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Abstract

Consider the problem of minimizing an ex-
pected logarithmic loss over either the prob-
ability simplex or the set of quantum density
matrices. This problem includes tasks such
as solving the Poisson inverse problem, com-
puting the maximum-likelihood estimate for
quantum state tomography, and approximat-
ing positive semi-definite matrix permanents
with the currently tightest approximation ra-
tio. Although the optimization problem is
convex, standard iteration complexity guar-
antees for first-order methods do not directly
apply due to the absence of Lipschitz conti-
nuity and smoothness in the loss function.

In this work, we propose a stochastic first-
order algorithm named B-sample stochas-
tic dual averaging with the logarithmic bar-
rier. For the Poisson inverse problem, our
algorithm attains an ε-optimal solution in
Õ(d2/ε2) time, matching the state of the
art, where d denotes the dimension. When
computing the maximum-likelihood estimate
for quantum state tomography, our algorithm
yields an ε-optimal solution in Õ(d3/ε2) time.
This improves on the time complexities of ex-
isting stochastic first-order methods by a fac-
tor of dω−2 and those of batch methods by a
factor of d2, where ω denotes the matrix mul-
tiplication exponent. Numerical experiments
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demonstrate that empirically, our algorithm
outperforms existing methods with explicit
complexity guarantees.

1 INTRODUCTION

Denote by Dd the set of d × d quantum density ma-
trices, i.e., the set of Hermitian positive semi-definite
(PSD) matrices of unit traces. Let P be a probability
distribution over the set of d×d Hermitian PSD matri-
ces. Consider the optimization problem of minimizing
an expected logarithmic loss:

f⋆ = min
ρ∈Dd

f(ρ), f(ρ) := EA∼P [− log tr(Aρ)]. (1)

A point ρ̂ ∈ Dd is said to be ε-optimal if f(ρ̂)−f⋆ ≤ ε.
When both A and ρ are restricted to diagonal matrices,
the optimization problem (1) reduces to

min
x∈∆d

f(x), f(x) := Ea∼P ′ [− log ⟨a, x⟩], (2)

where ∆d denotes the probability simplex in Rd and
P ′ is a probability distribution over [0,∞)d. We refer
to the two problems (1) and (2) as the quantum setup
and the classical setup, respectively. For the special
cases when

f(ρ) :=
1

n

n∑
i=1

− log tr(Aiρ), or

f(x) :=
1

n

n∑
i=1

− log ⟨ai, x⟩ ,

Future versions available at https://arxiv.org/abs/
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we say the optimization problems are in the finite-sum
setting with sample size n.

Notably, the classical setup (2) encompasses the prob-
lem of computing Kelly’s criterion, an asymptotically
optimal strategy in long-term investment (Kelly, 1956;
Algoet and Cover, 1988; MacLean et al., 2011). It is
also equivalent to solving the Poisson inverse problem,
which finds applications in positron emission tomogra-
phy (PET) in medical imaging and astronomical image
denoising (Vardi and Lee, 1998; Bertero et al., 2018).
Lastly, the problem is the batch counterpart of the
online portfolio selection problem (Cover, 1991), for
which designing algorithms that are optimal in both
regret and computational complexity has remained un-
solved for over thirty years (van Erven et al., 2020;
Jézéquel et al., 2022).

The quantum setup (1) has even broader applications.
One important example is computing the maximum-
likelihood (ML) estimate for quantum state tomogra-
phy (Hradil, 1997), a fundamental task for the verifica-
tion of quantum devices. Another example is comput-
ing a semidefinite programming relaxation of the PSD
matrix permanents (Yuan and Parrilo, 2022). The re-
laxation achieves the currently tightest approximation
ratio and can be used to estimate the output proba-
bilities of Boson sampling experiments (Aaronson and
Arkhipov, 2011).

Although the optimization problems (1) and (2) are
convex, standard convex optimization methods face
two challenges. The first challenge is the lack of Lip-
schitz continuity and smoothness in the loss function
(Li and Cevher, 2019). As a result, iteration complex-
ity guarantees of standard first-order methods, such as
mirror descent and dual averaging, do not directly ap-
ply (Nesterov, 2018; Lan, 2020). While second-order
methods, such as Newton’s method, do possess explicit
complexity guarantees (Nesterov, 2018), they still face
the second challenge.

The second challenge is the scalabilities with respect to
the dimension d and sample size n in the finite-sum set-
ting. For instance, the dimension d typically reaches
millions, and the sample size n can exceed hundreds of
millions in PET (Ben-Tal et al., 2001; Ehrhardt et al.,
2017). Both d and n grow exponentially with the num-
ber of qubits (quantum bits) in quantum state tomog-
raphy (Chen et al., 2023). However, the per-iteration
time complexities of batch methods grow at least lin-
early with n, and those of second-order methods scale
poorly with d as they require computing Hessian in-
verses.

When dealing with high dimensionality and large sam-
ple sizes, stochastic first-order algorithms, such as
stochastic gradient descent, are preferred. Their per-

iteration time complexities can be independent of the
sample size n, and they do not require computation-
ally demanding operations involving Hessian matri-
ces. Nevertheless, standard stochastic first-order al-
gorithms continue to face the challenge related to the
lack of Lipschitz continuity and smoothness, as men-
tioned earlier.

Due to the absence of Lipschitz continuity and smooth-
ness, mini-batch stochastic Q-Soft-Bayes (SQSB) (Lin
et al., 2021, 2022) and stochastic Q-LB-OMD (SQL-
BOMD) (Tsai et al., 2022; Hanzely and Richtárik,
2021) are the only two stochastic first-order methods
with clear time complexity guarantees for solving the
problems (1) and (2). Both algorithms do not com-
pete with batch methods in terms of the empirical
convergence speed, as shown in Section 6. Stochas-
tic mirror descent studied by D’Orazio et al. (2021) is
only guaranteed to solve the problems up to an arbi-
trarily large error. Other stochastic first-order meth-
ods, such as stochastic primal-dual hybrid gradient
(SPDHG) (Chambolle et al., 2018; Alacaoglu et al.,
2022), stochastic mirror-prox (He et al., 2020), and
stochastic coordinate descent (Fercoq and Bianchi,
2019), are only guaranteed to converge asymptotically.

Contributions In this work, we propose a mini-
batch stochastic first-order algorithm named B-sample
stochastic dual averaging with the logarithmic barrier
(LB-SDA, Algorithm 1) for solving the optimization
problems (1) and (2), where B denotes the mini-batch
size. The expected optimization error of B-sample LB-
SDA vanishes at a rate of Õ(d/t +

√
d/(Bt)). This

matches the standard results of mini-batch stochas-
tic gradient descent for minimizing smooth functions
(Dekel et al., 2012), regardless of the absence of
smoothness in our problem.

In the classical setup, the time complexity of obtain-
ing an ε-optimal solution via B-sample LB-SDA is
Õ(d2/ε2), matching the state of the art of stochas-
tic first-order methods (Lin et al., 2022; Tsai et al.,
2022). In the quantum setup, the time complexity of
obtaining an ε-optimal solution is Õ(d3/ε2) when the
mini-batch size is set to d. This improves the dimen-
sion dependence of existing stochastic algorithms by a
factor of dω−2, where ω ∈ [2, 2.372) denotes the matrix
multiplication exponent (Williams et al., 2024). It is
worth noting that in practical implementation, such as
BLAS (Dongarra et al., 1990), ω is effectively 3. The
time complexity guarantee also improves that of the
currently fastest batch algorithm by a factor of n/d.
Such improvement is significant, given that n = Ω(d3)

D’Orazio et al. (2021) proved that the average Breg-
man divergence to the minimizer asymptotically converges
to σ2

X , which equals f⋆ when, for example, ∥ai∥∞ = 1 in
the classical setup and can be arbitrarily large in general.
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is necessary for ML quantum state tomography (Chen
et al., 2023).

