lipschitz functions:

min
G∈G

max
D∈D1-Lipschitz

E
[
D(X)

]
− E

[
D(G(Z))

]
.

3.2 f-GANs and f-divergence Minimization

For a convex function f : [0,∞) → R with f(1) = 0,
the f -divergence (Csiszár and Shields, 2004) between
distributions P,Q with density functions p, q is defined
as

df (P,Q) := EX∼Q

[
f
(p(X)

q(X)

)]
=

∫
q(x)f

(p(x)
q(x)

)
dx.

(3)
Well-known examples of f -divergence are the KL-
divergence with fKL(t) = t log t and the JS-divergence
with fJS(t) = t log 2t

t+1 + log 2
t+1 .

Using the variational representation of f -divergence
scores (Nguyen et al., 2010), (Nowozin et al., 2016)
proposes the following GAN min-max optimization
problem called f -GAN, which for a set of all functions
D is equivalent to the f -divergence minimization prob-
lem df (PX , PG(Z)) between the distributions of dataX
and generator’s output G(Z):

min
G∈G

max
D∈D

E
[
D(X)

]
− E

[
f∗(D(G(Z))

)]
. (4)

In the above, f∗(s) := supt st − f(t) is the Fenchel-
conjugate of function f . The above formulation gen-
eralizes the vanilla GAN (VGAN) problem targeting
the JS-divergence.

3.3 Mode-seeking Divergence Measures

One operational setting for classifying mode-seeking
and mode-covering divergence measures is to fit a
Gaussian distribution (or another unimodal distribu-
tion) to a mixture of Gaussian distributions, where a
mode-seeking divergence measure will fit one of the
components (or modes), and a mode-covering diver-
gence measure will give a distribution that cover all the
modes (Bishop, 2006). The recent work (Li and Far-
nia, 2023) offers a theoretical characterization of mode-
seeking f -divergence measure, called strongly mode-
seeking divergence measure, by the following condi-
tions:
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• Conditon I: limt→∞ f(t)/t < ∞.
• Conditon II: f(t) is strongly convex for t ∈ (0, s]
for some s > 1.

It was shown in (Li and Farnia, 2023) that a strongly
mode-seeking divergence measure guarantees that,
when a symmetric quasiconcave distribution is fitted
to a mixture of symmetric quasiconcave distributions,
the fitted distribution will coincide with one of the
modes.1 JS-divergence with f(t) = t log 2t

t+1 + log 2
t+1

and reverse-KL divergence with f(t) = − log(t) sat-
isfy the mentioned conditions and are strongly mode-
seeking. On the other hand, the first condition does
not hold for KL-divergence with f(t) = t log t, which
is consistent with the mode-covering behavior that is
empirically observed for KL-divergence.

4 THEORETICAL RESULTS ON
WASSERSTEIN DISTANCE
MINIMIZATION

In this section, we prove the main result showing that
for fitting a mixture model distribution to a mixture
data distribution, the gradient descent algorithm ap-
plied on the loss function given by the 1-Wasserstein
distance will converge to the global optimum (i.e.,
the model distribution matches the data distribution)
with high probability, when the initial positions of the
modes are initialized at random.

To describe the theoretical setup, consider the setting
where the data distribution P is a mixture of n shifted
modes of the probability density function p over Rm

P (x) =
1

n

n∑
i=1

p(x− µi), (5)

where µ1, . . . ,µn ∈ Rm are distinct. To study the op-
tima and convergence properties of the optimization
landscape for divergence scores, we will fit the mix-
ture Qν1:n(x) = 1

n

∑n
i=1 p(x − νi) parameterized by

center variables ν1, . . . ,νn to P by minimizing a tar-
get divergence measure d:

min
ν1,...,νn∈Rm

d
(
P,Qν1:n

)
. (6)

While it is clear that the divergence is minimized when
Qν1:n

= P , i.e., {ν1, . . . ,νn} = {µ1, . . . ,µn}, whether
this optimum can be found via gradient descent de-
pends on the choice of the divergence measure d. First,
we study the convergence behavior when d is chosen

1Three definitions of mode-seeking divergence mea-
sures, namely weakly, strongly and uniformly mode-
seeking, in increasing order of stringency and strength of
guarantees, were studied in (Li and Farnia, 2023).

to be the 1-Wasserstein distance W1(P,Qν1:n). We re-
gard the Wasserstein distance as a function of {νj},
and optimize it via the gradient descent algorithm as
a standard first-order method over the variables {νj}.
The gradient descent update rule for 1 ≤ j ≤ n is

ν
(t+1)
j = ν

(t)
j − α(t)∇νjW1(P,Qν1:n), (7)

where α(t) > 0 is the learning rate at iteration t. The
following theorem shows that as long as the distribu-
tion p is supported within a ball of radius small enough
compared to the distances between µi’s, i.e., the com-
ponents of P are well-separated, then gradient descent
will converge to (close to) the optimal solution. Note
that for a fixed learning rate, we can only guarantee
that gradient descent will eventually stay close to the
optimum, but not exactly converging to the optimum,
due to the inherent limitation of gradient descent ap-
plied on minimizing a function with discontinuous gra-
dient. This limitation can be circumvented by having
a variable learning rate that tends to 0.2

Theorem 1. Fix m ≥ 3 and R, r > 0. Assume the
distribution p is supported within a ball of radius r
centered at the origin. Fix any µ1, . . . ,µn ∈ Bm

R (the
m-dimensional ball of radius R centered at 0) with
δmin := mini ̸=j ∥µi − µj∥. Assume we initialize the

variables ν
(0)
1 , . . . ,ν

(0)
n i.i.d. at random uniformly dis-

tributed over Bm
R . We have:

• If the learning rate α(t) = α is fixed, then as long
as α ≤ nr, gradient descent (7) will eventually stay
within a distance α/n from an optimal solution, i.e.,
there exists a permutation σ over {1, . . . , n} such

that the set {(i, t) : ∥ν(t)
σ(i) − µi∥ > α/n} is finite,

with probability at least

1− Cm,nr/δmin,

where Cm,n > 0 only depends on m,n.

