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Paris, France.

LAMSADE, CNRS,
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Abstract

Rejection sampling methods have recently
been proposed to improve the performance of
discriminator-based generative models. How-
ever, these methods are only optimal un-
der an unlimited sampling budget, and are
usually applied to a generator trained inde-
pendently of the rejection procedure. We
first propose an Optimal Budgeted Rejection
Sampling (OBRS) scheme that is provably
optimal with respect to any f -divergence be-
tween the true distribution and the post-
rejection distribution, for a given sampling
budget. Second, we propose an end-to-
end method that incorporates the sampling
scheme into the training procedure to further
enhance the model’s overall performance.
Through experiments and supporting theory,
we show that the proposed methods are ef-
fective in significantly improving the quality
and diversity of the samples.

1 INTRODUCTION

Generative Adversarial Networks (GANs) have signif-
icantly improved generation of complex, high dimen-
sional data. In the original paper by Goodfellow et al.
(2014), GANs are trained to minimize the Jensen-
Shannon divergence between true distribution P and
a distribution P̂ induced by a generator G. Since P
is generally unknown, the divergence between P and
P̂ is estimated using a discriminator T , i.e. a func-
tion that discriminates available samples from P and
samples generated from P̂ . In practice T and G are
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represented using neural networks and trained simulta-
neously to estimate the divergence and to minimize it.
In this paper, we consider the more general framework
of f -GAN introduced by Nowozin et al. (2016), which
can be used to minimize any f -divergence between P
and P̂ , including the Jensen-Shannon divergence, the
Kullback-Leibler divergence or other divergences (See
Table 1).

In most settings, the discriminator is not involved in
the generation of new samples beyond the training
phase (i.e. it is discarded after training). Building
on this observation, several methods such as Discrim-
inator Rejection Sampling (DRS) (Azadi et al., 2019)
or Metropolis-Hastings GAN (Turner et al., 2019) have
demonstrated how to combine G and T using rejection
sampling, in order to generate better samples than the
ones generated using G alone. In the rest of this paper,
we call P̃ the distribution resulting from G enhanced
with rejection sampling.

Unfortunately, these methods suffer from several limi-
tations. First they are only provably optimal when the
sampling budget is unlimited. In practice, users have
to limit the rejection rate to obtain samples in reason-
able time through various empirical means (e.g. by
capping the number of iterations of the sampling algo-
rithm). This strategy may not yield the best possible
sample for the given budget, an observation that leads
to the first question that motivated our contribtion.

Question 1:How to devise a method that generates
the best quality sample under a fixed rejection budget?

Another important limitation is that, since examples
are sampled from P̃ rather than P̂ , the objective
should be to minimize the divergence between P and
P̃ rather than the divergence between P and P̂ . This
raises a second research question that we address in
this paper:

Question 2:Can we train a generator G that directly
minimizes Df(P ∥P̃ ) instead of Df(P ∥P̂ ) ?
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Figure 1: The loss landscape in the parameter domain of a GAN trained on MNIST. The x-axis and y-axis are
random directions in the parameter space. The loss is between the target distribution P and the post-rejection
distribution. There are three cases: no rejection (K = 1), 50% acceptance rate (K = 2) and 20% acceptance rate
(K = 5). OBRS not only reduces loss, but also flattens out the loss landscape and helps avoid local minima.

In this paper, we address Question 1&2, by making
following contributions:

• We introduce ORBS, a method that can be used
to find an acceptance function required to re-
ject/accept samples from P̂ and show in Theo-
rem 3.1 that this function induces the optimal dis-
tribution P̃ under a budget, for any f -divergence.

• We characterize the improvement of P̃ over P̂ in
terms of Precision and Recall (Sajjadi et al., 2018)
in Theorem 3.3.

• We propose a method to train a generator G to
directly minimize an f -divergence between P and
P̃ , and we discuss the potential benefits of our
method. For example, in Figure 1, we illustrate
how OBRS can flatten the loss landscape.

Notation: For the rest of the paper, we use X ⊆ Rd

to refer to the data space. We use P(X ) to denote the
set of probability measures on X defined on a measure
space with the Borel σ-algebra. We use capital letters
to denote probability measures (for e.g., P ∈ P(X ))
and small letters to denote their densities (for e.g.,
p(x) for x ∈ X ).

2 BACKGROUND

2.1 f-divergences

The framework of f -divergences can be used to specify
a variety of divergences between two probability dis-
tributions. An f -divergence is fully characterized by a
convex and lower semi-continuous function f ∶ R+ → R
that satisfies f(1) = 0. Given f and two probability

distributions P and P̂ ∈ P(X ), the f -divergence be-
tween P , P̂ (denoted Df(P ∥P̂ )) is defined as follows:

Df(P ∥P̂ ) = Ex∼P̂ [f (
p(x)
p̂(x))] . (1)

(We assume that P is absolutely continuous with w.r.t.
P̂ .) Several notable statistical divergences, such as the
Kullback-Leibler (KL) divergence (DKL), the reverse
KL divergence (DrKL), or the Total Variation (DTV),
belong to the class of f -divergences. A overview is
provided in Table 1.

A key property of f -divergences is that every f -
divergence Df admits a dual variational form (Nguyen
et al., 2009):

Df(P ∥P̂ ) = sup
T ∈T

Ex∼P [T (x)] −Ex∼P̂ [f
∗(T (x))] , (2)

where T be the set of all measurable functions T ∶
X → R and f∗(t) ∶= supu∈R {tu − f(u)} is the convex
conjugate of f . Specifically, the function T opt ∈ T that
yields the supremum in (2) can be used to determine
the likelihood ratio ropt as follows.

ropt(x) = ∇f∗ (T opt(x)) = p(x)
p̂(x) . (3)

2.2 f-GAN, a generalization of GAN

Let G be the set of all measurable functions G ∶ Z → X ,
where Z is the latent space and X is the data space.
In the f -GAN framework, the generator G ∈ G is
used to transform samples from the latent distribution
Q ∈ P(Z) (typically a multivariate Gaussian) into data
samples following the data distribution P̂G ∈ P(X ) .
G is chosen to minimize the f -divergence Df(P ∥P̂G)
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Table 1: List of common f -divergences. The generator f is given with its Fenchel conjugate f∗. The optimal
discriminator T opt is given to compute the likelihood ratio p(x)/p̂(x) = ∇f∗(T opt(x)).

Divergence Notation f(u) f∗(t) T opt(x)

KL DKL u logu exp(t − 1) 1 + log p(x)/p̂(x)
GAN DGAN u logu − (u + 1) log(u + 1) − log(1 − exp(t)) p(x)/ (p(x) + p̂(x))
PR Dλ-PR max(λu,1) −max(λ,1) t/λ λsign{p(x)/p̂(x) − 1}

Since P is usually not available, a discriminator T ∶
X → R is used to estimate Df(P ∥P̂G) through the
dual variational form in (2), resulting in the following
minimax objective (Nowozin et al., 2016).

min
G∈G

max
T ∈T

Ex∼P [T (x)] −Ex∼P̂G
[f∗(T (x))] . (4)

The optimization procedure is detailed in Algorithm 1.
An important special case is that of the original paper
of Goodfellow et al. (2014), where D(x) ∶= exp (T (x)),
and the minimax objective is as follows:

min
G

max
D

Ex∼P [log (D(x))] +Ex∼P̂G
[log (1 −D(x))] .

(5)

2.3 Rejection Sampling

Rejection Sampling is a classical method to generate
samples from a distribution using samples drawn from
a different distribution. In the context of this paper,
samples drawn from P̂ are accepted or rejected using
an acceptance function a ∶ X → [0,1], where a(x) is
the probability of accepting a sample x from P̂ . The
distribution induced by the rejection procedure based
on a is a new distribution in P(X ) denoted P̃a. The
density p̃a(x) of P̃a has the following form:

p̃a(x) =
p̂(x)a(x)

Z
, (6)

where Z > 0 is a normalizing constant that ensures
that ∫X p̃a(x) = 1. The overall acceptance rate is
EP̂ [a(x)] = Z. Note that Z ≤ 1. If p, p̂ are known,
and if there are no constraints on the sampling bud-
get (i.e., no lower limit on Z), then a can be set

to a(x) = p(x)
p̂(x)M with M = supx∈X

p(x)
p̂(x) so that P̃a

matches perfectly the target distribution P because

p̃a(x) = p̂(x) p(x)
p̂(x)ZM

= p(x) and we have Z = 1/M .

However in practice for high-dimensional X , M can
take high values and set a very low acceptance rate
(MacKay, 2005).

