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Abstract

For min-max optimization and variational in-
equalities problems (VIPs), Stochastic Extra-
gradient (SEG) and Stochastic Gradient De-
scent Ascent (SGDA) have emerged as preem-
inent algorithms. Constant step-size versions
of SEG/SGDA have gained popularity due to
several appealing benefits, but their conver-
gence behaviors are complicated even in rudi-
mentary bilinear models. Our work elucidates
the probabilistic behavior of these algorithms
and their projected variants, for a wide range
of monotone and non-monotone VIPs with
potentially biased stochastic oracles. By re-
casting them as time-homogeneous Markov
Chains, we establish geometric convergence to
a unique invariant distribution and aymptotic
normality. Specializing to min-max optimiza-
tion, we characterize the relationship between
the step-size and the induced bias with re-
spect to the global solution, which in turns
allows for bias refinement via the Richardson-
Romberg scheme. Our theoretical analysis is
corroborated by numerical experiments.

1 INTRODUCTION

Variational inequalities problem (VIP) is a versatile
framework that incorporates a broad range of prob-
lems including loss minimization, min-max optimiza-
tion/games and various fixed point problems. In many
machine learning problems, such as training Generative
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Adversarial Networks (GANs), Actor-Critic methods,
multi-agent reinforcement learning and robust learning,
can be cast as VIPs.

In the setting with only noisy access to the underly-
ing operator, various stochastic algorithms for VIP
have been studied. Two prime examples are Stochas-
tic Extragradient (SEG) (Juditsky et al., 2011) and
Stochastic Gradient Descent Ascent (SGDA) meth-
ods (Nemirovski et al., 2009). Much progress has been
made in recent years on understanding the conver-
gence of SEG and SGDA, as well as stochastic gradient
descent (SGD), a special case of SGDA. Classical re-
sults on these stochastic methods typically assume
that a diminishing step-size is used, which allows for
last-iterate almost sure convergence to the global solu-
tion (Mishchenko et al., 2020; Kannan and Shanbhag,
2019; Mertikopoulos and Zhou, 2019; Hsieh et al., 2020a;
Gorbunov et al., 2022; Loizou et al., 2021; Yang et al.,
2020; Beznosikov et al., 2023; Gorbunov et al., 2020).

In this paper, we focus on the constant step-size vari-
ants of SEG and SGDA. The use of constant step-sizes,
which is popular in practice and performs well empir-
ically, offers several major benefits: insensitivity to
initial conditions, fast progress in early iterations, easy
tuning with a single parameter, and low correlation
between iterates facilitating statistical inference.

Figure 1: Non-convergence of
constant step-size SEG in a quasi-
bilinear game: minx maxy ϵx

2 +
xy − ϵy2, with ϵ ≈ 10−4.

However, in the-
oretical study on
stochastic VIP
methods, their con-
vergence properties
have been widely
acknowledged to be
more delicate than
their deterministic
and loss minimiza-
tion counterparts.
In addition, the use
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of constant step-size SEG and SGDA present several
challenges not present in the diminishing step-size
case. Various non-convergent behaviors exist even
in rudimentary bilinear models (Gidel et al., 2018;
Mertikopoulos et al., 2019; Chavdarova et al., 2019;
Daskalakis et al., 2018); see Figure 1 for an example.
In particular, with a constant step-size, the iterates
of SEG and SGDA do not converge to an exact VIP
solution but rather fluctuate around the solution
due to persistent stochastic noise. Existing results
are typically in the form of an upper bound on the
mean squared error or dual gap. These upper bounds
typically conflate the deterministic (convergence) and
stochastic (fluctuation) aspects of SEG/SGDA, and
often fail to explain the benefits of constant stepsize.

In this work, we elucidate the fine-grained properties
of SEG/SGDA with constant step-sizes. Rather than
treating the stochastic fluctuation as a nuisance, we
fully embrace the probabilistic nature of SEG/SGDA,
by viewing them as time-homogeneous continuous state
space Markov chains. We show that while the iterate
does not converge, its distribution does. This perspec-
tive allows us to separately characterize the distribu-
tional convergence behavior and the properties of the
limit distribution, as summarize below.

Our Contributions. For a class of constrained VIPs
with weak quasi strongly monotonicity, which encom-
passes various non-monotone and non-convex problems,
we establish the following results.

• We show that the iterates of SEG and SGDA form a
Harris and positive recurrent Markov chain, which ad-
mits a unique invariant and limit distribution. More-
over, the distribution of the iterate, as well as any
Lipschitz functional thereof, converge to the limit at
a geometric rate.

• We derive an ergodic Law of Large Number (LLN)
and a Central Limit Theorem (CLT) for the averaged
iterate, establishing its asymptotic normality.

• We show that the induced bias—distance between
the mean of the invariant distribution and the global
VIP solution—is bounded by a linear function of the
step-size and weak monotonicity parameter. Special-
izing to convex-concave min-max optimization, we
quantify the bias w.r.t. the Von-Neumann’s value.

• For SGDA applied to quasi strongly monotone VIPs,
we derive a first-order expansion of the induced bias
in terms of the step-size. With this characterization,
we apply the Richardson-Romberg refinement scheme
to achieves an order-wise reduction of the bias.

In the above results, we quantify the dependence on the
stepsize and the parameters of the VIP and stochastic
oracle, highlighting the superior performance of SEG
for smooth problems and the resilience of SGDA in

nonsmooth settings. Moreover, our results apply to
projected SEG/SGDA for constrained VIPs, and to
potentially biased stochastic oracles.

Challenges and Techniques. By connecting
SEG/SGDA to Markov chains, we leverage the powerful
framework laid out in Meyn and Tweedie (2009); Douc
et al. (2018) for convergence and ergodicity of stochas-
tic processes. To this end, we establish several key
properties of the associated Markov chain, including
irreducibility, positive and Harris recurrence and the
Foster-Lyapunov condition. These properties stipulate
that the iterates will return to a “small set” infinitely
thanks to a negative geometric drift of an appropriate
potential function. These properties in turn ensure
the existence and convergence to a unique invariant
distribution, and the validity of limit theorems such as
LLN and CLT.

While the above Markov chain framework provides a
high level strategy, its implementation in stochastic
VIPs is met with several challenges. VIPs are defined
on subsets of Rd, corresponding to a continuous, un-
countable and multidimensional state space for the
Markov chain, which requires more advanced machin-
ery compared to finite state Markov chains. Moreover,
unlike minimization problems, general VIPs lack a gra-
dient field structure and a natural potential function.
Therefore, analytic techniques for the former need not
generalize to VIPs. This challenge is intensified in the
analysis of SEG, which involves two interdependent ran-
dom steps, necessitating more nuanced arguments com-
pared to SGD(A). The analysis is further complicated
by the use of additional projection steps in constrained
VIPs, by the consideration of quasi monotonicity, and
by the absence of cocercivity and unbiasedness of the
noisy oracle in our setting.

Consequently, our analysis is considerably more deli-
cate than the recent work in Dieuleveut et al. (2018);
Yu et al. (2021), which also adopt the Markov chain
perspective for (unconstrained) SGD. We compare with
them in more details after presenting our assumptions
and main results in Section 4.

Despite the discussed challenges, we manage to provide
a unified, streamlined analysis of SEG, SGDA and their
projected variants, in smooth and nonsmooth VIPs.

Other Related Work. There is an extensive body
of work on the algorithms for VIPs, for both the de-
terministic setting (Gidel et al., 2018; Mokhtari et al.,
2020; Diakonikolas et al., 2021) and the stochstic setting
with SEG (Mertikopoulos and Zhou, 2019; Gorbunov
et al., 2022) and SGDA (Lin et al., 2020; Beznosikov
et al., 2023). More recent work considers extensions
of constant stepsize SGD and other stochastic approxi-
mation algorithms (Bianchi et al., 2022; Durmus et al.,
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2021; Huo et al., 2023). For concision, we refer to the
Appendx for extended discussion of related work.

2 PROBLEM SETUP

We start by delineating the variational inequalities
framework and the stochastic oracle setting.

2.1 Variational Inequalities

Let X ⊆ Rd be a closed convex set and V : Rd → Rd

be a single-valued operator. The corresponding VIP is

Find x∗ ∈ X : ⟨V (x∗), x− x∗⟩ ≥ 0 ∀x ∈ X . (VI)

The examples below showcase the applications of VIPs.

Example 2.1 (Solving nonlinear equations). Solu-
tions of (VI) with X = Rd correspond to roots of the
equation V (x) = 0. Examples include Navier-Stokes
equations in computational dynamics (Hao, 2021).

Example 2.2 (Loss minimization). For a C1-smooth
function f : X → R, a solution x∗ of (VI) with
V = ∇ f is a (KKT) critical point, where (i)
⟨∇ f(x∗), x− x∗⟩ ≥ 0,∀x ∈ X (constrained case) and
(ii) ∇ f(x∗) = 0 if X = Rd (unconstrained case). For
convex f , x∗ is a global minimizer. Loss minimization
powers model training in machine learning (Lan, 2020).

Example 2.3 (Saddle-point problems). For a (quasi)
convex-concave function L : X1 ×X2 → R, a solution
(x∗1, x

∗
2) of (VI) with V = (∇x1 L,−∇x2 L) and X =

X1 ×X2 is a saddle point of L, that is,

L(x∗1, x2)≤L(x∗1, x∗2)≤L(x1, x∗2), ∀(x1, x2) ∈ X . (SP)

Example 2.4 (Nash Equilibria). Consider N players,
each with a convex action set Xi ⊂ Rni and a cost
function ci : X → R, where X =

∏
i Xi. A joint action

profile x∗ = (x∗i )
N
i=1 ∈ X is Nash equilibrium (NE) if

ci(x
∗) ≤ ci(xi;x∗−i), ∀i, xi ∈ Xi. (NE)

If ci’s are separately convex, then V = (∇xici(x))
N
i=1 is

monotone, and the solutions of (VI) and (NE) coincide.

The problems (SP) and (NE) are prominent in training
GANs, actor-critic techniques, multi-agent reinforce-
ment learning, and auction/bandit problems (Pfau and
Vinyals, 2016; Zhang et al., 2021; Gidel et al., 2018;
Daskalakis et al., 2018).

2.2 Assumptions and Stochastic Oracle

Our blanket assumptions in this study are the following:

Assumption 1. The solution set X ∗ of (VI) is non-
empty and there exist x∗ ∈ X ∗,R ∈ R with ∥x∗∥ ≤ R.

Assumption 2. The operator V is λ-weak µ-quasi
strongly monotone with parameters λ ≥ 0, µ > 0. That
is, for all x ∈ Rd :

⟨V (x), x−x∗⟩ ≥ µ∥x−x∗∥2−λ for some x∗ ∈ X ∗. (1)

By letting x = x∗′ ∈ X ∗ in (1), one can show that
∥x∗ − x∗′∥2 ≤ λ/µ for all x∗, x∗′ ∈ X ∗, by using the
fact that ⟨V (x∗′), x∗ − x∗′⟩ ≤ 0 . Hence the solution
set X ∗ is contained in a ball of radius

√
λ/µ, which

vanishes if λ = 0. In the rest of the paper, x∗ denotes
an arbitrary fixed element of X ∗.

As an example of a function for which Assumption 2
is satisfied with λ > 0, one may consider the function
f(x, y) = (x2 + 10 sin(x)) + xy − (y2 − 10 cos(y)). In
this case, the assumption is satisfied for (µ, λ) = (1, 25).

Assumption 3. For different algorithms, we adopt
the following reguarity conditions for V :

• If (SEG) is run, we assume that the operator V
is ℓ-Lipschitz continuous, i.e.,

∥V (x′)−V (x)∥ ≤ ℓ∥x′−x∥ for all x, x′ ∈ Rd. (2)

• If (SGDA) is run, we assume that the operator V
has at most L-linear growth, i.e.,

∥V (x)∥ ≤ L(1 + ∥x∥) for all x ∈ Rd. (3)

Our algorithms access V through a black-box stochastic
oracle. When queried at xt ∈ X , the oracle returns

Vt = V (xt) + Ut(xt), (4)

where Ut(xt) is additive noise. We impose the following
assumption, which allows the noise to have a non-zero
mean and a second moment with linear growth.
Assumption 4. (Ut(·))t≥0 is a sequence of i.i.d. ran-
dom fields with the following properties:

• Bounded Bias: ∥E[Ut(x) | Ft]∥ ≤ b,∀x, t;
• Second Moment : E[∥Ut(x)∥2 | Ft] ≤ σ2+ρd2(x,X ∗),

where d(x, S) = infy∈S ∥x−y∥ and for some σ, ρ > 0.

Herein, Ft is the history (σ-algebra) generated by
x1, . . . , xt. Note that xt is adapted to Ft, but Ut(xt)
is generated after xt and thus not adapted to Ft.

A few remarks are in order. When λ = 0, Assumption 2
has been considered in the VIPs literature under the
names of quasi-strong monotonity (Loizou et al., 2021),
strong stability condition (Mertikopoulos and Zhou,
2019) and strongly coherent VIPs (Song et al., 2020).
This assumption is weaker than strong monotonic-
ity/convexity, i.e., ⟨V (x), x− x′⟩ ≥ µ∥x− x′∥2,∀x, x′.
With λ > 0, Assumption 2 represents a further relax-
ation inspired by weakly convex optimization and dissi-
pative dynamical systems (Erdogdu et al., 2018; Ragin-
sky et al., 2017). This assumption emcompasses various
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non-monotone games and problems frequently encoun-
tered in statistical learning (Tan and Vershynin, 2019),
such as functions of the form aλ,µ∥x∥2 + bλ,µ sin(∥x∥)
and rescaled versions of the Rastrigin function.

Assumption 3 represents a well-established dichotomy
on VIPs: we leverage (SEG) for its superior rates in
smooth problems, whereas (SGDA) is employed in non-
smooth settings. Note that unlike Dieuleveut et al.
(2018), Assumption 3 is imposed on the true/expected
operator V , not the stochastic oracle (4).

Assumption 4 is standard in the analysis of stochas-
tic algorithms in VIPs and optimization (Nemirovski
et al., 2009; Mertikopoulos and Zhou, 2019; Yang et al.,
2020; Hsieh et al., 2019, 2020a). Such noisy access
can emerge either explicitly due to privacy-induced
noise (Song et al., 2013), or implicitly due to limited
observability in games (Giannou et al., 2021a,b) or
from model uncertainties in tasks like distributional
robust optimization (DRO) (Rahimian and Mehrotra,
2019). When ρ = 0, Assumption 4 corresponds to the
traditional assumption of bounded noise variance.

3 Algorithms

In this paper we focus on two of the most widely used
algorithms for variational inequalities: SGDA and SEG.

Stochastic Gradient Descent Ascent. At each
time-step t ∈ N, a vector xt ∈ Rd is maintained and
updated by accessing the stochastic oracle Vt, using a
constant step-size γSDGA ∈ (0,∞). Formally,

xt+1 = ΠX (xt − γSGDAVt) (SGDA)

where ΠX denotes the projection operator onto X .

Stochastic Extra Gradient. Inspired by the ex-
tragradient (EG) algorithm proposed by Korpelevich
(1976), extra-point schemes have been widely adopted
for smooth VIPs. These algorithm incorporate an
extra “look-ahead" step, denoted by xt+1/2 below, to
approximate the future value V (xt+1) and enhance con-
vergence. Here we examine its stochastic variant with
a single constant step-size γSEG ∈ (0,∞), as follows:

xt+1/2 = ΠX (xt − γSEGVt),

xt+1 = ΠX (xt − γSEGVt+1/2),
(SEG)

where Vt+1/2 is the output of the stochastic oracle
queried at xt+1/2, and Vt+1/2 is independent of Vt (this
is termed the I-SEG model in Hsieh et al. 2020a).