• If the learning rates α(t) satisfy α(t) ≤ nr for all
t,
∑∞

t=0 α
(t) = ∞, and limt→∞ α(t) = 0, then gra-

dient descent (7) will converge to an optimal so-
lution, i.e., there exists a permutation σ such that

limt→∞ ν
(t)
σ(i) = µi for all i, with probability at least

1− Cm,nr/δmin.

Moreover, if µ1, . . . ,µn are i.i.d. uniform over Bm
R as

well, then the probabilities in the two cases above can
be lower-bounded by 1− Cm,nr/R instead.

2Regarding the case where the learning rate is fixed,
note that for the case n = 1, we have W1(P,Q) = |ν1−µ1|,
and hence gradient descent will give ν

(t)
1 that oscillates

around µ1, and will never converge. We can only hope for
having the iterations eventually stay within a small dis-
tance from the optimal solution. This limitation can be
circumvented by having a variable learning rate satisfying∑∞

t=0 α
(t) = ∞ and limt→∞ α(t) = 0.
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Proof. We defer the proof to the Appendix.

As the above result suggests, under random initializa-
tion of the centers, a gradient-based optimization of
the Wasserstein distance will manage to find all the
underlying center points.

We note that Li and Farnia (2023) show that when
Wasserstein distance is used to fit a unimodal model
distribution to a multi-modal data distribution, the
global minimum may fail to capture any mode. On the
other hand, we show that a multi-modal model distri-
bution can be fitted to a multi-modal data distribution
using Wasserstein distance minimization via gradient
descent, indicating that Wasserstein distance is suit-
able as long as the model is rich enough to capture the
multi-modal structure of the data distribution. Next,
we will study if these desired properties also hold for
f -GANs minimizing an f -divergence measure.

5 THEORETICAL RESULTS ON
MODE-SEEKING
f-DIVERGENCE

Here, we show that for fitting a mixture model distri-
bution to a mixture data distribution, if the loss func-
tion is given by a strongly mode-seeking divergence
measure (Li and Farnia, 2023), then there are local op-
tima that are globally suboptimal. More specifically, if
the model distribution is initialized at a subset of the
modes of the data distribution (e.g. if the data con-
tains images of red, green and blue objects, but the
model is initialized such that it captures only the red
and green objects), then any local search algorithm
will not be able to find the global optimum, i.e., there
is no continuous path from the initial distribution to
the optimal distribution where the divergence measure
is nonincreasing.

Similar to the problem setup in the previous sec-
tion, consider the setting where the data distribution
P (x) = n−1

∑n
i=1 p(x − µi) is a mixture of n shifted

versions of the distribution p. We will fit the mix-
ture Qν1:n

(x) = n−1
∑n

i=1 p(x− νi) to P by minimiz-
ing the f -divergence df (P,Qν1:n

) via gradient descent
(or any other local search algorithms) on the variables
{νj}. For gradient descent with a small learning rate,
or a local search algorithm with a small step size, the
trajectory of the variables {νj} can be regarded as a
continuous path where df (P,Qν1:n

) is monotonically
decreasing.

The following theorem shows that, if df is a strongly
mode-seeking divergence measure (Li and Farnia,
2023) such as Jensen-Shannon divergence,3 as long as

3Here we require that f(t) is strictly convex for 0 < t <

{µi} are well-separated, if we initialize {νj} such that
each νj belongs to the set {µ1, . . . ,µn}, but there is
no one-to-one correspondence between {νj} and {µi}
(i.e., we do not initialize at the optimal solution), then
there is no continuous path from {νj} to the optimal
solution where df (P,Qν1:n) is monotonically decreas-
ing, and hence gradient descent fails to converge to the
optimal solution for small learning rate.4

Theorem 2. Suppose f : R → R is strictly convex
over (0, 1) and satisfies limt→∞ f(t)/t < ∞. Also,
assume that for the density function p, the super-
level set {x ∈ Rm : p(x) ≥ c} is bounded for all
c > 0. We suppose that initial values of {νj} sat-
isfy {ν1, . . . ,νn} ⊊ {µ1, . . . ,µn}. Then, there ex-
ists a constant Cf,p,n (which only depends on f, p, n)
such that as long as mini̸=j ∥µi − µj∥ ≥ Cf,p,n, there
does not exist any continuous path ν̃1(t), . . . , ν̃n(t)
(where ν̃j : [0, 1] → Rm is a continuous function)
such that df (P, n

−1
∑n

j=1 p(x− ν̃j(t))) is nonincreas-
ing in t, ν̃j(0) = νj for all j, and {ν̃1(1), . . . , ν̃n(1)} =
{µ1, . . . ,µn}.

Proof. We defer the proof to the Appendix.

The above theorem highlights the challenges of f -
GANs minimizing mode-seeking f -divergences in the
search for the complete set of modes in an underlying
multi-modal distribution. This is in contrast to the
behavior of Wasserstein distance in Theorem 1, which
implies that when some νi’s are coinciding with the
µi’s, as long as no three νi’s are located at the same
point, this will not result in a poor local optimum for
Wasserstein distance, as shown in the following corol-
lary of Theorem 1.

Corollary 3. Fix m ≥ 3, 0 ≤ n′ ≤ n and
R, r > 0. Assume the distribution p is supported
within a ball of radius r centered at the origin. As-
sume µ1, . . . ,µn and ν1, . . . ,νn′ are i.i.d. uniformly
distributed over Bm

R . With probability at least 1 −
Cm,nr/R, where Cm,n > 0 only depends on m,n, for
every νn′+1, . . . ,νn ∈ {µ1, . . . ,µn} such that no three
of νn′+1, . . . ,νn are the same, there exists a continu-
ous path ν̃1(t), . . . , ν̃n(t) (where ν̃j : [0, 1] → Rm is a
continuous function) such that W1(P, n

−1
∑n

j=1 p(x−
ν̃j(t))) is nonincreasing in t, ν̃j(0) = νj for all j, and
{ν̃1(1), . . . , ν̃n(1)} = {µ1, . . . ,µn}.
1 and limt→∞ f(t)/t < ∞. This is a weaker condition com-
pared to the definition of strongly mode-seeking divergence
in (Li and Farnia, 2023).