Rejection Sampling for GANs: Azadi et al.
(2019) propose Discriminator Rejection Sampling

(DRS) scheme wherein a trained discriminator T is
used to approximate the likelihood ratio via the for-
mula,

r(x) = ∇f∗ (T (x)) , (7)

which is an approximation of (3). Thus, the accep-

tance function of DRS is given by aDRS(x) = r(x)
M

,
where M = supx {r(x)} is estimated using samples
x ∼ P̂ . To account for low acceptance rate, DRS uses
a hyper parameter γ to adjust the acceptance rate as,

aDRS (x) =
r(x)
M

e−γ . (8)

In practice, the discriminator T is calibrated such that
EP̂ [r(x)] = 1 which results in an overall acceptance

rate of EP̂ [a(x)] = e−γ

M
. A low value of γ (typically

γ < 0) boosts the acceptance rate.

Related sampling methods: The introduction of
DRS has lead to the development of numerous sam-
pling methods that are also applicable to GANs, such
as MH-GAN (Turner et al., 2019), DDLS (Che et al.,
2021), DOT (Tanaka, 2019), and DGf low (Ansari
et al., 2021), LatentRS (Issenhuth et al., 2022) and
even for Normalizing Flows (Stimper et al., 2022).
These methods, relying on gradient ascent or the train-
ing of a latent model, have showcased their potential
through various applications. However, the sampling
is computationally expensive and are not as efficient
under a limited time constraint.

Accounting for rejection during training:
While the majority of methods employ the rejection
sampling scheme post-training, incorporating an a pri-
ori perspective on the sampling procedure also yields
good results empirically. For example, Grover et al.
(2018) and Stimper et al. (2022) have embedded latent
rejection sampling within their training processes, ap-
plying it within a variational inference context and a
Normalizing Flow framework, respectively.
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3 OPTIMAL BUDGETED
REJECTION SAMPLING (OBRS)

Rejection sampling exhibits a well-established effi-
ciency on low-dimensional samples; but the acceptance
rate drops when it is applied to higher dimensional
samples (MacKay, 2005). In this section, we study
the problem of rejection sampling under a limited sam-
pling budget K ∈ [1,∞), where K represents the ex-
pected number of samples drawn from P̂G required to
generate a sample from P̃a. We start by introducing
a method to find the optimal acceptance function un-
der a given budget K (thus addressing research Ques-
tion 1), then we characterize the improvement pro-
vided by this new method using Precision and Recall
for generative models (Sajjadi et al., 2018).

3.1 Optimal acceptance function

We recall that P is the true data distribution, P̂G (or P̂
for short) is the distribution induced by the generator,
and P̃a is the distribution obtained by applying the
acceptance function a on samples from P̂ . Given a
fixed P̂ , our goal is to find the acceptance function
a that minimizes the divergence between P and P̃a

under a budget K, as follows:

min
a

Df(P ∥P̃a)

s.t.

⎧⎪⎪⎨⎪⎪⎩

EP̂ [a(x)] ≥ 1/K,

∀x ∈ X , 0 ≤ a(x) ≤ 1.
(9)

Here the constraint EP̂ [a(x)] ≥ 1/K is used to bound
the expected acceptance rate. For K = 1, the only a
satisfying the constraints in (9) is the unit function
a(x) = 1 ∀ x ∈ X . This case corresponds to no rejec-
tion (or accept w.p. 1) and we have P̃a = P̂ almost
everywhere.

Note that the objective Df(P ∥P̃a) is continuous with
respect to a. Since the constraint set for a is closed and
bounded, there exists an optimal a for problem (9). In
the following theorem, we give an explicit form for the
optimal solution aO for finite X using Lagrangian du-
ality.

Theorem 3.1 (Optimal Acceptance Function). For a
sampling budget K ≥ 1 and finite X , the solution to
problem (9) is,

aO(x) =min(p(x)
p̂(x)

cK
M

,1) , (10)

where cK ≥ 1 is such that Ex∼p̂[aO(x)] = 1/K. 1

1This acceptance function was previously introduced by
Grover et al. (2018)), with the sole argument that it is a
”natural” approximation of the optimal acceptance func-
tion. No theoretical argument was provided.
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Figure 2: Comparing Unbudgeted, DRS (Azadi et al.,
2019) and OBRS (ours) for a one-dimensional exam-
ple. DRS and OBRS are tuned to reach an acceptance
ratio of 50%. TL: The target and learned distribu-
tions P and P̂ , along the refined distributions. TR:
The acceptance functions for the unbudgeted rejection
sampling (dotted black), OBRS (blue), and the DRS
(green). BL: The PR-Curves of the different models.
BR: Visualisation of the improvements by the OBRS.
The straight dotted line corresponds to λ =KcK/M .

Few observations should be made on Theorem 3.1:

• The constant cK is solely determined by K. In
practice, we can compute it using a dichotomy
algorithm (detailed in Appendix B.2).

• A budget greater than M = supx∈X
p(x)
p̂(x) (unbud-

geted sampling) implies that cK = 1, and thus

aO(x) = p(x)
Mp̂(x) .

• The optimal function aO does not depend on f
meaning that OBRS is optimal for various f -
divergences including ones that are more sensitive
to covering the probability mass or ones that are
more sensitive capturing modes. This observation
is the base of our analysis on how the OBRS im-
proves Precision and Recall in Section 3.2

Figure 2 illustrates Theorem 3.1 on a one-dimensional
example. On the top-left of Figure 2, we draw P̂ and
P , where the target distribution P . On the top-right,
DRS (green) and OBRS (blue) are compared. We can
observe how aO and aDRS lead to different refined dis-
tributions P̃a.



Alexandre Verine, Muni Sreenivas Pydi, Benjamin Negrevergne, Yann Chevaleyre

Finally, we present a theorem showing how much
OBRS reduces the f -divergence in general. We show
that for any f -divergence, the improvement is linear to
K. We also give a tighter version of the bound for the
Kullback-Leibler Divergence. Proofs for both results
are in Appendix C.

Theorem 3.2. For any f -divergence, we have

Df (P ∥P̃a) ≤ Df (P ∥P̂ ) −min(1, K − 1
M
)Df (P ∥P̂)

and for Kullback-Leibler we have for γ = logK
logM

DKL(P ∥P̃ ) ≤ (1 − γ) (DKL(P ∥P̂ ) −DR
γ (P ∥P̂ ))

where DR
γ is the Rényi divergence with parameter β

3.2 Improvement on the Precision/Recall

A number of recent publications have stressed the im-
portance of measuring the quality of generative models
using precision and recall (Kynkäänniemi et al., 2019;
Djolonga et al., 2020; Naeem et al., 2020; Cheema and
Urner, 2023; Kim et al., 2023b; Verine et al., 2023;
Bronnec et al., 2024). In the context of generative
modeling, precision measures the quality of the gener-
ated samples, while recall which measures the diversity
of the samples. In this section, we introduce Theo-
rem 3.3, that provide a clear characterization of the
improvement provided by OBRS in terms of precision
and recall.

To model the set of all precision-recall tradeoffs, Si-
mon et al. (2019) introduced the notion of Precision-
Recall Curve between to distributions P and P̂ . This
curve, named PRD(P, P̂ ), is composed of all coordi-
nate points (αλ, βλ)λ∈[0,+∞] ∈ [0,1]2 defined as follows.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

αλ = EP̂ [min{λp(x)
p̂(x) ,1}]

βλ = EP [min{1, p̂(x)
p(x)

1
λ
}]

(11)

Intuitively, if (α,β) belongs to the Precision-Recall
curve, this means that for some fixed recall β, the
best achievable precision is α. A more comprehen-
sive definition and explanation of Precision/Recall for
generative models is given in Appendix A.

Theorem 3.3 (Precision and Recall Improvement).
Let K ≤ M be the budget for the OBRS detailed in
Theorem 3.1. For any (α,β) ∈ PRD(P, P̂ ) we have
(α′, β) ∈ PRD(P, P̃aO

) with α′ =min{1,Kα}.

This theorem shows that for any fixed recall, OBRS
consistently improves precision. More precisely, the
improved PR-curve is a K-fold vertical scaling of
the intial PR-curve capped to 1. The bottom-right

part of Figure 2 illustrates this phenomenon. In Ap-
pendix B.4, we show a similar theorem for another
popular precision-recall measure called the Informa-
tion Divergence Frontier (Djolonga et al., 2020).