Lastly, we conducted numerical experiments to demon-
strate the efficiency of the proposed method. The
numerical results suggest that 1-sample LB-SDA is
the currently fastest method with explicit complex-
ity guarantees for the Poisson inverse problem, and d-
sample LB-SDA outperforms all methods in terms of
fidelity, a standard measure of the closeness of quan-
tum states, for ML quantum state tomography. To
the best of our knowledge, this is the first empiri-
cal evidence that stochastic first-order algorithms can
surpass batch ones in computing the ML estimate for
quantum state tomography.

Technical Breakthroughs Our analysis consists of
three key ingredients: a regret bound of Tsai et al.
(2023b), a smoothness characterization of the logarith-
mic loss (Lemma 4), and a new local-norm-based anal-
ysis of the standard online-to-batch conversion (Cesa-
Bianchi et al., 2004), all of which are of independent
interest.

Tsai et al. (2023b) proved the following regret bound
for online convex optimization with the logarithmic
loss on the probability simplex ∆d (Appendix A.2):

Rt ≤ Õ


√√√√d

t∑
τ=1

∥∇fτ (ρτ )∥2ρτ ,∗

 ≤ Õ
(√

dt
)
, (3)

where ∥·∥ρ,∗ is the dual local norm associated with the
logarithmic barrier. Directly applying the standard
online-to-batch conversion (Cesa-Bianchi et al., 2004)
with the second upper bound can only yield an opti-
mization error bound of Õ(

√
d/t), which is indepen-

dent of the mini-batch size. In comparison, we make
use of the finer first upper bound and derive an opti-
mization error bound of Õ(d/t+

√
d/(Bt)). This leads

to a time complexity bound of Õ(d3/ε2 +dω+1/(Bε2))
for the quantum setup, which creates space for im-
proved dimensional scalability via choosing the mini-
batch size B. See Section 5.3 for a detailed discussion.

To make use of the finer first regret bound (3), we gen-
eralize the smoothness characterization of the logarith-
mic loss of Tsai et al. (2023b) for the quantum setup.
The original proof of Tsai et al. (2023b) is challenging
to generalize due to the noncommutativity in the quan-
tum setup. Our generalization is based on a great sim-
plification of their proof by utilizing self-concordance
properties of the logarithmic loss (Appendix A.1).

Our analysis modifies that of the anytime online-to-
batch conversion (Cutkosky, 2019) to handle the local
norms. It is worth noting that we also adapt the anal-
ysis of anytime online-to-batch for the standard one,

as the latter has shown better empirical performance.

Notations We denote the set {1, 2, . . . , n} by JnK
for a natural number n ∈ N. We denote the ℓp-
norm by ∥·∥p for p ∈ [1,∞]. We denote the sets of
d × d Hermitian matrices, Hermitian PSD matrices,
and Hermitian positive definite matrices by Hd, Hd

+,
and Hd

++, respectively. We denote the relative inte-
rior of a set S by riS. We denote the i-th entry of
a vector v by v(i). We denote the conjugate trans-
pose of a matrix U by U∗. We denote the sum of
time-indexed matrices A1, . . . , At ∈ Hd by A1:t. We
define the domain of a function f : Hd → R ∪ {∞} by
dom f := {ρ ∈ Hd | f(ρ) <∞}.

2 RELATED WORK

The relationships between this work and the works of
Tsai et al. (2023b) and Cutkosky (2019) have been
addressed in Section 1. This section focuses on opti-
mization algorithms.

Although standard optimization methods are not suit-
able for solving the problems (1) and (2), several meth-
ods with clear complexity guarantees have been pro-
posed in the last decade. Table 1 summarizes existing
results. We focus on batch methods below as stochas-
tic methods have already been discussed in Section 1.

QEM (Lin et al., 2021) is the current theoretically
fastest batch method that solves the optimization
problem (1) with clear complexity guarantees. Its
classical counterpart EM was proposed by Shepp and
Vardi (1982) and Cover (1984) independently. While
NoLips, QEM, and Frank-Wolfe have clear complexity
guarantees, their time complexities scale at least lin-
early with the sample size, which is undesirable when
the sample size is large.

Other batch methods lack explicit complexity guaran-
tees and, as a result, are not comparable to our algo-
rithm. For instance, the convergence rates of proximal
gradient methods (Tran-Dinh et al., 2015) and sev-
eral variants of the Frank-Wolfe method (Dvurechen-
sky et al., 2023; Carderera et al., 2021; Liu et al., 2022)
involve unknown parameters. Diluted iterative MLE
(iMLE, Řeháček et al. (2007); Gonçalves et al. (2014))
and entropic mirror descent (EMD) with Armijo line
search (Li and Cevher, 2019) are only guaranteed to
converge asymptotically. Ordered-subset EM (Hudson
and Larkin, 1994) for PET and iMLE (Lvovsky, 2004)
for ML quantum state tomography are commonly used
heuristics but do not converge in general (Hudson and
Larkin, 1994; Řeháček et al., 2007).
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Algorithms Iter. complexity Per-iter. time Time complexity References

NoLips d/ε nd2 + dω (nd3 + dω+1)/ε Bauschke et al. (2017)

QEM log d/ε nd2 + dω (nd2 + dω)/ε Lin et al. (2021)

Frank-Wolfe n/ε ndω n2dω/ε Zhao and Freund (2023)

SQSB d/ε2 dω dω+1/ε2 Lin et al. (2022)

SQLBOMD d/ε2 dω dω+1/ε2 Tsai et al. (2022)

1-sample LB-SDA d/ε2 dω dω+1/ε2 Corollary 7 (this work)

d-sample LB-SDA 1/ε2 d3 d3/ε2 Corollary 7 (this work)

B-sample LB-SDA d/(Bε2) Bd2 + dω d3/ε2 + dω+1/(Bε2) Corollary 7 (this work)

Table 1: A comparison of existing first-order methods for the quantum setup (1) with explicit complexity
guarantees. Iteration complexity and time complexity refer to the number of iterations and arithmetic operations
required to obtain an ε-optimal solution, respectively. We assume t≫ d2 and omit logarithmic factors, where t
denotes the number of iterations.

3 APPLICATIONS

3.1 Kelly’s Criterion

Denote by ∆d the probability simplex in Rd. Consider
long-term investment in a market with d investment
alternatives. Let {at} be a stochastic process taking
values in [0,∞)d. On day t, the investor first selects
a portfolio xt ∈ ∆d that indicates the distribution of
their assets among the investment alternatives. Then,
the investor observes at that provides the price rela-
tives of the investment alternatives for that day. The
investor’s goal is to maximize the wealth growth rate.

Kelly’s criterion suggests choosing xt+1 by maximizing
the expected logarithmic loss conditional on the past
(Algoet and Cover, 1988), i.e.,

xt+1 ∈ argmin
x∈∆d

Eat+1
[− log ⟨at+1, x⟩ |a1, . . . , at],

which requires solving the classical setup (2).

3.2 Poisson Inverse Problem

In a Poisson inverse problem, our goal is to recover
an unknown signal λ♮ ∈ [0,∞)d based on n indepen-
dent measurement outcomes {yi}. Each outcome yi
follows a Poisson distribution with mean ⟨bi, λ♮⟩, where
bi ∈ [0,∞)d is known and depends on the measure-
ment setup. In positron emission tomography, λ♮(i)
represents the emitter density of the i-th region, and
yi represents the number of photons detected by the
i-th sensor.

