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Abstract

In statistical learning theory, a generalization
bound usually involves a complexity measure
imposed by the considered theoretical frame-
work. This limits the scope of such bounds,
as other forms of capacity measures or reg-
ularizations are used in algorithms. In this
paper, we leverage the framework of disinte-
grated PAC-Bayes bounds to derive a general
generalization bound instantiable with arbi-
trary complexity measures. One trick to prove
such a result involves considering a commonly
used family of distributions: the Gibbs dis-
tributions. Our bound stands in probability
jointly over the hypothesis and the learning
sample, which allows the complexity to be
adapted to the generalization gap as it can
be customized to fit both the hypothesis class
and the task.

1 INTRODUCTION

Statistical learning theory offers various theoreti-
cal frameworks to assess generalization by studying
whether the empirical risk is representative of the true
risk. This is often done by bounding a deviation, called
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the generalization gap, between these risks. An upper
bound on this gap is usually a function of two main
quantities: (i) the size of the training set, (ii) a com-
plexity measure that captures how prone a model is to
overfitting. The higher the complexity, the higher the
number of examples needed to obtain a tight bound
on the gap. One limitation is that existing frameworks
are restricted to specific complexity measures, e.g., the
VC-dimension [Vapnik and Chervonenkis, 1971] or the
Rademacher complexity [Bartlett and Mendelson, 2002]
(known to be large [Nagarajan and Kolter, 2019]).

Recently, Lee et al. [2020, Proposition 1] related arbi-
trary complexity measures to their usage in general-
ization bounds. Indeed, if we interpret this bound, it
says that the generalization gap is upper-bounded by a
user-defined complexity measure with high probability
if the complexity measure is close to the generalization
gap. However, this bound is uncomputable since it
relies on a measure of closeness between the measure
and the gap. Hence, to our knowledge, there is no
computable generalization bound able to capture, by
construction, an arbitrary complexity measure that can
serve as a good proxy for the generalization gap.

In this paper, we tackle this drawback by leveraging
the framework of disintegrated PAC-Bayesian bounds
(Theorem 1) to propose a novel general generalization
bound instantiable with arbitrary complexity measures.
To do so, we incorporate a user-defined parametric
function characterizing the complexity in a probabil-
ity distribution over the hypothesis set, expressed as a
Gibbs distribution (also called Boltzmann distribution).
This trick allows us to derive guarantees in terms of
probabilistic bounds that depend on a model sampled
from this user-parametrized Gibbs distribution. It is
worth noticing that our result is general enough to ob-
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tain bounds on well-known complexity measures such
as the VC dimension or the Rademacher complexity.
We believe that our result provides new theoretical
foundations for understanding the generalization abil-
ities of machine learning models and for performing
model selection in practice. As an illustration, we
empirically show how some arbitrary complexity mea-
sures, studied by Jiang et al. [2019b], Dziugaite et al.
[2020], Jiang et al. [2021], can be integrated into our
framework. Moreover, inspired by Lee et al. [2020], we
investigate how our bounds behave when provided with
a complexity measure learned via a neural network.

Paper’s Organization. Section 2 provides prelimi-
nary definitions and concepts. Then, Section 3 presents
our framework. In Section 4, we provide a practical
instantiation of our framework.

2 PRELIMINARIES

2.1 Notations and Setting

We stand in a supervised classification setting where
X is the input space and Y is the label space. An
example (x, y) ∈ X×Y is drawn from an unknown
data distribution D on X×Y. A learning sample
S={(xi, yi)}mi=1 contains m examples drawn i.i.d. from
D; we denote the distribution of such a sample by
Dm. Let H be a possibly infinite set of hypotheses
h : X→Y that return a label from Y given an input
from X . Let M(H) be the set of strictly positive
probability densities on H given a reference measure
(e.g., the Lebesgue measure). Given S and a loss func-
tion ℓ : H×(X×Y) → R, we aim to find h ∈ H that
minimizes the true risk Rℓ

D(h)=E(x,y)∼D ℓ(h, (x, y)).

As D is unknown, Rℓ
D(h) is in practice estimated

with its empirical counterpart: the empirical risk
Rℓ

S(h)=
1
m

∑m
i=1 ℓ(h, (xi, yi)). We denote the general-

ization gap by ϕ :R2→R, which quantifies how much
the empirical risk is representative of the true risk; it is
usually defined by ϕ(Rℓ

D(h),R
ℓ
S(h))= |Rℓ

D(h)−Rℓ
S(h)|.

In this paper, we leverage the PAC-Bayesian set-
ting [Shawe-Taylor and Williamson, 1997, McAllester,
1998] to bound the generalization gap with a func-
tion involving an arbitrary measure of complexity (see
Guedj [2019], Hellström et al. [2023], Alquier [2024]
for recent surveys). In PAC-Bayes, we assume an apri-
ori belief on the hypotheses in H modeled by a prior
distribution π ∈M(H) on H. Instead of looking for
the best h ∈ H, we aim to learn, from S and π, a
posterior distribution ρ∈M(H) on H to assign higher
probability to the best hypotheses in H (the support
of ρ is included in the one of π). A PAC-Bayesian
generalization bound provides an upper bound in ex-
pectation over ρ, meaning it bounds the generalization

gap expressed as |Eh∼ρ[R
ℓ
D(h)−Rℓ

S(h)]|. The complex-
ity depends here on the KL divergence between ρ and

π defined as KL(ρ∥π) = Eh∼ρln
ρ(h)
π(h) . This complexity

captures how much ρ and π deviate in expectation over
all the hypotheses. To incorporate a custom complexity
in a bound, we follow a slightly different framework
called the disintegrated PAC-Bayesian bound (see be-
low) in which the expectations on ρ are disintegrated :
for a single h sampled from ρ, it upper-bounds the gap
ϕ(Rℓ

D(h),R
ℓ
S(h))=|Rℓ

D(h)−Rℓ
S(h)|.

2.2 Disintegrated PAC-Bayesian Bounds

We recall now the framework of disintegrated PAC-
Bayesian bounds (introduced by Catoni [2007, Th 1.2.7]
and Blanchard and Fleuret [2007, Prop 3.1]) on which
our contribution is based. As far as we know, despite
their significance, they have received little attention
in the literature and have only received renewed in-
terest for deriving tight bounds in practice recently
(e.g., Rivasplata et al. [2020], Hellström and Durisi
[2020], Viallard et al. [2024]). Such bounds provide
guarantees for a hypothesis h sampled from a poste-
rior distribution ρS , where ρS depends on the learning
sample S∼Dm. In fact, these bounds stand with high
probability (at least 1−δ) over the random choice of
learning sample S∼Dm and a hypothesis h. This paper
mainly focuses on the bound of Rivasplata et al. [2020,
Th.1 (i)] recalled below in Theorem 1.