4 Li and Farnia (2023) showed that if we fit a unimodal
model distribution to a multi-modal data distribution via a
mode-seeking divergence, the global minimum will coincide
with one of the modes. Nevertheless, when a multi-modal
model distribution is fitted to a multi-modal data distri-
bution, Theorem 2 in this paper shows that local search
algorithms may fail to find the global optimum.
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Jensen-Shannon Divergence 𝑊1-JS Hybrid Distance 𝑊1 Distance

Phase 1 Trained Generator Reverse KL Divergence Squared Hellinger Distance

Figure 1: Multi-modal Gaussian mixture data (in blue) and GANs’ generated data (in orange). Mode-seeking
f -divergences were trapped in unimodal local optima, while the Wasserstein distances covered all the modes.

Proof. We defer the proof to the Appendix.

Next section, we empirically show how poor local min-
ima could affect the minimization of mode-seeking f -
divergences.

6 NUMERICAL RESULTS

In this section, we present the results of our numerical
experiments validating the theoretical findings on the
local optima and convergence properties of different
divergence minimization problems. We performed the
numerical experiments on benchmark synthetic Gaus-
sian mixture models and real image datasets including
MNIST (LeCun, 1998), CIFAR-10 (Krizhevsky et al.,
2009), and CelebA (Liu et al., 2015). To simulate
the results of minimizing f -divergence and Wasser-
stein distances, we considered the min-max optimiza-
tion in f -GANs (Nowozin et al., 2016) and Wasserstein
GAN (Arjovsky et al., 2017) as the dual formulation of
the divergence minimization problems. In our experi-
ments, we considered multi-layer perceptions (MLPs)
for the discriminator architecture to simulate the space
of all functions as needed for the dual formulation of
f -divergence measures. We defer the experiments’ de-
tails to the Appendix.

To validate our theoretical result on the existence
of poor locally optimal solutions in mode-seeking f -
GANs, we constructed datasets with a pair of clearly
separable modes. Then, in Phase 1 of training, we
trained the GAN networks on samples coming from

the first mode for 50 epochs. Subsequently, in Phase
2 we initialized the GAN networks using their weights
at the end of Phase 1 and trained them for another
50 epochs using training data from all of the modes
with equal probabilities. We monitored if the gener-
ator network in Phase 2 would manage to escape the
initial generative model that only captures one of the
modes and would be able to generate samples from all
the modes by the end of Phase 2.

In the case of Gaussian mixtures, we defined a sym-
metric mixture of five Gaussians with opposite means
at [0, 0], [±1, 0], and [0,±1] as illustrated in Fig-
ure 1. In Phase 1 of our GAN training, all the GAN
formulations managed to converge to the introduced
mode as depicted in the upper-left figure of Figure 1.
In the second training phase, we used training data
sampled from both of the modes with equal frequen-
cies. The f -GANs formulated by the mode-seeking
divergence measures, including Reverse-KL, squared
Hellinger distance, and JS-divergence as suggested
by (Li and Farnia, 2023) were all trapped around
the initial generator capturing only the mode cen-
tered at [0, 0]. In contrast, the Wasserstein GAN and
the hybrid-divergence-based SN-GAN (Miyato et al.,
2018) could escape the mode collapsed generator and
outputted samples covering all five modes by the end
of Phase 2.

For image datasets, due to the complex multi-modal
distribution of hidden variables across samples, we at-
tempted to create two well-separated modes with suf-
ficient dissimilarity. Therefore, we conducted experi-
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Figure 2: Qualitative results of GAN-based divergence minimization on bimodal image data initialized at a
unimodal point, GANs targeting W1 and W1-JS-hybrid distances could generate samples from both modes,
while JS-divergence led to a generator trapped at a unimodal point.
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ments on the following three bimodal image datasets,
each containing two distinguishable modes. In every
case, we trained a CNN classifier to distinguish sam-
ples from the two modes of the bimodal dataset in
order to estimate the number of generated data be-
longing to each mode:

1. MNIST B/W: We used one-half (25,000 samples)
of the MNIST training data as the first mode and
constructed the second mode by flipping the other
half of the MNIST samples that had white back-
grounds and black digits post-flipping.

2. CIFAR10/CelebA: The two identifiable modes
are the 5000 ship samples from CIFAR-10 and 5000
randomly selected CelebA samples.

3. CelebA Color/Grayscale: The dataset contains
half of the original CelebA samples as well as the
grayscale version of the other half of CelebA data.

4. LSUN Church Color/Grayscale: The dataset
contains half of the original LSUN Church samples
as well as the grayscale version of the other half of
LSUN Church data.

As shown in Figure 2, after training the GANs over
Phases 1 and 2, we observed that the vanilla GANmin-
imizing the mode-seeking JS-divergence was trapped
around the suboptimal initial point missing the sec-
ond mode entirely. In contrast, minimizing the 1-
Wasserstein distance in WGAN and its hybrid with
JS-divergence in SN-GAN resulted in escaping from
the unimodal initial point. The generated samples of
WGAN and SN-GAN suggest their capability in dis-
covering both modes. Additionally, we analyzed two
cases of the W1-JS hybrid distance with different Lip-
schitz constants. In the reported plots, we use the let-
ters ”H” and ”L” to indicate the higher and lower Lips-
chitz coefficients, respectively. The Lipschitz constant
was controlled by adjusting the spectral normalization
coefficient. Precise Lipschitz constants are reported in
Figure 3 by finding the maximum ℓ2-norm of the dis-
criminator’s gradient over training data. We note that
the W1-JS hybrid-H is expected to behave similarly to
JS-divergence, while the W1-JS hybrid-L is expected
to be similar to W1-distance.

Moreover, we evaluated the mode ratio statistic, as
the ratio of samples generated from the second mode
introduced in Phase 2. We used a CNN classifier for
the estimation of the mode ratio. Figure 3 plots the
mode ratio over Phase 2 of training in the case of
real image experiments. Note that VGAN targetting
mode-seeking JS-divergence continued to generate all
its images from the original mode, while Wasserstein
GAN and SN-GAN could successfully capture both

the modes. We also note that that the W1-JS hybrid-
H showed weaker mode-seeking property compared to
the W1-JS hybrid-L as the W1-JS hybrid-H reached a
lower mode ratio statistic.