4 TRAINING WITH OBRS

In traditional GAN training, the generator G is op-
timized without considering any a priori knowledge
regarding the rejection sampling that occurs post-
training, potentially leading to suboptimal generative
models. This section advocates training with OBRS
(Tw/OBRS) for GANs models. First, we introduce
the theoretical improvements and the observed effects
on the loss function. Then, we introduce an algorithm
to incoporate OBRS in the training procedure.

4.1 Principle of Training with OBRS

Let us reformulate Rejection Sampling in the do-
main of probability measures. Define BK(P̂ ) =
{P̃ ∈ P(X )∣DR

∞(P̃ ∥P̂ ) ≤ logK}, where DR
∞(P̃ ∥P̂ ) =

log(supx {p̃(x)/p̂(x)}) denotes the max-divergence (a
limiting case of the α-Rényi Divergence DR

α with α →
∞). Note that BK(P̂ ) is a convex set. Moreover, the
following inclusion holds for any K2 ≥K1 ≥ 1.

BK1(P̂ ) ⊆ BK2(P̂ ). (12)

The following lemma shows that BK(P̂ ) characterizes
the set of distributions allowed by a budgeted rejection
sampling procedure.

Lemma 4.1. P̃ ∈ BK(P̂ ) if and only if there exist an
acceptance function a ∶ X → [0,1], and a normaliza-
tion constant Z such that p̃(x) = p̂(x)a(x)/Z and the
acceptance rate is greater that 1/K.

Consider P̂ = {P̂ = G#Q∣G ∈ G}, the set of all distri-

butions P̂ induced by the generator functions from a
fixed latent distribution Q. By separating the training
process from the rejection sampling process, we are, in
effect, solving a two-step minimization problem given
below.

First solve P̂ opt ∈ argmin
P̂ ∈P̂

Df(P ∥P̂ ); (13)

Next solve P̃ opt ∈ argmin
P̃ ∈BK(P̂ opt)

Df(P ∥P̃ ). (14)

Crucially, P̂ opt is chosen by the training procedure
to optimize (13) whereas the final output distribution
P̃ opt is assessed via (14), resulting in a mismatched
objective. By incorporating the rejection scheme into
the training objective, we get:

min
P̂ ∈P̂

min
P̃ ∈BK(P̂ )

Df(P ∥P̃ ). (15)
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(b) The target distribution P (in dotted black) is a mixture
of 10 Gaussians with σ2

= 0.3. The approximate distribu-
tion is a mixture of 10 Gaussians of σ2

= 0.4 separated by θ.
P̃ is computed with OBRS and a budget of K = 2. Densities
are re-scaled and cropped to [−7,7] for readability.

Figure 3: The loss DGAN(P ∥P̃ ) is flatten by the OBRS
scheme. As the budget K increases, the number of
local minima decreases.

This re-framing of the objective has the following ad-
vantages.

Flattening effect on the parameter landscape:
Note that the objective in (15) can be written as,

min
P̃ ∈⋃P̂ ∈P̂ BK(P̂ )

Df(P ∥P̃ ). (16)

Observe that the domain of P̃ is the dilatation of P̂
by the convex set BK , resulting in a smoother set

⋃P̂ ∈P̂ BK(P̂ ). In practice, this results in a flattened

loss landscape for optimizing over P̂ as in (15), thus
preventing the model from getting stuck in subopti-
mal local minima. This concept is demonstrated with
two examples, showcasing its ability to flatten the pa-
rameter landscape. Firstly, Figure 3 shows a one-
dimensional example where the loss is flattened by
OBRS. Secondly, Figure 1 illustrates a GAN trained
to generate MNIST samples. Like in the approach of
Li et al. (2018), we present the loss in two arbitrary
directions of the parameter space. We observe that
OBRS not only reduces the loss but also flattens the
landscape, thereby aiding in avoiding local minima.
More details are provided in Appendix D.1.
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for all parameters (µ,σ). The stars (★) highlight the min-
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(b) For the target P (in dotted black), the approximation

P̂ (in dashed red) corresponds to a minima in Fig. 4a. The

post-OBRS distribution P̃ (in solid blue) is for K = 2.

Figure 4: One dimensional example of Df minimiza-
tion: P , a mixture of two gaussians is approximated
by Gaussian P̂ = N (µ,σ2). The distribution P̂ that
minimizes DGAN(P ∥P̃ ) leads to a drastically better
approximation P̃ of P than the post rejection distri-
bution induced by the P̂ that minimizes DGAN(P ∥P̂ ).

A mass-covering P̂ : The optimal P̂ might be dif-
ferent between (13) and (15). Theorem 3.3 explicitly
states that OBRS is more efficient on mass-covering
models rather than mode-seeking ones, as it improves
precision. Taking the rejection sampling into account
in the training procedure is pushing the distribution
P̂ to be more suitable for reject, and thus: more-mode
covering. For instance, consider a target distribution
P as the Gaussian mixture presented in Figure 4. As-
sume that the expressivity of P̂ is limited to a single
Gaussian N (µ,σ). If the goal is to naively minimize
DGAN (defined in Table 1), then, because of the mode-
covering property of the divergence, P̂ covers only one
mode. In that case, Theorem 3.3 shows that only the
precision can be improved, and thus a limited-budget
rejection sampling scheme will not reshape P̂ , leading
to poor coverage. While, if µ and σ are set to di-
rectly minimize DGAN(P ∥P̃ ), then the distribution P̂
changes drastically into a mass covering distribution,
allowing the rejection process to match more closely
(in terms of DGAN).
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Table 2: Mixture of 25 Gaussiansin 2D. Metrics for the different sampling Methods: Recall (↑) and Precision
(↑) as defined in Dumoulin et al. (2017); Calls (↓) of G and D are the number of times the models are called to
generate 2500 samples; Time (↓) is the time required to generated 2500 samples. For every metrics, we give the
average and standard deviation for 1000 generations of 2500 samples. Best results are emphasized in bold.

Model Recall (%) Precision (%) Call of G Call of D Time (s)
Baseline G 100.0 ± 0.0 55.80 ± 0.99 2500 ± 0 0 ± 0 0.03 ± 0.01
OBRS (ours) (K = 2.6) 100.0 ± 0.0 92.54 ± 0.54 6262 ± 92 6262 ± 92 0.45 ± 0.01
DRS (γ = −0.9) 100.0 ± 0.0 89.87 ± 0.59 6411 ± 93 6411 ± 93 0.46 ± 0.01
MH-GAN (nite = 2) 100.0 ± 0.0 89.98 ± 0.61 6415 ± 45 19292 ± 23 6.38 ± 0.09
DOT (nite = 3) 100.0 ± 0.0 58.47 ± 1.00 2500 ± 0 7500 ± 0 0.94 ± 0.14
DGf low (nite = 3) 94.81 ± 2.83 56.00 ± 1.02 7500 ± 0 7500 ± 0 0.67 ± 0.13

4.2 Implementing Tw/OBRS

To implement Tw/OBRS i.e., to solve for the com-
bined objective in (15), we need samples from P̃ in
order to evaluate the final loss Df(P ∥P̃ ). One di-

rect approach is to train a discriminator T̃ to estimate
D(P ∥P̃ ), and then training a generator to minimize
the estimate by minimizing:

−EP̃ [f
∗(T̃ (x))] = −EP̂ [KaO(x)f∗(T̃ (x))] . (17)

But, this would require to compute aO which depends
on r(x) that is obtained by training a discriminator
T on D(P ∥P̂ ). In other words, it would require two
discriminators T and T̃ . Instead, we propose a method
that would require training only a single discriminator
T and leverage the primal form of f -divergence give in
(1) to estimate Df(P ∥P̃ ) as follows.

Df(P ∥P̃ ) = EP̂ [f (
p(x)
p̃(x))]

= EP̃ [
p̃(x)
p̂(x)f (

p(x)
p̂(x)

p̂(x)
p̃(x))]

= EP̂ [KaO(x)f (
∇f∗ (T (x))
KaO(x)

)] ,

where the last equality follows by plugging in the
likelihood ratio estimate of (3). We propose Algo-

rithm 2 that trains a model G to minimize the esti-
mated f -divergence between P and P̃ . This algorithm
is, in terms of algorithmic complexity, equivalent to the
traditional GAN training procedure detailed in Algo-
rithm 1. We detail in Appendix D.3 how the update
of cK affects the time of the training procedure.