Theorem 1 (General Disintegrated Bound of Ri-
vasplata et al. [2020]). For any distribution D on
X×Y, for any hypothesis set H, for any distribu-
tion π ∈ M(H), for any measurable function φ :
H × (X×Y)m → R, for any δ ∈ (0, 1], we have with
probability at least 1− δ over S ∼ Dm and h ∼ ρS

φ(h,S) ≤ ln
ρS(h)

π(h)
+ln

[
1

δ
E

V∼Dm
E

g∼π
eφ(g,V)

]
,

where ρS ∈M(H) is a posterior distribution.

Remark that φ can be any (measurable) func-
tion. However, it is usually defined as φ(h,S) =
mϕ(Rℓ

D(h),R
ℓ
S(h)), which is a deviation between the

true risk Rℓ
D(h) and the empirical risk Rℓ

S(h). The
bound depends on two terms: (a) the disintegrated KL

divergence ln ρS(h)
π(h) defining how much π and ρS deviate

for a single h, (b) the term ln
[
1
δ EV Eg exp (φ(g,V))

]
which is constant w.r.t. h∈H and S∈(X×Y)m. Note
that, to instantiate the bound with a given φ, the right-
most term (b) is usually upper-bounded. In fact, it is
constant w.r.t. the hypothesis g∼π and the learning
sample V∼Dm. Then, to integrate the relevance of the
prior belief and for the sake of simplicity, in the rest
of the paper, we refer to as “complexity measure” the
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right-hand side of the bound. This is in slight con-
trast with the standard definition of complexity (e.g.,
in the case of the VC-dimension or the Rademacher
complexity), where the term (b) is not included in the
definition.

In the bound of Theorem 1, the disintegrated KL
divergence suffers from drawbacks: the KL complexity
term is imposed by the framework and can be subject
to high variance in practice [Viallard et al., 2024].
Despite this shortcoming, it is important to notice that
the disintegrated KL divergence has a clear advantage:
it only depends on the sampled hypothesis h ∼ ρS and
the data sample S, instead of the whole hypothesis
class (as it is the case, for instance, with the Rényi
divergence in the disintegrated PAC-Bayesian bounds
of Viallard et al. [2024], or with the bounds based on
the VC-dimension, or the Rademacher complexity).
This might imply a better correlation between the
generalization gap and some complexity measures. In
the next section, we leverage the disintegrated KL
divergence to derive our main contribution: a general
bound that involves arbitrary complexity measures.

3 INTEGRATING MEASURES IN
GENERALIZATION BOUNDS

In Sections 3.1 and 3.2, we give intuitions about our
contribution and recall notions about the Gibbs distri-
bution. Second, we formalize our result in Section 3.3.

3.1 The Framework

The idea to introduce our notion of complexity measure
is to parametrize the complexity with an additional
“customizable” function µ :H×(X×Y)m→R that we
call parametric function. Thanks to the function µ, we
define the randomized complexity measure Φr

µ(h,S,δ)
as a real-valued function parameterized by µ and an
external randomness r∼R which takes as argument
a hypothesis h ∈ H, a learning sample S∈(X×Y)m,
and δ. As we will see in Section 3.3, the bound we
derive in Theorem 3 depends on the complexity measure
Φr

µ(h,S, δ) and takes the following form.

Definition 2. Let ℓ : H×(X×Y)→R be a loss
function, ϕ : R2→R be the generalization gap, and
µ : H×(X×Y)m→R be a parametric function. A
generalization bound with a complexity measure is
defined such that if for any distribution D on X×Y,
for any distribution R representing the randomness,
for any hypothesis set H, there exists a randomized
real-valued function Φr

µ : H×(X×Y)m×(0, 1]→R such
that for any δ∈(0, 1], we have

P
r∼R,S∼Dm,h∼ρS

[
ϕ(Rℓ

D(h),R
ℓ
S(h)) ≤ Φr

µ(h,S, δ)
]
≥1−δ,

Hypothesis set H

µ(h,S) ρS(h) ∝ exp[−µ(h,S)]

Figure 1: Illustration of the behavior of the Gibbs
distribution ρS with a parametric function µ. The x-
axis represents a (continuous) hypothesis set, and the y-
axis the values of ρS and µ. The distribution ρS gives a
higher probability to the hypotheses with a low µ value.

where ρS ∈M(H) is a posterior distribution.

The main trick to obtain a bound that involves a
parametrizable complexity measure is to consider a
posterior distribution ρS that depends on µ. To do so,
we propose to set ρS as the Gibbs distribution defined as

ρS(h) ∝ exp [−µ(h,S)] . (1)

This formulation might look restrictive, but it can rep-
resent any probability density function provided that a
relevant complexity measure is selected. For instance,
let ρ′S be a distribution on H, e.g., a Gaussian or a
Laplace distribution, by setting µ(h,S) = − ln ρ′S(h)
we can retrieve the distribution ρ′S . Moreover, this
Gibbs distribution ρS is interesting from an optimiza-
tion viewpoint: given a fixed learning sample S, a
hypothesis h is more likely to be sampled from it
when µ(h,S) is low (see Figure 1 for an illustration).
In fact, the function h 7→ µ(h,S) can be seen as an
objective function. For instance, to minimize the true
risk Rℓ

D(h), one can ideally set µ(h,S)=αRℓ
D(h) that

is associated with a Gibbs distribution which samples
hypotheses with small true risks and concentrates
around the small risks when α∈R∗

+ increases. However,
since the true risk is unknown, it must be replaced
with a computable function µ. For instance, µ can be
the empirical risk such as µ(h,S)=αRℓ

S(h).

3.2 Gibbs Distribution and Optimization

Given a differentiable parametric function defined by
µ(h,S) = αν(h,S) (with α a concentration parame-
ter), its associated Gibbs distribution can be related
to the Stochastic Gradient Langevin Dynamics algo-
rithm [SGLD, Welling and Teh, 2011] that learns the
hypothesis h∈H by running iterations of the form

ht ←− ht−1 − η∇ν(ht,S) +
√

2η

α
ϵt, (2)

where ϵt∼N (0, ID), and ht is the hypothesis learned
at iteration t∈N, and η is the learning rate, and α is
the concentration parameter for the Gibbs distribution.
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When α increases, the noise ϵt has less influence on the
next iterate obtained from SGLD as

√
2η/αϵt decreases,

and hence, minimizes better the function ν. More-
over, when the learning rate η tends to zero, SGLD
becomes a continuous-time process called Langevin dif-
fusion, defined as the stochastic differential equation in
Equation (3). Indeed, Equation (2) can be seen as the
Euler-Maruyama discretization [see, Raginsky et al.,
2017] of Equation (3) defined for t ≥ 0 as

dht = −∇ν(ht,S)dt+
√

2

α
Bt, (3)

where Bt is the Brownian motion. Under some mild
assumptions on the function ν, Chiang et al. [1987] show
that the invariant distribution of the Langevin diffusion
is the Gibbs distribution ρS with µ(h,S) = αν(h,S).