We also analyzed the convergence of divergence mea-
sures over the two training phases. Figure 4 dis-
plays the convergence behavior of each divergence
measure in the experiments for the case of CelebA
Color/Grayscale. We highlight Phases 1 and 2 with
the blue and orange curves, respectively. In the plots,
a plateau can be observed towards the latter stages of
the initial training phase in the divergence curves, in-
dicating convergence to a local optimum at the end of
Phase 1. Subsequently in Phase 2, the JS-divergence
minimized by the VGAN remained almost constant
suggesting a unimodal local optimum in the divergence
minimziation, while the remaining GANs targeting the
W1-JS hybrid and W1 distances could converge toward
a bimodal solution.

Overall, the experimental results in this section sup-
port our theoretical findings on the superior perfor-
mance of Wasserstein GANs in avoiding poor local
optima missing modes of an underlying multimodal
distribution. It is also noteworthy that minimizing JS-
divergence in VGAN resulted in image samples with
visually higher quality, while the Wasserstein GAN of-
ten generated noisy images which seem to combine the
two modes in a visually imperfect way. This numerical
observation could hint at a trade-off between diversity
and quality in targeting different divergence measures.

7 CONCLUSION

In this paper, we studied the role of divergence mea-
sures in the local optima of divergence minimization
problems. We especially focused on multi-modal un-
derlying distributions learned by minimizing a mode-
seeking f -divergence, where we theoretically and nu-
merically demonstrated the existence of suboptimal lo-
cal optima that miss one or several modes. On the
other hand, we showed that the Wasserstein distance
will not lead to such poor locally optimal solutions,
and a gradient-based method could solve the distance
minimization problem to discover the center points of
the existing modes. We also numerically observed that
the hybrid of Wasssretin distance and JS-divergence
seem to address the suboptimal local optima in GAN
training problems. A future direction for our work is to
theoretically analyze the local minima of the minimiza-
tion of hybrid divergences. Another interesting topic
for future exploration is to design regularization meth-
ods for avoiding poor local optima of mode-seeking di-
vergence measures. Such regularization schemes would
be useful to improve mode diversity in GAN models.
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Figure 3: Mode ratio during Phase 2 of GAN training over bimodal image data, An α mode ratio indicates
an α-fraction of generated images from the second mode. GANs with W1 and JS-W1 hybrid distances led to
balanced modes, while VGAN (JS-divergence) led to a unimodal point.

End of 
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Figure 4: Divergence optimization progress in the CelebA Color&Grayscale bimodal dataset. VGAN minimizing
the JS-divergence failed to escape the suboptimal unimodal local optimum, while GANs targeting W1 distance
converged to the bimodal optimum.
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A Proofs

A.1 Proof of Theorem 1

Consider a coupling γ between P and Q, i.e., if (x,y) ∼ γ, then the marginal distributions are x ∼ P and y ∼ Q.
Since P (x) = n−1

∑n
i=1 p(x− µi), we can let I ∼ Unif{1, . . . , n} be a random variable such that x− µI ∼ p is

independent of I. Equivalently, conditional on I = i, x is distributed according to p shifted by µi. Similarly,
let J ∼ Unif{1, . . . , n} such that y − νJ ∼ p is independent of J . We call G ∈ Rn×n an assignment matrix
corresponding to γ if there exists I, J satisfying the aforementioned conditions such that Gi,j = P(J = j | I = i).
Note that G is doubly stochastic. We call a coupling γ pure if it has a unique assignment matrix that is a
permutation matrix.

Consider a permutation σ over {1, . . . , n}. Its cost is defined as

cσ = cσ({µi}, {νj}) :=
1

n

n∑
i=1

∥νσ(i) − µi∥.

We consider the optimal σ∗ = argminσ cσ. Define the second optimal gap as

min
σ ̸=σ∗

cσ − cσ∗ ,

which measures how close the optimal cσ∗ is from the second optimal.

Lemma 4. Fix ρ ≥ 1. If the second optimal gap is greater than 4r, then the coupling γ∗ attaining the optimum
in Wρ(P,Q) is pure, and its assignment matrix is the permutation matrix of σ∗.

Proof. Assume the contrary that γ∗ is impure. Then we can find an assignment matrix G that is not a per-
mutation matrix (if assignment matrices are not unique, then any convex combination of them must also be an
assignment matrix, so we can find an assignment matrix that is not a permutation matrix). Let (x,y) ∼ γ∗, and
I, J be the random variables corresponding to G. By Birkhoff-von Neumann theorem, assume G =

∑
σ wσPσ,

where the summation is over all permutations over {1, . . . , n}, Pσ is the permutation matrix of σ, and wσ ≥ 0
with

∑
σ wσ = 1. Since G is not a permutation matrix, there exists σ ̸= σ∗ with wσ > 0. Let S be a random

permutation with P(S = σ) = wσ, and (I, J)|{S = σ} ∼ Unif({(i, σ(i)) : i = 1, . . . , n}). Define a new coupling
(x′,y′) ∼ γ′ as follows. If S = σ∗, then (x′,y′) = (x,y). If S = σ, σ ̸= σ∗, take x′ = x, and generate y′ following
y′|{S = σ, I = i} ∼ Py|S=σ, J=σ∗(i) (i.e., the conditional distribution of y conditional on S = σ, J = σ∗(i)). We
have

E [∥x− y∥]− E [∥x′ − y′∥]

=
∑
σ ̸=σ∗

wσE
[
∥x− y∥ − ∥x− y′∥

∣∣S = σ
]

(a)

≥
∑
σ ̸=σ∗

wσE
[
∥µI−νσ(I)∥ − ∥µI−νσ∗(I)∥ − 4r

∣∣S = σ
]

=
∑
σ ̸=σ∗

wσ (cσ − cσ∗ − 4r)

> 0,

where (a) is because ∥x − µI∥, ∥y − νσ(I)∥, ∥y′ − νσ∗(I)∥ ≤ r. Hence γ∗ cannot be optimal, which leads to a
contradiction.

If the second optimal gap is large enough, not only will the optimal assignment be given by σ∗, but also gradient
descent will eventually stay within a close distance to the optimal solution.