5 EXPERIMENTAL RESULTS

5.1 Sampling methods for 25 Gaussians

We first evaluate our methods using a grid of 5 × 5
two-dimensional Gaussians following the experimen-
tal protocol used by the authors of other GANs sam-
pling methods (Azadi et al., 2019; Turner et al., 2019;
Ansari et al., 2021; Che et al., 2021; Tanaka, 2019).
Hyperparameters of every methods are set to achieve
about 40% acceptance rates (K = 2.6) in order to ob-
tain comparable performances. We then measure pre-
cision and recall using the methodology proposed by
Dumoulin et al. (2017) as well as execution time for
every method. Results are presented in Table 2. We
observe almost every method achieve 100% recall but
that OBRS outperforms all other methods in terms
of both precision and sampling time. Detailed experi-
mental settings and a discussion how budget and time
affect the performances are available in Appendix D.2.

Algorithm 1 Traditional GAN training procedure

repeat
Update T by ascending the gradient of

Ex∼P [T (x)] − Ex∼P̂G
[f∗(T (x))] .

Update G by descending the gradient of

−Ex∼P̂G
[f∗(T (x))] .

until convergence.

Algorithm 2 GAN Tw/OBRS

repeat
Update T by ascending the gradient of

Ex∼P [T (x)] − Ex∼P̂G
[f∗(T (x))] .

Update cK such that EP̂G
[aO(x)] ≤ 1/K.

(See Alg B.1 in App B.2) for details.)
Update G by descending the gradient of

Ex∼P̂G
[KaO(x)f (

r (x)

KaO(x)
)] .

until convergence.
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Figure 5: DRS vs. OBRS on a pre-trained BigGAN on
CelebA. GAN Baseline model P̂G, Post-rejection dis-
tribution P̃aDRS

with DRS, Post-rejection distribution
P̃aO

with OBRS. (Left) Precision and Recall for dif-
ferent budgets. Lowest budget in black. (Right) FID
as a function of the acceptance rate.

We further demonstrate the impact of the distribution
P̂ and particularly the influence of M on the perfor-
mance disparity between OBRS and DRS. In our ex-
periments, we select hyperparameters to achieve sim-
ilar acceptance rates. Yet, for varying budgets, the
difference of efficiency between OBRS and DRS may
increase. Figure D.4 illustrates the behavior of these
methods for different values of M .

5.2 OBRS for a pre-trained model

We now investigate how OBRS performs in high di-
mension. To do so, we use a BigGAN model (Brock
et al., 2019) pre-trained on CelebA. Note that the
model is originally trained with the hinge loss which is
saturating according to Azadi et al. (2019) and leads
to a discriminator that is not suitable for density es-
timation. Thus, following their recommendations, we
fine-tune the discriminator to improve density estima-
tion. In Figure 5, we evaluate the resulting model in
terms of Precision and Recall (Kynkäänniemi et al.,
2019) for 10k samples for k = 5 and the FID for 50k
samples. When evaluating for multiple budgets be-
tween 1 and M , we observe that OBRS outperforms

Table 3: OBRS applied on a Diffusion Model EDM
(Karras et al., 2022) with a classifier trained by Kim
et al. (2023a). We observe no relevant improvement
on the Recall, a slight improvement on the Precision
and a significant improvement on the FID.

Acceptance rate FID P R
0.25 1.57 78.48 86.73
0.50 1.58 78.23 86.05
0.75 1.77 77.94 86.54
1 1.97 77.91 86.62

10 50 100

Training Iterations (×1000)

20

40

60

80

F
ID

of
P̃

CIFAR-10

10 50 100

Training Iterations (×1000)

0

20

40

60

80
CelebA 64× 64

Hinge Loss

Tw/o OBRS

Tw/OBRS

(a) FID during training.

Dataset Method FID P R
CIFAR-10 Hinge Loss 8.43 84.50 65.39
32 × 32 Tw/oOBRS 11.18 83.24 68.44

Tw/OBRS 8.98 80.09 69.63
CelebA Hinge Loss 9.33 80.23 57.78
64 × 64 Tw/oOBRS 6.33 78.28 61.02

Tw/OBRS 5.42 78.01 60.29

(b) Metrics at convergence all between

Figure 6: Training w/OBRS. We use a BigGAN
(Brock et al., 2019) trained with hinge loss as a base-
line compared to DGAN trained without (Tw/oOBRS)
and with (Tw/OBRS) OBRS. All metrics are calcu-
lated between P and P̃ with a budget of K = 2.

DRS in terms of FID and, for acceptance rates greater
than 30%, in terms of precision. We also test the re-
jection procedure on a diffusion model on CIFAR-10
trained by Karras et al. (2022) with a discriminator
trained by Kim et al. (2023a). In Table 3, that the
OBRS method improves the FID by a significant mar-
gin, while the precision is slightly improved and the
recall remains stable.

5.3 Training with OBRS

We investigate the Tw/OBRS method discussed in
Section 4. We use BigGAN and trained in 3 ways: (1)
hinge loss (baseline), (2) DGAN loss using the stan-
dard method from Algorithm 1 (Tw/oOBRS), and (3)
DGAN loss using our new method from Algorithm 2
(Tw/OBRS), with K = 2. We tested these methods
on the CIFAR-10 and CelebA datasets and showed
the results in Figure 6. To be fair, we evaluate all 3
models on the refined distribution P̃ with a budget of
K = 2. In our experiments, our method demonstrates
accelerated convergence and superior performance in
terms of FID compared to the alternative approaches.
While there is a notable increase in Recall, there is a
slight trade-off in Precision.

We also fine-tuned models trained on the hinge loss
using our method. We used BigGAN models trained
on CelebA and ImageNet in Table 4.
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Table 4: Fine-tuning with Tw/OBRS. Pre-trained
BigGAN fine-tuned on the DGAN with OBRS. We use
a BigGAN trained with the hinge loss as a baseline.
All metrics are calculated between the target distri-
bution P and the post-distribution with a budget of
K = 2.

Dataset Method FID P R
CelebA Hinge Loss 9.33 80.23 57.78
64 × 64 w/OBRS 3.74 74.40 65.15

ImageNet Hinge Loss 12.18 27.75 34.33
128 × 128 w/OBRS 11.65 26.84 46.16

This set of experiments on training models accounting
for rejection shows that intuitions presented in Sec-
tion 4 are confirmed empirically: the models converge
faster and leads to an optimal G more mass-covering.

6 CONCLUSION AND FUTURE
WORKS

In this paper, we introduce the concept of budgeted re-
jection sampling and go a step further by presenting an
optimal acceptance function for this sampling method.
We use this method to improve discriminator-based
models. However, we believe that our Tw/OBRS
scheme can be applied to a broader class of gener-
ative models. For instance, one could use our ap-
proach for Normalizing Flows using the Learned Ac-
ceptance/Rejection Sampling method of Stimper et al.
(2022). For diffusion models, there is much greater
flexibility to refine the distribution through rejection
sampling because one can choose to accept a sam-
ple at any iteration of the diffusion process. Building
on this, one might modify the discriminator refined
scored-based sampling of Kim et al. (2023a) to im-
prove diffusion models.

Our work emphasizes the importance of incorporat-
ing rejection during the training phase. Practically,
this inclusion results in generating distributions with
greater recall, ensuring that rejection sampling be-
comes more effective. In Subsection 4.1, we hypoth-
esize that this improvement may be due to the dila-
tion of the possible set of output distributions P̂ by a
convex set BK(P̂ ) during rejection. It would be inter-
esting to further analyze this phenomenon through a
theoretical lens.

Acknowledgments

We are grateful for the grant of access to computing
resources at the IDRIS Jean Zay cluster under alloca-
tions No. AD011011296 and No. AD011014053 made
by GENCI.

References

Ansari, A. F., Ang, M. L., and Soh, H. (2021). Refining
Deep Generative Models via Discriminator Gradient
Flow. arXiv:2012.00780 [cs, stat].

Azadi, S., Olsson, C., Darrell, T., Goodfellow, I., and
Odena, A. (2019). Discriminator Rejection Sam-
pling. arXiv:1810.06758 [cs, stat].

Brock, A., Donahue, J., and Simonyan, K. (2019).
Large Scale GAN Training for High Fidelity Nat-
ural Image Synthesis. arXiv:1809.11096 [cs, stat].

Bronnec, F. L., Verine, A., Negrevergne, B., Cheva-
leyre, Y., and Allauzen, A. (2024). Exploring Pre-
cision and Recall to assess the quality and diversity
of LLMs. arXiv:2402.10693 [cs].

Che, T., Zhang, R., Sohl-Dickstein, J., Larochelle, H.,
Paull, L., Cao, Y., and Bengio, Y. (2021). Your
GAN is Secretly an Energy-based Model and You
Should use Discriminator Driven Latent Sampling.
arXiv:2003.06060 [cs, stat].