3.3 Bounds with Complexity Measures

We now introduce our main results, i.e., generalization
bounds with user-defined complexity measures. In
Section 3.3.1, we present a general theorem that fulfills
Definition 2. We specialize our result to uniform priors
in Section 3.3.2 and informed priors in Section 3.3.3.

3.3.1 General Generalization Bound

We state below our theorem that introduces a bound
on the generalization gap involving the parametric
function µ, which stands for hypotheses sampled from
the posterior distribution ρS(h)∝exp [−µ(h,S)]. Note
that our bound is “general,” meaning the generalization
gap ϕ has to be further upper-bounded.

Theorem 3. Let ℓ : H×(X×Y)→R be a loss function
and ϕ :R2→R be a generalization gap. For any D on
X×Y, for any hypothesis set H, for any prior distri-
bution π ∈ M(H) on H, for any µ :H×(X×Y)m→R,
for any δ∈(0, 1], we have with probability at least 1− δ
over h′ ∼ π, S ∼ Dm, and h ∼ ρS

ϕ(Rℓ
D(h),R

ℓ
S(h)) ≤ µ(h′,S)− µ(h,S) + ln

π(h′)

π(h)

+ ln

[
4

δ2
E

V∼Dm
E

g∼π
eϕ(R

ℓ
D(g),Rℓ

V(g))

]
≜ Φh′

µ (h,S, δ),

where ρS is the Gibbs distribution as in Equation (1).

The bound Φh′

µ (h,S,δ) of Theorem 3 depends on
three terms: (i) the difference µ(h′,S)−µ(h,S),
(ii) the log ratio ln(π(h′)/π(h)), (iii) a constant term
ln[ 4

δ2 EV∼Dm Eg∼π exp[ϕ(R
ℓ
D(g),R

ℓ
V(g))]]. Compared

to Theorem 1, we essentially upper-bound the dis-

integrated KL divergence ln ρS(h)
π(h) by the difference

µ(h′,S)−µ(h,S) and the log ratio ln(π(h′)/π(h)). The

advantage of these two terms is that they are easily
computable, as long as we can compute µ(h′,S), µ(h,S)
and the density of π (up to its normalization constant).
This is in contrast with the the result of Lee et al.
[2020], that is essentially a bound that holds for all
ϵ > 0 and of the form,

P
S∼Dm,h∼ρS

[
|RD(h)−RS(h)| ≤ µ(h,S)+ϵ

]
≥ 1−δ′(ϵ),

where δ′(ϵ) depends on n learning samples S1, . . . ,Sn,
on n hypotheses h1 ∼ ρS1 , . . . , hn ∼ ρSn , and on the
unknown distribution D. This result has no restriction
on the form of the distribution ρS , however, the de-
pendence on D makes the term δ′(ϵ) not computable
(in contrast to our bound); see Appendix B.1 for more
details. Note also that the term (iii) is usually negligi-
ble compared to (i) and (ii), and it is upper-bounded
when the generalization gap ϕ is instantiated. To get
a bound that converges when m increases, it is suffi-
cient to set ϕ as a function of m as it is done further.
The tightness of the term (ii) depends on the instan-
tiation of π; we propose two types of instantiation
in Sections 3.3.2 and 3.3.3. Lastly, the term (i) de-
pends on the choice of µ which has a big influence
on the sampled hypothesis h∼ ρS and so on the gap
ϕ(Rℓ

D(h),R
ℓ
S(h)). For instance, when µ(h,S)=0, the

difference µ(h′,S)−µ(h,S)=0, but, in this case, the
posterior distribution ρS is uniform which does not
permit to sample a hypothesis minimizing the true
risk Rℓ

D(h). There is hence a trade-off to find between
minimizing this difference and sampling a hypothesis
minimizing the gap ϕ(Rℓ

D(h),R
ℓ
S(h)) and the true risk

Rℓ
D(h). In Section 4, we see how to instantiate the para-

metric function µ. Note that, when instantiated cor-
rectly, it also allows to get uniform-convergence-based
and algorithm-dependent bounds; see Appendix C.

3.3.2 Practical Bound with Uniform Priors

The remaining challenge to get a practical bound is to
upper-bound ln[ 4

δ2 EV∼Dm Eg∼π exp[ϕ(R
ℓ
D(g),R

ℓ
V(g))]]

and ln(π(h′)/π(h)). As an illustration, we restrict
ourselves in the rest of the paper to the case where
the loss is bounded, i.e., we consider a loss func-
tion ℓ : H×(X×Y) → [0, 1]. Under this assump-
tion, we provide in the next corollary an instan-
tiation of Theorem 3 for the generalization gap
ϕ(Rℓ

D(h),R
ℓ
S(h))=m kl[Rℓ

S(h)∥Rℓ
D(h)] where kl(q∥p) ≜

q ln q
p + (1−q) ln 1−q

1−p for p ∈ (0, 1) and q ∈ [0, 1] and
with a uniform distribution π on a bounded set H.
Corollary 4. For any D on X×Y, for any bounded
hypothesis set H, given the uniform prior π on
H, for any loss ℓ : H × (X×Y) → [0, 1], for any
µ :H×(X×Y)m→R, for any δ∈(0, 1], with probability
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at least 1−δ over S∼Dm, h′∼π, h∼ρS we have

kl
[
Rℓ

S(h)∥Rℓ
D(h)

]
≤ µ(h′,S)−µ(h,S)+ ln 8

√
m

δ2

m
, (4)

with ρS defined in Equation (1).

Interestingly, Corollary 4 gives a computable bound on
kl[Rℓ

S(h)∥Rℓ
D(h)]. From Equation (4), we obtain the

following generalization bounds on the true risk Rℓ
D(h):

Rℓ
D(h) ≤ kl

[
Rℓ

S(h)

∣∣∣∣∣ µ(h′,S)−µ(h,S)+ ln 8
√
m

δ2

m

]
,

(5)

with kl[q|τ ]=max{p ∈ (0, 1) | kl(q∥p)≤τ}. We use
these bounds in Section 4 to illustrate the generaliza-
tion guarantees for different parametric functions µ.
For some trivial cases, the convergence rate can be
arbitrary, e.g., when µ(h,S) = mRℓ

S(h). For exam-
ple, for a large empirical risk Rℓ

S(h
′) (which is com-

mon when h′ is sampled from a uniform prior on
H), the right-hand side of Equation (4) simplifies to
Φh′

µ (h,S,δ)=[(Rℓ
S(h

′)−Rℓ
S(h))+

1
m ln(2

√
m/δ)]+ and is

large, for all m. In order for the bound to be mean-
ingful, we have to set µ such that the distribution ρS
allows to sample h minimizing the empirical risk Rℓ

S(h)
and the generalization gap, and we want the complexity
measure Φh′

µ (h,S, δ) to be tight (with h′∼π).