The ML estimate is given by (Shepp and Vardi, 1982)

λ̂ ∈ argmin
λ∈[0,∞)d

n∑
i=1

(⟨bi, λ⟩ − yi log ⟨bi, λ⟩). (4)

Vardi and Lee (1998) and Ben-Tal et al. (2001) showed
that by setting

Y =

n∑
i=1

yi, λ̂(i) =
Y x̂(i)∑n
j=1 aj(i)

, ∀i ∈ JnK,

and

ai(j) =
Y bi(j)∑n
k=1 bk(j)

, ∀i ∈ JnK, j ∈ JdK,

the ML estimate can be reformulated as

x̂ ∈ argmin
x∈∆d

n∑
i=1

−yi
Y

log ⟨ai, x⟩ ,

which is equivalent to the classical setup (2) with
P ′(a = ai) = yi/Y for all i ∈ JnK.

3.3 ML Quantum State Tomography

A quantum state is described by a density matrix ρ ∈
Dd, which is a d × d Hermitian PSD matrix of unit
trace. For a state consisting of q qubits, d equals 2q.
Denote by Dd the set of density matrices. The set Dd

can be regarded as a quantum generalization of the
probability simplex ∆d, in the sense that the vector of
eigenvalues of any ρ ∈ Dd lies in ∆d.

Given n measurement outcomes from an unknown
quantum state ρ♮, ML estimation is a standard and
widely used approach to estimate ρ♮ (Hradil, 1997;
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Häffner et al., 2005; Palmieri et al., 2020; Brown et al.,
2023). The ML estimate is given by

ρ̂ML ∈ argmin
ρ∈Dd

1

n

n∑
i=1

− log tr(Aiρ),

for some known Ai ∈ Hd
+ related to the i-th mea-

surement outcome. Note that computing ρ̂ML requires
solving the quantum setup (1) in the finite-sum setting
with sample size n.

3.4 PSD Matrix Permanents

The permanent of a matrix A ∈ Cd×d is defined as

perA :=
∑
π∈Sd

d∑
i=1

Ai,π(i),

where Sd is the set of all permutations of JdK. Let
{vi}di=1 be the eigenvectors of A. Yuan and Parrilo
(2022) proposed the following approximation of perA
when A ∈ Hd

+:

relA := max
ρ∈Dd

d∏
i=1

tr((dviv
∗
i )ρ).

The approximation is equivalent to the quantum setup
(1) in the finite-sum setting with Ai = dviv

∗
i . As noted

by Meiburg (2022), relA achieves the currently tight-
est approximation ratio of 4.85d.

4 CHARACTERIZATIONS OF
LOGARITHMIC LOSS

This section aims to address the aforementioned lack of
Lipschitz continuity and smoothness in the logarithmic
loss. We first set up a few notations. For ρ ∈ Hd

++, let

h(ρ) := − log det ρ (5)

be the logarithmic barrier. Let ∥·∥ρ := (D2h(ρ)[·, ·])1/2
be the local norm associated with h at ρ ∈ domh.
The following lemma gives explicit formulae for the
local norm and its dual norm. The proof is deferred
to Appendix B.1.

Lemma 1. For ρ ∈ Hd
++ and X ∈ Hd, the local norm

and its dual norm associated with h are given by

∥X∥ρ =
√

tr((ρ−1/2Xρ−1/2)2) =
√

tr((ρ−1X)2),

∥X∥ρ,∗ =
√

tr((ρ1/2Xρ1/2)2) =
√

tr((ρX)2).

(6)

4.1 “Lipschitz Continuity”

A continuously differentiable function f : Hd → R is
said to be G-Lipschitz with respect to a norm ∥·∥ if

its gradients are bounded by G in the dual norm, i.e.,
∥∇f(ρ)∥∗ ≤ G.

Although the loss function is not Lipschitz, Lemma 2
below shows that∇f is bounded in the dual local norm
associated with h. This Lipschitz-type property en-
ables us to control the distance between iterates and
exploit local properties of the loss function, in partic-
ular, the local smoothness property of self-concordant
functions (Theorem 11).

Lemma 2 is a simple quantum generalization of
Lemma 4.3 of Tsai et al. (2023b). Its proof is deferred
to Appendix B.2.

Lemma 2. Let f be defined in the quantum setup (1).
Then, ∥∇f(ρ)∥ρ,∗ ≤ 1 for all ρ ∈ Hd

++.

4.2 “Smoothness”

A continuously differentiable function f : Hd → R is
said to be L-smooth with respect to a norm ∥·∥ if its
gradient is L-Lipschitz with respect to ∥·∥, i.e.,

∥∇f(ρ)−∇f(ρ′)∥∗ ≤ L∥ρ− ρ′∥, ∀ρ, ρ′ ∈ Hd.

Lemma 3, known as the self-bounding property, is a
consequence of smoothness (Srebro et al., 2010). A
proof of Lemma 3 can be found in Lemma 4.23 of
Orabona (2023).

Lemma 3. Let f : Rd → R be L-smooth with respect
to ∥·∥ with dom f = Rd. Then, for any x ∈ Rd, it
holds that

∥∇f(x)∥2∗ ≤ 2L

(
f(x)− inf

x′∈Rd
f(x′)

)
.

Although the loss function is not smooth, Lemma 4
below establishes a self-bounding-type property of
the loss function. As discussed in Section 1, the
lemma generalizes Lemma 4.7 of Tsai et al. (2023b)
to the quantum setup, and greatly simplifies the proof
therein. The proof is deferred to Appendix B.3.

For any ρ ∈ ri Dd and X ∈ Hd, define

αρ(X) := − tr(ρXρ)

tr(ρ2)
∈ argmin

α∈R
∥X + αI∥2ρ,∗. (7)

Lemma 4. Let f be defined in the quantum setup (1).
Then, for any ρ ∈ ri Dd, it holds that

∥∇f(ρ) + αρ(∇f(ρ))I∥2ρ,∗ ≤ 4

(
f(ρ)− min

ρ′∈Dd

f(ρ′)

)
.

5 ALGORITHMS AND
CONVERGENCE GUARANTEES

This section presents LB-SDA and its theoretical guar-
antee. We focus on the quantum setup (1) since it
includes the classical setup (2) as a special case.
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Algorithm 1 Stochastic Dual Averaging with the
Logarithmic Barrier (LB-SDA) for the quantum setup

Input: A stochastic first-order oracle O.

1: h(ρ) := − log det ρ.
2: ρ1 = I/d ∈ argminρ∈Dd

h(ρ).
3: for all t ∈ N do
4: Output ρ̄t := (1/t)ρ1:t.
5: gt = O(ρt).
6: Compute a learning rate ηt > 0.
7: ρt+1 ∈ argminρ∈Dd

ηt tr(g1:tρ) + h(ρ).
8: end for

5.1 Algorithm

LB-SDA is presented in Algorithm 1, where h is the
logarithmic barrier (5) and ∥·∥ρ and ∥·∥ρ,∗ are the lo-
cal and dual local norms associated with h at ρ (6),
respectively. A stochastic first-order oracle is a ran-
domized function O that outputs an unbiased esti-
mate O(ρ) ∈ Hd of the gradient ∇f(ρ) given an input
ρ ∈ Dd.

We will make the following assumptions on the
stochastic first-order oracle. It is notable that the
boundedness is defined in terms of the dual local norm,
which deviates from existing literature.

Assumption 1. Conditional on the past, the stochas-
tic gradients {gt} in Algorithm 1 are unbiased and
bounded, and their variances are also bounded, i.e.,
for all t ∈ N,

• E[gt|Ht] = ∇f(ρt),

• E
[
∥gt∥2ρt,∗

∣∣Ht

]
≤ G2,

• E
[
∥gt −∇f(ρt)∥2ρt,∗

∣∣Ht

]
≤ σ2,

where Ht = {g1, . . . , gt−1, ρ1, . . . , ρt} is the past infor-
mation before obtaining gt.