Cheema, F. and Urner, R. (2023). Precision Recall
Cover: A Method For Assessing Generative Models.
In Proceedings of The 26th International Conference
on Artificial Intelligence and Statistics, pages 6571–
6594. PMLR. ISSN: 2640-3498.

Djolonga, J., Lucic, M., Cuturi, M., Bachem, O.,
Bousquet, O., and Gelly, S. (2020). Precision-
Recall Curves Using Information Divergence Fron-
tiers. arXiv:1905.10768 [cs, stat].

Dumoulin, V., Belghazi, I., Poole, B., Mastropi-
etro, O., Lamb, A., Arjovsky, M., and Courville,
A. (2017). Adversarially Learned Inference.
arXiv:1606.00704 [cs, stat].

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu,
B., Warde-Farley, D., Ozair, S., Courville, A., and
Bengio, Y. (2014). Generative Adversarial Net-
works. In 27th Conference on Neural Informa-
tion Processing Systems (NeurIPS 2014). arXiv:
1406.2661.

Grover, A., Gummadi, R., Lazaro-Gredilla, M., Schu-
urmans, D., and Ermon, S. (2018). Variational Re-
jection Sampling. arXiv:1804.01712 [cs, stat].

Issenhuth, T., Tanielian, U., Picard, D., and Mary, J.
(2022). Latent reweighting, an almost free improve-
ment for GANs. In 2022 IEEE/CVF Winter Confer-
ence on Applications of Computer Vision (WACV),
pages 3574–3583, Waikoloa, HI, USA. IEEE.

Karras, T., Aittala, M., Aila, T., and Laine, S. (2022).
Elucidating the Design Space of Diffusion-Based
Generative Models. arXiv:2206.00364 [cs, stat].

Kim, D., Kim, Y., Kwon, S. J., Kang, W., and Moon,
I.-C. (2023a). Refining Generative Process with Dis-



Optimal Budgeted Rejection Sampling for Generative Models

criminator Guidance in Score-based Diffusion Mod-
els. In Proceedings of the 40 th International Confer-
ence on Machine Learning., volume 202, Honolulu,
Hawaii, USA. JMLR. arXiv:2211.17091 [cs] version:
3.

Kim, P. J., Jang, Y., Kim, J., and Yoo, J. (2023b).
TopP&R: Robust Support Estimation Approach for
Evaluating Fidelity and Diversity in Generative
Models. arXiv:2306.08013 [cs].

Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J.,
and Aila, T. (2019). Improved Precision and Recall
Metric for Assessing Generative Models. In 33rd
Conference on Neural Information Processing Sys-
tems (NeurIPS 2019), Vancouver, Canada. arXiv:
1904.06991.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein,
T. (2018). Visualizing the Loss Landscape of Neural
Nets. arXiv:1712.09913 [cs, stat].

MacKay, D. J. C. (2005). Information Theory, Infer-
ence, and Learning Algorithms.

Naeem, M. F., Oh, S. J., Uh, Y., Choi, Y., and Yoo, J.
(2020). Reliable Fidelity and Diversity Metrics for
Generative Models. arXiv:2002.09797 [cs, stat].

Nguyen, X., Wainwright, M. J., and Jordan, M. I.
(2009). On surrogate loss functions and $f$-
divergences. The Annals of Statistics, 37(2).
arXiv:math/0510521.

Nowozin, S., Cseke, B., and Tomioka, R. (2016).
f-GAN: Training Generative Neural Samplers
using Variational Divergence Minimization.
arXiv:1606.00709 [cs, stat].

Sajjadi, M. S. M., Bachem, O., Lucic, M., Bousquet,
O., and Gelly, S. (2018). Assessing Generative Mod-
els via Precision and Recall. In 32nd Conference on
Neural Information Processing Systems (NeurIPS
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Supplementary Materials

A Precision and Recall for Generative Models

According to Sajjadi et al. (2018), The key intuition is that precision should measure how much of P̂ can be
generated by a “part” of P while recall should measure how much of P can be generated by a “part” of P̂ .
In this paper, we evaluate how Optimal Budgeted Rejection Sampling affects a given model. To evaluate the
improvement theoretically, we need a mathematically grounded method of assessing models and we need this
method to assess quality and diversity independently. To do so, we leverage the notion of PR-Curves introduced
by Sajjadi et al. (2018) and revisited for continuous distributions by Simon et al. (2019).

A.1 From the discrete to the continuous case

Definition A.1 (Precision and Recall - (Sajjadi et al., 2018)). For α,β ∈ [0,1], the probability distribution P̂
has a precision α at recall β w.r.t. P if there exist distributions µ, νP and νP̂ such that

P = βµ + (1 − β)νP and P̂ = αµ + (1 − α)νP̂

The component νP denotes the part of P that is “missed” by P̂ . Similarly, νP̂ denotes the noise part of P̂ .

With this definition, the authors define the set of possible precision-recall pairs: PR(P, P̂ ). The frontier of the
set of PR(P, P̂ ), is the PR-Curve denoted PRD(P, P̂ ), parameterized by λ ∈ [0,∞] and can be computed with
the functions:

α(λ) = ∑
xi∈X

min (λp(xi), p̂(xi)) and β(λ) = ∑
xi∈X

min (p(xi), p̂(xi)/λ)

p(
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(a) High Precision Example
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(b) High Recall Example

Figure A.1: Low dimensional examples of distributions with high recall and limited precision and vice versa,
with their corresponding PR-Curves. The colored area is the set PR(P, P̂ ) and the solid line in black in the
frontier PRD(P, P̂ ).
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This definition has been extended to continuous distributions.

Definition A.2 (Precision and Recall - (Simon et al., 2019)). For α,β ∈ [0,1], the probability distribution P̂
has a precision α at recall β w.r.t. P if there exists a distribution µ such that

P ≥ βµ and P̂ ≥ αµ.

If also defines a set PR and its frontier is very similar:

α(λ) = ∫X min (λp(x), p̂(x))dx and β(λ) = ∫X min (p(x), p̂(x)/λ)dx.

We can reformulate the expressions of the frontier:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

αλ = EP̂ [min{λp(x)
p̂(x) ,1}]

βλ = EP [min{1, p̂(x)
p(x)

1
λ
}]

(18)

We can interpret this expression similar to the AUC curve in classification tasks. Consider that the maximum
precision and recall are one. Therefore, whenever a point is sampled from P̂ such that λp(x) < p̂(x), the precision
decreases further away than 1. In other terms, all the x for which the P̂ overestimate P decrease the precision.
On the side, whenever a point is sampled from P such that p̂(x) < λp(x), the recall decreases further away than
1, corresponding to the points where P̂ underestimates P . Let us consider two examples in Figure A.2 and A.4.

p(
x

)

x

Target P

Model P̂

Figure A.2: A target distribu-
tion P and the approximated dis-
tribution P̂ . In this setup, the
model is expected to have a de-
cent recall since it covers P but
a poor precision since almost half
the weight of P̂ does not cover
P . In Figures A.3a and A.3b, we
show the PR-Cruve and how it is
computed.
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(a) PR-Curve for the model in Figure A.2, explained for a low λ. The area in
red is αλ and the area in blue is βλ.
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(b) PR-Curve for the model in Figure A.2, explained for a high λ. The area in
red in αλ and the area in blue is βλ.

Figure A.3: PR-Curves for the model in Figure A.2
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p(
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x
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Model P̂

Figure A.4: A target distribution
P and the approximated distribu-
tion P̂ . In this setup, the model
is expected to have a poor re-
call since it covers almost only
half the weight of P but a decent
precision since the weight covers
the contours of P well. In Fig-
ures A.5a and A.5b, we represent
the PR-Cruve and how it is com-
puted.
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(a) PR-Curve for the model in Figure A.4, explained for a low λ. The area in
red is αλ and the area in blue is βλ.
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(b) PR-Curve for the model in Figure A.4, explained for a high λ. The area in
red in αλ and the area in blue is βλ.

Figure A.5: PR-Curves for the model in Figure A.4

A.2 Precision and Recall in practice

To perfectly compute the set PRD(P, P̂ ), one needs the ratio p(x)/p̂(x) for all x ∈ X . In practice, a variety
of heuristics are employed. Sajjadi et al. (2018) use k-NN based algorithm in the Inception latent space to
estimated the densities. Simon et al. (2019) use an ensemble of classifiers in Inception’s latent space to estimate
the likelihood ratio. Verine et al. (2023) use a neural network based discriminator, simlarly to f -GANs, to
estimate the likelihood ratio. With these methods, we can compute the PR-Curve for high dimensionnal dataset
such as MNIST: see Figure A.6.