3.3.3 Practical Bound with Informed Priors

While it is common to consider uninformed priors when
we have no apriori belief, informative priors can be
necessary and useful to get better results. For that pur-
pose, one solution is to consider distribution-dependent
priors, heavily used in PAC-Bayes [see e.g., Parrado-
Hernández et al., 2012, Dziugaite et al., 2021, Pérez-
Ortiz et al., 2021]. We use a strategy similar to that
for the posterior ρS by defining the prior π as follows

π(h) ∝ exp [−ω(h)] , (6)

where ω : H→R can depend on the distribution D.
Hence, the prior can depend on an additional learning
sample S ′∈(X×Y)m′

sampled from D. We prove the
following corollary with the prior of Equation (6).

Corollary 5. For any D on X×Y, for any hypothesis
set H, for any loss ℓ : H × (X×Y) → [0, 1], for any
µ :H×(X×Y)m→R, for any ω :H→R, for any δ∈(0, 1],
with probability at least 1−δ over S∼Dm, h′∼π, h∼ρS
we have

kl
[
Rℓ

S(h)∥Rℓ
D(h)

]
≤ 1

m

[
[µ(h′,S)−ω(h′)]

− [µ(h,S)−ω(h)] + ln 8
√
m

δ2

]
, (7)

with ρS and π resp. defined in Equations (1) and (6).

4 USING COMPLEXITY
MEASURES IN PRACTICE

Section 4.1 presents our experimental setting. In Sec-
tion 4.2, we first compare Corollaries 4 and 5 to two

additional bounds with µ(h,S) = αRℓ′

S (h) (where ℓ′

is a differentiable loss). In Section 4.3 we study the
behavior of our bounds when the parametric function
µ is defined as a regularized empirical risk. Finally, in
Section 4.4 we assess the tightness of our bounds when
the complexity term is learned with a neural network.

4.1 General Experimental Setting2

In this section, we investigate the tightness of Corollar-
ies 4 and 5’s bounds on the MNIST [LeCun et al., 1998]
and FashionMNIST [Xiao et al., 2017] datasets. Specif-
ically, we consider the bounds on the true risk and the
empirical risk endowed with the 01-loss ℓ(h, (x, y))=
I[h(x) ̸= y] where I[a]=1 if a is true and 0 otherwise.

Model. Inspired by the setting of Viallard et al. [2024],
we train an All Convolutional Network [Springenberg
et al., 2015] that is fitted for the two datasets MNIST
and FashionMNIST. This network comprises 4 con-
volutional layers of 10 channels and a kernel of size
5×5 followed by a Leaky ReLU activation function
(where the padding and the stride are set to 1 except
for the second layer where the stride is set to 2). Fi-
nally, the network ends with an average pooling of size
8×8 followed by a Softmax activation function. The
weights are initialized with the Xavier Glorot uniform
initializer [Glorot and Bengio, 2010], and the biases are
initialized uniformly between −1/

√
250 and +1/

√
250

for all biases instead for the first layer they are initial-
ized uniformly in [−1/5,+1/5].

Datasets. We keep the original test set T to estimate
the true risk that we refer to as test risk RT (h). To
evaluate Corollary 4’s bounds and to sample h∼ρS , we
keep the original learning set S to evaluate. To evaluate
Corollary 5’s bound, and to sample h∼ρS and h′∼π,
the original learning set is split into 2 sets S and S ′
respectively of size m and m′; When m′

m+m′=0, the
prior distribution is the uniform (non-data-dependent)
and we retrieve Corollary 4.

Sampling and Bound Computation. To compute
Corollaries 4 and 5’s bounds, we aim to sample
h∼ρS and h′∼π by performing SGLD3 (described in
Equation (2)) and to evaluate these hypotheses with
kl. Note that using SGLD is efficient for sampling
since it does not require computing the normalization

2The source code is available at https://github.com/
paulviallard/AISTATS24-Complexity-Measures.

3Dziugaite and Roy [2018] also perform SGLD to sample
from a Gibbs distribution.

https://github.com/paulviallard/AISTATS24-Complexity-Measures
https://github.com/paulviallard/AISTATS24-Complexity-Measures
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constants of the two distributions. To tune the
learning rate, (1) we compute the mean loss over the
learning sample (without training), (2) we start with
a learning rate of size 0.1, and we decrease it (by a
factor of 0.1) and reinitialize the model after each
epoch if the mean loss is not decreasing (to retrain
from scratch), (3) if the learning rate attains 10−10,
we set the learning rate to its starting value 0.1 and
start learning from scratch. Once the initial learning
rate that decreases the mean loss is set, we perform
SGLD for 10 epochs and with a mini-batch of size
64. After each epoch, we decrease the learning rate
by a factor of 0.5. Whenever we have to sample a
risk value with SGLD, we replace the 01-loss by the
differentiable bounded cross entropy of Dziugaite and
Roy [2018] ℓ′(h, (x, y))=− 1

4 ln(e
−4+(1−2e−4)h(x)[y]),

where h[y] is the probability assigned to the label y
by h. The advantage of Dziugaite and Roy [2018]’s
cross-entropy is that it lies in ℓ(h, (x, y)) ∈ [0, 1],
whereas the classical cross-entropy is unbounded. For
all experiments, we perform 5 runs to obtain a mean
and a standard deviation, which involves sampling from
ρS and π for each evaluation of the bounds and risks.

4.2 Experiments on the Empirical Risk

In this section, we compare the tightness of our bounds
of Corollaries 4 and 5 with bounds that share similari-
ties with the literature. More precisely, this comparison
is done for the Gibbs distribution ρS defined with the

parametric function µ(h,S) = αRℓ′

S (h). Indeed, this
Gibbs distribution was already studied in the classical
and disintegrated PAC-Bayesian theory but led to un-
computable bounds. We adapt these bounds to make
them computable so that we can report them as base-
lines (more details are given in Appendix B). More
precisely, we compare our bounds to the following one
(similar to Lever et al. [2013]): with probability at least
1−δ, we have

kl[Rℓ
S(h)∥Rℓ

D(h)]≤ 1
m

[
α2

8m+

√
α2

2m ln 6
√
m

δ + ln 6
√
m

δ

]
. (8)

We also adapt the proof technique of Dziugaite and
Roy [2018] to obtain with probability at least 1−δ

kl[Rℓ
S(h)∥Rℓ

D(h)] ≤
1

m

[
α
[
Rℓ′

S (h
′)−Rℓ′

S (h)
]

+α′
[
Rℓ′

S (h)−Rℓ′

S (h
′)
]
+ 2α′ + ln 8

√
m

δ2

]
, (9)

where h′ ∼ π and π(h) ∝ exp[−α′Rℓ′

S (h)]. For Corol-
lary 5, we set the prior π with the parametric function

ω(h)=αRℓ′

S′(h) and with a learning sample S ′ satisfying
the split ratio m′

m+m′ =0.5. For all the bounds, we take α
(and α′) uniformly spaced on the logarithmic scale be-
tween

√
m andm. For each parameter α and bound, we

select the prior minimizing the bound and average its
value over 5 runs. We report in Figure 2 the evolution
of the different bounds and the test risks w.r.t. to α.