The unbiasedness and bounded variance assumptions
are standard in the literature. Regarding the bounded
gradient assumption, by the triangle inequality and
Lemma 2,

∥gt∥2ρt,∗ ≤ (∥gt −∇f(ρt)∥ρt,∗ + ∥∇f(ρt)∥ρt,∗)2

≤ ∥gt −∇f(ρt)∥2ρt,∗ + 2∥gt −∇f(ρt)∥ρt,∗ + 1.

Taking expectations on both sides and using the in-
equality EX ≤

√
E[X2], we can verify that the

bounded gradient assumption always holds with G =
1+σ. Nevertheless, since G can be smaller than 1+σ,
we include the assumption for a tighter result.

An important example of the oracle is

OB(ρ) :=
1

B

B∑
b=1

∇ℓb(ρ) (8)

where B ∈ N, ℓb(ρ) := − log tr(Abρ), and A1, . . . , AB

are independently drawn from P . The resulting al-
gorithm is called B-sample LB-SDA. The following
lemma justifies the use of OB , whose proof is deferred
to Appendix B.4.

Lemma 5. The oracle OB (8) satisfies Assumption 1
with G = 1 and σ2 = 4/B.

5.2 Convergence Guarantee

The non-asymptotic convergence guarantee of Algo-
rithm 1 is presented in Theorem 6 below. The analy-
sis follows the online-to-batch approach, where we use
the following regret bound of Tsai et al. (2023b) in
Appendix A.2:

Rt ≤ Õ


√√√√d

t∑
τ=1

∥gτ + αρτ (gτ )I∥2ρτ ,∗

 ≤ Õ(
√
dt).

Note that applying the online-to-batch conversion on
the right upper bound can only yield a convergence
rate of Õ(

√
d/t), independent of the variance σ2. Since

the effect of batch size is unclear without the variance
term, this direct approach fails to improve the time
complexity guarantee.

Deriving an error bound involving a variance term typ-
ically requires smoothness of the loss function in the
literature, and this is where the self-bounding-type
property (Lemma 4) comes into play. It bounds the
square of the dual local norm by

E∥gτ + αρτ
(gτ )I∥2ρτ ,∗ ≤ 4E

[
f(ρτ )− min

ρ∈Dd

f(ρ)

]
+ σ2,

which results in a “self-bounding” inequality of ERt:

ERt ≤ Õ
(√

dERt + σ2dt
)

Our analysis can be seen as a local-norm exten-
sion of that of the anytime online-to-batch conver-
sion (Cutkosky, 2019). The proof is deferred to Ap-
pendix B.5.

Theorem 6. Consider the quantum setup (1). Un-
der Assumption 1, let {ρ̄t} be the iterates generated by
Algorithm 1 with

ηt =

√
d√∑t

τ=1∥gτ + αρτ
(gτ )I∥2ρτ ,∗ + 4dG2 + G2

.
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Then, for all t ∈ N, it holds that

E
[
f(ρ̄t)− min

ρ∈Dd

f(ρ)

]

≤ 4dC3
t + 2Ct

√
σ2dt + 4d2G2 + dG2 + 1

t

= O

(
dG(log t)3

t
+

σ
√
d log t√
t

)
,

where Ct := log t+ 3 and the expectation is taken with
respect to {gt}.

Plugging in the estimates in Lemma 5, we obtain the
following result for the mini-batch case.

Corollary 7. Consider the quantum setup (1). Let
{ρ̄t} be the iterates of B-sample LB-SDA with learning
rates

ηt =

√
d√∑t

τ=1∥gτ + αρτ
(gτ )I∥2ρτ ,∗ + 4d + 1

.

Then, for all t ∈ N, it holds that

E
[
f(ρ̄t)− min

ρ∈Dd

f(ρ)

]
= O

(
d(log t)3

t
+

√
d log t√
Bt

)
.

where the expectation is taken with respect to {gt}.
Remark 8. Proving high-probability guarantees for B-
sample LB-SDA is challenging since the logarithmic
loss violates the boundedness assumption required by
standard analysis (Orabona, 2023). We left this ex-
tension as a future research direction.

5.3 Time Complexity Analysis

This section discusses the time complexity of B-sample
LB-SDA. Comparisons of time complexities of existing
first-order methods have been presented in Table 1 and
discussed in Section 1.

First, note that the 6th line in Algorithm 1 cannot be
solved exactly. Nevertheless, after an eigendecompo-
sition, which takes Õ(dω) time (Demmel et al., 2007),
the 6th line reduces to an one-dimensional convex op-
timization problem, which can be efficiently solved by
Newton’s method on the real line in Õ(d) time (see,
e.g., Appendix A.2 of Nesterov (2018)). As a result,
the time complexity of the 6th line is Õ(dω). Second,
the time complexity of the 5th line, which requires im-
plementing the oracle OB , is O(Bd2). Lastly, since
the 5th and the 6th lines are the most time-consuming
parts, the per-iteration time complexity of B-sample
LB-SDA is O(Bd2 + dω).

By Corollary 7, the iteration complexity of B-
sample LB-SDA to obtain an ε-optimal solution is

Õ(d/(Bε2)). Combining with the per-iteration time
complexity, the overall time complexity is Õ(d3/ε2 +
dω+1/(Bε2)). In particular, the overall time complex-
ity is Õ(d3/ε2) when B = Ω(dω−2). Since ω is 3 in
practical implementation (Dongarra et al., 1990), we
will often choose B = d.

Since the eigendecomposition is no longer needed in
the classical setup, the per-iteration time complexity of
B-sample LB-SDA is reduced to Õ(Bd). Because the
iteration complexity of obtaining an ε-optimal solution
is Õ(d/(Bε2)), the overall time complexity is Õ(d2/ε2)
for any B ∈ N in the classical setup.

6 NUMERICAL RESULTS

We have shown that LB-SDA achieves the currently
best time complexity guarantees in the previous sec-
tion. In this section, we show that LB-SDA also per-
forms well empirically. We consider solving the Pois-
son inverse problem and computing the ML estimate
for quantum state tomography. All results in this sec-
tion are presented in terms of the elapsed time. Results
in terms of the number of iterations can be found in
Appendix C.

Both experiments were conducted on a machine with
an Intel Xeon Gold 5218 CPU of 2.30GHz and
131,621,512kB memory. The elapsed time records the
actual running time of the method on the machine.
All methods are implemented in the Julia program-
ming language (Bezanson et al., 2017) with the Intel
Math Kernel Library, and the number of threads in
BLAS is set to 8. It is important to note that the em-
pirical speed is highly dependent on the specific im-
plementations. The source code of the experiments
is available at https://github.com/chungentsai/

pip and https://github.com/chungentsai/mlqst

for the Poisson inverse problem and ML quantum state
tomography, respectively.

The approximate optimization error at an iterate is
defined as the difference between its function value and
the smallest one obtained in the experiments.

6.1 Poisson Inverse Problem

Consider the Poisson inverse problem in Section 3.2
with a synthetic dataset, where d equals 256 and n
equals 1, 000, 000. The unknown signal λ♮ is 1, 000
times the gray intensities of the Shepp-Logan phantom
image (Shepp and Logan, 1974) of size 16 × 16. The
signal is presented in Appendix C. The vectors {bi}
are generated following the scheme of Raginsky et al.
(2010). Each entry of bi is assigned to either 0 or 1/n
with equal probability.

https://github.com/chungentsai/pip
https://github.com/chungentsai/pip
https://github.com/chungentsai/mlqst
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Figure 1: Performances of all algorithms in Table 1,
SPDHG, and EMD with line search for solving the
Poisson inverse problem.