Lemma 5. Let ϵ > 0. Assume α(t) ≤ nr,
∑∞

t=0 α
(t) = ∞, |{t : α(t) > ϵ}| < ∞. If the second optimal gap is

greater than 6r, then gradient descent will give |{(i, t) : ∥ν(t)
σ∗(i) − µi∥ > ϵ/n}| < ∞.
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Proof. We will prove by induction that the iterations of gradient descent is given by

ν
(t+1)
σ∗(i) = ν

(t)
σ∗(i) +

α(t)

n
·

µi − ν
(t)
σ∗(i)

∥µi − ν
(t)
σ∗(i)∥

. (8)

This implies that ν
(t)
σ∗(i) always lies on the line connecting ν

(0)
σ∗(i) and µi, and at each iteration t, ν

(t+1)
σ∗(i) moves

towards µi by an amount α(t)/n. Since
∑∞

t=0 α
(t) = ∞, ν

(t)
σ∗(i) will eventually move past µi and then move back

and forth around µi. Since |{t : α(t) > ϵ}| < ∞, we have α(t) ≤ ϵ for all large enough t, and hence ν
(t)
σ∗(i) will

stay within a distance ϵ/n from µi for large enough t.

We now prove (8) by induction. First, if at iteration t, the second optimal gap is greater than 4r at {ν(t)
j }, then

the gap is still greater than 4r within a neighborhood of {ν(t)
j } since cσ is a continuous function of {νj}. Hence

by Lemma 4, the assignment matrix is the permutation matrix of σ∗ within a neighborhood of {ν(t)
j }, and we

can assume the assignment matrix is fixed in order to compute the gradient at the point {ν(t)
j }. Within the

neighborhood, we have W1(P,Q) = cσ∗({µi}, {νj}), and hence the gradient is

∇νj
cσ∗({µi}, {νj}) =

1

n
·

νj − µ(σ∗)−1(j)

∥νj − µ(σ∗)−1(j)∥
,

and the next iteration is given by (8). We then prove that the second optimal gap is still greater than 4r at

{ν(t+1)
j }. From (8), since ν

(t+1)
σ∗(i) lies on the line (not line segment) connecting ν

(0)
σ∗(i) and µi, and its distance to

the line segment connecting ν
(0)
σ∗(i) and µi is at most maxt α

(t)/n ≤ r, we have

∥ν(t+1)
σ∗(i) − µi∥+ ∥ν(t+1)

σ∗(i) − ν
(0)
σ∗(i)∥ ≤ ∥ν(0)

σ∗(i) − µi∥+ 2r.

Assume the contrary that there exists σ ̸= σ∗ with cσ({µi}, {ν
(t+1)
j })− cσ∗({µi}, {ν

(t+1)
j }) ≤ 4r. We have

cσ({µi}, {ν
(0)
j })

=
1

n

n∑
i=1

∥ν(0)
σ(i) − µi∥

≤ 1

n

n∑
i=1

(
∥ν(t+1)

σ(i) − µi∥+ ∥ν(t+1)
σ(i) − ν

(0)
σ(i)∥

)
≤ 1

n

n∑
i=1

(
∥ν(t+1)

σ∗(i) − µi∥+ ∥ν(t+1)
σ(i) − ν

(0)
σ(i)∥

)
+ 4r

=
1

n

n∑
i=1

(
∥ν(t+1)

σ∗(i) − µi∥+ ∥ν(t+1)
σ∗(i) − ν

(0)
σ∗(i)∥

)
+ 4r

≤ 1

n

n∑
i=1

∥ν(0)
σ∗(i) − µi∥+ 6r

= cσ∗({µi}, {ν
(0)
j }) + 6r,

violating the assumption that the second optimal gap is greater than 6r.

The final step is to show that the second optimal gap is greater than 6r with high probability.

Lemma 6. Let g > 0. Generate {νi} i.i.d. at random according to νi ∼ Unif(Bm
R ). With probability at least

1− 22m−1
√
m(n!)2gδ−1

min,

the second optimal gap is greater than g.
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Proof. Fix any pair of permutations σ1 ̸= σ2. We have

cσ2
− cσ1

=

n∑
j=1

(
∥νj − µσ−1

2 (j)∥ − ∥νj − µσ−1
1 (j)∥

)
. (9)

Our goal is to bound the probability density function of cσ2 − cσ1 . Let

x(θ) := [cos θ, sin θ],

ha(θ) := ∥ax(θ)− [1, 0]∥ − ∥ax(θ) + [1, 0]∥

=
(
a2 + 1− 2a cos θ

)1/2 − (a2 + 1 + 2a cos θ
)1/2

.

Note that ha(θ) is strictly increasing in 0 ≤ θ ≤ π if a > 0, and hence its inverse h−1
a exists. If 0 ≤ θ ≤ π, the

derivative of hα is

h′
a(θ) = a(sin θ)

((
a2 + 1− 2a cos θ

)−1/2

+
(
a2 + 1 + 2a cos θ

)−1/2
)

≥ a(sin θ)
((

a2 + 1 + 2a
)−1/2

+
(
a2 + 1 + 2a

)−1/2
)

=
2a

a+ 1
(sin θ)

Let x be uniformly distributed over Sm−1
a ⊆ Rm, the (m − 1)-dimensional sphere with radius a. Let H :=

∥x− [1, 0, . . . , 0]∥ − ∥x+ [1, 0, . . . , 0]∥. We are interested in upper bounding the probability density function fH
of H. Let Θ be the angle between the ray from the origin to x and the ray from the origin to [1, 0, . . . , 0]. We
have H = ha(Θ). Hence,

fH(h) =
d

dh
P (H ≤ h)

=
d

dh

1
2πm/2

Γ(m/2)

∫ h−1
a (h)

0

2π(m−1)/2

Γ((m− 1)/2)
(sin θ)m−2dθ

=
d

dh

Γ(m/2)

π1/2Γ((m− 1)/2)

∫ h−1
a (h)

0

(sin θ)m−2dθ

=
Γ(m/2)

π1/2Γ((m− 1)/2)
· (sinh

−1
a (h))m−2

h′
a(h

−1
a (h))

≤ Γ(m/2)