Analysis. As expected, the standard deviations of all
the bounds are small only for large α, as this parameter
controls the concentration of the Gibbs distributions. A
larger α tends to imply lower test risks Rℓ

T (h). However,
the bounds become large as α increases except for our
bound of Corollary 5. This is an expected behavior
in the case of Equation (8) since the bound increases
when α increases. For Corollary 4, the bound is large

when the difference α[Rℓ′

S (h
′)−Rℓ′

S (h)] is large. This is

effectively the case because Rℓ′

S (h
′) is large since h′ is

sampled from a uniform distribution and Rℓ′

S (h) is small

because h is sampled from ρS(h) ∝ exp[−αRℓ′

S (h)].
The same phenomenon arises with Equation (9) since

Rℓ′

S (h
′) is large when α′ is small, i.e., the concentration

is not sufficient to minimize the empirical risk. The
tightness of Corollary 5 comes from the fact that both
empirical risks for h′ ∼ π and h∼ ρS are small, and

so is the bound when the risks Rℓ′

S (h
′) and Rℓ′

S′(h) are
small as well. Moreover, note that, for small α, the
test risks and the bound values are higher compared
to the others. This is due to the fact that we use
half of the data ( m′

m+m′=0.5) for learning an informed
prior. Indeed, the value of α is twice as small as for
the other bounds, which makes the bound values and
the test risks higher as the Gibbs distribution is less
concentrated.

4.3 Experiments on Regularized Risks

In order to tighten the bounds in Corollaries 4 and 5,
one might assume that selecting a hypothesis with
a small trade-off between its empirical risk and a
norm is a reasonable solution. Against all odds, we
will see in this section that regularizing the empirical
risk with a parametric function does not help to
tighten the bounds. To define the norms used as
regularizers, we assume that the model h, composed
of L layers, is parameterized by weights (and biases)
w∈Rd; we denote by hw2 the hypothesis h that has its
weights replaced by w2. We define by wi the weights
and biases on the i-th layer. Moreover, we denote
the parameters obtained at initialization by v ∈ Rd.
Thanks to this additional notation, we can now define
6 parametric functions µ associated with 6 Gibbs
distributions (and bounds). We consider regularized
empirical risks with the optimizable norms studied
by Jiang et al. [2019b, Sec.C] and defined as follows:

• DistFroR
β (h,S) = α(βRℓ′

S (h) + β̄DistFro(h,S)),
• DistL2

R
β (h,S) = α(βRℓ′

S (h) + β̄DistL2(h,S)),
• ParNormR

β (h,S) = α(βRℓ′

S (h) + β̄ParNorm(h,S)),
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• PathNormR
β (h,S) = α(βRℓ′

S (h)+β̄PathNorm(h,S)),
• SumFroR

β (h,S) = α(βRℓ′

S (h) + β̄SumFro(h,S)),
• GapRβ (h,S) = α(βRℓ′

S (h) + β̄Gap(h,S)),
where β̄ = 1− β and with

• DistFro(h,S) =∑L
i=1 ∥wi−vi∥2,

• DistL2(h,S) = ∥w−v∥2,
• ParNorm(h,S) =∑L

i=1 ∥wi∥22,
• PathNorm(h,S) =∑y∈Y hw2(1)[y],

• SumFro(h,S) = L[
∏L

i=1 ∥wi∥22]
1
L ,

• Gap(h,S) = |Rℓ′

T (h)−Rℓ′

S (h)|.
Remark that Gap is not a function that can be com-
puted in practice, however, it can be interpreted as an
ideal case when we want the norm to be representative
of the gap and check if it correlates with it as done
by Jiang et al. [2019a]. Note that during SGLD, we
do not evaluate the gap on the whole learning samples
S and T but on a mini-batch of size 64. Moreover,
by taking into account the Dziugaite and Roy [2018]’s
bounded cross-entropy instead of the classical one al-
lows the parametric function not to focus too much
on the risk since we want to take into account the
norm. We consider the bounds of Corollaries 4 and 5
with a split ratio of m′

m+m′ =0.5 and m′

m+m′ =0.0 while
we set the parametric function ω associated with π to
ω(hw)=µ(hw,S ′) (the same function as for ρS). We
report in Figure 3 the evolution of the test risks RT (h)
and the bound values for the different parametric func-
tions as a function of the trade-off parameter β.

Analysis. The main striking result is that the Gap
behaves differently than the norms. Its test risk rapidly
decreases (until β = 0.3) while the associated bound
remains tight. In contrast, the norms’ curves show
two regimes depending on the split ratio m′

m+m′ . For

instance, when m′

m+m′ = 0.0, the test risks and the
bounds decrease when β≥0.7 but their gap increases.
When m′

m+m′ =0.5, the test risks decrease for β≥ 0.7
and the bounds stay tight. Note that the bounds
and test risks for ParNorm stay high because SGLD
fails to minimize the regularized risk. This experiment
suggests that the norms are not good predictors of the
generalization gap, as the norms’ bounds are not close
to the ideal one, given by Gap.

4.4 Experiments on Neural Complexities

In light of the previous results, we now study how our
bounds behave when computed with a better predictor
of the generalization gap. Indeed, while Sections 4.2
and 4.3 focus on hypotheses that minimize (regularized)
empirical risks, we are ideally interested in concentrat-
ing the probability measure associated with ρS on the
hypotheses with small generalization gaps. To do so,

the parametric function for ρS can depend on an es-
timation of the gap (this latter being not available in
practice). In this section, we consider the bound of
Corollary 4 (without data-dependent priors) and study
the following parametric functions µ

µ(h,S) = fD(h,S) = α|f(h,S)− f(hSGD,S)|,

where f ∈{DistFro,DistL2,ParNorm,PathNorm,
SumFro,Gap}, and α=m, and hSGD is obtained by
Stochastic Gradient Descent (SGD). This particular
choice of µ allows us to sample hypotheses close to
the value of the parametric function f evaluated on
hSGD. We additionally assess a parametric function
NeuralD, consisting of a neural network learned to
predict the generalization gap. More precisely, we
learn the function Neural(h,S), which becomes the
output of a feed-forward neural network (learned
from S), taking the parameters w of the model h and
outputting a positive real that must represent the
generalization gap. NeuralD is thus the function
comparing the output of the feed-forward neural
network associated with h ∼ ρS and hSGD. Note that
learning a neural network for predicting the gap was
previously proposed by [Lee et al., 2020]; we refer the
reader to Appendix D.3 for a discussion and a detailed
presentation of the learning setting. To obtain the
model, we first run SGD on a random number of
epochs uniformly sampled between 1 and 10, and with
the same parameters as SGLD (Section 4.1). To sample
h∼ ρS , we start from hSGD as the initialization, and
we run SGLD for 10 epochs (unless the learning rate
attains 10−10). Finally, we consider a second setting,
with the parametric functions are noted DistFro,
DistL2, ParNorm, PathNorm, SumFro, Gap
(scaled by α=m) and Neural (without D), where
the parametric function µ(h,S) is evaluated w.r.t.
the initial value of h instead of hSGD. Note that for
Gap and GapD, we skip the SGLD phase to have
a bound on the model obtained from SGD directly;
these two parametric functions correspond to our ideal
cases. We plot in Figure 4 the mean and the standard
deviation of the bound values and test risks (averaged
over 5 runs) for the considered parametric functions.
We provide additional experiments on Neural and
NeuralD in Appendix D.3.