We study the trajectories (xt)t≥0 of (SGDA) and (SEG)
through the lens of Markov Chain theory. Observe that:

(i) The iterates (xt)t≥0 constitute respectively a
Markov chain, with the post-update state xt+1

depending solely on the current state xt.

(ii) The chain and its transition kernel is time-
homogeneous, thanks to the use of constant step-
size and i.i.d. random fields (Ut(x))t≥0.

(iii) The chains lie in the general continuous state
space Rd, in contrast to the typical discrete ones.

By exploiting the specific structures of (SEG) and
(SGDA), we study three fundamental properties of the
induced Markov chain: irreducibility, aperiodicity, and
recurrence (Meyn and Tweedie, 2009), which allows
us to establish convergence and limit theorems that
characterize the fine-grained behavior of SEG/SGDA.

3.1 Preliminary Convergence Results

We derive an initial convergence result, which takes the
form of “geometric convergence up to a constant factor”
and an associated descent inequality. This preliminary
result serves as the first step for proving our main
results on distributional convergence of the Markov
chain, enabling a unified analysis for both methods.

Classical work of Nesterov et al. (2018) and Tseng
(1995) shows that when the operator V is Lipschitz and
strongly monotone, the noiseless versions of (SGDA)
and (SEG) converge exponentially to the solution set
X ∗. In our stochastic setting with the relaxed weakly
quasi strong monotonicity Assumption 2, we derive
similar convergence results up to an additive constant
that depends on the stepsize γ, the noise variance σ2

and the shift λ of weakly quasi-monotonicity.

Theorem 1. Under Assumptions 1–4, consider
(SGDA) and (SEG) with step-sizes γSGDA = O( µ

L2+ρ ),
γSEG = O( 1ℓ ∧

µ
ρ ) respectively, and let (xt)t≥0 be the

generated iterations. There exists a pair of constants
cAlg
1 ∈ (0, 1) and cAlg

2 ∈ (0,+∞) that depend on the
choice of step-sizes and model’s parameters such that

E[∥xt+1 − x∗∥2] ≤
(
1− cAlg

1

)t∥x0 − x∗∥2 + cAlg
2 , (5)

for any initial point x0 ∈ X and Alg ∈ {SGDA,SEG}.

The contraction and bias constants cAlg
1 , cAlg

2 above will
also play a role in our main results in Section 4 to
follow. Our proofs give explicit formulas for these
constants. In particular, assuming the stepsize choices
in Theorem 1 and ignoring universal constants, we
have cSEG

1 ≍ cSGDA
1 ≍ γµ, cSEG

2 ≍ γ σ2

µ + λµ+b2

µ2 , and

cSGDA
2 ≍ γ σ2+L2(1+R2)

µ + λµ+b2

µ2 . A salient feature is
that the biases cSEG

2 and cSGDA
2 are proportional to the

stepsize γ when λ = b = 0 (quasi-strong monotonicity
and unbiased oracle). Moreover, compared to (SGDA),
(SEG) can use a larger stepsize in the smooth setting
(hence better cSEG

1 by a factor of the condition number
ℓ/µ) and achieve a smaller bias cSEG

2 . We also note that
these expressions are consistent with existing results
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in the noiseless setting. See Appendix for additional
discussion on these points.

Notably, besides I-SEG assumption of independent
noise per step, we opt for a single step-size scheme,
differing from intricate double step-size approaches of
Loizou et al. (2020); Hsieh et al. (2020b). Interestingly,
under Assumption 2, even such a simplified scheme
suffices to vanish the bias cSEG

2 when γ approaches 0.

A byproduct of the above theorem’s proof is the follow-
ing one-step “quasi-descent” inequality:

Corollary 1. Under the conditions of Theorem 1, there
exist constants ĉAlg

1 ∈ (0, 1) and ĉAlg
2 ∈ (0,∞) with

Alg ∈ {SGDA,SEG} such that the function E(xt, x∗) :=
∥xt − x∗∥2 + 1 satisfies

E[E(xt+1, x
∗) | Ft] ≤ ĉAlg

1 E(xt, x∗) + ĉAlg
2 . (6)

The function E is often called an energy, potential or
Lyapunov function. The above results apply to an
arbitrary fixed x∗ ∈ X ∗. In the sequel, we omit the
reference to x∗ and simply write the function as E(xt).

Our subsequent Markov chain analysis centers around
three types of recurrence properties: (null)-recurrence,
Harris recurrence, and positive recurrence, which stipu-
late, respectively, that the chain revisits regions of the
state space, doing so infinitely often with probability 1,
and with finite expected return time; we defer their for-
mal definitions to the supplement. For our continuous,
uncountable and potentially unbounded state spaces,
these properties are substantially more nuanced and
challenging to establish than for finite state spaces.

To streamline the analysis, we make use of a commonly
accepted regularity assumption on the noise:

Assumption 5. For all t ≥ 0 and each x ∈ X , the
distribution of the random variable Ut(x) can be de-
composed as ν1 + ν2, where ν1 is a probability measure
that has a probability density function (pdf), denoted
as pdfUt(x), which satisfies infx∈C pdfUt(x)(t) > 0 for
all bounded sets C ⊆ X .

Note that the measure induced by the random variable
Ut(x) need not to have a density function, since ν2 is
an arbitrary measure and we only require ν1 to have a
density function.

A similar assumption is used in Yu et al. (2021) for
SGD. Assumption 5 is relatively weak, satisfied by
Gaussian and other continuous random fields supported
on Rd. In fact, one can always satisfy this assump-
tion by adding (arbitrarily) small continuous noise
to the stochastic oracle (4)—itself a common prac-
tice for inducing privacy—without affecting subsequent
quantitative bounds. As shall become clear in the

analysis, Assumption 5 ensures ψ-irreducibility of the
continuous space Markov chains of SEG and SGDA.
In return, we do not require the noisy oracle Vt(·) =
V (·) + Ut(·) to be almost surely co-cooercive, namely,
ℓ⟨Vt(x) − Vt(x

′), x − x′⟩ ≥ ∥Vt(x) − Vt(x
′)∥2,∀x, x′,

which is a strong assumption needed in the prior
work Dieuleveut et al. (2018).

4 MAIN RESULTS

We summarize the main result of this section as follows:

Informal Theorem. Under Assumptions 1–5, the it-
erates of (SGDA) and (SEG) are strongly aperiodic,
positive and Harris recurrent continuous-state Markov
Chains. Each chain converges a unique stationary dis-
tribution regardless of initialization, and the averaged
iterates satisfy a Law of Large Numbers and an ergodic
Central Limit Theorem.

4.1 Minorization, Drift and Recurrence

In this subsection, we establish (i) the Minorization
Condition and (ii) the Geometric Drift Property for
our methods. These properties serve an important role
in proving Harris and positive recurrence, respectively.
Lemma 1. Let the Assumptions 1–5 be satisfied for
(SGDA) and (SEG). Given the step-sizes specified
in Theorem 1, both algorithms satisfy the following
minorization condition: there exist a constant δ > 0,
a probability measure ν and a set C dependent on the
algorithm, such that ν(C) = 1, ν(Cc) = 0 and

Pr[xt+1 ∈ A|xt = x] ≥ δ 1C(x)ν(A)
for all A ∈ B(X ), x ∈ X .

(MC)

If the set C encompassed the entire space X , the mi-
norization condition (MC) would indicate that every
subset of X is reachable from any state. This together
with standard coupling arguments would imply geo-
metric convergence of the distribution of xt towards a
unique distribution. In fact, we do not need C = X , a
restricted condition when X is unbounded. Rather, a
subset C that satisfies (MC), known as a “small/petite”
set, can still ensure geometric convergence thanks to
the following Foster-Lyapunov drift property.
Corollary 2. Under the setting of Lemma 1, the func-
tion E : X → R presented in Corollary 1 satisfies
the following geometric drift property† by (SGDA) or
(SEG): there exists a measurable set C, and constants
β > 0, b <∞ such that

∆E(x) ≤ −βE(x) + b1C(x), x ∈ X , (FL)
†Eq. (FL) is popularized by Meyn and Tweedie (2009)

as the (V4) geometric drift property.
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where ∆E(x) =
∫
y∈X P (x, dy)E(y)− E(x).

A negative r.h.s. of the Foster-Lyapunov inequality
(FL) ensures that the energy function E decreases ex-
ponentially as the Markov chain transitions from states
outside the set C. Consequently, the chain quickly
forgets its initial state and returns to C, exhibiting
stationary behavior around regions with small values
of the energy function E(·).

We highlight that the projection operator ΠX and its
interplay with the double steps in (SEG) present a
major hurdle in proving Lemma 1 and Corollary 2.

Equipped with the minorization and geometric drift
properties, we are ready to establish the necessary
conditions for the ergodicity of (SGDA) and (SEG):
Lemma 2. The Markov chains (xt)t≥0 corresponding
to (SGDA) and (SEG) satisfy following:

• They are ψ−irreducible for some non-zero σ-finite
measure ψ on X over Borel σ-algebra of X .

• They are aperiodic.
• They are Harris and positive recurrent with an in-

variant measure.

4.2 Convergence and Limit Theorems

Our first main result is about the invariant measure:
Theorem 2. Let Assumptions 1–5 be satisfied for
(SGDA) and (SEG). Then given the step-sizes specified
in Theorem 1, it holds that for Alg ∈ {SGDA,SEG}:

1. The iterates (xt)t≥0 admit a unique invariant dis-
tribution πAlg

γ ∈ P2(X ), where P2(X ) is the set of
distributions on X with bounded second moments.

2. For any test function ϕ : X → R of Lϕ-linear growth
and any initialization x0 ∈ X , there exist constants
τAlg
ϕ,γ ∈ (0, 1) and ζAlg

ϕ,x0,γ
∈ (0,∞) such that:∣∣∣Ext

[ϕ(xt)]− Ex∼π
Alg
γ

[ϕ(x)]
∣∣∣ ≤ ζAlg

ϕ,x0,γ
(τAlg

ϕ,γ )
t. (7)

Hence, (SGDA) and (SEG) converges geometrically
under the total variation distance to πAlg

γ .

3. For each ℓϕ-Lipschitz test function ϕ, it holds that

|E
x∼π

Alg
γ

[ϕ(x)]− ϕ(x∗)| ≤ ℓϕ
√
DAlg, (8)

for some constant DAlg ∝ cAlg
2 .

Theorem 2 is established using generalized ergodic the-
orems for Markov chains satisfying (MC) and (FL).
The theorem asserts geometric convergence of constant
step-size (SGDA) and (SEG) to unique stationary dis-
tributions and provides bounds for mean of the limit
distribution relative to the VIP solution x∗. These
results hold even for non-smooth and non-convex VIPs.

Following the influential work of Polyak and Juditcky
(Polyak, 1990), we next study Asymptotic Normality of
the two algorithms. To the best of our knowledge, such
a result is the first of its kind for stochastic methods
within the variational inequalities framework, especially
for extrapolation techniques like (SEG). To streamline
our discussion, let us introduce a notation.

Definition 1. For a given function ϕ, denote the
average of ϕ evaluated over iterate of our methods,
known as the Césaro mean (Hardy and Series, 1992),
by ST (ϕ) :=

1
T ST (ϕ) :=

1
T

∑T
t=0 ϕ(xt).

We begin with a Law of Large Numbers (LLN) for
(SGDA) and (SEG), established using the analogue of
the Birkhoff–Khinchin ergodic theorem for continuous
state space Markov Chains.

Theorem 3. Let the Assumptions 1–5 hold. Then for
the choice of step-sizes specified in Theorem 2 and any
function ϕ satisfying πAlg

γ (|ϕ|) <∞, where πAlg
γ (|ϕ|) =

E
x∼π

Alg
γ

[|ϕ(x)|], it holds that for Alg ∈ {SGDA,SEG} :

lim
T→∞

ST (ϕ) = lim
T→∞

1

T

T∑
t=0

ϕ(xt) = πAlg
γ (ϕ) a.s.

(Law of Large Numbers for (SGDA) & (SEG))

The next result is a central limit theorem (CLT) for
(SGDA) and (SEG), establishing the asymptotic nor-
mality of their averaged iterates. This result provides
theoretical justifications for constructing confidence
intervals in VIPs and min-max games, surpassing the
sole dependence on empirical evidence in the prior work
Antonakopoulos et al. (2021); Hsieh et al. (2020a).

Theorem 4. Let the Assumptions 1–5 hold. Then for
the choice of step-sizes and a test function ϕ specified
in Theorem 2, we have that for Alg ∈ {SGDA,SEG}:
√
T ·

(
ST (ϕ)− πAlg

γ (ϕ)
) d−−−→ N

(
0, σ2

π
Alg
γ

(ϕ)
)
,

(Central Limit Theorem for (SGDA) & (SEG))

where πAlg
γ (ϕ) = E

x∼π
Alg
γ

[ϕ(x)], σ2

π
Alg
γ

(ϕ) =

limT→∞
1
T Eπ

Alg
γ

[S2
T (ϕ− πAlg

γ (ϕ))], and E
π
Alg
γ

denotes
that the initial distribution of the Markov chain is πAlg

γ .

Remark 1. We compare our results with the recent work
in Dieuleveut et al. (2018); Yu et al. (2021), which view
constant step-size SGD as Markov chains. Both of them
consider only unconstrained minimization problems.
Our work studies constrained VIPs and the projected
verison of SGDA, as well as projected SEG, a more
complicated, extrapolation-based algorithm. Moreover,
we allow for a biased stochastic oracle.

The Markov chain analysis in Dieuleveut et al. (2018)
uses coupling and convergence in Wasserstein distance.
This approach requires (exact-)strong convexity and
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smoothness/cocoercivity of the noise. Our work is in-
stead based on irreducibility, positive/Harris recurrence
and convergence in total variation distance, leveraging
Assumption 5 and quasi-strong monotonicity.

Yu et al. (2021) also uses an irreducibility and recur-
rence based approach, but focuses exclusively on vanilla
SGD in the nonsmooth case. Our results provide a
unified treatment of the smooth setting of SEG and
the nonsmooth setting of SGDA, and at the same time
are strong enough to differentiate performance of SEG
and SGDA in the smooth case. Compared to Yu et al.
(2021), we also provide a more refined characterization
of the bias for SGDA (and hence SGD; see Section 5.2).

5 APPLICATIONS

In this section, we discuss the applications of our
main results on two interesting subcategories of quasi-
strongly monotone problems: (i) min-max convex-
concave games, with locally quadratic region of at-
tractions around the Nash Equilibria and (ii) the ap-
plication of Richardson-Romberg (RR) bias refinement
scheme for smooth quasi-strongly monotone operators.

5.1 Min-Max Convex-Concave Games

We consider a specific class of operators as follows
Assumption 6. The operator V is monotone:

⟨V (x)− V (x′), x− x′⟩ ≥ 0 for all x, x′ ∈ X . (9)

Note that Assumption 2 and 6 together are weaker
than strong monotonicity. Also define the restricted
merit function GapV (x) := supx∗∈X∗⟨V (x), x− x∗⟩.
Theorem 5. Let Assumptions 1–6 hold with b = 0.
Then the iterates of (SGDA), (SEG), when run with
the step-sizes given in Theorem 1, admit a stationary
distribution πAlg

γ such that for Alg ∈ {SGDA,SEG}:

E
x∼π

Alg
γ

[GapV (x)] ≤ cγAlg, (10)

where c ∈ R depends on the parameters of the problem.

Consider the subcase of convex-concave min-max games
(Example 2.3) with objective f : Rd1×Rd2 → R, a con-
vex function in the first argument and concave in the
second one. With x = (θ, ϕ) and V = (∇θf,−∇ϕf),
the aforementioned GapV (x) upper bounds the stan-
dard notion of duality gap:

Duality-Gapf (θ, ϕ) = max
ϕ′∈Rd2

f(θ, ϕ′)− min
θ′∈Rd1

f(θ′, ϕ),

also known as primal-dual optimality gap or Nash gap.