π1/2Γ((m− 1)/2)
· (sinh−1

a (h))m−2

2a(a+ 1)−1(sinh−1
a (h))

=
Γ(m/2)

π1/2Γ((m− 1)/2)
· (sinh

−1
a (h))m−3

2a(a+ 1)−1

≤ Γ(m/2)(a+ 1)

2π1/2Γ((m− 1)/2)a

≤
√
m/2(a+ 1)

2π1/2a
,

where the last inequality is by Wendel’s inequality (Wendel, 1948). Now assume x is uniformly distributed over
Bm

a ⊆ Rm, the m-dimensional ball with radius a ≥ 1. We have

fH(h)
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≤ 1
πm/2am

Γ(m/2+1)

∫ a

0

√
m/2(t+ 1)

2π1/2t
· 2πm/2

Γ(m/2)
tm−1dt

=
m

am

∫ a

0

√
m/2(t+ 1)tm−2

2π1/2
dt

≤
m
√

m/2

2π1/2
· 1

am

∫ a+1

0

tm−1dt

=
m
√
m/2

2π1/2
· (a+ 1)m

dam

≤ 2m−2
√
m.

Now we consider the distribution of H = ∥ν − µ2∥ − ∥ν − µ1∥ where ν is uniformly distributed over Bm
R . By

an appropriate shifting and rotation, this is the same as the distribution of 2−1∥µ2 − µ1∥(∥ν − [1, 0, . . . , 0]∥ −
∥ν + [1, 0, . . . , 0]∥) where ν is uniformly distributed over Bm

2R/∥µ2−µ1∥
(µ̃), the ball with radius 2R/∥µ2 − µ1∥

centered at a point µ̃ with ∥µ̃∥ = ∥µ1 + µ2∥/∥µ2 − µ1∥. Since

Bm
2R/∥µ2−µ1∥(µ̃) ⊆ Bm

(2R+∥µ1+µ2∥)/∥µ2−µ1∥,

we have

fH(h)

≤ 1

2−1∥µ2 − µ1∥

(
2R+ ∥µ1 + µ2∥

2R

)m

2m−2
√
m

≤ 22m−1
√
m

∥µ2 − µ1∥
.

Consider cσ2
− cσ1

in (9), which is the sum of at least one i.i.d. random variables in the same form as H above.
Since suph fH1+H2

(h) ≤ suph fH1
(h) for independent H1, H2, the probability density function of cσ2

− cσ1
is

bounded as

fcσ2
−cσ1

(h) ≤ 22m−1
√
m

δmin
.

Note that the probability that σ∗ = argminσ cσ does not satisfy cσ > cσ∗ + g for all σ ̸= σ∗ is upper bounded
by the probability that there exists σ1 ̸= σ2 with cσ2

− cσ1
∈ [0, g]. By union bound, this probability is upper

bounded by
22m−1

√
m(n!)2gδ−1

min.

The theorem follows from Lemma 5, Lemma 6 (on g = 6r), and taking Cm,n = 6 · 22m−1
√
m(n!)2.

Finally, we study the case where µ1, . . . ,µn are i.i.d. uniform over Bm
R . In this case, the probability of failure is

upper-bounded by E [Cm,nr/δmin], where δmin := min1≤i<j≤n ∥µi − µj∥ is random. We have

E [1/δmin] =

∫ ∞

0

P (1/δmin ≥ t) dt

≤
∑

1≤i<j≤n

∫ ∞

0

P
(
∥µi − µj∥ ≤ 1/t

)
dt

≤ n2

2

∫ ∞

0

P (∥µ1 − µ2∥ ≤ 1/t) dt

≤ n2

2

∫ ∞

0

min

{
|Bm

1/t|
|Bm

R |
, 1

}
dt

=
n2

2

∫ ∞

0

min
{
(tR)−m, 1

}
dt
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=
n2

2
· m

R(m− 1)
.

Hence the probability of failure is upper-bounded by C ′
m,nr/R, where C ′

m,n :=
Cm,nn

2m
2(m−1) .

A.2 Proof of Theorem 2

Without loss of generality, assume f is convex and nonincreasing with limt→∞ f(t)/t = 0 (we can make this
assumption since adding α(x − 1) to f(t) for any α ∈ R does not change df ). Let ai := |{j ∈ {1, . . . , n} :
νj = µi}|. Let 0 < ϵ < 1. Write L+

c (p) := {x ∈ Rm : p(x) ≥ c} for the superlevel set of p. Let c > 0 such
that

∫
L+

c (p)
p(x)dx ≥ 1 − ϵ. Let δ0 > 0 such that L+

ϵc(p) ⊆ Bδ0/2(0). Assume mini ̸=j ∥µi − µj∥ ≥ δ0. Write

Si := L+
c (p) + µi. We have

df (P,Q)

≤ 1

n

n∑
i=1

ai

(∫
Si

f

(
P (x)

Q(x)

)
p(x− µi)dx+

∫
Rm\Si

f

(
P (x)

Q(x)

)
p(x− µi)dx

)

≤ 1

n

n∑
i=1

ai

(∫
Si

f

(
n−1p(x− µi) +

∑
j ̸=i n

−1p(x− µj)

n−1aip(x− µi) +
∑

j ̸=i n
−1ajp(x− µj)

)
p(x− µi)dx

+

∫
Rm\Si

f

(
1

maxj aj

)
p(x− µi)dx

)
(a)

≤ 1

n

n∑
i=1

ai

(∫
Si

f

(
n−1p(x− µi) +

∑
j ̸=i n

−1ϵc

n−1aip(x− µi) +
∑

j ̸=i n
−1nϵc

)
p(x− µi)dx+ f(n−1)ϵ

)

≤ 1

n

n∑
i=1

ai

∫
Si

f

(
n−1c+ ϵc

n−1aic+ nϵc

)
p(x− µi)dx+ f(n−1)ϵ

≤ 1

n

n∑
i=1

aif

(
1 + nϵ

ai + n2ϵ

)
+ f(n−1)ϵ

→ 1

n

n∑
i=1

aif
(
a−1
i

)
(10)

as ϵ → 0, where (a) is because x ∈ Si ⊆ Bδ0/2(µi), ∥µi −µj∥ ≥ δ0, and hence ∥x−µj∥ ≥ δ0/2, x−µj /∈ L+
ϵc(p),

and p(x− µj) < ϵc.