(a) Model 1: High Recall
FID: 17.06, IS: 2.69

(b) Model 2: High Precision
FID: 8.80, IS:2.57

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

β

α
Model 1

Model 2

Sajjadi et al.

Simon et al.

(c) PR-Curves for Model 1 and 2.

Figure A.6: Two different models are displayed with very different performances. Model 1 have a great diversity
and display all different digits, but contours, backgrounds and shapes are sometimes incoherent. Model 2 is
generating coherent samples from only half the classes. Traditional metrics - FID (↓) and IS (↑) - are given for
comparison.
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B Proof and Supplementary for Section 3

B.1 Proof for Theorem 3.1

The goal is to find an acceptance function a(x) that first minimizes the f -divergence between the target dis-
tribution P and the distribution after the rejection process P̃a. A budget is added to the problem in order to
avoid low acceptance rate. We set the budget to be K, the average number of samples to draw before accepting
one. With a budget of K, the average acceptance rate is 1/K. In analogy with the unlimited budget rejection
process, the average number of samples to draw in order to keep one is M =maxX p(x)/p̂(x). The function a is
the solution of the problem:

min
a

Df(P ∥P̃a)

s.t.

⎧⎪⎪⎨⎪⎪⎩

P (acceptance) ≥ 1/K
∀x, 0 ≤ a(x) ≤ 1

(19)

First, we can consider Df(P̃a∥P ) instead of Df(P ∥P̃a) without loss of generality: This is because Df(P ∥P̃a) =
Df ′(P̃a∥P ) for f ′ ∶ x↦ xf(1/x). Further, the solution to the optimal a(x) turns out to be independent of f .

Moreover, we can assume that the budget is always lower that the unlimited budget. In other terms, instead of
forcing the acceptance rate to be greater to 1/K we can force is to be exactly equal to 1/K. Then, the probability
of acceptance being P (acceptance) = EP̂ [a(x)], we can write an equivalent problem as:

min
a

Df(P̃a∥P )

s.t.

⎧⎪⎪⎨⎪⎪⎩

EP̂ [a(x)] = 1/K
∀x, 0 ≤ a(x) ≤ 1

(20)

Using the definition of the densities in the rejection sampling context, p̃a(x) = Kp̂(x)a(x), the problem is
equivalent to:

min
a

EP [f (
Kp̂(x)a(x)

p(x) )]

s.t.

⎧⎪⎪⎨⎪⎪⎩

EP̂ [a(x)] = 1/K
∀x, 0 ≤ a(x) ≤ 1

(21)

Switching to the discrete case, the problem becomes :

min
a∈RN

N

∑
i

pif (ai
p̂iK

pi
)

s.t.

⎧⎪⎪⎨⎪⎪⎩

∑N
i p̂iai = 1/K
∀i, 0 ≤ ai ≤ 1

(22)

The Lagrangian function associated with the problem 22 is :

L(a, µ,λ1,λ2) =
N

∑
i

pif (ai
p̂iK

pi
) + µ [aT p̂ − 1/K] + (a − 1)Tλ1 − aTλ2 (23)

All constraints are affine and the objective function is a convex function, therefore the optimal vector a∗ satisfies
the KKT conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇aiL(a∗, µ∗λ∗1,λ∗2) =Kp̂i∇f (a∗i p̂iK
pi
) + µ∗p̂i + (λ∗1i − λ∗2i) = 0, ∀i

∑i a
∗
i p̂i = 1/K

λ∗1i(a∗i − 1) = 0, ∀i
λ∗2ia

∗
i = 0, ∀i

λ∗1i, λ
∗
2i ≥ 0,∀i

(24)
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Using the 1st condition:

a∗i =
pi
p̂iK

[∇f]−1 (λ
∗
2i − λ∗1i
Kp̂i

− µ/K) (25)

Since [∇f]−1 = ∇f∗:

a∗i =
pi
p̂iK

[∇f∗] (λ
∗
2i − λ∗1i
p̂iK

− µ/K) (26)

If the Pearson χ2 is put aside, all the usual f∗ are strictly increasing functions. Therefore, according to Eq 26,
all ai > 0. Thus all λ∗2i = 0. The KKT conditions 24 become :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Kp̂i∇f (a∗i p̂iK
pi
) + µ∗p̂i + λ∗1i = 0, ∀i

∑i a
∗
i p̂i = 1/K

λ∗1i(a∗i − 1) = 0,∀i
λ∗1i ≥ 0,∀i

(27)

And thus :

a∗i =
pi
p̂iK

[∇f∗] (− λ∗1i
p̂iK

− µ/K) (28)

To get the full formula for a∗i , we need to compute the λ1is. For this purpose, let us use strong duality to
reformulate our problem:

min
a

max
λ≥0,µ

N

∑
i

pif (ai
p̂iK

pi
) + µ [aT p̂ − 1/K] + (a − 1)Tλ1 (29)

= max
λ≥0,µ

min
a

N

∑
i

pif (ai
p̂iK

pi
) + µ [aT p̂ − 1/K] + (a − 1)Tλ1 (30)

Then, we can use the Fenchel Conjugate:

min
a

N

∑
i

p∗i f (ai
p̂iK

p∗i
) + µ [aT p̂ − 1/K] + (a − 1)Tλ1 = min

a

N

∑
i

p∗i [f (ai
p̂iK

p∗i
) − ai (

−µp̂i − λ1i

pi
)]

− µ/K − 1Tλ1

= − sup
a
{

N

∑
i

p∗i [ai (
−µp̂i − λ1i

pi
) − f (ai

p̂iK

p∗i
)]}

− µ/K − 1Tλ1

= −
N

∑
i

[p∗i f∗ (−
p∗i
p̂iK

µp̂i + λ1i

pi
)] − µ/K − 1Tλ1

= −
N

∑
i

[p∗i f∗ (−µ/K −
λ1i

p̂iK
)] − µ/K − 1Tλ1

(31)

Define ui = λi1

p̂i
, assuming p̂i > 0 everywhere. Note that the constraints λi1 ≥ 0 and ui ≥ 0 are equivalent. The

above equation becomes

sup
λ1≥0
L (a∗, µ∗,λ1,λ

∗
2) = sup

u≥0
−

N

∑
i

p∗i f
∗ (− (µ∗ + ui) /K) −

N

∑
i

p̂iui − µ∗/K (32)

Let us make another change of variable to make a conjugate form appear. Define vi = − (µ∗ + vi). So ui = −µ∗−vi
and the constraint ui ≥ 0 becomes vi ≤ −µ∗. Also, define g(t) = f(Kt). Then g∗(t) = f∗( t

K
). Above equation

becomes
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sup
λ1≥0
L (a∗, µ∗,λ1,λ

∗
2) = sup

v≤−µ∗

N

∑
i

p̂ivi −
N

∑
i

pig
∗ (vi) − µ∗ (K − 1) (33)

Recall that arg supt ⟨a, t⟩−f(t) = ∇f∗(a) and arg supt ⟨a, t⟩−f∗(t) = ∇f(a). Thus, given µ∗ we can compute the
optimal values of vi one by one as follows:

v∗i = arg sup
vi≤−µ∗

p̂ivi − pig∗ (vi)

= arg sup
vi≤−µ∗

p̂i
pi
vi − g∗ (vi)

=min(−µ∗,∇g ( p̂i
pi
))

So u∗i =max (0,−µ∗ −∇g ( p̂i

pi
)). This gives us the optimal values of λ∗i1. Note that ∇g(t) =K∇f (Kt). Replacing

λ∗1i
p̂i

by u∗i in the formula of a∗i gives us:

a∗i =
pi
p̂iK
∇f∗ (−µ∗/K −max(0,−µ∗ −∇g ( p̂i

pi
) /K))

= pi
p̂iK
∇f∗ (−µ∗/K +min(0, µ∗ +∇g ( p̂i

pi
) /K))

= pi
p̂iK
∇f∗ (min(−µ∗,∇g ( p̂i

pi
)) /K)

= pi
p̂iK
∇f∗ (min(−µ∗/K,∇f ( p̂iK

pi
)))

Note that ∇f∗ is strictly increasing, thus:

a∗i =
pi
p̂iK

min(∇f∗ (−µ
∗

K
) , p̂iK

pi
)

=min( pi
p̂iK
∇f∗ (−Kµ∗) ,1)

Note that ∇f∗ (−µ∗/K) is a constant. So the optimal acceptance function under budget looks like a(x) =
min (1, cp(x)

p̂(x)) for some constant c defined by K only as:

∫X min (p̂(x), cp(x))dx = 1/K. (34)

To facilitate the understanding of c, we can set this constant to be equal to c/M instead. Thus,

a(x) =min(p(x)
p̂(x)

c

M
,1) (35)

With that notation, c ≥ 1 and if the optimal unlimited acceptance function is obtained with c = 1:

a(x) =min(p(x)
p̂(x)

1

M
,1) = p(x)

p̂(x)M (36)
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B.2 Algorithm to compute cK

In Section 3, we show that the optimal acceptance function is

a(x, cK) =min(p(x)
p̂(x)

cK
M

, 1) . (37)

The constant cK is determined exclusively by the budget K. In practice, we can draw a set of samples from P̂
and adjust cK to obtain the correct budget. We use a dichotomy algorithm detailed in Algorithm B.1.