Consequently, let val∗ = minθ∈Rd1 maxϕ∈Rd2 f(θ, ϕ)
denote the value of this convex-concave game. Then, for

the unique stationary distribution πAlg
γ of the iterates

of (SGDA) and (SEG), we have

|E
(θ,ϕ)∼π

Alg
γ

[f(θ, ϕ)]− val∗| ≤ cγAlg. (11)

From (10) and (11), we see that (SGDA) and (SEG)
converge to val∗—the unique value at a Nash Equilib-
rium—within an expected error that is proportional to
the stepsize γAlg, where the error is measured by the
duality gap or the difference in the game value.

5.2 Bias Refinement in Quasi-Strong Case

Here we focus on the class of quasi-monotone operators
(i.e., λ = 0 in Assumption 2), which encompasses a
variety of non-monotone and non-convex problems. We
provide a refined analysis of the stationary distribution
induced by (SGDA) under the following smoothness
and regularity assumptions for the operator and noise.

Assumption 7. The operator V is ℓ-Lipschitz and
C4(Rd)-smooth (i.e., supx∈Rd∥∇i V (x)∥ < ∞ for all
i = 1, . . . , 4). Furthermore, the noise has bounded
kyrtosis, meaning that E[∥Ut(x)∥4] < δ4KYRT for all
x ∈ Rd with the covariance tensor x 7→ C(x) :=
E[Ut(x)

⊗2] being 3 times smoothly differentiable, mean-
ing ∥C(i)(x)∥ < G,∀x, for i ∈ {1, 2, 3}.

We provide an explicit expansion of the steady-state
expectation in terms of the stepsize, which allows us to
employ the Richardson-Romberg (RR) bias refinement
scheme (Gautschi, 2011) to construct a new estimate
provably closer to the optimal solution. Our result is a
strict generalization of Dieuleveut et al. (2018), which
requires co-coersive noisy oracles.

Theorem 6. Suppose Assumptions 1–5 and 7 hold.
There exists a threshold θ such that if γ ∈ (0, θ), then
(SGDA) admits a unique stationary distribution πγ and

Ex∼πγ
[x]− x∗ = γ∆(x∗) +O(γ2), (12)

where ∆(x∗) is a vector independent of the step-size γ.

Notably, Eq. (12) is an equality (up to a second order
term). In the above setting, this equality gives a more
precise characterization of the bias than the upper
bound (C.6) applied to ϕ(x) = x.

As an immediate implication of the refined characteri-
zation above, one can use the following RR refinement
scheme to obtain a better estimate of x∗. Consider
running two (SGDA) recursions with step-sizes γ and
2γ, and denote the corresponding averaged iterates by
(x̄γt )t≥0 and (x̄2γt )t≥0, respectively. Let πγ and π2γ be
the resulting unique stationary distributions. By our
LLN result (Theorem 3), the averaged iterates (x̄γt )t≥0
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and (x̄2γt )t≥0 converges to Ex∼πγ [x] and Ey∼π2γ [y], re-
spectively. Eq. (12) implies that(

Ex∼πγ
[2x]− Ey∼π2γ

[y]
)
− x∗ = O(γ2).

Therefore, the RR-refined average iterates, (2x̄γt −
x̄2γt )t≥0, converge to a limit that is closer to the optimal
solution x∗ by a factor of γ.

6 EXPERIMENTS

We conduct a series of experiments to empirically vali-
date our results. We focus on a strongly convex-concave
game with two players. See the appendix for the details
of the game and experiment setup.

We started by plotting in Figs. 2a and 2b the error
∥x− x∗∥2 for both (SGDA), (SEG) for step-sizes γ ∈
{0.1, 0.05, 0.01, 0.001}, corresponding to the four curves
from top to bottom; the value of α was set to 0.5. We
observe a decay of the bias as a function of the step-size
(the decay is in fact almost linear for both algorithms).

(a) SGDA. (b) SEG.

Figure 2: Convergence and bias under different step-sizes
for SGDA and SEG.

(a) SGDA (b) SEG

Figure 3: Results for 100 (light purple), 200 (light green),
1000 (light blue) iterations (or from right to left).

The second set of experiments examines the central
limit theorem (CLT). We use as test function the value
of the game, which is zero, and we observe the be-
havior of its averaged evaluations after 100, 200 and
1000 iterations. To do so we run both algorithms with
step-size γ = 0.005 for the aforementioned number of
iterations and keep the sum of the evaluations, normal-
ized with

√
iterations. We repeat this experiment 2000

(a) SGDA (b) SEG

Figure 4: Histograms for two different step-sizes. Green:
γ = 0.1. Purple: γ = 0.001.

times and report the histograms in Fig. 3. We observe
how the distributions are concentrated closer to the
actual value of the game as the number of iterations
is increased. In Fig. 4 we run both algorithms in the
previous setting for 1000 iterations and two different
step-sizes 0.1 and 0.001. We observe how the histogram
is concentrated closer to the actual value of the game
for smaller step-size.

Lastly, we investigate the effect of the RR refinement
scheme discussed in Section 5.2. We run the (SGDA)
algorithm with two different step-sizes γ and 2γ, where
γ = 0.1. In Fig. 5, we plot the error ∥x̄t − x∗∥2 of
the averaged iterate x̄t := 1

t

∑t
i=1 xi with the two

stepsizes, as well as the error for the RR refinement
scheme. The error achieved by the RR refinement is an
order of magnitude better than vanilla (SGDA). This
is consistent with the bias reduction effect predicted
by our theoretical result in Section 5.2.

Figure 5: Errors of SGDA and RR refinement.

7 CONCLUDING REMARKS

In this work, we delve into the probabilistic structures
inherent in the Stochastic Extragradient and Stochas-
tic Gradient Descent Ascent algorithms, widely used
in constrained min-max optimization and variational
inequalities problems. By treating constant step-size,
projected variants of SEG/SGDA as time-homogeneous
Markov Chains, we establish geometric ergodicity, a
Law of Large Numbers and a Central Limit Theorem,
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revealing the existence of a unique invariant distribu-
tion and the asymptotic normality of the averaged
iterate. For a wide class of convex-concave games, we
characterize the intrinsic bias of these methods w.r.t.
the game’s value. Lastly, we demonstrate that the
Richardson-Romberg refinement scheme enhances the
proximity of the averaged iterate to the global solution.

Our work points to several future directions. Of imme-
diate interests is extension to broader operator families,
alternative noise models and other step-size schemes,
which may involve time-inhomogeneous Markov chains
with sub-geometric convergence. Investigating other
optimization algorithms, such as Optimistic Gradient
Descent Ascent, which requires higher-order Markov
analysis, is another promising line of research. It will
also be fruitful to study applications of our results,
particularly the use of large step-sizes and iterate aver-
aging, in statistical inference, adversarial training, and
robust machine learning.
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tiple times). [Yes] Supplemental material.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes] Supplemental material.

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Yes] Supplemental
material.
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(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable, e.g.,
personally identifiable information or offensive
content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks, with
links to Institutional Review Board (IRB) ap-
provals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to participants
and the total amount spent on participant com-
pensation. [Not Applicable]
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A Background in Continuous-Space Markov Chains

In this preliminary segment, we furnish the basic concepts and tools for studying Markov chains defined on a
continuous state space. These results subsequently form the foundational basis for the theorems we establish
regarding our algorithms.

A.1 Basic Setup

To explain various concepts for a Markov chain, we first set up our space and identify the events of interest. This
process is grounded in the conventional framework of a σ-algebra, which facilitates the comprehension of these
events. Formally, we denote the (sub)-σ-algebra of F of events up to the t-th iteration with Ft (including the t-th
iteration). We denote by B(C) the σ-algebra of Borel sets of C. We also denote the Markov kernel (Generalized
Transition Matrix) on X , B(X ) associated either with (SGDA) or (SEG) to be1

P (x, S) = P(xt+1 ∈ S|xt = x) almost surely ∀S ∈ B(X ),∀x ∈ X ,∀t ∈ N. (A.1)

We also define the m-th power of the kernel iteratively: P 1(x, S) := P (x, S) and for m > 1, we define

Pm+1(x, S) =

∫
x′∈X

P (x, dx′)Pm(x′, S) for all x ∈ X and S ∈ B(X ). (A.2)

Additionally, for any function ϕ : X → R and any m ≥ 1, we define Pmϕ : X → R as

Pmϕ(x) =

∫
x′∈X

ϕ(x′)Pm(x, dx′) for all x ∈ X . (A.3)

Definition A.1 (Time-homogeneous). A stochastic process Φ = (Φt)
∞
t=0 is called a time-homogeneous Markov

chain with transition probability kernel P (x,A) and initial distribution µ if the finite dimensional distributions of
Φ satisfy

Pµ(Φ0 ∈ A0,Φ1 ∈ A1, . . .Φn ∈ An) =

∫
y0∈A0

· · ·
∫
yn−1∈An−1

µ( dy0)P (y0, dy1) · · ·P (yn−1, An) (A.4)

for any n and all Ai ∈ B(X ).

A.2 Irreducibility, Recurrence, and Aperiodicity

Irreducibility .
Definition A.2 (ψ−irreducible). A Markov chain is φ-irreducible if there exists a measure φ on B(X ) such that
for all x ∈ X whenever φ(A) > 0, there exists n > 0, possible depending on x,A such that that Pn(x,A) > 0.
Per convention, we always take φ to be a “maximal” irreducibility measure, denoted by ψ, and say that the chain
is ψ−irreducible.

For this definition we combine Proposition 4.2.1 and Proposition 4.2.2 from Meyn and Tweedie (2009). Consider
a ψ−irreducible Markov chain, we use B+(X ) to denote the set of sets A ∈ B(X ) such that φ(A) > 0.

Recurrence.
Definition A.3 (Recurrent). Consider a Markov chain Φ = (Φt)

∞
t=0 with transition kernel P . Let ηA :=∑∞

t=0 1{Φt ∈ A} for some set A. Assume that Φ is ψ-irreducible, then we say that

• (null)-Recurrent: The set A is called recurrent if E[ηA |Φ0 = x] =∞ for all x ∈ A. If every set in B+(X ) is
recurrent then we call Φ recurrent.

• Positive recurrent: The set A is called positive if lim supn→∞ Pn(x,A) > 0 for all x ∈ A. If every set
A ∈ B+(X ) is positive then Φ is called positive recurrent.

• Harris recurrent: The set A is called Harris recurrent if P(ηA =∞ | Φ0 = x) = 1 for all x ∈ A. If every set
A ∈ B+(X ) is Harris recurrent, then Φ is called Harris recurrent.
1It would be clear from the context in which algorithm we refer to. If not we will specify it using subscripts.
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Aperiodicity .

Definition A.4 (Strongly Aperiodic). An irreducible chain is called strongly aperiodic if there exists a set A,
such that there exists a non-trivial measure ν1 on B(X ) satisfying ν1(A) > 0, and for all x ∈ A and S ∈ B(X ),

P (x, S) ≥ ν1(S). (A.5)

Looking at the bigger picture and drawing insight from traditional discrete space Markov chains, if we make a
selection such that S ← A, then we achieve P (x,A) ≥ ν1(A) > 0. This suggests that the set A is associated with
a self-loop, as it has a positive probability of returning to itself.

A.3 Small Sets, Petite Sets, and Minorization Condition

We next introduce several concepts that pave the way for systematically and efficiently establishing the convergence
rate of a Markov chain, other than in an ad-hoc manner.

We first introduce the Minorization Condition. Using this condition is similar in a way as thinking about coupling.

Definition A.5 (Minorization Condition). For some δ > 0, some C ∈ B(X) and some probability measure ν
with ν(Cc) = 0 and ν(C) = 1:

P (x,A) ≥ δ 1C(x)ν(A) for all A ∈ B(X ), x ∈ X . (A.6)

If C was the entire X , the condition requires every state in the state space to be within reach of any other state.
We could then minorize the transition probability with a density ν scaled by a parameter δ. This is equivalent to
finding a sliver of a probability distribution where all the transition probabilities “overlap” with each other; see
Figure 6 for an illustration. However, in continuous spaces having C = X is usually impossible. The set where
such a condition holds is called “small”.

Definition A.6 (Small Sets). A set C ∈ B(X ) is called a small set if there exists an m ∈ N+ and a non-trivial
measure νm on B(X ) such that for all x ∈ C, B ∈ B(X ),

Pm(x,B) ≥ νm(B) (A.7)

The set C is called νm-small.

Let a = {a(n)} be a distribution or probability measure on N+ and consider the associated Markov chain Φa

with probability transition kernel

Ka :=

∞∑
n=0

Pn(x,A)a(n) x ∈ X , A ∈ B(X ).

Φa is called the Ka-chain with sampling distribution a. We can interpret Φa as the chain Φ sampled in points
according to the distribution a. When a = δm is the Dirac measure with δm(m) = 1, then the Kδm -chain is called
the m-skeleton with transitional kernel Pm. With this at hand we define below the petite sets.

Definition A.7 (Petite Sets). We will call a set C ∈ B(X ) νa-petite if the sampled chain satisfies the bound

Ka(x,B) ≥ νa(B) (A.8)

for all x ∈ C, B ∈ B(X ), where νa is a non-trivial measure on B(X ).
Proposition A.1 (Proposition 5.5.3 in Meyn and Tweedie (2009)). If a set C ∈ B(X ) is νm-small then it is
νδm-petite for some δm > 0.

A.4 Foster-Lyapunov Arguments

Given that only small sets can be found in our setting, in order to prove geometric convergence to a unique
stationary distribution we will leverage the generalized version of Foster-Lyapunov condition, dubbed as (V4) in
the cited book Meyn and Tweedie (2009).
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The following theorem gives a sufficient criterion for the positive recurrence and existence of an invariant
distribution of a Markov chain in terms of a Lyapunov function V . Intuitively, the value V (x) for any state
x attained by Markov chain denotes “energy” or “potential” of that state. The idea is that if the mean energy
decreases for all but some small set, the Markov chain keeps returning to level-sets close to minimum of the
energy. That is, the Markov chain is positive recurrent.
Definition A.8 (Geometric Drift Property). There exists an extended-real valued function f : X → [1,∞], a
measurable set C, and constants β > 0, b <∞ such that

∆f(x) ≤ −βf(x) + b1C(x), x ∈ X , (A.9)

where ∆f(x) =
∫
y∈X P (z, dy)f(y)− f(x).

Figure 6: Example of transition kernel P (x,C) for x ∈ X

B Omitted Proofs of Section 3

We start with a basic lemma for projections:
Lemma B.1. Let x, y be vectors in Rd and X be an arbitrary compact convex set. Then it holds that

y = ΠX (x)⇔ x ∈ y +NX (y) ≡ y + {z ∈ Rd : ⟨z, k − y⟩ ≤ 0 ∀k ∈ X}

where NX (y) corresponds to the normal cone of the convex set X at the point y.

Proof. Indeed, let’s define the projection of a point over an arbitrary set X as an unconstrained optimization
problem of a lower semi-continuous extended convex function. More precisely, it holds that

y = ΠX (x) = argmin
z∈X
{∥x− z∥22/2} = arg min

z∈Rd
{∥x− z∥22/2 + 1X (z)}

From the generalized Fermat’s theorem2 and the fact that every stationary point for a convex function corresponds
to a global minimizer, it holds that:

y = ΠX (x)⇔ 0 ∈ ∂{∥x− z∥22/2 + 1X (z)}(y)⇔ 0 ∈ y − x+ ∂1X (y)⇔ x ∈ y +NX (y)

2Generalized Fermat’s theorem Statement (See Theorem 8.15 Rockafellar and Wets (2009)): If a function f : Rn → R̄
is nondifferential, convex, proper and it has a local minimum at x̄, then 0 ∈ ∂f(x̄).
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where we used the fact from subdifferential calculus that NX (y) = ∂1X (y). ■

B.1 (SGDA) and (SEG) are time-homogeneous Markov chains in Rd

Lemma B.2. Given a constant step-size, the stochastic gradient descent ascent and stochastic extra-gradient
as described by Equation (SGDA) and (SEG) can be equivalently modeled as a time-homogeneous continuous
Markov chain in Rd.