Let r > 0, Bi := Br(µi) = {x ∈ Rm : ∥x− µi∥ ≤ r}, and B̄ := Rm\(B1 ∪ · · · ∪Bn). Note that

P(∥x∥ ≥ r) ≤
E
[
∥x∥2

]
r2

=
tr(Σ)

r2
= κ

where κ := r−2tr(Σ). Assume mini̸=j ∥µi − µj∥ ≥ 4r. Assume the contrary that there exists a continuous path
ν̃1(t), . . . , ν̃n(t) (where ν̃j : [0, 1] → Rm is a continuous function) such that df (P, n

−1
∑n

j=1 p(x − ν̃j(t))) is
nonincreasing in t, ν̃j(0) = νj , and {ν̃1(1), . . . , ν̃n(1)} = {µ1, . . . ,µn}. Let t0 := inf{t ≥ 0 : maxj mini ∥ν̃j(t)−
µi∥ ≥ 2r}, and let j0 satisfies mini ∥ν̃j0(t0) − µi∥ = 2r. Let Q̃(x) := n−1

∑n
j=1 p(x − ν̃j(t0)). Note that

Q̃(B̄) ≥ n−1
∫
B̄
p(x− ν̃j0(t0))dx ≥ n−1(1− κ). We have

df (P, Q̃)

≥
n∑

i=1

f

(
P (Bi)

Q̃(Bi)

)
Q̃(Bi) + f

(
P (B̄)

Q̃(B̄)

)
Q̃(B̄)

≥
n∑

i=1

f

(
n−1 + κ

Q̃(Bi)

)
Q̃(Bi) + f

(
κ

Q̃(B̄)

)
Q̃(B̄)
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≥
n∑

i=1

f

(
n−1 + κ

n−1ai

)
n−1ai −

n∑
i=1

(
f

(
n−1 + κ

n−1ai

)
n−1ai

− f

(
n−1 + κ

n−1ai −max{n−1ai − Q̃(Bi), 0}

)(
n−1ai −max{n−1ai − Q̃(Bi), 0}

))

+ f

(
κ

Q̃(B̄)

)
Q̃(B̄)

(b)

≥
n∑

i=1

f

(
n−1 + κ

n−1ai

)
n−1ai − n

(
f

(
n−1 + κ

n−1n

)
n−1n

− f

(
n−1 + κ

1− n−1
∑n

i=1 max{n−1ai − Q̃(Bi), 0}

)(
1− n−1

n∑
i=1

max{n−1ai − Q̃(Bi), 0}

))

+ f

(
κ

Q̃(B̄)

)
Q̃(B̄)

(c)

≥
n∑

i=1

f

(
n−1 + κ

n−1ai

)
n−1ai − n

(
f
(
n−1 + κ

)
− f

 n−1 + κ

1− n−1
(
Q̃(B̄) + κ

)
(1− Q̃(B̄) + κ

n

))

+ f

(
κ

Q̃(B̄)

)
Q̃(B̄)

(d)

≥
n∑

i=1

f

(
n−1 + κ

n−1ai

)
n−1ai − n

(
f
(
n−1 + κ

)
− f

(
n−1 + κ

1− n−1 (n−1(1− κ) + κ)

)

·
(
1− n−1

(
n−1(1− κ) + κ

)))
+ f

(
κ

n−1(1− κ)

)
n−1(1− κ)

→ 1

n

n∑
i=1

aif
(
a−1
i

)
− nf

(
n−1

)
+ n

(
1− n−2

)
f

(
n−1

1− n−2

)
+ n−1 lim

t→0
f(t)

(e)
>

1

n

n∑
i=1

aif
(
a−1
i

)
as r → ∞ (which gives κ → 0), where (b) is because t 7→ tf((n−1 + κ)/t) is convex and ai ≤ n, (c) is because

n∑
i=1

max{n−1ai − Q̃(Bi), 0} − Q̃(B̄)

≤
n∑

i=1

max

n−1ai − n−1
∑

j: νj=µi

∫
Bi

p(x− ν̃j(t0))dx, 0

− Q̃(B̄)

≤
n∑

i=1

max

n−1ai − n−1
∑

j: νj=µi

∫
Bi∪B̄

p(x− ν̃j(t0))dx, 0


= n−1

n∑
i=1

max

 ∑
j: νj=µi

∫
Rm\(Bi∪B̄)

p(x− ν̃j(t0))dx, 0


≤ n−1

n∑
i=1

max {aiκ, 0}

= κ

since ∥µi − ν̃j(t0)∥ ≤ 2r, (d) is because Q̃(B̄) ≥ n−1(1 − κ), and (e) is because f(t) is strictly convex for
0 < t < 1. Combining this with (10) shows that df (P, n

−1
∑n

j=1 p(x − ν̃j(t))) cannot be nonincreasing in t as
long as mini ̸=j ∥µi − µj∥ is large enough.
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A.3 Proof of Corollary 3

Wasserstein distance has the following “cancellation property”: for two mixture distributions P = (1−λ)P0+λP1

and Q = (1− λ)P0 + λP2 that shares a component P0, we have

W1(P,Q) = λW1(P1, P2).

This follows from the dual representation of W1:

W1(P,Q) = sup
f : Lip(f)≤1

(∫
f(x)P (dx)−

∫
f(x)Q(dx)

)
= sup

f : Lip(f)≤1

(
λ

∫
f(x)P1(dx)− λ

∫
f(x)P2(dx)

)
= λW1(P1, P2).