Analysis. As a first general remark, the bounds with
complexity measures based on norms behave differently
than the ones based on Neural, NeuralD, Gap,
and GapD. Indeed, the mean bound values for the
complexity measures based on the norms are all vacuous
(i.e., they are equal to 1), while their test risks are high
for DistFro, DistL2, ParNorm, PathNorm, and
SumFro, which is expected since we want to sample
a hypothesis with a low norm (and not far from the
initialization). Similarly, for DistFroD, DistL2

D,
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Figure 2: Evolution of the bounds (the plain lines) and the test risks Rℓ
T (h) (the dashed lines) w.r.t. the

concentration parameter α. The lines correspond to the mean, while the bands are the standard deviations.
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T (h) are plotted in the colored bars. Moreover, the standard deviations are plotted in black.
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ParNormD, PathNormD, and SumFroD, we want
to sample a hypothesis with a norm that is close to
the one of hSGD and thus a hypothesis with a test risk
Rℓ

T (h) close to Rℓ
T (hSGD). In these cases, the bounds

are vacuous because the parametric functions evaluated
on h are close to zero, and the ones evaluated on h′

are high. This highlights a drawback of the empirical
studies of Jiang et al. [2019b], Dziugaite et al. [2020]:
they study the correlation between the norms and
the generalization gaps on trained neural networks.
However, considering a norm as a good proxy for the
generalization gap is impossible in this case. Indeed,
rescaling the weights of the networks (by a scalar) gives
the exact same predictions and thus keeps the same
generalization gap while changing the norm; this is
due to the use of non-negative homogeneous activation
functions, such as the standard (Leaky) RELU (see e.g.,
[Neyshabur et al., 2015, Dinh et al., 2017]. In contrast,
the two parametric functions Neural and NeuralD

give tight bounds and are close to the ideal bounds of
Gap and GapD.4 This clearly illustrates that learning
a parametric function (and so a complexity measure)
can help to obtain tighter generalization bounds. Note
that the bounds with Neural and NeuralD are tight
even without a data-dependent prior, which is usually
needed to obtain tight bounds for neural networks (see
e.g., [Dziugaite and Roy, 2017, Dziugaite et al., 2021,
Pérez-Ortiz et al., 2021, Viallard et al., 2024]). This
is an encouraging result and a step toward eliminating
the need for data-dependent priors in PAC-Bayes to
obtain tight bounds for neural networks.

5 CONCLUSION

In contrast to classical statistical learning theory frame-
works, for which a complexity measure is imposed, we
provide a generic and novel generalization bound where
the user can choose any parametric function acting as
a complexity. This measure incorporates a data and
model-dependent function, which can be devised to fa-
vor desired properties for the hypotheses. In particular,
we show that when such a function is learned to be
representative of the generalization gap, our bounds are
tight even without data-dependent priors. To the best
of our knowledge, our framework is one of the few gen-
eral enough to bring theoretical guarantees for learned
complexity measures and for ones used in practice, e.g.,
based on some weight norms. Last but not least, we
believe this work paves the way for new research direc-
tions on bridging the gap between statistical learning
theory and practice. Indeed, our framework could pro-
vide meaningful insights into the generalization of deep

4For Gap, the bounds are sometimes lower than the test
risks. This is normal if the gap of hSGD is much higher
than 0 because sampling hSGD is unlikely in this context.

models by plugging in new complexity measures, e.g.,
given by: (i) learning an interpretable model based on
features such as training trajectory and network config-
uration, or (ii) new handcrafted parametric functions
that are simple but predictive of generalization.
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fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]
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The appendix is organized as follows:

(i) Appendix A is dedicated to the proof of Theorem 3 (in Appendix A.1), and to the proof of Corollaries 4
and 5 (in Appendix A.2),

(ii) Appendix B is dedicated to the theoretical results related to the comparison with other theoretical results of
the literature,

(iii) In Appendix C, we explain how to obtain uniform-convergence and algorithmic-dependent bounds by setting
appropriately the parametric function,

(iv) Additional details on the experiments are provided in Appendix D.

A PROOF OF THE MAIN RESULTS

This section is dedicated to the proof of the results. More precisely, in Appendix A.1, we provide the proof of
Theorem 3, whereas in Appendix A.2, we prove Corollaries 4 and 5.

A.1 Proof of Theorem 3

Theorem 3. Let ℓ : H×(X×Y)→R be a loss function and ϕ :R2→R be a generalization gap. For any D on
X×Y, for any hypothesis set H, for any prior distribution π ∈M(H) on H, for any µ :H×(X×Y)m→R, for any
δ∈(0, 1], we have with probability at least 1− δ over h′ ∼ π, S ∼ Dm, and h ∼ ρS

ϕ(Rℓ
D(h),R

ℓ
S(h)) ≤ µ(h′,S)− µ(h,S) + ln

π(h′)

π(h)
+ ln

[
4

δ2
E

V∼Dm
E

g∼π
eϕ(R

ℓ
D(g),Rℓ

V(g))

]
≜ Φh′

µ (h,S, δ),

where ρS is the Gibbs distribution as in Equation (1).

Proof. First of all, we denote as Z =
∫
H exp [−µ(g,S)] dλ(g), the normalization constant of the Gibbs distribution

ρS and λ the reference measure on H. In other words, we have

ρS(h) =
1

Z
exp [−µ(h,S)] ∝ exp [−µ(h,S)] .

We apply Theorem 1 with δ
2 instead of δ and with the function φ(h,S) = ϕ(Rℓ

D(h),R
ℓ
S(h)) to obtain

P
S∼Dm,h∼ρS

[
ϕ(Rℓ

D(h),R
ℓ
S(h)) ≤ ln

[
ρS(h)

π(h)

]
+ln

[
2

δ
E

V∼Dm
E

g∼π
eϕ(R

ℓ
D(g),Rℓ

V(g))

]]
≥ 1− δ

2
.

We develop the term ln
[
ρS(h)
π(h)

]
in Theorem 1. We have

ln

[
ρS(h)

π(h)

]
= ln

(
exp [−µ(h,S)]

Z

1

π(h)

)
= ln (exp [−µ(h,S)])− ln

(
π(h)

∫
H
exp [−µ(g,S)] dλ(g)

)
= −µ(h,S)− ln

(
π(h)

∫
H

π(g)

π(g)
exp [−µ(g,S)] dλ(g)

)
= −µ(h,S)− ln

(
E

g∼π

π(h)

π(g)
e−µ(g,S)

)
.