Proof. We start with (SGDA) simple case:

xt+1 = ΠX (xt − γSGDAVt) = ΠX (xt − γSGDA(V (xt) + Ut(xt))). (SGDA)

By this definition we get that

P (x,B) = P(xt+1 ∈ B|xt = x)

= P
(
ΠX (xt − γSGDAVt) ∈ B|xt = x

)
= P

(
xt − γSGDA(V (xt) + Ut(xt)) ∈ B̂|xt = x

)
= P

(
x− γSGDA(V (x) + Ut(xt)(x)) ∈ B̂

)
= P

(
U(x) ∈ (

x

γSGDA
− V (x)) + (− 1

γSGDA
B̂)

)
,

where B̂ =
⋃

χ∈B(χ + NX (χ)) and (Ut(xt)(x))t≥0 ∼ U(x), since we assume i.i.d noise random fields. Hence,
P (x,B) is shown to be independent of both time t and preceding iterations, given the current state. This affirms
that the stochastic gradient descent model described by Equation (SGDA) indeed exhibits the property of a
time-homogeneity, substantiating its classification as a Markov chain.

For the case of (SEG), an equivalent form which will come at hand throughout our analysis is given below

xt+1 = ΠX [xt − γSEGVt+1/2]

= ΠX
[
xt − γSEG

(
V (xt+1/2) + Ut+1/2(xt+1/2)

)]
= ΠX

xt − γSEG

 V (ΠX [xt − γSEG {V (xt) + Ut(xt)}])
+

Ut+1/2(ΠX [xt − γSEG {V (xt) + Ut(xt)}])

 . (SEG)

Thus, if we call V (x) = vx and B̂ =
⋃

χ∈B(χ+NX (χ)) for the transition kernel we get that

P (x,B) =P(xt+1 ∈ B|xt = x)

=P(x− γSEG
{
V (ΠX

[
x− γSEG

{
vx + U (i)(x)

}]
) + U (ii)(ΠX

[
x− γSEG

{
vx + U (i)(x)

}]
)
}
∈ B̂)

=

∫
ξ∈Rd

1{x̃ = ΠX [x− γSEG {vx + ξ}]}pdfU(i)(x)(ξ)P

(
U (ii)(x̃) ∈ (

x

γSEG
− V (x̃) + (− 1

γSEG
B̂

)
)dξ

where Ut(xt)(x) ∼ law(U (i)(x)), Ut+1/2(x) ∼ law(U (ii)(x)) and U (i)(x) ⊥ U (ii)(x), identically distributed. So
again, P (x,B) is independent of both time t and preceding iterations, given the current state. This affirms
that the stochastic gradient descent model described by Equation (SGDA) indeed exhibits the property of
a time-homogeneity, substantiating its classification as a Markov chain, completing the proof for the case of
(SEG). ■

B.2 Geometric convergence up to constant factor

Fact 1. Let a, b, c ∈ Rd, then the following holds

∥x+ y∥2 ≤ 2(∥x∥2 + ∥y∥2) & ∥x+ y + z∥2 ≤ 3(∥x∥2 + ∥y∥2 + ∥z∥2). (B.1)

We split Theorem 1 into two different lemmas for each of the algorithms. We start by presenting Eq. (SGDA).
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Lemma B.3. Suppose that Assumptions 1–4 hold then the iterations (xt)t≥0 of (SGDA), if the step-size is
γ < µ/8

L2+ρ , satisfy:
E[∥xt+1 − x∗∥2 | Ft] ≤ (1− c)t∥x0 − x∗∥2 + c′

for some constants c ∈ (0, 1) and c′ ∈ (0,+∞) that depend on the choice of step-size, as well as the parameters of
the problem.

Proof. For simplicity, we drop the exponent SGDA of the step-size and we write γ for the constant step-size used
while the algorithm is run. We now start by writing

∥xt+1 − x∗∥2 = ∥ΠX [xt − γVt]−ΠX [x∗]∥2 ≤ ∥xt − γVt − x∗∥2

≤ ∥xt − x∗∥2 − 2γ⟨Vt, xt − x∗⟩+ γ2∥Vt∥2

≤ ∥xt − x∗∥2 − 2γ⟨V (xt), xt − x∗⟩ − 2γ⟨Ut(xt), xt − x∗⟩+ γ2∥Vt∥2

≤ ∥xt − x∗∥2 − 2γ⟨V (xt), xt − x∗⟩ − 2γ⟨Ut(xt), xt − x∗⟩+ 2γ2∥V (xt)∥2 + 2γ2∥Ut(xt)∥2

≤ ∥xt − x∗∥2 − 2γ(µ∥xt − x∗∥2 − λ)− 2γ⟨Ut(xt), xt − x∗⟩+ 2γ2∥V (xt)∥2 + 2γ2∥Ut(xt)∥2

≤ (1− 2γµ)∥xt − x∗∥2 + 2γλ− 2γ⟨Ut(xt), xt − x∗⟩+ 4γ2(L2((1 + R)2 + ∥xt − x∗∥2) + ∥Ut(xt)∥2

2 )

≤ (1− 2γµ+ 4γ2L2)∥xt − x∗∥2 + 2γλ− 2γ⟨Ut(xt), xt − x∗⟩+ 4γ2(L2(1 + R)2 + ∥Ut(xt)∥2

2 ).
(B.2)

In the initial inequality, we employ the Lipschitz property of the projection operator. The subsequent inequality
stems from the squared expansion. For the third and fourth inequalities, we invoke the definition of the noisy
operator model along with Fact 1. The fifth inequality draws upon Assumption 6, highlighting monotonicity.
The sixth leans on the linear growth as detailed in Assumption 3, in conjunction with Fact 1 and Assumption 1.
Finally, the last inequality is derived using the Cauchy-Schwarz inequality. By taking the expectation condition
on the filtration Ft, we derive the following bound:

E[∥xt+1 − x∗∥2 | Ft] ≤ (1− 2γµ+ 4γ2L2)∥xt − x∗∥2 + 2γλ+ 2γb∥xt − x∗∥+ 4γ2(L2(1 + R)2 + σ2+ρ∥xt−x∗∥2

2 ),
(B.3)

where we have used that xt is Ft−measurable and by Assumption 4 we have that
E[∥Ut(xt)∥2 | Ft] ≤ σ2 + ρ∥xt − x∗∥2

−2γ⟨E[Ut(xt) | Ft], xt − x∗⟩ ≤ 2γ∥E[Ut(xt) | Ft]∥∥xt − x∗∥ ≤ 2b∥xt − x∗∥
(B.4)

While employing Jensen’s inequality could merge the bounds, we opt to separate variance and bias. This
distinction emphasizes the terms that would be redundant if the stochastic oracle were unbiased. Re-ordering the
terms we get that:

E[∥xt+1−x∗∥2 | Ft] ≤ (1− 2γµ+4γ2L2+2γ2ρ)∥xt−x∗∥2+2γλ+2γb∥xt−x∗∥+4γ2(L2(1+R)2+σ2/2) (B.5)

Finally, for the bias term we will use the fundamental inequality : 2⟨x, y⟩ ≤ ∥x∥2 + ∥y∥2

2γb∥xt − x∗∥ ≤ γ
b2

µ
+ γµ∥xt − x∗∥2

Thus combining (B.5) we get the following final bound:

E[∥xt+1 − x∗∥2 | Ft] ≤ (1− γµ+ 4γ2L2 + 2γ2ρ)︸ ︷︷ ︸
Term0

∥xt − x∗∥2 + γ · 2(λ+ b2

µ )︸ ︷︷ ︸
Term1

+γ2 · 4(L2(1 + R)2 + σ2/2)︸ ︷︷ ︸
Term2

(B.6)

Thus if we request γSGDA := γ ≤ µ/2

4L2 + 2ρ
⇒

{
Term0 ≤ 1

γ2(4L2 + 2ρ) ≤ µγ

2

which implies Term0 ≤ (1−µγ
2
). Therefore,

we conclude that

E[∥xt − x∗∥2 | Ft] ≤ (1− γµ
2 )t∥x0 − x∗∥2 + �γ ·

2(λ+ b2

µ )

�γµ/2
+ γ �2 · 4(L

2(1 + R)2 + σ2/2)

�γµ/2
(B.7)
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which proves the claim of the lemma for

c := cSGDA
1 = Θ(γµ) and c′ := cSGDA

2 = Θ

(
λµ+ b2

µ2
+ γ

σ2 + L2(1 + R2)

µ

)
■

We proceed on proving a similar lemma for the case of (SEG).

Lemma B.4. Suppose that Assumptions 1–4 hold then the iterations (xt)t≥0 of (SEG), if the step-size γ ≤
1
18 (

1
ℓ ∧

µ
ρ ), satisfy:

E[∥xt+1 − x∗∥2 | Ft] ≤ (1− c)t∥x0 − x∗∥2 + c′ (B.8)

for some constants c ∈ (0, 1) and c′ ∈ (0,+∞) that depend on the choice of step-size, as well as the parameters of
the problem.

Proof. We start by using the 1-co-coerciveness of the projection operator:

∥ΠX (w)−ΠX (w∗)∥2 ≤ ⟨w − w∗,ΠX (w)−ΠX (w∗)⟩

Thus we have

∥xt+1 − x∗∥2 = ∥ΠX
(
xt − γVt+1/2

)
−ΠX (x∗)∥2 (B.9)

≤ ⟨xt+1 − x∗, xt − γVt+1/2 − x∗⟩ (B.10)

=
1

2
∥xt+1 − x∗∥2 +

1

2
∥xt − x∗∥2 −

1

2
∥xt − xt+1∥2 − γ⟨xt+1 − x∗, Vt+1/2⟩ (B.11)

We will analyze the last term:

−γ⟨xt+1 − x∗, Vt+1/2⟩ = TermA + TermB + TermC (B.12)

where we define the following terms:
TermA = −γ⟨xt+1 − xt+1/2, Vt⟩
TermB = γ⟨xt+1 − xt+1/2, Vt − Vt+1/2⟩
TermC = −γ⟨xt+1/2 − x∗, Vt+1/2⟩

For the TermA, we first recall that by optimality conditions we have that

xt+1/2 := ΠX (x− γVt)⇒ ⟨xt+1/2 − (xt − γVt), x− xt+1/2⟩ ≥ 0 ∀x ∈ X

and by setting x = xt+1, we get
⟨xt+1 − (xt − γVt), xt+1 − xt+1/2⟩ ≥ 0 (B.13)

Thus, by reordering of the terms we derive that

−γ⟨Vt, xt+1 − xt+1/2⟩ ≤ ⟨xt+1 − xt, xt+1 − xt+1/2⟩

=
1

2
∥xt+1 − xt∥2 −

1

2
∥xt − xt+1/2∥2 −

1

2
∥xt+1 − xt+1/2∥2

Therefore, it holds that:

TermA ≤
1

2

(
∥xt+1 − xt∥2 − ∥xt − xt+1/2∥2 − ∥xt+1 − xt+1/2∥2

)
(B.14)

For the TermB, we start by using Cauchy-Schwarz:

TermB = γ⟨xt+1 − xt+1/2, Vt − Vt+1/2⟩ ≤ γ∥xt+1 − xt+1/2∥∥Vt − Vt+1/2∥ (B.15)
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Then, by applying triangle inequality and Assumption 3 and the definition of stochastic oracle:

∥Vt+1/2 − Vt∥ ≤ ∥Ut+1/2(xt+1/2)∥+ ∥Ut(xt)∥+ ℓ∥xt − xt+1/2∥

Leveraging the standard inequality ⟨w, z⟩ ≤ 1
2∥x∥

2 + 1
2∥z∥

2, we get that:

γ∥xt+1 − xt+1/2∥∥Vt+1/2 − Vt∥ ≤
1

2
∥xt+1 − xt+1/2∥2 +

1

2
γ2∥Vt − Vt+1/2∥2

Thus, it holds that:

TermB ≤
1

2
∥xt+1 − xt+1/2∥2 +

3

2
γ2

(
∥Ut+1/2(xt+1/2)∥2 + ∥Ut+1/2(xt+1/2)∥2 + ℓ2∥xt − xt+1/2∥2

)
(B.16)

Finally for TermC, using the definition of stochastic oracle for operator g and Assumption 2, we get

TermC = −γ⟨xt+1/2 − x∗, Vt+1/2⟩ = −γ⟨xt+1/2 − x1, V (xt+1/2)⟩ − γ⟨xt+1/2 − x1, U
(
xt+1/2

)
⟩

≤ −γµ∥xt+1/2 − x∗∥22 + γλ− γ⟨xt+1/2 − x∗, Ut+1/2

(
xt+1/2

)
⟩

By combining the bounds for all terms, we get:

∥xt+1 − x∗∥2 =
1

2
∥xt+1 − x∗∥2 +

1

2
∥xt − x∗∥2 −

1

2
∥xt − xt+1∥2 + TermA + TermB + TermC (B.17)

≤ 1

2
∥xt+1 − x∗∥2 +

1

2
∥xt − x∗∥2 +

1

2
(3γ2ℓ2 − 1)∥xt − xt+1/2∥2

+
3

2
γ2

(
∥Ut+1/2(xt+1/2)∥2 + ∥Ut(xt)∥2

)
− γµ∥xt+1/2 − x∗∥22 + γλ− γ⟨xt+1/2 − x∗, Ut+1/2

(
xt+1/2

)
⟩ (B.18)

Rewriting the bound, we get that

∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2 + (3γ2ℓ2 − 1)∥xt − xt+1/2∥2 + 3γ2
(
∥Ut+1/2(xt+1/2)∥2 + ∥Ut(xt)∥2

)
− 2γµ∥xt+1/2 − x∗∥2 + 2γλ− 2γ⟨xt+1/2 − x∗, U

(
xt+1/2

)
⟩ (B.19)

≤ (1− 2γµ)∥xt − x∗∥2 + (3γ2ℓ2 + 4γµ− 1)∥xt − xt+1/2∥2 + 2γλ

+ 3γ2
(
∥Ut+1/2(xt+1/2)∥2 + ∥Ut(xt)∥2

)
+ 2γ∥xt+1/2 − x∗∥∥U

(
xt+1/2

)
∥ (B.20)

≤ (1− 2γµ)∥xt − x∗∥2 + (3γ2ℓ2 + 4γµ− 1)∥xt − xt+1/2∥2 + 2γλ

+ 3γ2
(
∥Ut+1/2(xt+1/2)∥2 + ∥Ut(xt)∥2

)
− 2γ⟨xt+1/2 − x∗, Ut+1/2

(
xt+1/2

)
⟩ (B.21)

By taking the expectation condition on the filtration Ft and tower property (E[· | Ft] = E[E[· | Ft+1/2] | Ft]) and
using Assumption 4, we derive the following bound:

E[∥xt+1 − x∗∥2 | Ft] ≤ (1− 2γµ)∥xt − x∗∥2 + (3γ2ℓ2 + 4γµ− 1)E[∥xt − xt+1/2∥2 | Ft] + 2γλ

+ 3γ2
(
E[σ2 + ρ∥xt+1/2 − x∗∥2 | Ft] + σ2 + ρ∥xt − x∗∥2

)
− 2γ E[⟨xt+1/2 − x∗,E[Ut+1/2

(
xt+1/2

)
| Ft+1/2]⟩ | Ft] (B.22)

≤ (1− 2γµ)∥xt − x∗∥2 + (3γ2ℓ2 + 4γµ− 1)E[∥xt − xt+1/2∥2 | Ft] + 2γλ

+ 3γ2
(
E[σ2 + 2ρ∥xt − x∗∥2 + 2ρ∥xt+1/2 − xt∥2 | Ft] + σ2 + ρ∥xt − x∗∥2

)
+ 2γ E[∥xt+1/2 − x∗∥ |Ft] · b (B.23)

≤ (1− 2γµ+ 9γ2ρ)∥xt − x∗∥2 + (3γ2(ℓ2 + 2ρ) + 4γµ− 1)E[∥xt − xt+1/2∥2 | Ft]

+ 2γλ+ 6γ2σ2 + γ E[2µ
2 ∥xt − x

∗∥2 + 2µ
2 ∥xt+1/2 − xt∥2 + 2

µb
2 | Ft] (B.24)

≤ (1− γµ+ 9γ2ρ)︸ ︷︷ ︸
Term0

∥xt − x∗∥2 + (3γ2(ℓ2 + 2ρ) + 5γµ− 1)︸ ︷︷ ︸
Term1

E[∥xt − xt+1/2∥2 | Ft]

+ 2γλ+ 6γ2σ2 + γ 2
µb

2 (B.25)
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Thus by inverting the requirements and recalling
√
1 + x− 1 ≥

√
x/3 for x ≥ 1, we get:

{
1− γµ+ 9γ2ρ ≤ 1

3γ2(ℓ2 + 2ρ) + 5γµ− 1 ≤ 0

}
⇐


γ ≤ µ

9ρ

γ ≤ −5µ+
√

25µ2+12(ℓ2+2ρ)

6(ℓ2+2ρ) = 5µ
6(ℓ2+2ρ) ·

(√
1 + 12 (ℓ2+2ρ)

25µ2 − 1

)
⇐


γ ≤ µ

9ρ

γ ≤
√
12

18
√

(ℓ2+2ρ)

⇐


γ ≤ µ
9ρ

γ ≤ 1

9ℓ
√

1+2
ρ
ℓ2 )

⇐ {
γ ≤ 1

9 (
µ
ρ ∧

1
ℓ ).