(a) Normalized estimation error versus the elapsed time.

(b) Approximate optimization error versus the elapsed
time.

We consider all algorithms in Table 1 that have ex-
plicit complexity guarantees. EM (Shepp and Vardi,
1982), SSB (Li, 2020), and SLBOMD (Tsai et al.,
2022) are the classical counterparts of QEM, SQSB,
and SQLBOMD, respectively. Additionally, we in-
clude SPDHG (Chambolle et al., 2018) and EMD with
Armijo line search (Li et al., 2018) for comparison.
The former is well-known in practice and the latter is
known to converge fast empirically. However, they are
only guaranteed to converge asymptotically. Their pa-
rameters are set according to the cited works. We do
not include batch PDHG as it is slow in practice.

We solve the Poisson inverse problem based on the
equivalence between it and the classical setup (2) in
Section 3.2.

Figure 1 presents the numerical results. For an iter-

ate λ̂, the normalized estimation error is defined as
∥λ̂−λ♮∥2/∥λ♮∥2. Since the goal of the Poisson inverse
problem is to recover the unknown signal λ♮, rather
than minimizing the loss function, results presented
in terms of the normalized estimation error is more
important than results presented in terms of the opti-
mization error.

Observe that 1-sample LB-SDA outperforms all meth-
ods with explicit complexity guarantees in terms of
the normalized estimation error. Although it is slower
than EMD with line search and SPDHG, the latter two
methods are only guaranteed to converge asymptoti-
cally, whereas LB-SDA has an explicit non-asymptotic
complexity guarantee.

LB-SDA converges faster than SLBOMD and SSB in
terms of the optimization error, although they have the
same theoretical time complexity of Õ(d2/ε2). This
can be explained by the use of time-varying learning
rates in LB-SDA, in contrast to the fixed learning rates
used by the other two methods. The time-varying
learning rates are large at the beginning, which leads
to a fast convergence in practice.

6.2 ML Quantum State Tomography

Consider the problem of ML quantum state tomogra-
phy in Section 3.3. We construct a synthetic dataset,
following the setup of Häffner et al. (2005). The num-
ber of qubits q is 6, the dimension d is 26 = 64, and
the sample size n is 409, 600. The unknown quantum
state is the W state, which corresponds to a rank-
1 density matrix. The Hermitian matrices {Ai} are
generated following the procedure of Lin et al. (2021),
where each Ai is of rank d/2.

We compare all algorithms in Table 1, along with
iMLE (Lvovsky, 2004), diluted iMLE (Gonçalves
et al., 2014), and EMD with Armijo line search (Li
et al., 2018). Their parameters are set according to the
cited works. Although iMLE does not always converge
(Řeháček et al., 2007), we include it because it is of-
ten considered as a benchmark. We do not include the
accelerated projected gradient descent (Shang et al.,
2017) as it is slower than iMLE in experiments (Ahmed
et al., 2021).

Figure 2 presents the numerical results. The fidelity
between two quantum states ρ, ρ′ ∈ Dd is defined as
F (ρ, ρ′) :=

(
tr
√√

ρρ′
√
ρ
)2 ∈ [0, 1]. It is a standard

measure of the closeness of two quantum states, with
F (ρ, ρ′) = 1 if and only if ρ = ρ′. Similar to the Pois-
son inverse problem, as the goal of quantum state to-
mography is to recover the unknown quantum state,
results presented in terms of the fidelity is more impor-
tant than results presented in terms of the optimiza-
tion error.
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Figure 2: Performances of all algorithms in Table 1,
iMLE, diluted iMLE, and EMD with line search for
computing the ML estimate for quantum state tomog-
raphy.

(a) Fidelity between the iterates and the W state versus
the elapsed time.

(b) Approximate optimization error versus the elapsed
time.

Observe that d-sample LB-SDA outperforms all meth-
ods in terms of the fidelity. We conclude that d-sample
LB-SDA achieves the currently best theoretical time
complexity and the currently best empirical perfor-
mance for computing the ML estimate for quantum
state tomography.

Note that d-sample LB-SDA performs better than
SQLBOMD and SQSB in terms of the optimization er-
ror. It also outperforms QEM, EMD with line search,
diluted iMLE, and iMLE when the optimization error
is not smaller than 10−3. Recall that the latter four
algorithms possess theoretical drawbacks. The time
complexity of QEM has a worse sample size depen-
dence and a better optimization error dependence than

that of d-sample LB-SDA; EMD with line search and
diluted iMLE lack non-asymptotic complexity guaran-
tees; and iMLE does not converge in general.

While it is theoretically known that stochastic meth-
ods outperform batch ones when the dimension and
the sample size are sufficiently large (Bottou and Bous-
quet, 2007), empirical results presented in the litera-
ture did not confirm this phenomenon. In this work,
we observed that d-sample LB-SDA outperforms all
methods in terms of the fidelity. This marks the
first empirical evidence that stochastic methods can
be more efficient than batch methods for computing
the ML estimate for quantum state tomography.

7 CONCLUDING REMARKS

We have proposed a stochastic first-order method
named B-sample LB-SDA for solving the Poisson in-
verse problem, computing the ML estimate for quan-
tum state tomography, and approximating PSD ma-
trix permanents. In particular, d-sample LB-SDA
takes Õ(d3/ε2) time to obtain an ε-optimal solution
in the quantum setup, improving the time complexi-
ties of existing first-order methods. The improvement
is based on a new analysis for mini-batch methods,
which relies on a novel self-bounding-type property of
the logarithmic loss and a new local-norm based anal-
ysis of the online-to-batch conversion. Lastly, we have
shown that LB-SDA performs better empirically than
all methods with explicit complexity guarantees.

Several research directions arise. One direction is to
design accelerated or variance-reduced methods for
solving the optimization problem (1) based on the
smoothness characterization. Another direction is
to generalize our argument to other non-smooth loss
functions.
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A PRELIMINARIES

Throughout this section, let (V, ⟨·, ·⟩) be a finite-dimensional real Hilbert space, such as Rd with the standard
inner product and Hd with the Hilbert-Schmidt inner product ⟨U, V ⟩ := tr(U∗V ). Let X ⊆ V be a convex set.

A.1 Self-Concordance and Relative Smoothness

This section provides necessary background information on the notions of self-concordance (Nesterov and Ne-
mirovskii, 1994; Nesterov, 2018) and relative smoothness (Bauschke et al., 2017; Lu et al., 2018), which form the
basis of the smoothness characterization in Section 4. We begin with self-concordance.

Definition 9 (Self-concordance). A closed convex function φ : V → (−∞,∞] with an open domain domφ is
said to be M -self-concordant if it is three-times continuously differentiable on domφ and

|D3φ(x)[u, u, u]| ≤ 2M(D2φ(x)[u, u])3/2, ∀x ∈ domφ, u ∈ V.

Theorem 10 (Theorem 5.1.5 of Nesterov (2018)). Let φ be an M -self-concordant function. Let ∥·∥x :=
(D2φ(x)[·, ·])1/2 be the local norm associated with φ at x. Define the Dikin ellipsoid W (x) := {y ∈ V | ∥y−x∥x <
1/M}. Then, W (x) ⊆ domφ for all x ∈ domφ.

Theorem 11 presents an important local smoothness-type property of self-concordant functions. Define ω(t) :=
t− log(1 + t) and its Fenchel conjugate ω∗(t) = −t− log(1− t).