Hence, we obtain the following inequality

P
S∼Dm,h∼ρS

[
ϕ(Rℓ

D(h),R
ℓ
S(h)) ≤ ln

[
2

δ
E

V∼Dm
E

g∼π
eϕ(R

ℓ
D(g),Rℓ

V(g))

]
− µ(h,S)− ln

(
Eg∼π

π(h)
π(g) e

−µ(g,S)
)]
≥ 1− δ

2
.

(10)
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We can now upper-bound the term − ln
(
Eg∼π

π(h)
π(g) e

−µ(g,S)
)
. To do so, since π(h)

π(h′)e
−µ(h′,S) > 0 for all h ∈ H,

h′ ∈ H and S ∈ (X×Y)m, we apply Markov’s inequality to obtain

∀h ∈ H, ∀S ∈ (X×Y)m, P
h′∼π

[
π(h)

π(h′)
e−µ(h′,S) ≤ 2

δ
E

g∼π

π(h)

π(g)
e−µ(g,S)

]
≥ 1− δ

2

⇐⇒ P
h′∼π

[
− ln

(
E

g∼π

π(h)

π(g)
e−µ(g,S)

)
≤ ln

2

δ
− ln

(
π(h)

π(h′)
e−µ(h′,S)

)]
≥ 1− δ

2
.

Moreover, by simplifying the right-hand side of the inequality, we have

− ln

(
π(h)

π(h′)
e−µ(h′,S)

)
= ln

π(h′)

π(h)
+ µ(h′,S).

Hence, we obtain the following inequality

P
h′∼π

[
− ln

(
E

g∼π

π(h)

π(g)
e−µ(g,S)

)
≤ ln

2

δ
+ ln

π(h′)

π(h)
+µ(h′,S)

]
≥ 1−δ

2
. (11)

By using a union bound on Equations (10) and (11) and rearranging the terms, we obtain the claimed result.

A.2 Proof of Corollaries 4 and 5

In order to prove Corollaries 4 and 5, we first provide another corollary that will be necessary.

Corollary 6. For any D on X×Y, for any hypothesis set H, for any loss ℓ : H× (X×Y)→ [0, 1], for any prior
distribution π ∈ M(H) on H, for any µ :H×(X×Y)m→R, for any δ∈ (0, 1], with probability at least 1−δ over
S∼Dm, h′∼π, h∼ρS we have

kl[Rℓ
S(h)∥Rℓ

D(h)] ≤
1

m

[
µ(h′,S)− µ(h,S) + ln

π(h′)

π(h)
+ ln

8
√
m

δ2

]
.

Proof. We instantiate Theorem 3 with ϕ(Rℓ
D(h),R

ℓ
S(h))=m kl[Rℓ

S(h)∥Rℓ
D(h)]. By rearranging the term, we have

kl[Rℓ
S(h)∥Rℓ

D(h)] ≤
1

m

[
µ(h′,S)− µ(h,S) + ln

π(h′)

π(h)
+ ln

[
4

δ2
E

V∼Dm
E

g∼π
em kl[Rℓ

S(g)∥Rℓ
D(g)]

]]
.

We also have to upper-bound EV∼DmEg∼πexp
(
m kl

[
Rℓ

V(g)∥Rℓ
D(g)

])
. Indeed, we have

E
V∼Dm

E
g∼π

em kl[Rℓ
V(g)∥Rℓ

D(g)] = E
g∼π

E
V∼Dm

em kl[Rℓ
V(g)∥Rℓ

D(g)] (12)

and E
g∼π

E
V∼Dm

em kl[Rℓ
V(g)∥Rℓ

D(g)] ≤ 2
√
m, (13)

where Equation (12) is due to Fubini’s theorem (i.e., we can exchange the two expectations), and Equation (13)
is due to Maurer [2004].

Thanks to Corollary 6, we are now able to prove Corollary 4.

Corollary 4. For any D on X×Y, for any bounded hypothesis set H, given the uniform prior π on H, for any
loss ℓ : H × (X×Y) → [0, 1], for any µ :H×(X×Y)m→R, for any δ ∈ (0, 1], with probability at least 1−δ over
S∼Dm, h′∼π, h∼ρS we have

kl
[
Rℓ

S(h)∥Rℓ
D(h)

]
≤ 1

m

[
µ(h′,S)−µ(h,S)+ ln 8

√
m

δ2

]
,

with ρS defined in Equation (1).
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Proof. We instantiate Corollary 6 with π being a uniform distribution. Moreover, we have ln π(h′)
π(h) = 0.

Similarly than for Corollary 4, we prove Corollary 5 thanks to Corollary 6.

Corollary 5. For any D on X×Y, for any hypothesis set H, for any loss ℓ : H × (X×Y) → [0, 1], for any
µ :H×(X×Y)m→R, for any ω :H→R, for any δ∈(0, 1], with probability at least 1−δ over S∼Dm, h′∼π, h∼ρS
we have

kl
[
Rℓ

S(h)∥Rℓ
D(h)

]
≤ 1

m

[
[µ(h′,S)−ω(h′)]− [µ(h,S)−ω(h)] + ln 8

√
m

δ2

]
, (7)

with ρS and π resp. defined in Equations (1) and (6).

Proof. We instantiate Corollary 6 with π(h) ∝ exp(−ω(h)). Moreover, we have ln π(h′)
π(h) = ω(h)− ω(h′).

B COMPARISON WITH THE BOUNDS OF THE LITERATURE

In this section, we first provide the bound of Lee et al. [2020] in Appendix B.1. Additionally, we discuss three
bounds that are in the (classical or disintegrated) PAC-Bayesian literature and that consider Gibbs distributions.
More precisely, we discuss in Appendix B.2 a disintegrated bound of Catoni [2007, Section 1.2.4] that was proven
for a specific Gibbs distribution (i.e., with a fixed parametric function µ). Moreover, in Appendices B.3 and B.4,

we provide two disintegrated PAC-Bayesian bounds for µ(h,S) = αRℓ′

S (h) inspired by two works from the classical
PAC-Bayesian literature. Moreover, in Appendix B.5, we discuss the related works.

B.1 About Lee et al. [2020]’s Bound

For the sake of completeness, we provide a (refined) proof of the Lee et al. [2020]’s bound.

Theorem 7. For any distribution D on X×Y, for any hypothesis set H, for any distribution π∈M(H), for any
δ∈(0, 1], with probability at least 1−δ over S1∼Dm, . . . ,Sn∼Dm and h1∼ρS1

, . . . hn∼ρSn
we have for all ϵ>0

P
S∼Dm,h∼ρS

[
|RD(h)− RS(h)| ≤ µ(h,S) + ϵ

]
≥ 1− 1

n

n∑
i=1

I
[
|RD(hi)−RSi(hi)|−µ(hi,Si) > ϵ

]
−

√
ln 2

δ

2n
≜ 1−δ′(ϵ),

where I[a] = 1 if a is true and 0 otherwise.