}
(B.26)

Thus if we request γSEG := γ ≤ 1
18 (

µ
ρ ∧

1
ℓ )⇒


Term0 ≤ 1

9γ2ρ ≤ µγ

2
Term1 ≤ 0

 which implies

{
Term0 ≤ (1− µγ

2
)

Term1 ≤ 0

}
. Therefore, we

derive the following bound:

E[∥xt+1 − x∗∥2 | Ft] ≤ (1− γµ+ 9γ2ρ)∥xt − x∗∥2 + 2γλ+ 6γ2σ2 + γ 2
µb

2 (B.27)

Hence, we conclude that

E[∥xt − x∗∥2 | Ft] ≤ (1− γµ
2 )t∥x0 − x∗∥2 + �γ ·

2(λ+ b2

µ )

�γµ/2
+ γ �2 · 6σ2

�γµ/2
(B.28)

which proves the claim of the lemma for

c := cSEG
1 = Θ(γµ) and c′ := cSEG

2 = Θ

(
λµ+ b2

µ2
+ γ

σ2

µ

)
■

B.3 Proof of Theorem 1

Theorem B.1 (Restated Theorem 1). Under Assumptions 1–4, consider (SGDA) and (SEG) with step-sizes
γSGDA = O( µ

L2+ρ ), γ
SEG = O( 1ℓ ∧

µ
ρ ) respectively, and let (xt)t≥0 be the generated iterations. There exists a pair

of constants cAlg
1 ∈ (0, 1) and cAlg

2 ∈ (0,+∞) that depend on the choice of step-sizes and model’s parameters such
that

E[∥xt+1 − x∗∥2] ≤
(
1− cAlg

1

)t∥x0 − x∗∥2 + cAlg
2 , (B.29)

for any initial point x0 ∈ X and Alg ∈ {SGDA,SEG}.

Proof. Proof follows by combining Lemma B.3 and B.4. ■

B.4 One-step quasi-descent inequality

In this subsection, we provide the proof for one-step “quasi-descent” inequality stated in Corollary 1.

Corollary B.1 (Restated Corollary 1). Under the conditions of Theorem 1, there exist constants ĉAlg
1 ∈ (0, 1)

and ĉAlg
2 ∈ (0,∞) with Alg ∈ {SGDA,SEG} such that the function E(xt, x∗) := ∥xt − x∗∥2 + 1 satisfies

E[E(xt+1, x
∗) | Ft] ≤ ĉAlg

1 E(xt, x∗) + ĉAlg
2 . (B.30)

Proof. For (SGDA), by (B.6) in the proof of Lemma B.3, we have

E[∥xt+1 − x∗∥2 | Ft] ≤ (1− γµ+ 4γ2L2 + 2γ2ρ)∥xt − x∗∥2 + γ · 2(λ+ b2

µ ) + γ2 · 4(L2(1 + R)2 + σ2/2)

Following γ ≤ γSGDA ≤ µ/8
L2+ρ

E[∥xt+1 − x∗∥2 + 1 | Ft] ≤ (1− γµ/2)(∥xt − x∗∥2 + 1) + 2γ · (λ+ b2

µ + µ
4 ) + γ2 · 4(L2(1 + R)2 + σ2/2).
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Let ĉSGDA
1 = (1− γµ/2) and ĉSGDA

2 = γ · 2(λ+ b2

µ + µ
4 ) + γ2 · 4(L2(1 + R)2 + σ2/2).

For (SEG), by (B.27) in the proof of Lemma B.4, we have

E[∥xt+1 − x∗∥2 | Ft] ≤ (1− γµ+ 9γ2ρ)∥xt − x∗∥2 + 2γλ+ 6γ2σ2 + γ 2
µb

2.

Following γ ≤ γSEG ≤ 1
18 (

µ
ρ ∧

1
ℓ )

E[∥xt+1 − x∗∥2 + 1 | Ft] ≤ (1− γµ/2)(∥xt − x∗∥2 + 1) + 2γλ+ 6γ2σ2 + γ 2
µb

2.

Let ĉSEG
1 = (1− γµ/2) and ĉSEG

2 = 2γ(λ+ b2

µ + µ
4 ) + 6γ2σ2.

which conclude our proof. ■
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C Omitted Proofs of Section 4

C.1 Clarification about Borel Algebra in Constrained sets

For the following section and establishing Lemma 1, it is critical to clairify the defintion of the Borel σ-algebra
over unconstrained and constrained space X . More formally, we have that:

Definition of Borel σ-Algebra: Given a topological space X, the Borel σ-algebra, denoted as B(X), is the
σ-algebra generated by the open sets of X. This means that B(X) is the smallest σ-algebra that contains all the
open sets of X.

Unconstrained Case: Rd. When X corresponds to Rd, the d-dimensional Euclidean space, the Borel σ-algebra
B(Rd) is generated by the open sets in Rd. This includes all open intervals, open balls, and any set that can be
obtained from open sets through countable unions, intersections, and complements.

Constrained Case: Subsets of Rd. When considering a subset X ⊆ Rd, we can define the Borel σ-algebra on
X in the following two common ways:

1. Relative Topology: B(X ) is generated by the open sets of X with respect to the relative topology induced
by Rd. That is, a set U is open in X if there exists an open set V in Rd such that U = V ∩ X .

2. Subspace Borel σ-Algebra: You can also consider the Borel σ-algebra on X as the collection of sets
{A ∩ X | A ∈ B(Rd)}. This is the Borel σ-algebra on X as a subspace of Rd.

Both approaches yield a Borel σ-algebra on X that allows for the definition of measures and the integration of
functions over X . While results hold true for both methodologies, without loss of generality, we will adopt the
second approach for reasons of mathematical convention.

Also we equip (X ,B(X )) with the natural Lebesgue measure for the underlying subspace X . See further details
for case of Sn−1 Sphere Wikipedia (2023) or case of simplex or the general Riemannian manifold case (Morvan,
2008, Chapter 5.2).

Additionally, we recall the following crucial dimensionality fact:

Fact 2. Let X be a convex subset of Rd, and for each x ∈ X , let NX (x) be the normal cone to X at x. Then,
the union of x+NX (x) over all x ∈ X spans Rd.

C.2 Minorization Condition and Geometric Drift Property

Lemma C.1 (Restated Lemma 1). Let the Assumptions 1–5 be satisfied for (SGDA) and (SEG). Given the
step-sizes specified in Theorem 1, both algorithms satisfy the following minorization condition: there exist a
constant δ > 0, a probability measure ν and a set C dependent on the algorithm, such that ν(C) = 1, ν(Cc) = 0
and

Pr[xt+1 ∈ A|xt = x] ≥ δ 1C(x)ν(A) for all A ∈ B(X ), x ∈ X . (MC)

Proof. We again split the proof in two different parts for each one of the two algorithms. For the sequence we fix
a point x∗ ∈ X ∗ and we consider the energy function defined as E(x) = ∥x− x∗∥2 + 1.

We start by observing that the Energy/Lyapunov function E(x) := ∥x− x∗∥2 + 1 is a function unbounded off
small sets, i.e., the sublevel sets C(r) := {x ∈ X |E(x) ≤ r} are either empty or small for all r > 0. Indeed assume
that C(r) = {x ∈ X |E(x) ≤ r} is non-empty (r > 1), then the sublevel sets correspond to some ball B(x∗,

√
r − 1)

for r > 1 intersected with X . We will prove that such a set C(r) := X ∩ B(x∗,
√
r − 1) for r > 1 is actually

ν1-small for m = 1 (see Definition A.6).

SGDA: We recall the definition for (SGDA) kernel for an arbitrary set A of B(X ):

Pr[xt+1 ∈ A|xt = x] = P(SGDA)(x,A) = P

(
U(x) ∈ (

x

γSGDA
− V (x)) + (− 1

γSGDA
Â)

)
,
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where A = X ∩ Ã for some Ã ∈ B(Rd), Â =
⋃
χ∈A

(χ+NX (χ)) and (Ut(xt)(x))t≥0 ∼ U(x), since we assume i.i.d

noise random fields. Thus, we have

P (x,A) =

∫
α∈Â

pdfU(x)(
x− α
γ
− V (x))dα ≥

∫
α∈Â

inf
x∈C(r)

pdfU(x)(
x− α
γ
− V (x))dα (C.1)

≥
∫
α∈Â

inf
x∈C(r)

pdfU(x)(
x− α
γ
− V (x))dα (C.2)

=

∫
α∈

⋃
χ∈A(χ+NX (χ))

inf
x∈C(r)

pdfU(x)(
x− α
γ
− V (x))dα := νSGDA

r (A). (C.3)

Notice that νSGDA
r is a non-trivial measure since if we set A = C(r), which is a non-empty and bounded set, we

have
νSGDA
r (C(r)) =

∫
x′∈(

⋃
χ∈C(r)(χ+NX (χ)))

inf
x∈C(r)

pdfU(x)

(
x− x′

γ
− V (x)

)
dx′ > 0,

which follows from Assumption 5 and the fact that
⋃

χ∈C(r)(χ+NX (χ)) has positive Lebesgue measure thanks
to Fact 2 and C(r) = X ∩B(x∗,

√
r − 1) and non-empty.

We now fix r = r0 > 1 and proceed in proving the minorization property. Consider the measure

ν̃SGDA
r0 (X) = 1(X ⊆ C(r0))

νSGDA
r0 (X)

νSGDA
r0 (C(r0))

for all X ∈ B(X ).

• It is easy to verify that ν̃SGDA
r0 (C(r0)) = 1 and ν̃SGDA

r0 (C(r0)
c) = 0.

• Additionally, if {x /∈ C(r0) or A ⊈ C(r0)} we have that P (x,A) ≥ δ 1C(r0)(x)ν̃
SGDA
r0 (A) = 0.

• Also, if {x ∈ C(r0) and A ⊆ C(r0)} we have P (x,A) ≥ νSGDA
r0 (A) = δ 1C(r0)(x)ν̃

SGDA
r0 (A),

where δ = νSGDA
r0 (C(r0)) > 0 and thus the proof is completed.

SEG: We continue with the proof when (SEG) is run. Similarly as before we have for an arbitrary set A ∈ B(X ):

Pr[xt+1 ∈ A|xt = x] = P(SEG)(x,A)

=

∫
ξ∈Rd

pdfU(i)(x)(ξ)P

(
U (ii)(x̃(x, ξ)) ∈ (

x

γ
− V (x̃(x, ξ)) + (− 1

γ
Â)

)
dξ

where we denote (a) A = X ∩ Ã for some arbitrary Ã ∈ B(Rd), (b) Â =
⋃

χ∈A(χ + NX (χ)) as previously,
(c) V (x) = vx, (d) Ut(xt)(x) ∼ law(U (i)(x)), Ut+1/2(x) ∼ law(U (ii)(x)) & U (i)(x) ⊥ U (ii)(x), identically
distributed and (e) x̃(x, ξ) = ΠX [x− γ {vx + ξ}]. Therefore, we get

Pr[xt+1 ∈ A|xt = x] = P(SEG)(x,A)

=

∫
ξ∈Rd

pdfU(i)(x)(ξ)P

(
U (ii)(x̃(x, ξ)) ∈ (

x

γ
− V (x̃(x, ξ)) + (− 1

γ
Â)

)
dξ

=

∫
α∈Â

∫
ξ∈Rd

pdfU(i)(x)(ξ)pdfU(ii)(x̃(x,ξ))

(
x− α
γ
− V (x̃(x, ξ))

)
≥

∫
α∈Â

∫
ξ∈B(0,1)

pdfU(i)(x)(ξ)pdfU(ii)(x̃(x,ξ))

(
x− α
γ
− V (x̃(x, ξ))

)
dξdα

Notice that since x ∈ C(r) and ξ ∈ B(0, 1), we have that x̃(x, ξ) ∈ C ′(r) :=
(
C(r)+(−γ)·(V (C(r))+B(0, 1))

)
∩X .

Thus, under Assumption 5, we have that

1. pdfU(i)(x)(t) ≥ infx∈C(r) pdfU(i)(x)(t) > 0 for all t ∈ Rd.
2. pdfU(ii)(x̃(x,ξ))(t) ≥ infρ∈C′(r) pdfU(ii)(ρ)(t) > 0 for all t ∈ Rd.

Hence, we can define the following measure for any set A ∈ B(X ):

νSEG
r (A) :=

∫
α∈Â

∫
ξ∈B(0,1)

inf
x∈C(r)

pdfU(i)(x)(ξ) inf
ρ∈C′(r)

pdfU(ii)(ρ)

(
x− α
γ
− V (x̃(x, ξ))

)
dξdα.
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Notice that the measure is non-trivial since we have that νSEG
r (C(r)) > 0 which follows from Assumption 5 and

the fact that
⋃

χ∈C(r)(χ+NX (χ)) has positive Lebesgue measure thanks to Fact 2 and C(r) = X ∩B(x∗,
√
r − 1)

and non-empty.

As in the case of SGDA we define for some fixed r0 > 1

ν̃SEG
r0 (X) = 1(X ⊆ C(r0))

νSEG
r0 (X)

νSEG
r0 (C(r0))

.

Thus, we have that
P (x,B) ≥ ν̃SEG

r0 (B).