Assume we fix a way to assign νn′+1, . . . ,νn to µ1, . . . ,µn, where each of µ1, . . . ,µn0
has no νi’s assigned

to it, each of µn0+1, . . . ,µn0+n2
has two νi’s assigned to it (assume νn′+i,νn′+n2+i are assigned to µn0+i for

i = 1, . . . , n2), and each of µn0+n2
, . . . ,µn has one νi assigned to it, where n0, n2 ≥ 0, n0 + n2 ≤ n. We can

obtain a continuous path to the optimum by moving ν1, . . . ,νn0 to µ1, . . . ,µn0
(note that n′ = n − (n − n0 −

n2) − 2n2 = n0 − n2 so n′ + n2 = n0), while leaving νn0+1, . . . ,νn (which are already one-to-one matched to
µn0+1, . . . ,µn) unchanged. Also note that ν1, . . . ,νn0

and µ1, . . . ,µn0
, are i.i.d. uniformly distributed over

Bm
R . By the cancellation property, as long as W1(n

−1
0

∑n0

i=1 p(x−µi), n
−1
0

∑n0

i=1 p(x− νi)) is nonincreasing, the
overall W1(n

−1
∑n

i=1 p(x− µi), n
−1
∑n

i=1 p(x− νi)) is nonincreasing as well.

Invoking Theorem 1 on ν1, . . . ,νn0 , µ1, . . . ,µn0
and α → 0 (also note that the proof of Theorem 1 explicitly

constructs a continuous path to the optimum as long as the conditions in Theorem 1 are satisfied), the probability
that there is no continuous path to the optimum with nonincreasing Wasserstein distance is upper-bounded by
Cm,n0

r/R. Applying union bound on all possible ways to assign νn′+1, . . . ,νn to µ1, . . . ,µn (there are at most
nn ways), the probability that there exists an assignment such that there is no such path is upper-bounded by

nn max
1≤n0≤n

Cm,n0
r

R
=
(
nn max

1≤n0≤n
Cm,n0

) r

R
.

B Experiments

B.1 Details of Experiment Setting

Datasets: In the case of Gaussian mixtures, we defined a symmetric mixture of five Gaussians with opposite
means at [0, 0], [±1, 0], and [0,±1] as illustrated in Figure 1. The covariance matrix is σ2I2 where σ = 0.05. The
sampling is independent in every training iteration. For the real image datasets, the formulations are as follows:

1. MNIST B/W: We used one-half (25,000 samples) of the MNIST training data as the first mode and
constructed the second mode by flipping the other half of the MNIST samples that had white backgrounds
and black digits post-flipping.

2. CIFAR10/CelebA: The two identifiable modes are the 5000 ship samples from CIFAR-10 and 5000 ran-
domly selected CelebA samples.

3. CelebA Color/Grayscale: The dataset contains half of the original CelebA samples as well as the grayscale
version of the other half of CelebA data.

4. LSUN Church Color/Grayscale: The dataset contains half of the original LSUN Church samples as well
as the grayscale version of the other half of LSUN Church data.

Network Architecture: For MNIST series experiments, we utilized a Multi-Layer Perceptron (MLP) archi-
tecture for both the generator and discriminator neural nets, with 5 and 3 MLP blocks, respectively. In the
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Density/Quality Coverage/Diversity

JS-divergence 1.1563 0.4891
W1 distance 0.7801 0.9094
dynamic training 0.9163 0.8375

Table 1: Sample quality/diversity statistics of different GAN training. Density and coverage scores are introduced
in (Naeem et al, 2020) evaluating the quality and diversity of generated samples, respectively.

rest of the experiments, to enhance visual quality we alternatively used a CNN architecture for the generator,
and the empowered MLP architecture introduced in (Tolstikhin et al., 2021) for discriminators. As commonly
applied in training GANs, we also used batch normalization and nearest-upsampling for training the generators.
We considered three convolutional blocks in the experiments.

Optimizers and Hyperparameters: We use the AdamW (Loshchilov and Hutter, 2017) optimizer imple-
mented in PyTorch, configured with weight decay rate at 1e-4, default beta parameters 0.5 and 0.999, for both
the generator and discriminator networks in the experiments. We used different learning rates for the generator
and discriminator as suggested in (Heusel et al., 2017), which are 1e-4 and 4e-4, respectively. All experiments
are conducted in a server configured with 4 RTX 3090s.

B.2 Additional Numerical Results

In this subsection, we present the complete set of our visualization results. In addition to the datasets listed in
the main text, here we report qualitative and quantitative results on LSUN (Yu et al., 2015) dataset with two
induced modes for Color/Grayscale images. Figure 6 is the complete version of Figure 3 in the text. Moreover,
similar to Figure 4 of the main text, we present convergence plots for bimodal datasets CIFAR10/CelebA and
LSUN Church Color/Grayscale in Figure 8 and Figure 9. Besides the GMM with 5 components in the main
text, we also present the results of bi-modal GMM in Figure 5.

We also consider Lipschitz-dynamic training, where the objective is initialized as JS divergence and gradually
adjusts the Lipschitz constraint during the training. Figure 7 shows samples from CelebA color&grayscale
dataset. Table 1 demonstrates evaluation metrics, density and coverage, which is proposed in Naeem et al.
(2020), of different training schemes. We observe that dynamically adjusting Lipschitz constraint during training
could prevent the GAN from getting stuck in the unimodal local optimum, and help to improve the diversity and
maintain moderate quality. Dynamic training scheme achieves balancing density and coverage scores compared
with JS divergence and Wasserstein distance.
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Phase 1 Trained Generator Reverse KL Divergence Squared Hellinger Distance

Jensen-Shannon Divergence 𝑊1-JS Hybrid Distance 𝑊1 Distance

Figure 5: Bi-modal Gaussian mixture data (in blue) and GANs’ generated data (in orange). Mode-seeking f -
divergences were trapped in unimodal local optima, while the Wasserstein and W1-JS-hybrid distances resulted
in capturing both modes.
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Figure 6: Mode ratio during Phase 2 of GAN training over bimodal image data, An α mode ratio indicates
an α-fraction of generated images from the second mode. GANs with W1 and JS-W1 hybrid distances led to
balanced modes, while VGAN (JS-divergence) led to a unimodal point.
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JS-divergence Dynamic training 𝑊1 distance

Figure 7: Samples generated from GANs trained by minimizing JS-divergence, hybrid divergence with dynamic
Lipschitz coefficient, W1-distance measures.

CIFAR10/CelebA

Figure 8: Divergence optimization progress in second-phase of the CIFAR10&CelebA bimodal dataset.
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LSUN Church

Figure 9: Divergence optimization progress in Phase 2 (epochs 50-100) of the GANs training on LSUN Church
Color&Grayscale bimodal dataset.