Algorithm B.1 Dichotomy to compute cK .

Input: N generated samples xfake
1 , . . . ,xfake

N ∼ P̂
Parameter: Budget K, Threshold ϵ
Output: Constant cK

1: Let cmin = 1e−10 and cmax = 1e10.
2: cK = (cmax + cmin)/2
3: Define the loss L(cK) = ∑N

i=1 a (xfake
i , cK) − 1

K
4: while ∣L(cK)∣ ≥ ϵ do
5: if L(cK) > ϵ then
6: cmax = cK
7: else if L(cK) < −ϵ then
8: cmin = cK
9: end if

10: Update: cK = (cmax + cmin)/2
11: Update: L(cK)
12: end while

B.3 Proof for Theorem 3.3

First, with a(x) =min (1, ck
M

p(x)
p̂(x)}), let us recall that

p̃a(x) =Kp̂(x)a(x) (38)

=min(Kp̂(x), KcK
M

p(x)) . (39)

Thus:

αλ(P ∥P̃a) = ∫X min (λp(x), p̃(x))dx (40)

= ∫X min(λp(x), Kp̂(x), KcK
M

p(x))dx. (41)

Naturally, the precision can be evaluated for λ lower or greater than KcK/M . For λ ≤KcK/M :

αλ(P ∥P̃a) = ∫X min(Kp̂(x), KcK
M

p(x))dx (42)

=K ∫X min(cK
M

p(x), p̂(x))dx (43)

=KEP̂ [min(cK
M

p(x)
p(x) , 1)] (44)

=K 1

K
by definition ofcK , (45)

=KαcK/M(P ∥P̂ ). (46)

Thus, under a given threshold KcK/M , the precision is constant and equal to KαcK/M(P ∥P̂ ). Moreover, we
can give a lower bound on this constant value in terms of K. As a matter of fact, αλ is an increasing function
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of λ, therefore:

αcK/M(P ∥P̂ ) ≥ α1/M(P ∥P̂ ) (47)

≥ ∫X min( 1

M
p(x), p̃(x))dx. (48)

Finally, by the definition of M , for every x ∈ X , 1
M
p(x) ≤ p̂(x). Consequently,

αλ(P ∥P̃a) =KαcK/M(P ∥P̂ ) ≥
K

M
. (49)

For λ ≤KcK/M :

αλ(P ∥P̃a) = ∫X min (λp(x), Kp̂(x))dx (50)

=K ∫X min( λ
K

p(x), p̂(x))dx (51)

=Kαλ/K(P ∥P̂ ). (52)

And, since λ/K ≥ λ/M :

αλ(P ∥P̃a) =Kαλ/K(P ∥P̂ ) ≥Kαλ/M(P ∥P̂ ). (53)

Finally, with αλ = λβλ,

βλ(P ∥P̃a) =
K

λ
αλ/K(P ∥P̂ ) =

K

(λ)
λ

K
βλ/K(P ∥P̂ ) = βλ/K(P ∥P̂ ), (54)

And, since λ/K ≤M/cK , we have:

βλ(P ∥P̃a) ≥ βcK/M(P ∥P̂ ), (55)

Therefore we have two regimes:

• For λ ≥ KcK
M

:

αλ (P ∥P̃aO
) = 1 and βλ (P ∥P̃aO

) = 1/λ

• For λ ≤ KcK
M

:

⎧⎪⎪⎨⎪⎪⎩

αλ(P ∥P̃aO
) =Kαλ/K(P ∥P̂ )

βλ(P ∥P̃aO
) = βλ/K(P ∥P̂ )

This can be seen as a vertical scaling of the PR-Curve. For a given point (α,β) in PRD(P ∥P̂ ), then the
point with the same β in PRD(P ∥P̃ ) has a precision Kα, up to a certain saturating level (α < 1).
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B.4 Information Divergence Frontier Improvement

In Djolonga et al. (2020), the authors define another precision-recall curve, named the Information Divergence
Frontiers:

F∩β (P,Q) = {(π, ρ) ∈R∩β (P,Q) ∶/∃ (π′, ρ′) ∈R∩ (P,Q) s.t. π′ < π, ρ′ < ρ}

Where R∩β (P,Q) = {(Dβ(R,Q),Dβ(R,P )) ∶ R ∈ P(X )} and where Dβ is the Renyi divergence parametrized by
β.

As an immediate corrolary of the previous theorem and of proposition 6 of Djolonga et al. (2020), we can write
the following:

Corollary B.1. Under the same setting as theorem 3.3, for any (π, ρ) ∈ F∩∞ (P, P̂ ) we have (π′, ρ) ∈ F∩∞ (P, P̃aO
)

with π′ =max (0, π − logK).

C Bounds

Theorem C.1. Let M = supx∈X
p(x)
p̂(x) . For any f -divergence, we have

Df(P ∥P̃a) ≤ Df(P ∥P̂ ) −min(1, K − 1
M
)Df(P ∥P̂ )

and for Kullback-Leibler we have for β = logK
logM

DKL(P ∥P̃ ) ≤ (1 − β) (DKL(P ∥P̂ ) −DR
β (P ∥P̂ ))

where DR
β is the Renyi divergence with parameter β

Proof. For both bounding the f -divergence and the KL divergence, the strategy will be the same. We want to
show that

Df(P ∥P̂ ) −Df(P ∥P̃ ) ≥ some lower bound

Note that for any density pα such that such that pα ≤Kp̂, we have Df(P ∥P̃ ) ≤ Df(P,Pα) so

Df(P ∥P̂ ) −Df(P ∥P̃ ) ≥ Df(P ∥P̂ ) −Df(P,Pα)

So once we have a suitable pα, we need to show the lower bound holds:

Df(P ∥P̂ ) −Df(P,Pα) ≥ some lower bound

For bounding general f -divergences, we will choose pα = p̂ + α (p − p̂) with α =min (1, (K − 1) infx∈X p̂(x)
p(x))

Let us first show that pα ≤Kp̂.

pα ≤ p̂ + (K − 1) inf
x

p̂(x)
p(x) (p − p̂)

Note that for any x′ ∈ X ,

inf
x

p̂(x)
p(x) (p(x

′) − p̂(x′)) ≤ p̂(x′)
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So

pα(x) ≤ p̂ + (K − 1)p̂ ≤Kp̂

Next, let us show the lower bound. Recall that Df (p, ⋅) is convex in its second argument. Thus, convexity
implies:

Df(P ∥Pα) ≤ (1 − α)Df(P ∥P̂ ) + αDf(P ∥P ) ≤ (1 − α)Df(P ∥P̂ )
Now to apply the same type of idea to bound the KL, let us define pβ(x) = 1

Z
p̂(x)1−βp(x)β , where Z =

∫ p̂(x)1−βp(x)βdµ(x) = e(β−1)D
R
β (P ∥P̂ ) where DR

β (P ∥P̂ ) = 1
β−1 log ∫ p

β p̂1−βdµ is the Renyi divergence of parame-
ter β and µ is the reference measure.

First, let us choose β′ = logK−(1−β′)Rβ′(P ∥P̂ )
logM

and let us show as before that pβ′ ≤Kp̂. More precisely, let us show

that log
pβ′(x)
Kp̂(x) ≤ 0

For any x, we have

log
pβ′(x)
Kp̂(x) = (1 − β

′) log p̂(x) + β′ log p(x) − logZ − logKp̂(x)

= log p̂(x) + β′ log p(x)
p̂(x) − (β

′ − 1)Rβ′(P ∥P̂ ) − logKp̂(x)

= β′ log p(x)
p̂(x) − (β

′ − 1)Rβ′(P ∥P̂ ) − logK

≤ logK − (1 − β′)Rβ′(P ∥P̂ )
logM

log
p(x)
p̂(x) − (β

′ − 1)DR
β (P ∥P̂ ) − logK

≤ logK − (1 − β′)Rβ′(P ∥P̂ ) − (β′ − 1)Rβ′(P ∥P̂ ) − logK
≤ 0

More generally it is easy to see that for all β ∈ [0, β′], we have pβ ≤Kp̂. For convenience, we will choose β = logK
logM

.