By repeating the exact same methodology as before the result follows. ■

Corollary C.1 (Improved version of Corollary 2). Under the setting of Lemma 1 the functions f1 := E , f2 :=
√
E,

f1, f2 : Rd → R≥0 presented in Corollary 1 satisfies the (V4) Geometric Drift Property of Meyn and Tweedie
(2009) for the Markov Chain generated either by (SGDA) or (SEG). Namely it holds that there exist a measurable
set C, and constants β > 0, b <∞ such that

∆fi(x) ≤ −βfi(x) + b1C(x), x ∈ Rd, (C.4)

where ∆fi(x) =
∫
y∈Rd P (z, dy)fi(y)− fi(x) for i ∈ {1, 2}.

Proof. Based on Definition A.8 we need to show that there exists a function f : Rd → [1,∞), a measurable set C
and constants β > 0, b <∞ such that ∆f(x) ≤ −βf(x) + b1C(x) for all x ∈ Rd. We start with the observation
that

∆f(x) =

∫
y∈Rd

P (x, dy)f(y)− f(x) = E[f(xt+1)− f(xt) | Ft : {xt = x}]

where xt that is generated either through (SGDA) or (SEG). Furthermore, notice that the function defined in
Corollary 1, E : Rd → [1,∞) is extended-real valued and also it holds that for any Alg ∈ {SGDA,SEG}

E[E(xt+1) | Ft : {xt = x}] ≤ ĉAlg
1 E(x) + ĉAlg

2

with ĉAlg
1 ∈ (0, 1) and ĉAlg

2 ∈ (0,+∞).

Similarly, for the function
√
E we have that

E[
√
E(xt+1) | Ft : {xt = x}] ≤

√
E[E(xt+1) | Ft : {xt = x}]

≤
√
ĉAlg
1 E(x) + ĉAlg

2

≤
√
ĉAlg
1

√
E(x) +

√
ĉAlg
2 .

Now notice that for any function E which is unbounded off small sets and for all x ∈ Rd satisfies

E[E(xt+1) | Ft : {xt = x}] ≤ cE(x) + c′,

or equivalently
E[E(xt+1) | Ft : {xt = x}]− E(x) ≤ −(1− c)E(x) + c′,

we have that it satisfies the geometric drift property for any set C = {x ∈ Rd : E(x) ≤ 2c′

(1− c)
} and constants

β =
1− c
2

and b = c′. Indeed,

c′ ≤ 1C(x)c′ + 1Cc(x)
1− c
2
E(x) for all x ∈ Rd.

Thus,

E[E(xt+1) | Ft : {xt = x}]− E(x) ≤ −(1− c)E(x) + 1C(x)c′ + 1Cc(x)
1− c
2
E(x)

≤ −1− c
2
E(x) + 1C(x)c′.

The last inequality follows from the fact that 1Cc(x) ≤ 1 and c ∈ (0, 1). ■
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C.3 Invariant Measure, Total Variation Convergence and Limit Theorems

Lemma C.2 (Restated Lemma 2). The corresponding Markov chain sequences (xt)t≥0 for (SGDA) and (SEG)
have the following properties:

• They are ψ−irreducible for some non-zero σ-finite measure ψ on Rd over Borel σ-algebra of Rd.
• They are strongly aperiodic.
• They are Harris and positive recurrent with an invariant measure.

Proof. We prove each one of the properties above separately.

• (Irreducible): Consider any non-zero σ-finite measure φ in Borel σ-algebra of Rd. From the proof of
Lemma C.1 for (SGDA) we have

P(xt+1 ∈ A|xt = x) =

∫
a∈Â

pdfU(x)(
x− a
γ
− V (x))da.

where Ã ⊆ B(Rd), A = Ã ∩ X ̸= ∅ ∈ B(X ) and Â =
⋃

χ∈A(χ+NX (χ)).

Under the “naturally” induced Lebesgue measure over X , it holds that for every A = Ã ∩ X ⊆ B(X ) with
ψ(A) > 0, we have that ∃ε > 0 such that B(a0, ε) ⊆ Ã for some a0 ∈ A such that B(a0, ε) ∩ X ≠ ∅ and
ψ(

⋃
χ∈B(a0,ε)∩X

(χ+NX (χ))

︸ ︷︷ ︸
A⃗ϵ

) > 0,. Thus,

P (x,A) ≥
∫
a⃗∈A⃗ϵ

pdfU(x)(
x− a⃗
γ
− V (x))da⃗

≥
∫
a⃗∈A⃗ϵ

inf
x⃗∈B(x,1)

pdfU(x⃗)(
x⃗− ã
γ
− V (x))da⃗ > 0.

Similarly, for the case of (SEG) and by repeating the same argument for some non-zero σ-finite measure φ in
B(X ) algebra, we have for x̃(x, ξ) = ΠX [x− γ {V (x) + ξ}] that

P (x,A) =

∫
α∈Â

∫
ξ∈Rd

pdfU(i)(x)(ξ)pdfU(ii)(x̃(x,ξ))

(
x− α
γ
− V (x̃(x, ξ))

)
≥

∫
a⃗∈A⃗ϵ

∫
ξ∈B(0,1)

inf
x⃗∈B(x,1)

pdfU(i)(x⃗)(ξ) inf
ρ∈C

pdfU(ii)(ρ)

(
x⃗− a⃗
γ
− V (ρ)

)
dξda⃗

> 0,

where C = (B(x, 1)− γV (B(x, 1))− γB(0, 1)) ∩ X . The strict positivity for both cases follows from Assump-
tion 5. Thus, by Definition A.2 the sequences are ψ-irreducible.

• (Strongly Aperiodic): This is an immediate consequence of the proof of Lemma C.1, since the sets C(r) are
small and have positive measure for the measure we constructed.

• (Recurrent with invariant measure): Given that the Markov chain is ψ-irreducible and aperiodic, from
Theorem 15.0.1 (Geometric Ergodic Theorem) in Meyn and Tweedie (2009) we have that the chain is positive
recurrent and has an invariant measure. This is true since we have proven the geometric drift property
(cf. Corollary C.1) for a small set, which is also a petite set by Proposition A.1.

The fact that the Markov chain is also Harris is a consequence of Theorem 9.1.8 of Meyn and Tweedie (2009).
For completeness, we mention here that if a chain is ψ-irreducible and there exists a function f that is
unbounded off petite sets such that ∆f ≤ 0 then the chain is Harris recurrent. All these requirements are direct
implications of the results presented so far, particularly the proof of Corollary C.1 and the current lemma. As
such, the Markov chains induced by the stochastic gradient descent models in Equations (SGDA) and (SEG)
are demonstrably Harris recurrent.

■
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Theorem C.1 (Restated Theorem 2). Let Assumptions 1–5 be satisfied for (SGDA) and (SEG). Then given the
step-sizes specified in Theorem 1, it holds that for Alg ∈ {SGDA,SEG}:

1. The iterates (xt)t≥0 admit a unique invariant distribution πAlg
γ ∈ P2(X ), where P2(X ) is the set of distributions

on X with bounded second moments.

2. For any test function ϕ : X → R of Lϕ-linear growth and any initialization x0 ∈ X , there exist constants
τAlg
ϕ,γ ∈ (0, 1) and ζAlg

ϕ,x0,γ
∈ (0,∞) such that:∣∣∣Ext

[ϕ(xt)]− Ex∼π
Alg
γ

[ϕ(x)]
∣∣∣ ≤ ζAlg

ϕ,x0,γ
(τAlg

ϕ,γ )
t. (C.5)

Hence, (SGDA) and (SEG) converges geometrically under the total variation distance to πAlg
γ .

3. For each ℓϕ-Lipschitz test function ϕ, it holds that

|E
x∼π

Alg
γ

[ϕ(x)]− ϕ(x∗)| ≤ ℓϕ
√
DAlg, (C.6)

for some constant DAlg ∝ cAlg
2 .

Proof. The first part of the theorem follows from the fact that the induced Markov chains are Harris recurrent
and aperiodic with invariant measure and have the geometric drift property; thus from Strong Aperiodic Ergodic
Theorem (See Theorem 13.0.1 in Meyn and Tweedie (2009)) the measure is unique and finite. Additionally assume
that x0 ∼ πAlg

γ . Then by the invariance property (xt)t≥0 ∼ πAlg
γ . Using Corollary 1 for some arbitrary fixed

x∗ ∈ X ∗, there exist two corresponding constants (ĉAlg
1 , ĉAlg

2 ) such that ĉAlg
1 ∈ (0, 1) and ĉAlg

2 ∈ (0,∞) that satisfy

E[∥xt+1 − x∗∥2 + 1 | Ft] ≤ ĉAlg
1 (∥xt − x∗∥2 + 1) + ĉAlg

2 ⇒ (C.7)

E
x∼π

Alg
γ

[∥x− x∗∥2] ≤ ĉAlg
1 + ĉAlg

2 − 1

1− ĉAlg
1

(C.8)

At the same time, by construction it holds that

(ĉAlg
1 , ĉAlg

2 ) := (1− cAlg
1 , (1 + cAlg

2 )cAlg
1 )

which implies that:

E
x∼π

Alg
γ

[∥x− x∗∥2] ≤ (1− cAlg
1 ) + (1 + cAlg

2 )cAlg
1 − 1

1− (1− cAlg
1 )

=
cAlg
2 cAlg

1

cAlg
1

= cAlg
2 (C.9)

Since ∥x∗∥ ≤ R, the above inequality implies that πAlg
γ ∈ P2(R

d). Applying Jensen’s inequality, we derive the
necessary bound to conclude the first part.

For the second part, we will use the geometric convergence theorem for Harris positive strongly aperiodic Markov
Chains endowed with geometric drift property (See 16.0.1 in Meyn and Tweedie (2009))

|ϕ(x)| ≤ Lϕ(1 + ∥x∥) ≤ Lϕ((R+ 1) + ∥x− x∗∥) ≤ Lϕ(R+ 1)(1 + ∥x− x∗∥)

≤
√
2Lϕ(R+ 1)

√
E(x) ≤ max(1,

√
2Lϕ(R+ 1)) · E ′(x) = c′E ′(x)

where c′ := max(1,
√
2Lϕ(R+ 1)) and E ′(x) :=

√
E(x). Notice that Corollary C.1 certifies that E ′ also satisfies

geometric drift property. Additionally, since c′ ≥ 1, E ′′(x) := c′E ′(x) also satisfies the geometric drift property.
Hence we can prove that (SEG),(SGDA) are E ′′-uniformly ergodic (Theorem 16.0.1 Condition (iv) in Meyn
and Tweedie (2009)). Therefore, from the equivalent condition (ii) of the aforementioned theorem, there exist
r
ℓϕ,γ
∈ (0, 1), R

ℓϕ,γ
∈ (0,∞) such that

|P kϕ(x0)− Ex∼π
Alg
γ

[ϕ(x)]| ≤ R
ℓϕ,γ

rk
ℓϕ,γ
|E ′′(x0)|,
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thus by setting ζAlg
ϕ,x0,γ

:= R
ℓϕ,γ
|E ′′(x0)| and τAlg

ϕ,γ := r
ℓϕ,γ

we get the requirement. Finally for the total variation
distance it suffices to address only test functions that are bounded by 1. Thus there exist constants r

γ
∈ (0, 1),

Rγ ∈ (0,∞) independent of the function such that

sup
|ϕ|≤1

|P kϕ(x0)− Ex∼π
Alg
γ

[ϕ(x)]| ≤ R
γ
rk
γ
|E ′′(x0)|,

which implies the geometric convergence under total variation distance via the dual representation of Radon
metric for bounded initial conditions (Villani, 2009).

For the last part, we start by linearity of expectation and Lipschitzness of ϕ:

|E
x∼π

Alg
γ

[ϕ(x)]− ϕ(x∗)| = |E
x∼π

Alg
γ

[ϕ(x)− ϕ(x∗)]|

≤ E
x∼π

Alg
γ

[|ϕ(x)− ϕ(x∗)|]

≤ E
x∼π

Alg
γ

[ℓϕ∥x− x∗∥]

≤ ℓϕ
√
E

x∼π
Alg
γ

[∥x− x∗∥2]

≤ ℓϕ
√
D{SGDA,SEG}

where D{SGDA,SEG} ∝ cAlg
2 by (C.8) and (C.9).

■

Below we use the following notations. The distribution π refers to πAlg
γ for respective algorithms. For any function

ϕ′ : Rd → R, we introduce the shorthand

ST (ϕ
′) :=

T∑
t=1

ϕ′(xt); ST (ϕ
′) :=

1

T

T∑
t=1

ϕ′(xt)

in addition, we use π(ϕ′) to denote the expected value of ϕ′ over π, i.e., π(ϕ′) = Ex∼π[ϕ
′(x)].

Theorem C.2 (Restated Theorems 3 and 4). Let Assumptions 1–5 hold. Then for choice of step-sizes specified
in Theorem 2 and any function ϕ : Rd → R satisfying π(|ϕ|) <∞, we have that

lim
T→∞

ST (ϕ) = lim
T→∞

1

T
ST (ϕ) = lim

T→∞

1

T

T∑
t=0

ϕ(xt) = π(ϕ) a.s., (Law of Large Numbers for (SGDA),(SEG))

and that
T 1/2(ST (ϕ)− π(ϕ))

d−→ N (0, σ2
π(ϕ)), (Central Limit Theorem for (SGDA),(SEG))

where σ2
π(ϕ) := limT→∞

1
T Eπ[S

2
T (ϕ− π(ϕ))].

Proof. According to Theorem 17.0.1 in Meyn and Tweedie (2009), the Law of Large Numbers and the Central
Limit Theorem, as described in Theorem C.2, hold for positive Harris chains with invariant measures, given
that they exhibit E∗-uniform ergodicity. To complete the proof, it is necessary to demonstrate that a function ϕ
with linear growth fulfills the conditions of Theorem 17.0.1. This can be achieved by proving the existence of
an energy function E∗(·) satisfying (i) the (V4) geometric drift property in Meyn and Tweedie (2009) and (ii)
|ϕ(x)|2 ≤ E∗(x).

|ϕ(x)|2 ≤ L2
ϕ(1 + ∥x∥)2 ≤ L2

ϕ(1 +R+ ∥x− x∗∥)2 ≤ L2
ϕ(1 +R)2(1 + ∥x− x∗∥)2

≤
√
2L2

ϕ(1 +R)2
√

(1 + ∥x− x∗∥2)

≤ max(1,
√
2L2

ϕ(1 +R)2)
√

(1 + ∥x− x∗∥2) := E∗(x)

By Corollary C.1, we get that E∗ satisfies geometric drift property, thus proving that (SEG) and (SGDA) are
E∗-uniformly ergodic. We complete the proof of Theorem C.2. ■
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D Omitted Proofs of Section 5

D.1 Min-Max Convex-Concave Games

Theorem D.1 (Restated Theorem 5). Let Assumptions 1–5 hold then the iterates of (SGDA), (SEG) when run
with the step-sizes given in Theorem 1 admit a stationary distribution πSGDA,SEG

γ such that

E
x∼π

SGDA,SEG
γ

[GapV (x)] ≤ cγSGDA,SEG, (D.1)

where GapV (x) is the restricted merit function GapV (x) := supx∗∈X∗⟨V (x), x− x∗⟩ and c ∈ R is a constant and
depends on the parameters of the problem.

Proof. From the analysis of (SGDA) in Lemma B.3 (cf. Eq. (B.3) and Assumption 3) we have that

∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2 − 2γ⟨V (xt), xt − x∗⟩ − 2γ⟨Ut(xt), xt − x∗⟩+ γ2∥V (xt) + Ut(xt)∥2,
∥V (x)∥2 ≤ 2L2((1 + R)2 + ∥x− x∗∥2).