Theorem 11 (Theorem 5.1.9 and Lemma 5.1.5 of Nesterov (2018)). Let φ be an M -self-concordant function.
Let ∥·∥x := (D2φ(x)[·, ·])1/2 be the local norm associated with φ at x. Then, for x, y ∈ domφ such that ∥y−x∥x <
1/M , it holds that

φ(y) ≤ φ(x) + ⟨∇φ(x), y − x⟩+
1

M2
ω∗(M∥y − x∥x).

Moreover, if ∥y − x∥x < 1/(2M), then

φ(y) ≤ φ(x) + ⟨∇φ(x), y − x⟩+ ∥y − x∥2x.

Lemma 12 (Proposition 5.4.5 of Nesterov and Nemirovskii (1994)). The logarithmic barrier h(ρ) = − log det ρ
is 1-self-concordant.

Now, we introduce the notion of relative smoothness.

Definition 13 (Relative smoothness). Let f, h : V→ (−∞,∞]. The function f is said to be L-smooth relative
to h on X for some L > 0 if Lh− f is convex on X .
Lemma 14 (Proposition 7 of Tsai et al. (2023a)). Let f(ρ) := E[− log tr(Aρ)] and h(ρ) := − log det ρ be the
logarithmic barrier. Then, the function f is 1-smooth relative to h on Hd

++.

A.2 FTRL with Self-Concordant Regularizer

This section presents the regret bound of follow-the-regularized-leader (FTRL) with self-concordant regularizers
of Tsai et al. (2023b) in a slightly general form. An online linear optimization problem is a multi-round game
between two players, say Learner and Reality. In the t-th round,

• first, Learner announces an action xt ∈ X ;

• then, Reality reveals a loss function ft(x) := ⟨vt, x⟩ for some vt ∈ V;

• lastly, Learner suffers a loss ft(xt).

The goal of Learner is to minimize the regret supx∈X Rt(x), where

Rt(x) :=

t∑
τ=1

fτ (xτ )−
t∑

τ=1

fτ (x), ∀x ∈ X .

We refer readers to the lecture notes of Orabona (2023) and Hazan (2016) for a general introduction to online
convex optimization.

FTRL is presented in Algorithm 2. We assume that the regularizer φ is a self-concordant function.
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Algorithm 2 FTRL for online linear optimization

1: x1 ∈ argminx∈X η−1
0 φ(x).

2: for all t ∈ N do
3: Announce xt and receive vt ∈ V.
4: Compute a learning rate ηt > 0.
5: xt+1 ← argminx∈X ⟨v1:t, x⟩+ η−1

t φ(x).
6: end for

Assumption 2. The function φ is an M -self-concordant function such that X is contained in the closure of
domφ and minx∈X φ(x) = 0. The Hessian ∇2φ(x) is positive definite for all x ∈ X ∩ domφ.

Let ∥·∥x := (D2φ(x)[·, ·])1/2 be the local norm associated with φ at x and ∥·∥x,∗ be its dual norm. The theorem
below bounds the regret of Algorithm 2.

Theorem 15 (Theorem 3.2 of Tsai et al. (2023b)). Assume that Assumption 2 holds and ηt−1∥vt∥xt,∗ ≤ 1/(2M)
for all t ∈ N. Then, Algorithm 2 satisfies

Rt(x) ≤ φ(x)

ηt
+

t∑
τ=1

ητ−1∥vτ∥2xτ ,∗, ∀t ∈ N.

Remark 16. It is important to notice that the regret analysis of Tsai et al. (2023b) directly extends for the
quantum setup.

The following corollary has appeared in the proof of Theorem 6.2 of Tsai et al. (2023b) implicitly. We provide
the statement and the proof for completeness.

Corollary 17. Assume that Assumption 2 holds. Moreover, assume that ∥vt∥xt,∗ ≤ G for all t ∈ N. Then, for
any D > 0, Algorithm 2 with

ηt =
D√∑t

τ=1∥vτ∥2xτ ,∗ + 4M2G2D2 + G2
, ∀t ∈ N,

satisfies

Rt(x) ≤
(
φ(x)

D
+ 2D

)√√√√ t∑
τ=1

∥vτ∥2xτ ,∗ + 4M2G2D2 + G2, ∀t ∈ N.

Proof. First, the learning rates satisfy ηt−1∥vt∥xt,∗ ≤ 1/(2M) for all t ∈ N because

ηt−1∥vt∥xt,∗ =
D∥vt∥xt,∗√∑t−1

τ=1∥vτ∥2xτ ,∗ + 4M2G2D2 + G2
≤ DG√

4M2G2D2
=

1

2M
.

By Theorem 15 and Lemma 4.13 of Orabona (2023), we have

Rt(x) ≤ φ(x)

D

√√√√ t∑
τ=1

∥vτ∥2xτ ,∗ + 4M2G2D2 + G2 + D

t∑
τ=1

∥vτ∥2xτ ,∗√∑τ−1
s=1∥vs∥2xs,∗ + 4M2G2D2 + G2

≤ φ(x)

D

√√√√ t∑
τ=1

∥vτ∥2xτ ,∗ + 4M2G2D2 + G2 + D

t∑
τ=1

∥vτ∥2xτ ,∗√∑τ
s=1∥vs∥2xs,∗

≤ φ(x)

D

√√√√ t∑
τ=1

∥vτ∥2xτ ,∗ + 4M2G2D2 + G2 + 2D

√√√√ t∑
τ=1

∥vτ∥2xτ ,∗

≤
(
φ(x)

D
+ 2D

)√√√√ t∑
τ=1

∥vτ∥2xτ ,∗ + 4M2G2D2 + G2.

This completes the proof.
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A.3 Online-to-Batch Conversion

This section recaps the online-to-batch conversion proposed by Cesa-Bianchi et al. (2004). Consider the following
optimizaiton problem:

min
x∈X

f(x),

with a stochastic first-order oracle O that returns an unbiased estimate O(x) ∈ V of ∇f(x) given any x ∈ X .
Algorithm 3 presents the online-to-batch conversion and Theorem 18 presents its theoretical guarantee.

Algorithm 3 Online-to-batch conversion

Input: An online learning algorithm A.

1: Get x1 from A.
2: for all t ∈ N do
3: Output x̄t := (1/t)x1:t.
4: gt = O(xt).
5: Send ft(x) := ⟨gt, x⟩ to A.
6: Get xt+1 from A.
7: end for

Theorem 18. Let Rt(x) :=
∑t

τ=1 ⟨gτ , xτ − x⟩ be the regret of the online algorithm A against x ∈ X . Assume
that the stochastic gradients are unbiased, i.e., E[gt|g1, . . . , gt−1, x1, . . . , xt] = ∇f(xt). Then, for any x ∈ X ,
Algorithm 3 satisfies

E [f(x̄t)− f(x)] ≤ E[Rt(x)]

t
, ∀t ∈ N,

and

E

[
t∑

τ=1

(f(x̄τ )− f(x))

]
≤ (1 + log t) max

1≤τ≤t
E[Rτ (x)], ∀t ∈ N,

where the expectation is taken with respect to the stochastic gradients {gt}.

In Theorem 18, the first inequality can be found in Theorem 3.1 of Orabona (2023), and the second inequality
follows immediately by summing the first one over t.

B PROOFS

B.1 Local Norm and Dual Local Norm

Lemma 19. The local norm ∥·∥ρ is given by ∥X∥ρ =
√

tr((ρ−1X)2) =
√

tr((ρ−1/2Xρ−1/2)2).

Proof. By Appendix A.4.1 of Boyd and Vandenberghe (2004) and Example 3.20 of Hiai and Petz (2014), we
write

∥X∥2ρ = D2h(ρ)[X,X]

=
d2

dt2
− log det(ρ + tX)

∣∣∣∣
t=0

=
d

dt
− tr((ρ + tX)−1X)

∣∣∣∣
t=0

= tr

(
− d

dt
(ρ + tX)−1

∣∣∣∣
t=0

X

)
= tr(ρ−1Xρ−1X).