Clearly, β ≤ β′ so pβ ≤Kp̂. Finally, let us compute DKL(P ∥Pβ)

DKL(P ∥Pβ) = ∫ p(x) log p(x).Z
p̂(x)1−βp(x)β dµ(x)

= ∫ p(x) log(p(x)
1−β

p̂(x)1−β .Z)dµ(x)

= (1 − β)∫ p(x) log(p(x)
p̂(x))dµ(x) + logZ

= (1 − β)DKL(P ∥P̂ ) − (1 − β)DR
β (P ∥P̂ )

= (1 − β) (DKL(P ∥P̂ ) −DR
β (P ∥P̂ ))

Thus the result holds: DKL(P ∥P̃ ) ≤ DKL(P ∥Pβ) ≤ (1 − β) (DKL(P ∥P̂ ) −DR
β (P ∥P̂ ))

D Additional Experiments

In this section, we provide more details on the different experiments. First, in Section D.1, we explain how the
loss landscape is produced. Then, in Section D.2, we provide more details on how the budget affects the results
on the 25 Gaussians experiments. Finally, in Section D.3, we compare the traditional GAN training procedure
and our approach in terms of time complexity.
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D.1 Smoothing the lanscape parameters for MNIST

Similarly to Li et al. (2018), the goal is to observe a two dimensional projection of the parameters domain of a
neural network, and compute the loss on this domain.

To do so, we train a simple GAN on MNIST. Both the generator and the discriminator are based on 3 linear
layers with Leaky Relu. The models are trained using the tradition approach described in Algorithm 1. Let
us define θ0, the parameter vector of the generator Gθ0 . We randomly draw two directions θ1 and θ2 in the
parameter domain: defining an hyperspace of generators defined as Gθ0+xθ1+yθ2 with (x, y) ∈ R2. Then, given

any parameters θ, we train a new discriminator T2 based on samples of P and P̂Gθ
to determine the baseline loss

landscape (K = 1). For the OBRS loss landscape, we fine-tune the initial model T in order to perform optimal
budgeted rejection sampling. Finally, similar to the baseline, a new discriminator T2 is trained to estimate the
loss, but based on samples P and P̃ .

In Figure D.1, we plot the loss surface. In addition to Figure 1, we represent a batch of samples drawn from
Gθ0 (lower left) and from the Gθ given the worst loss (upper right). When OBRS is applied, we show in red the
rejected samples and in green the accepted samples.

Figure D.1: The Loss surface in the parameters domain of a DCGAN trained on MNIST randomly projected in
2D, observed for different rejection sampling budgets.

D.2 Additional Results on the 2D 25-Gaussians Dataset

In this section, we provide more details on the GAN trained on the 25 Gaussians. The goal of this experiment is
to compare OBRS with other rejection sampling methods such as DRS (Azadi et al., 2019) or MH-GAN (Turner
et al., 2019), but also with other sampling techniques that involve gradient descent, such as DOT (Tanaka, 2019)
and DGf low (Ansari et al., 2021). We train a simple GAN on 25 two-dimensional Gaussians and apply each
method. We tune (when possible) the method to obtain around 6500 inferences from the generator to generate
2500 samples. To be more precise, both ORBS and DRS are easily tunable; however, the rejection rate of MH-
GAN highly depends on the number of iterations of the algorithm. Therefore, we set the number of iterations
to 2 to obtain 40% and then tune γ and K to achieve a similar acceptance rate. We obtain the results plotted
in Figure D.2.
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Figure D.2: Visual Representation of the different sampling methods.

In the previous experiment; we arbitrarily set up the acceptance rate (or the sampling time for the non rejection
sampling methods). We also compare the methods for different sampling time. Since for most methods, the
recall was equivalent, we compare the precision denoted as high quality samples in Dumoulin et al. (2017). We
observe that for any given precision under 93%, the fastest method is the OBRS. However, OBRS, like MH-GAN
and DRS, appear to be capped.

10−2 10−1 100 101

Time (s)

0.6

0.7

0.8

0.9

1.0

H
ig

h
F

id
el

it
y

S
am

p
le

s

10−26× 10−3 2× 10−2 3× 10−2

Time (s)

0.6

0.7

0.8

0.9

1.0

0.010 0.012 0.014 0.016 0.018 0.020

Time (s)

0.6

0.7

0.8

0.9

1.0

DRS

Budget

MH

DOT

DGf low

G

Figure D.3: How the different methods behave with regard to time: to achieve similar results, DOT and DGflow
need 100 more times. MH only 10 times more. And for similar time (similar budget), Budgeted Reject is better
than DRS. (blue above red). MH, DRS and OBRS (Budget) are caped. They only use the discriminator to refine
samples, while the DOT and DGflow sample data point from the latent space and refines the samples directly
using Gradient ascent.

As the distribution P̂ highly impacts how the rejection sampling methods behave, we also compare the OBRS
and the DRS methods for different budgets and different P̂ . In Figure D.4, we observe that the precision of the
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OBRS is systematically better than the DRS. The distribution and the budget set in the experiment illustrated
in Figures D.2 are set compare the methods for similar acceptance rates.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Budget

0.2

0.4

0.6

0.8

P
re

ci
si

on
Table 2

M = 5.68

M = 9.09

M = 20.05

Model

DRS

OBRS

Figure D.4: Precision for different budget in various 2D datasets.

D.3 Complexity of Algorithm 2

In Algoritm 2, between every update of T and G, the parameter cK is updated. In practice, the parameter cK
is not update every iterations. In this section, we investigate our the frequency of update affect the training
procedure both in convergence speed and in terms of time.
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Figure D.5: Tw/OBRS: Training BigGAN models on CIFAR-10 with the hinge loss, and DGAN without OBRS
(Tw/oOBRS) and with OBRS (Tw/OBRS). For the models trained with OBRS, the parameter cK is updated
every N iterations.

We train different BigGAN models on CIFAR-10 with different frequency of updates: every 10 iterations, every
100 iterations and every 1000 iterations. We plot in Figure D.5, the FID during training and the time during
training, both as a function of the number of iterations. We observe that the frequency of updates does not
affect the speed of convergence. Furthermore, we observe that update cK every 10 operation takes on average
19% longer to train than DGAN without OBRS, while updating every 100 and 1000 iterations are only 1.69%
and 0.03% longer.

E Experimental Procedure

In this paper, OBRS have been investigated in two different contexts.

• Using OBRS to improve a pre-trained model, with different budget.

• Training and fine-tuning a model accounting for OBRS with a budget of K = 5.
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In every experiment, we have used BigGAN models Brock et al. (2019). For every dataset we have used hyper-
parameters as close as possible to the original ones. In the original paper, the hinge loss is used and, according
to Azadi et al. (2019), the fact that the loss is saturating decreases the performance of the estimation of the
density ratio. In the first context, we take a pretrained model, typically trained with hinge loss, and fine-tune
the discriminator only, based on DGAN. And thus we can perform density estimation for the rejection sampling
procedure. In the DRS method, they retrain the discriminator on 10k samples. We opt for training the discrim-
inator on the entire data set with a learning rate of 10−10 with the same hyperparameters as the one proposed
by Brock et al. (2019).

Then for the second context: Tw/OBRS, we need to compare the speed of convergence for three different losses:
hinge loss (since it is the original one), DGAN(P ∥P̂ ) (Tw/oOBRS) and DGAN(P ∥P̃ ) (Tw/OBRS). However,
we evaluate the models based their rejected distribution in terms of FID to analyze the speed of convergence.
Therefore, two tails for the discriminator were built: one was trained with any loss and the other systematically
with DGAN. Therefore, we can train the model G based on the given loss and still evaluate the model with
OBRS. For the training with OBRS we used this set of hyperparameters. Every model has been trained on a
4xV100 clusters.

Dataset Task Tch Gch lr T lr G Batch Size
CIFAR-10 Training 64 64 2.10−5 2.10−5 50
CelebA64 Training 32 32 1.10−4 4.10−4 128
CelebA64 Fine Tuning 32 32 1.10−6 1.10−6 128

ImageNet128 Fine Tuning 96 96 1.10−5 1.10−5 2048

Table E.1: Hyper-parameters used for the different BigGAN configurations. Tch and Gch stands for the number
of channels in each model. T lr and G lr stands for the learning rate of each models.