Since Ext+1∼πγ
[∥xt+1 − x∗∥2] = Ext∼πγ

[∥xt − x∗∥2] we have that

2

γ
Ext∼πγ

[⟨V (xt), xt − x∗⟩] ≤ 2Ext∼πγ
[L2((1 + R)2 + ∥xt − x∗∥2)] + Ext∼πγ

[∥Ut(xt)∥2])

≤ 2L2((1 + R)2 + Ext∼πγ
[∥xt − x∗∥2]) + σ2

≤ 2L2((1 + R)2 + cSGDA
2 ) + σ2

≤ max
γ∈(0, µ

ℓ2
)
2L2((1 + R)2 + cSGDA

2 ) + σ2

≤ C

where C = maxγ∈(0, µ

ℓ2
)[2L

2((1 + R)2 + cSGDA
2 ) + σ2] (Recall that cSGDA

2 depends on the step-size).

For the case of (SEG), it easy to see that GapV (x) ≤ ℓ∥xt−x∗∥2. So the rest of the proof is derived by Theorem 1,
using dominant convergence theorem for Ext+1∼πγ

[∥xt+1− x∗∥2], as well as the invariance property that x∞ ∼ πγ
if we initialize x0 ∼ πγ . ■

We next show the connection of Duality-Gapf and GapV for a convex-concave function f and V = (∇θf,−∇ϕf):

Duality-Gapf (θ, ϕ) = max
ϕ′∈Rd2

f(θ, ϕ′)− min
θ′∈Rd1

f(θ′, ϕ)

= (f(θ, ϕ)− min
θ′∈Rd1

f(θ′, ϕ))− (f(θ, ϕ)− max
ϕ′∈Rd2

f(θ, ϕ′))

≤ ⟨V (θ, ϕ), (θ, ϕ)− (θ∗, ϕ∗)⟩,

where the last step holds since f is convex (resp. concave) in its first (resp. second) argument. Thus if we call
x = (θ, ϕ), x∗ = (θ∗, ϕ∗), we have

Duality-Gapf (θ, ϕ) ≤ GapV (x).

Additionally, it is easy to see that

f(θ, ϕ) ≤ max
ϕ′∈Rd2

f(θ, ϕ′) = Duality-Gapf (θ, ϕ) + min
θ′∈Rd1

f(θ′, ϕ) ≤ Duality-Gapf (θ, ϕ) + max
ϕ′∈Rd2

min
θ′∈Rd1

f(θ′, ϕ′)

and

f(θ, ϕ) ≥ min
θ′∈Rd1

f(θ′, ϕ) = max
ϕ′∈Rd2

f(θ, ϕ′)−Duality-Gapf (θ, ϕ) ≥ −Duality-Gapf (θ, ϕ) + min
θ′∈Rd1

max
ϕ′∈Rd2

f(θ′, ϕ′).

By weak duality we have that maxϕ′∈Rd2 minθ′∈Rd1 f(θ
′, ϕ′) ≤ minθ′∈Rd1 maxϕ′∈Rd2 f(θ

′, ϕ′), thus we have that

|f(θ, ϕ)− min
θ′∈Rd1

max
ϕ′∈Rd2

f(θ′, ϕ′)| ≤ Duality-Gapf (θ, ϕ)

And the result follows.
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D.2 Bias Refinement in Quasi-Monotone Operators

Lemma D.1. In the setting of Theorem 6 the moments Mom(k) = E[∥xt − x∗∥k] are bounded by a function of
fk(γ) where γ is the step-size of (SGDA) for k ∈ {1, 2, 3, 4}.

Proof.
Second moment. We start by analyzing the second moment

∥xt+1 − x∗∥2 =∥xt − γV (xt)− γUt(xt)− x∗∥2

≤∥xt − x∗∥ − 2γ⟨V (xt), xt − x∗⟩ − 2γ⟨Ut(xt), xt − x∗⟩
+ 2γ2ℓ2∥xt − x∗∥+ 2γ2∥Ut(xt)∥2.

We now apply the expectation and quasi strong monotonicity of the operator and get

E[∥xt+1 − x∗∥2 | Ft] ≤ ∥xt − x∗∥2(1 + 2γ2ℓ2 − 2γµ) + 2γ2σ2.

By choosing 1 + 2γ2ℓ2 − 2γµ < 1− γµ equivalently γ <
µ

2ℓ2
we have

E[∥xt+1 − x∗∥2] ≤ ∥x0 − x∗∥2(1− γµ)t+1 + 2γ2σ2
t∑

k=0

(1− γµ)k

≤ ∥x0 − x∗∥2(1− γµ)t+1 +
2γ2σ2

γµ

≤ ∥x0 − x∗∥2(1− γµ)t+1 +
2γσ2

µ
.

Thus if x ∼ πγ , where πγ is the invariant distribution of the iterates of (SGDA) we have that∫
Rd

∥x− x∗∥2 d(π(x)) ≤ 2
σ2γ

µ

since limt→∞ xt ∼ πγ .
Fourth moment. For the fourth moment, similarly as before we have that

∥xt+1 − x∗∥4 =(∥xt+1 − x∗∥2)2

=(∥xt − x∗∥2 − 2γ⟨V (xt) + Ut(xt), xt − x∗⟩+ γ2∥V (xt) + Ut(xt)∥2)2

=∥xt − x∗∥4 + 4γ2(⟨V (xt) + Ut(xt), xt − x∗⟩)2 + γ4∥V (xt) + Ut(xt)∥4

− 4γ∥xt − x∗∥2⟨V (xt) + Ut(xt), xt − x∗⟩
− 4γ3∥V (xt) + Ut(xt)∥2⟨V (xt) + Ut(xt), xt − x∗⟩
+ 2γ2∥V (xt) + Ut(xt)∥2∥xt − x∗∥2

≤∥xt − x∗∥4 + 4γ2∥xt − x∗∥2(2ℓ2∥xt − x∗∥2 + 2∥Ut(xt)∥2) (D.2)

+ γ4(8ℓ4∥xt − x∗∥4 + 8∥Ut(xt)∥4) (D.3)

− 4γµ∥xt − x∗∥4 − 4γ∥xt − x∗∥2⟨Ut(xt), xt − x∗⟩ (D.4)

+ 4γ3(4ℓ3∥xt − x∗∥3 + 4∥Ut(xt)∥3)∥xt − x∗∥ (D.5)

+ 4γ2(ℓ2∥xt − x∗∥4 + ∥Ut(xt)∥2∥xt − x∗∥2), (D.6)

where we used in the second summand Eq. (D.2) the Cauchy-Schwarz inequality, Lipschitz continuity of the
operator and the identinty ∥x + y∥2 ≤ 2∥x∥2 + 2∥y∥2. For the third one Eq. (D.3) we used the identity
∥x+ y∥4 ≤ 8∥x∥4 + 8∥y∥4, Lipschitzness of the operator. For the fourth one Eq. (D.4) we used the quasi strong
monotonicity of the operator. For the firth one Eq. (D.5) we used Cauchy-Schwarz inequality and the identity
∥x+ y∥2 ≤ 2∥x∥2 + 2∥y∥2 and Lipschitzness of the operator. Thus in the right-hand side of the above inequality
we have constant terms, the ∥xt − x∗∥4, ∥xt − x∗∥2 and ∥xt − x∗∥. Specifically, by rearranging we get

∥xt+1 − x∗∥4 ≤∥xt − x∗∥4(1 + 8γ2ℓ2 + 8γ4ℓ4 − 4γµ+ 16γ3ℓ3 + 4γ2ℓ2)
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+ ∥xt − x∗∥2(12γ2∥Ut(xt)∥2)
+ ∥xt − x∗∥(16γ3∥Ut(xt)∥3 − 4∥xt − x∗∥2⟨Ut(xt), xt − x∗⟩
+ 8γ4∥Ut(xt)∥4.

Applying the expectation given the filtration Ft and setting ℓ̄ = max{ℓ2, ℓ3, ℓ4} we have

E[∥xt − x∗∥4 | Ft] ≤E[∥xt+1 − x∗∥4 | Ft](1 + 16ℓ̄(γ2 + γ3 + γ4)− 4γµ)

+ E[∥xt − x∗∥2 | Ft](12γ
2σ2)

+ E[∥xt − x∗∥ |Ft](16γ
3δ KYRT

3) + 8γ4δ KYRT
4.

By choosing step-size such that{
γ < 1 for simplicity

16ℓ̄(γ2 + γ3 + γ4)− 4γµ < −2γµ

we have that

E[∥xt+1 − x∗∥4 | Ft](2γµ) ≤E[∥xt − x∗∥2 | Ft](12γ
2σ2)

+ E[∥xt − x∗∥ |Ft](16γ
3δ KYRT

3) + 8γ4δ KYRT
4.

Now consider x ∼ πγ and let Ex∼πγ [∥x − x∗∥k] = Mom(k). Notice that the first moment is also bounded by
O(

√
γ/µ) since from ?? and Lipschitzness of the operator we have

∥xt+1 − x∗∥2 ≤ (1− 2µγ + γ2ℓ2)∥xt − x∗∥2 + ∥Ut(xt)∥2

Thus, combining all these we have

Mom(4)2µγ ≤ Mom(2)O(γ2) + Mom(1)O(γ3) +O(γ4).

equivalently

Mom(4) ≤ Mom(2)O(γ/µ) + Mom(1)O(γ2/µ) +O(γ3/µ).

But Mom(2) ≤ O(γ/µ) and Mom(1) ≤ O(
√
γ/µ), thus

Mom(4) ≤ O(γ2/µ2),

which implies that there exists c ≤ c0 max{δ KYRT
3, δ KYRT

4, σ, σ2} such that

Mom(4) ≤ cγ2/µ2.

■

Theorem D.2. [Restated Theorem 6] Suppose Assumptions 1–5 and 7 hold. There exists a threshold θ such that
if γ ∈ (0, θ), (SGDA) admits unique stationary distribution π, that depends on the choice of step-size, and

Ex∼π[x]− x∗ = γ∆(x∗) +O(γ2), (D.7)

where ∆(x∗) is a vector independent of the choice of step-size γ.

Proof. Let x̄ =
∫
Rd xπγ(x) dx = Ex∼πγ

[x] and let γ < min(γD.1
thresh, γ

C.1
thresh) := θ′ such that Lemma D.1 and

Theorem C.1 hold. Assume that we run (SGDA) (xt)t≥0 and x0 ∼ πγ ; since the algorithm is initialized with the
invariant distribution, then all the iterations inevitably follow the invariant distribution. We start by applying
Taylor expansion, on the operator, of second and third order around the solution x∗

V (x) = ∇V (x∗)⊙ [x− x∗] + 1

2
∇2 V (x∗)⊙ [x− x∗]2 + Res3(x), (A)
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V (x) = ∇V (x∗)⊙ [x− x∗] + Res2(x), (B)

where Res2(x),Res3(x) are the corresponding residuals of the Taylor expansion for which it holds that
supx∈Rd{∥Res3(x)∥/∥x− x∗∥3} <∞ and supx∈Rd{∥Res2(x)∥/∥x− x∗∥2} <∞. Notice also that∫

x∈Rd

Res3(x)πγ(x) dx < c3

∫
x∈Rd

∥x− x∗∥3πγ(x) dx ≤ c3Mom(3) ≤ O(γ3/2), (C)

∫
x∈Rd

Res2(x)πγ(x) dx ≤ c2
∫
x∈Rd

∥x− x∗∥2πγ(x) dx ≤ c2Mom(2) ≤ O(γ). (D)

Additionally, by definition of (SGDA) we get that x1 = x0 − γV (x0) − γU0(x0). Since x0 ∼ πγ we have that
x1 ∼ πγ and thus we have

Ex1∼πγ
[x1] = Ex0∼πγ

[x0]− γ Ex0∼πγ
[V (x0)]− γ Ex0∼πγ

[U0(x0)],

which implies that
Ex∼πγ

[V (x)] = 0. (E)

With these equations at hand, we proceed and take the expectation of (A) with respect to the invariant distribution,
combining also (C) and (E) and we get

∇V (x∗)⊙ [x̄− x∗] + 1

2

∫
x∈Rd

∇2 V (x∗)⊙ [x− x∗]2πγ(x) dx = O(γ3/2). (D.8)

Again we focus on the first update of (SGDA) and we have

x1 = x0 − γV (x0)− γU0(x0)

x1 − x∗ = x0 − x∗ − γ (∇V (x∗)⊙ [x0 − x∗] + Res2(x0))− γU0(x0)

x1 − x∗ = (I − γ(V (x∗))⊙ [x0 − x∗]− γRes2(x0)− γU0(x0).

We now compute [x1 − x∗]2 = (x1 − x∗)(x1 − x∗)⊤ and apply the expectation with respect to the invariant
distribution and the noise and we have

Ex∼πγ [[x− x∗]2] = (I − γ∇V (x∗))⊙ Ex∼πγ [(x− x∗)2]⊙ (I − γ∇V (x∗)) + γ2Ex0∼πγ [[U0(x0)]
2]

+O

γ
∫
x∈Rd

Res3(x)⊙ (I − γ(V (x∗))⊙ [x0 − x∗]πγ(x) dx+ γ2 + · · ·︸ ︷︷ ︸
γ5/2

 .

This leads to
Ex∼πγ

[[x− x∗]2] = γQ(x∗)Ex0∼πγ
[[U0(x0)]

2] +O(γ3/2),

where Q(x∗) := (∇V (x∗)⊙ I + I ⊙∇V (x∗)− γ∇V (x∗)⊙∇V (x∗))−1, which is invertible since

∇V (x∗)⊙ I + I ⊙∇V (x∗)− γ∇V (x∗)⊙∇V (x∗) = ∇V (x∗)⊙M(x∗) +M(x∗)⊙∇V (x∗),

where M(x∗) := I − γ/2∇V (x∗). By quasi-monotonicity around x∗ and by choosing γ < min(2L, θ′) := θ we get
that the tensor Q(γ∗) is positive definite tensor.

By applying a second-order Taylor expansion about x∗ in Op(x) := [Ut(x)]
2, and utilizing the same reasoning as

above in combination with the differentiability of the noise tensor (see Assumption 7), we derive the following:

Ex∼πγ [[Ut(x)]
2] = [Ut(x

∗)]2 +O(γ) (D.9)

Ex∼πγ
[[Ut(x)]

2 ⊙ [x− x∗]] = [Ut(x
∗)]2 ⊙ [Ex∼π[x]− x∗] +O(γ). (D.10)

Combining (D.8),(D.2),(D.9), we get that

x̄− x∗ = −1

2
[∇V (x∗)]−1 ⊙∇2 V (x∗)⊙

(
γQ(x∗)Ex0∼πγ

[[U0(x0)]
2] +O(γ3/2)

)
+O(γ3/2),
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which implies that

x̄− x∗ = −1

2
[∇V (x∗)]−1 ⊙∇2 V (x∗)⊙

(
γQ(x∗)⊙ {[Ut(x

∗)]2 +O(γ)}+O(γ3/2)
)
+O(γ3/2),

or equivalently
x̄− x∗ = γ∆(x∗) +O(γ3/2).

The rest of the proof has the goal to improve the last term the order to O(γ2).

1. We have seen that via (D.2),(D.9),: Ex∼πγ
[[x− x∗]2] = γQ(x∗)⊙ [Ut(x

∗)] + γ2Q(x∗) + o(γ2)

2. With similar calculations we can prove that: Ex∼πγ
[[x− x∗]3] = γ2B(x∗) + o(γ2)

Using 4-th order taylor again we get the following equality

x1 − x∗ = x0 − x∗

− γ
(
∇V (x∗)⊙ [x− x∗] + 1

2!
∇2 V (x∗)⊙ [x− x∗]2

+
1

3!
∇3 V (x∗)⊙ [x− x∗]2 + Res4(x)

)
− γU0(x0)

Applying expectation in the above equality and combining the bounds (1.) and (2.), we have that
∇V (x∗)⊙ [x̄− x∗] + 1

2
∇2 V (x∗)⊙ Ex∼πγ [[x− x∗]2]

+

1
3! ∇

3 V (x∗)⊙ Ex∼πγ
[[x− x∗]3] + Ex∼πγ

[Res4(x)]


= 0 (D.11)

By applying the fourth-moment bound for Ex∼πγ
[Res4(x)] = O(γ2) we get the promised result. ■
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E Experiment Details of Section 6

We provide the details for the experiments presented in Section 6. We have adapted the code of the repository
of Hsieh et al. (2020a).