The lemma follows.

Lemma 20. The dual norm of ∥·∥ρ is given by ∥X∥ρ,∗ =
√

tr((ρX)2) =
√

tr((ρ1/2Xρ1/2)2).
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Proof. By the definition of dual norm,

∥X∥ρ,∗ = sup
∥τ∥ρ=1

|tr(Xτ)| = sup
∥τ∥ρ=1

|tr(ρ1/2Xρ1/2ρ−1/2τρ−1/2)|.

By the Cauchy-Schwarz inequality and ∥τ∥ρ = 1, we have

|tr(ρ1/2Xρ1/2ρ−1/2τρ−1/2)| ≤
√

tr((ρ1/2Xρ1/2)2) tr((ρ−1/2τρ−1/2)2) =
√

tr((ρ1/2Xρ1/2)2).

Then,

sup
∥τ∥ρ=1

|tr(Xτ)| ≤ sup
∥τ∥ρ=1

√
tr((ρ1/2Xρ1/2)2) =

√
tr((ρ1/2Xρ1/2)2).

The equality can be achieved by taking

τ =
ρXρ√

tr((ρ1/2Xρ1/2)2)
.

The lemma follows.

B.2 Proof of Lemma 2

We write

∥∇f(ρ)∥2ρ,∗ = tr

((
E
ρ1/2Aρ1/2

tr(ρA)

)2)
≤ E tr

((
ρ1/2Aρ1/2

tr(ρA)

)2)
= E

tr((ρ1/2Aρ1/2)2)

(tr(ρ1/2Aρ1/2))2
≤ 1,

where the first inequality follows from the convexity of tr(A2) and Jensen’s inequality, and the second inequality
follows from the inequality 0 ≤ tr(A2) ≤ (trA)2 for A ∈ Hd

+.

B.3 Proof of Lemma 4

The first few steps follow from Lemma 4.7 of Tsai et al. (2023b). The main simplification of the original proof
is the use of Theorem 10, which we will see later.

Write αρ = αρ(∇f(ρ)) for simplicity and assume ∥∇f(ρ)+αρI∥ρ,∗ ̸= 0. Otherwise, the lemma holds immediately.
Fix ρ ∈ ri Dd. By relative smoothness of f (Definition 13 and Lemma 14), we have

f(ρ′) ≤ f(ρ) + ⟨∇f(ρ), ρ′ − ρ⟩+ [h(ρ′)− h(ρ)− ⟨∇h(ρ), ρ′ − ρ⟩] , ∀ρ′ ∈ ri Dd,

where ⟨U, V ⟩ := tr(U∗V ) is the Hilbert-Schmidt inner product on Hd. Then, by self-concordance of h (Theorem 11
and Lemma 12), we have

f(ρ′) ≤ f(ρ) + ⟨∇f(ρ), ρ′ − ρ⟩+ ∥ρ′ − ρ∥2ρ, ∀ρ′ ∈ ri Dd : ∥ρ′ − ρ∥ρ ≤ 1/2,

where ∥·∥ρ is the local norm associated with h. Since ⟨I, ρ− ρ′⟩ = 0, we write

f(ρ′) ≤ f(ρ) + ⟨∇f(ρ) + αρI, ρ
′ − ρ⟩+ ∥ρ′ − ρ∥2ρ, ∀ρ′ ∈ ri Dd : ∥ρ′ − ρ∥ρ ≤ 1/2.

Rearraging the terms and taking supremum over all possible ρ′, we obtain

sup
ρ′∈riDd:∥ρ′−ρ∥ρ≤1/2

⟨−∇f(ρ)− αρI, ρ
′ − ρ⟩ − ∥ρ′ − ρ∥2ρ ≤ f(ρ)− min

ρ′∈Dd

f(ρ′). (9)

Next, for β ∈ [0, 1/2], define

ρ′β := ρ− β
ρ(∇f(ρ) + αρI)ρ

∥∇f(ρ) + αρI∥ρ,∗
.

We will plug ρ′β into the supremum (9) and must verify that ρ′β satisfies the constraints. Since

tr (ρ(∇f(ρ) + αρI)ρ) = tr

(
ρ

(
−E A

tr(Aρ)
+ E

tr(Aρ2)

tr(Aρ) tr(ρ2)
I

)
ρ

)
= E

[
− tr(Aρ2)

tr(Aρ)
+

tr(Aρ2) tr(ρ2)

tr(Aρ) tr(ρ2)

]
= 0,
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we have tr ρ′β = tr ρ = 1. Second, by the definition of αρ (7) and Lemma 2, we have ∥ρ′β − ρ∥ρ = β ≤ 1/2. At
last, we need to verify ρ′β > 0. Since ∥ρ′β − ρ∥ρ ≤ 1/2, by Theorem 10, we have ρ′β ∈ domh = Hd

++ and ρ′β > 0.
The application of Theorem 10 simplifies the proof of Tsai et al. (2023b) because we no longer need to check
ρ′β > 0 explicitly. Plugging ρ′β and lower bounding the supremum (9), we have

sup
0≤β≤1/2

(β − β2)∥∇f(ρ) + αρI∥2ρ,∗ ≤ f(ρ)− min
ρ′∈Dd

f(ρ′).

The lemma follows by noticing that β = 1/2 achieves the supremum.

B.4 Proof of Lemma 5

First, it is clear that the unbiasedness property holds. By Lemma 2, we can take G = 1. For the variance, we
write

E
[
∥gt −∇f(ρt)∥2ρt,∗|Ht

]
= E

∥∥∥∥∥ 1

B

B∑
b=1

(∇ℓb(ρt)−∇f(ρt))

∥∥∥∥∥
2

ρt,∗

∣∣∣∣Ht


=

1

B2
E

 ∑
1≤b,b′≤B

tr((∇ℓb(ρt)−∇f(ρt))ρt(∇ℓb′(ρt)−∇f(ρt))ρt)

∣∣∣∣Ht


=

1

B2
E

[
B∑

b=1

∥∇ℓb(ρt)−∇f(ρt)∥2ρt,∗

∣∣∣∣Ht

]
,

where the second equality follows from the explicit formula of the dual local norm (Lemma 20); the third equality
follows from the independence of b, b′ and unbiasedness of ∇ℓb and ∇ℓb′ . Finally, by the triangle inequality and
Lemma 2,

E
[
∥∇ℓb(ρt)−∇f(ρt)∥2ρt,∗

∣∣Ht

]
≤ E

[
(∥∇ℓb(ρt)∥ρt,∗ + ∥∇f(ρt)∥ρt,∗)

2 |Ht

]
≤ E

[
(1 + 1)2|Ht

]
≤ 4. (10)

The lemma follows.

B.5 Proof of Theorem 6

Let h(ρ) = − log det ρ − d log d be the logarithmic barrier. Note that Algorithm 1 is derived by applying
Algorithm 2 with the regularizer h to the online linear optimization problem (Appendix A.2), followed by the
online-to-batch conversion (Algorithm 3).

Fix ρ ∈ Dd. To deal with the unboundedness of h on Dd, we first apply the technique used in Lemma 10 of Luo
et al. (2018). Let any ρ ∈ Dd, define ρ̃ = (t/(t + 1))ρ + 1/(t + 1)(I/d) ∈ Dd. Then, by convexity,

f(ρ̃) − f(ρ) ≤ ⟨∇f(ρ̃), ρ̃− ρ⟩ = E
[

tr(Aρ)− tr(Aρ̃)

tr(Aρ̃)

]
= E

[
(1 + 1/t) tr(Aρ̃)− (1/dt) trA− tr(Aρ̃)

tr(Aρ̃)

]
≤ 1

t
.

Therefore,

E [f(ρ̄t)− f(ρ)] ≤ E [f(ρ̄t)− f(ρ̃)] +
1

t
.

Applying the first inequality in Theorem 18, we have

E [f(ρ̄t)− f(ρ)] ≤ E[Rt(ρ̃)] + 1

t
≤ max1≤τ≤t ERτ (ρ̃) + 1

t
, (11)

where

Rt(ρ̃) =

t∑
τ=1

⟨gτ , ρτ − ρ̃⟩ =

t∑
τ=1

⟨gτ + αρτ
(gτ )I, ρτ − ρ̃⟩

is the regret of Algorithm 2 applied to the online linear optimization problem with vt = gt + αρτ (gτ )I (see
Appendix A.2).
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Next, by assumption and the definition of αρ (7), we have ∥gτ + αρτ (gτ )I∥ρτ ,∗ ≤ ∥gτ∥ρτ ,∗ ≤ G. Applying

Corollary 17 with M = 1 and D =
√
d, we obtain

Rt(ρ̃) ≤
(
h(ρ̃)√

d
+ 2
√
d

)√
Gt + 4dG2 + G2 ≤ (log t + 3)

√
dGt + 4d2G2 + dG2,

where Gt =
∑t

τ=1∥gτ + αρτ
(gτ )I∥2ρτ ,∗. The last inequality follows from h(ρ̃) ≤ d log(t + 1) ≤ d log t + d. By

Jensen’s inequality, the expected regret is bounded by

ERt(ρ̃) ≤ (log t + 3)
√

dEGt + 4d2G2 + dG2.

Then, we take maximum over t on both sides. Since the upper bound is increasing in t, we obtain

max
1≤τ≤t

ERτ (ρ̃) ≤ (log t + 3)
√
dEGt + 4d2G2 + dG2. (12)

Now, we upper bound EGt by max1≤τ≤t ERτ (ρ̃). Denote by Ht = {g1, . . . , gt−1, ρ1, . . . , ρt} the past information
before obtaining gt. By the linearity of αρ (7), we have

E[αρt(gt)|Hτ ] = αρt(∇f(ρt)).

Recall from Lemma 20 that ∥X∥ρ,∗ = ∥ρ1/2Xρ1/2∥F , where ∥X∥F :=
√

tr(X∗X) is the Frobenius norm. By the
law of total expectation, Lemma 20, and the variance decomposition E[∥X∥2F ] = E[∥X − EX∥2F ] + ∥EX∥2F for a
random matrix X, we have

E
[
∥gτ + αρτ

(gτ )I∥2ρτ ,∗
]

=EHτE
[
∥gτ + αρτ (gτ )I∥2ρτ ,∗|Hτ

]
=EHτE

[
∥gτ −∇f(ρτ ) + αρτ (gτ −∇f(ρτ ))I∥2ρτ ,∗|Hτ

]
+ EHτ

[
∥∇f(ρτ ) + αρτ (∇f(ρτ ))I∥2ρτ ,∗

]
=EHτ

E
[
∥gτ −∇f(ρτ ) + αρτ

(gτ −∇f(ρτ ))I∥2ρτ ,∗|Hτ

]
+ E

[
∥∇f(ρτ ) + αρτ

(∇f(ρτ ))I∥2ρτ ,∗
]
.

(13)

We bound the two terms separately. By the definition of αρ (7) and the bounded-variance assumption,

EHτ
E
[
∥gτ −∇f(ρτ ) + αρτ

(gτ −∇f(ρτ ))I∥2ρτ ,∗|Hτ

]
≤ EHτ

E
[
∥gτ −∇f(ρτ )∥2ρτ ,∗|Hτ

]
≤ σ2.

Furthermore, let δτ := Ef(ρτ )− f(ρ̃). By the self-bounding-type property (Lemma 4), we have

E
[
∥∇f(ρτ ) + αρτ (∇f(ρτ ))I∥2ρτ ,∗

]
≤ Ef(ρτ )− min

ρ∈Dd

f(ρ) ≤ δτ .

Therefore, we have (13) ≤ σ2 + 4δτ and

EGt =

t∑
τ=1

E
[
∥gτ + αρτ

(gτ )I∥2ρτ ,∗
]
≤ σ2t + 4

t∑
τ=1

δτ .

By the second inequality in Theorem 18, we have
∑t

τ=1 δτ ≤ (1 + log t) max1≤τ≤t ERτ (ρ̃). Hence,

EGt ≤ σ2t + 4(1 + log t) max
1≤τ≤t

ERτ (ρ̃).

Finally, combining with the bound on the expected regret (12), we have

max
1≤τ≤t

ERτ (ρ̃) ≤ (3 + log t)
√

4d(1 + log t) max
1≤τ≤t

ERτ (ρ̃) + 4d2G2 + dG2 + σ2dt.

By Lemma 4.24 of Orabona (2023), solving for max1≤τ≤t ERτ (ρ̃) gives

max
1≤τ≤t

ERτ (ρ̃) ≤ 4d(3 + log t)3 + 2(3 + log t)
√
σ2dt + 4d2G2 + dG2.

The theorem follows by combining the above inequality with (11).
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C ADDITIONAL NUMERICAL RESULTS

This section presents additional numerical results in terms of the number of epochs, where one epoch refers to
one full pass of the dataset. Specifically, one epoch of B-sample LB-SDA corresponds to n/B iterations, one
epoch of other stochastic methods corresponds to n iterations, and one epoch of batch methods corresponds to
one iteration. The number of epochs is proportional to the number of gradient evaluated by the algorithm. Note
that EMD and diluted iMLE compute function values in the Armijo line search procedure, which pass through
the dataset for more than once. Therefore, the numerical results in terms of the number of epochs favor these two
algorithms. Since computing the function values is much faster than computing the gradients, we still present
numerical results in terms of the number of epochs.

Figure 3 presents results for the experiment of the Poisson inverse problem in Section 6.1, while Figure 4 presents
results for the experiment of ML quantum state tomography in Section 6.2. For the Poisson inverse problem,
we randomly generated 20 problem instances under the setup described in Section 6.1. We then reported the
average performance of the algorithms on them. For ML quantum state tomography, we considered only one
problem instance because the experiment already took one week.

In terms of the optimization error, 1-sample LB-SDA outperforms other methods with clear complexity guar-

Figure 3: Performances of all algorithms in Table 1, SPDHG, and EMD with line search for solving 20 randomly
generated Poisson inverse problem instances. For each algorithm, the solid line represents its average error, and
the shaded region indicates the 95% confidence interval.

(a) The true signal.

(b) Approximate optimization error versus the number of
epochs. (c) Normalized estimation error versus the number of

epochs.
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Figure 4: Performances of all algorithms in Table 1, iMLE, diluted iMLE, and EMD with line search for computing
the ML estimate for quantum state tomography.

(a) Approximate optimization error versus the number of
epochs.

(b) Fidelity between the iterates and the W state versus
the number of epochs.

antees. Note that 1-sample LB-SDA converges faster than d-sample LB-SDA. The reason is that after the s-th
epoch, 1-sample LB-SDA has performed ns iterations, whereas d-sample LB-SDA has only performed ns/d it-
erations. According to Corollary 7, the optimization error bound of 1-sample LB-SDA is Õ(d/(ns) +

√
d/(ns)),

smaller than the Õ(d2/(ns) +
√
d/(ns)) optimization error bound of d-sample LB-SDA. In terms of the fidelity,

1-sample LB-SDA achieves the best performance among all methods with explicit complexity guarantees for
computing the ML estimate for quantum state tomography.
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