For the first two sets of experiments (Figs. 2–4), we consider a strongly convex-concave min-max game,
minx1∈Rd maxx2∈Rd f(x1, x2), with f : Rd ×Rd → R given by

f(x1, x2) = x⊤1 A1x1 − x⊤2 A2x2 + (x⊤1 B1x1)
2 − (x⊤2 B2x2)

2 + x⊤1 Cx2,

where d = 50, each of A1, A2, B1, B2 ∈ Rd×d is a random positive definite matrix, and C is a random matrix.
Note that the global solution of the game is x∗ = (x∗1, x

∗
2) = (0, 0) with value f(x∗1, x∗2) = 0. The operator

associated with the above game is

V (x) = V ((x1, x2)) = (∇x1f(x1, x2),−∇x2f(x1, x2)).

The stochastic oracle outputs V (x) + Z, where Z ∼ N (0, σ2I) is Gaussian noise with σ = 0.5.

For the experiments on the RR refinement scheme (Fig. 5), we consider a slightly more complicated game. Define
the scalar function h(z) := log(1 + ez), which is convex. Consider a strongly convex-concave min-max game with
f : R×R→ R given by

f(x1, x2) = h(x1) + h(−2x1)− h(x2)− h(−2x2) + 0.1x21 − 0.1x22 + 0.1x1x2.

The operator V and the stochastic oracle are defined in the same way as before. The global solution of this game
is x∗ = (x∗1, x

∗
2) ≈ (0.3268, 0.3801).
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F Related work

Below we review prior work on VIP with a focus on stochastic methods with constant step-sizes.

Variational Inequalities. VIP and its various special cases has been studied extensively, especially in the
deterministic setting where one has exact access to the operator. Many algorithms have been developed, with
both asymptotic convergence and finite-time guarantees. It is beyond the scope of this paper to survey these
results, but we mention that for VIPs with Lipschitz continuous and monotone operator, the works Nemirovski
(2004) study a variant of Extra Gradient algorithm (Korpelevich, 1976) and establishes optimal convergence rates
for ergodic average, and the work Gidel et al. (2018); Mokhtari et al. (2020) studies proximal point algorithm
with geometric convergence results.

Most related to us are works for the stochastic setting, for which SEG (Juditsky et al., 2011) and SGDA
(Nemirovski et al., 2009) are two of the most prominent algorithms. Non-convergent phenomena are observed
even in unconstrained bilinear games (Gidel et al., 2018; Mertikopoulos et al., 2019; Chavdarova et al., 2019;
Daskalakis et al., 2018; Hsieh et al., 2020a). Complementarily, a growing line of work has been dedicated to better
understanding of SEG and SGDA and bridging the gap between the deterministic and the stochastic cases. The
work Juditsky et al. (2011) provided the first analysis of SEG for monotone VIPs. Subsequent work has extended
these results to other settings (Mishchenko et al., 2020; Kannan and Shanbhag, 2019; Mertikopoulos and Zhou,
2019; Hsieh et al., 2020a; Beznosikov et al., 2020; Gorbunov et al., 2022). A parallel line of work studies SGDA
and its variants under different scenarios (Nemirovski et al., 2009; Loizou et al., 2021; Yang et al., 2020; Lin
et al., 2020). Recently Beznosikov et al. (2023) proposed a unified convergence analysis that covers various SGDA
methods for regularized VIPs, where the operator is either quasi-strongly monotone or ℓ-star-cocoercive. For a
quantitative summary of existing results, we refer the readers to Gorbunov et al. (2022) for SEG and Beznosikov
et al. (2023) for SGDA.

In this paper we consider weakly quasi-strongly monotone VIPs, which is a class of structured non-monotone
operators under which one can bypass the the intractability issue that arises in general non-monotone regime
(Diakonikolas et al., 2021; Daskalakis et al., 2021; Papadimitriou et al., 2022). Similar conditions have been
considered in prior work to establish the convergence guarantee of various algorithms (Hsieh et al., 2020a;
Gorbunov et al., 2022; Yang et al., 2020; Song et al., 2020; Loizou et al., 2021).

Constant step-size SGD and Stochastic Approximation. The literature on SGD and stochastic approxi-
mation (SA) is vast. Within this literature, our work is most related to, and in fact motivated by, a recent line of
work that studies constant step-size SGD and SA through the lens of stochastic processes. The work Dieuleveut
et al. (2018) studies SGD for smooth and strongly convex functions. Extensions to non-convex functions are
considered in Yu et al. (2021), which establishes a central limit theorem that is similar in spirit to our results.
Another extension is considered in the work in Can et al. (2022), which studies an accelerated version of constant
stepsize SGDA for the unconstrained strongly convex strongly concave saddle point problem, which is a special
case of the weakly quasi strongly monotone VIPs considered in our work; they do not consider SEG, constrained
problems or biased stochastic oracles, and they do not establish an CLT. More recently, Bianchi et al. (2022)
studies SGD for non-smooth non-convex functions. The work Durmus et al. (2021) considers constant step-size
SA on Riemannian manifolds and studies the limiting behavior as the step-size approaches zero. The work Huo
et al. (2023) considers linear SA with Markovian noise; see the references therein for other recent results on
SA. We mention that Dieuleveut et al. (2018), Can et al. (2022) and Huo et al. (2023) examine a form of the
Richardson-Romberg bias refinement scheme, which we also consider in this paper.

Analysis for Constant and Diminishing Step-sizes. While our consideration of constant stepsizes aligns
well with the pragmatic choices of many practitioners, the theoretical literature (especially in bandits, online convex
optimization/learning, and game dynamics) often considers a diminishing stepsize sequence γt. In particular,
the analysis of many stochastic methods (such as SGD/AdaSGD/Stoch MirrorProx) typically involves an error
term

∑
γ2
t σ

2
t∑

γt
. By selecting γt to satisfy

∑
γt → ∞,

∑
γ2t < ∞, this term can be nullified. This general idea is

well-established in the literature

With a constant stepsize, this error term remains, leading additional bias terms in the convergence analysis and
final guarantee. While Richardson’s bias reduction scheme has a simple implementation, its correctness relies on
the machinery of establishing a limiting distribution and a precise characterization of the bias. A mere upper
bound on the mean-squared error—the typical product of existing work on constant stepsize—conflates bias



Emmanouil V. Vlatakis , Angeliki Giannou, Yudong Chen and Qiaomin Xie

with variance and is thus insufficient for this purpose. Overcoming the above challenges is a main goal of this paper.

Below we provide additional discussion on the two papers Dieuleveut et al. (2018) and Yu et al. (2021), which
also consider the Markov chain perspective for constant-stepsize SGD.

F.1 Comparison with Dieuleveut et al. (2018)

Dieuleveut et al. (2018) considers SGD for unconstrained smooth and strongly convex optimization and views
the iterates of SGD as a Markov chain. The approach taken by Dieuleveut et al. (2018) is based on coupling
and convergence in Wasserstein distance. Our work, on the other hand, is based on irreducibility (implied by
Assumption 5) and positive/Harris recurrence, which entail convergence in total variation distance. These two
approaches to Markov chain analysis are complementary and have their own merits:

• While Dieuleveut et al. (2018) does not impose Assumption 5/irreducibility on the noise, it requires co-coercivity
of the noisy gradient oracle. Their results hold for strongly convex and smooth minimization. Our work does
not rely on co-coercivity of the noise and our results hold for nonsmooth problems and quasi-strongly monotone
problems as well.

• In the proof of Proposition 2 in Dieuleveut et al. (2018), the Wasserstein distance is bounded for two arbitrary
initializations. Specifically, it is necessary to bound the term ⟨∇f(θ1)−∇f(θ2), θ1− θ2⟩ - or in the notation we
follow in this work the term ⟨V (x1)− V (x2), x1 − x2⟩ - by a negative drift, −µ∥θ1 − θ2∥2 Quasi-monotonicity,
as assumed in our paper, provides such a negative drift but, crucially, only relative to the optimum θ∗ (i.e., for
θ2 = θ∗). One may try to add and subtract terms:

⟨f(θ1)−∇f(θ∗), θ1 − θ∗⟩+ ⟨∇f(θ2)−∇f(θ∗), θ2 − θ∗⟩ (F.1)
+ ⟨∇f(θ1)−∇f(θ∗), θ∗ − θ2⟩+ ⟨∇f(θ2)−∇f(θ∗), θ∗ − θ1⟩. (F.2)

While first two terms can contribute to a desired drift, it is not straightforward to control the last two terms
(referred to as the cross terms) under the assumption of quasi-monotonicity alone.

This highlights the differences between quasi-strong-monotonicity and (exact-)strong-monotonicity: the latter
is stronger and more restrictive, and would imply easier control over these cross terms that would appear in a
coupling/Wasserstein-based analysis. This issue is critical even if one restricts attention to the smooth gradient
case, thereby abandoning a unified approach for both non-smooth and smooth cases.

• Establishing a Central Limit Theorem (CLT) is a key product of our work. While it is possible to establish
CLT under the Wasserstein distance framework, additional work is required. For example, in the absence of
irreducibility or Assumption 5, further Lipschitz-type restriction must be placed on the test function ϕ for
which one hopes to prove a CLT (e.g., see Douc et al. (2018)); our CLT only requires linear growth for ϕ.
Further complications may arise when the problem is non-smooth. We note that Dieuleveut et al. (2018) does
not give an explicit sufficient condition for a CLT.

In additional to the above differences, our work applies to the unconstrained case and the projected versions of
SGDA/SEG, and allows for a potentially biased stochastic oracle.

F.2 Comparison with Yu et al. (2021)

Yu et al. (2021) considers SGD for unconstrained nonconvex optimization and views the iterates of SGD as a
Markov chain. Similarly to us and different from Dieuleveut et al. (2018), their Markov analysis is based on
irreducibility and convergence in total variational distance.

In addition to the more general VIPs setting that we consider, the main differences between Yu et al. (2021) and
our work include: (i) we consider the more complicated SEG algorithm and expose its advantage in the smooth
case; (ii) we provide refine analysis for the bias of SGDA; (iii) our work applies to the unconstrained case and the
projected versions of SGDA/SEG, and allows for a potentially biased stochastic oracle. We elaborate below.

We begin by highlighting that one of our main contributions is a unified treatment of the smooth setting of SEG
and the nonsmooth setting of SGDA. Moreover, while being unified, our analysis is strong enough to differentiate
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performance of SEG and SGDA in the smooth case (see the in the next section). In comparison, Yu et al. (2021)
focuses exclusively on unconstrained SGD in the nonsmooth case.

For SEG, our analysis for the miniorization condition (Lemma 1) is different from Yu et al. (2021), due to the
more complicated form of the SEG update (involving an additional extrapolation step) and its interplay with
the projection step, as compared to vanilla SGD. We also depart from Yu et al. (2021) by presenting results for
minmax games for SEG.

For SGDA, we direct attention to our Section 5. In Section 5.1, we present bounds on the duality gap and
game value of convex-concave minmax games. These results, as well as their analysis, are certainly absent in Yu
et al. (2021), which only considers the minimization setting. In Section 5.2, we discuss Richardson-Romberg bias
refinement. Establishing this result requires a more refined characterization of the bias of the limit distribution.
In particular, for the bias vector we prove an expression that is an equality (up to higer order terms of γ; our
analysis can be generalized to establish a more precise, higher order equality). Such an equality allows us to show
that the Richardson-Romberg scheme can exactly cancel out the first-order term in the bias. In comparison, Yu
et al. (2021) only provides upper bounds on the norm of the bias, which is insufficient for bias refinement.
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G Additional Discussion on SEG vs. SGDA

In this section, we provide a comparison of SEG and SGDA in the context of our preliminary convergence result
in Theorem 1. This theorem states that the mean squared error of the algorithm Alg ∈ {SGDA,SEG} converges
geometrically with a contraction factor 1− cAlg

1 up to a bias term cAlg
2 . It is preferable to have a larger cAlg

1 and a
smaller cAlg

2 .

Assuming the stepsize choices in Theorem 1 and ignoring universal constants, our proofs give the following explicit
expressions:

cSEG
1 ≍ cSGDA

1 ≍ γµ,

cSEG
2 ≍ γ σ

2

µ
+
λµ+ b2

µ2
,

cSGDA
2 ≍ γ σ

2 + L2(1 + R2)

µ
+
λµ+ b2

µ2
.

Here and in what follows, we write a ≍ b to mean equality up to a universal multiplicative constant, i.e., a = Θ(b).

Below we provide a detailed discussion on these constants and compare them between SEG and SGDA, showing
that the former has better constants in the smooth case. To make the comparison, we recall that γ is the stepsize,
µ the strong monotonicity parameter, λ the weak monotonicity parameter, σ2 the noise variance (we assume
κ = 0 for simplicity), b the noise bias, and R the norm of x∗. For SEG, V is assumed to be ℓ-Lipschitz; for SGDA,
V is assumed to have L-linear growth.

The contraction factor 1− c1 (a larger c1 is better). We assume V is ℓ-Lipschitz, which implies ℓ-linear
growth, hence the assumptions for both SEG and SGDA are satisfied.

• For SEG, we have c1 ≍ γµ. Under the stepsize choice γ ≍ 1
ℓ (which is orderwise optimal under the assumption

of Theorem 1), we have c1 ≍ µ
ℓ , which is inversely proportional to the condition number ℓ

µ .

• For SGDA, we also have c1 ≍ γµ. Under the stepsize choice γ ≍ µ
ℓ2 (which is orderwise optimal under the

assumption of Theorem 1), we have c1 ≍ µ2

ℓ2 , which is inversely proportional to the square of the condition
number ℓ

µ . Therefore, SEG has a more favorable dependence on the condition number than SGDA.

The bias term c2 (the smaller, the better).

• For SEG:

1. For SEG, c2 vanishes in the ideal case λ = σ = b = 0 (i.e., strongly monotone, unbiased and noiseless oracle).

2. When λ = b = 0 (strongly monotone and unbiased oracle) but σ > 0, the bias c2 diminishes to 0 as the
stepsize γ diminishes to 0. Note that in this strongly monotone case, the solution x∗ is unique.

3. When λ > 0 (weakly strongly monotone), the bias c2 has a persistent term λ
µ , which does not scale with γ

or σ. In this case, there may be multiple solutions x∗, and
√

λ
µ is precisely (an upper bound of) the radius

of the solution set X ∗; see the Remark after Assumption 2. Therefore, our result implies convergence up to
this radius, as should be expected.

We emphasize that Points 2 and 3 above do not contradict with each other.

• For SGDA:

1. For SGDA, c2 is larger than the c2 of SEG due to the additional term γ L2(1+R2)
µ . In particular, c2 for SGDA

remains nonzero even when λ = σ = b = 0.

2. When λ = b = 0 (strongly monotone and unbiased oracle), the bias c2 is proportional to the stepsize γ. If γ
goes to 0, then the bias goes to zero.

3. When λ > 0, we have convergence up to the radius of the solution set, similarly to SEG.

Note that the above results for SGDA are consistent with known results for SGD for nonsmooth optimization.
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We mention in passing that bounds for SEG often depend on certain variance parameters, whereas SGDA often
depends on the second moment, a larger quantity. This phenomenon can be seen in the above discussion as well
as in other regimes (e.g., for SEG/SGDA with diminishing stepsize). It reflects the fact that SEG can better
leverage gradient smoothness, thanks to its extrapolation step.
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