Proof. First of all, we have

P
S∼Dm,h∼ρS

[
|RD(h)− RS(h)| ≤ µ(h,S) + ϵ

]
= P

S∼Dm,h∼ρS

[
|RD(h)− RS(h)| − µ(h,S) ≤ ϵ

]
≜ F (ϵ),

where F (·) is the cumulative distribution function of |RD(h)−RS(h)|−µ(h,S) where S ∼ Dm and h ∼ ρS . Then,
from the Dvoretzky–Kiefer–Wolfowitz inequality, we have with probability at least 1−δ over S1∼Dm, . . . ,Sn∼Dm

and h1∼ρS1 , . . . hn∼ρSn

F (ϵ) ≥ 1

n

n∑
i=1

I
[
|RD(hi)−RSi

(hi)|−µ(hi,Si) ≤ ϵ
]
−

√
ln 2

δ

2n
.

Moreover, remark that we have

1

n

n∑
i=1

I
[
|RD(hi)−RSi

(hi)|−µ(hi,Si) ≤ ϵ
]
=

1

n

n∑
i=1

(
1− I

[
|RD(hi)−RSi

(hi)|−µ(hi,Si) > ϵ
])

= 1− 1

n

n∑
i=1

I
[
|RD(hi)−RSi

(hi)|−µ(hi,Si) > ϵ
]
.

Finally, combining the equations gives the desired result.



PAC-Bayes Generalization Bounds with Complexity Measures

Note that we improve their result by replacing RD(h)−RS(h)−µ(h,S) with |RD(h)−RS(h)|−µ(h,S) in the

empirical cumulative distribution function, which improves the constant in the statistical term
√

ln 2
δ/2n. This does

not change the interpretation of their results. Indeed, while the term µ(h,S)+ϵ is computable, the probability
term 1−δ′(ϵ) is not since RD(hi) is unknown (as it depends on the data distribution D). This makes the overall
bound uncomputable as the probability δ′(ϵ) by which it stands is unknown.

B.2 About Catoni [2007]’s Bound

Catoni [2007, Theorem 1.2.7] proved the following disintegrated PAC-Bayesian bound; we give a proof for the
sake of completeness.

Lemma 8. For any distribution D on X×Y, for any hypothesis set H, for any distribution π∈M(H), for any
δ∈(0, 1], we have with probability at least 1− δ over S ∼ Dm and h ∼ ρS

Rℓ
D(h) ≤

1

1− e−c

{
1− exp

(
−cRℓ

S(h)−
1

m

[
ln

ρS(h)

π(h)
+ ln

1

δ

])}
.

Proof. We apply Theorem 1 with φ(h,S) = m
[
− ln(1−Rℓ

D(h) [1−e−c])− cRℓ
S(h)

]
. By rearranging the terms, we

obtain

Rℓ
D(h) ≤

1

1− e−c

{
1− exp

(
−cRℓ

S(h)−
1

m

[
ln

ρS(h)

π(h)
+ ln

(
1

δ
E

S∼Dm
E

g∼π
em[− ln(1−Rℓ

D(h)[1−e−c])−cRℓ
S(h)]

)])}
.

(14)

Moreover, from Fubini’s theorem, Maurer [2004, Lemma 3], and Germain et al. [2009, Corollary 2.2], we have

E
S∼Dm

E
g∼π

em[− ln(1−Rℓ
D(h)[1−e−c])−cRℓ

S(h)] ≤ 1. (15)

Finally, by merging Equations (14) and (15), we have the stated result.

Compared to the bounds that we provided in this paper, this one depends on a parameter c > 0 that is fixed
before seeing the learning sample S ∼ Dm and the hypothesis h ∼ ρS . Catoni applied Lemma 8 for a particular
Gibbs distribution. In the following, we provide a more general corollary. To obtain Catoni’s corollary, we have
to fix µ(h,S) = cmRℓ

S(h)− lnπ(h).

Corollary 9. For any distribution D on X×Y, for any hypothesis set H, for any loss ℓ : H× (X×Y)→ [0, 1],
for any prior distribution π ∈ M(H) on H, for any parametric function µ :H×(X×Y)m→R, for any δ∈ (0, 1],
with probability at least 1−δ over S∼Dm, h∼ρS we have

Rℓ
D(h) ≤

1

1− e−c

{
1− exp

(
−cRℓ

S(h)−
1

m

[
−µ(h,S)− lnπ(h)− ln

(
E

g∼π

1

π(g)
e−µ(g,S)

)
+ ln

1

δ

])}
,

where ρS is the Gibbs distribution (see Equation (1)).

Proof. Starting from Lemma 8, we develop the disintegrated KL divergence ln ρS(h)
π(h) as in Theorem 3. We have

ln
ρS(h)

π(h)
= −µ(h,S)− ln

(
E

g∼π

π(h)

π(g)
e−µ(g,S)

)
= −µ(h,S)− lnπ(h)− ln

(
E

g∼π

1

π(g)
e−µ(g,S)

)
,

which leads to the desired result.

In its current form, the generalization bound presented in Corollary 9 is not computable because of the expectation
Eg∼π

1
π(g) exp[−µ(g,S)]. In order to obtain a term that is computable, we can do the same trick as in Theorem 3.

This gives the following bound.
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Corollary 10. For any distribution D on X×Y, for any hypothesis set H, for any loss ℓ : H× (X×Y)→ [0, 1],
for any prior distribution π ∈ M(H) on H, for any parametric function µ :H×(X×Y)m→R, for any δ∈ (0, 1],
with probability at least 1−δ over S∼Dm, h′∼π, h∼ρS we have

Rℓ
D(h) ≤

1

1− e−c

{
1− exp

(
−cRℓ

S(h)−
1

m

[
µ(h′,S)− µ(h,S) + ln

π(h′)

π(h)
+ ln

4

δ2

])}
,

where ρS is the Gibbs distribution (see Equation (1)).

Proof. We first consider Corollary 9 with δ/2 instead of δ. This gives the following bound

P
S∼Dm,h∼ρS

[
Rℓ

D(h) ≤
1

1−e−c

{
1− exp

(
−cRℓ

S(h)−
1

m

[
−µ(h,S)− ln

(
E

g∼π

π(h)

π(g)
e−µ(g,S)

)
+ ln

2

δ

])}]
≥ 1−δ

2
.

(16)

Then, we use Equation (11), which tells us that

P
h′∼π

[
− ln

(
E

g∼π

π(h)

π(g)
e−µ(g,S)

)
≤ ln

2

δ
+ ln

π(h′)

π(h)
+µ(h′,S)

]
≥ 1−δ

2
.

Finally, combining Equation (16) with Equation (11) gives us the desired result.

As we can remark, the bound of Corollary 10 depends on the same terms as Corollary 6. Hence, in order to
compare Corollary 10 and Corollary 6, we prove the following proposition.

Proposition 11. For any distribution D on X×Y, for any hypothesis set H, for any loss ℓ : H× (X×Y)→ [0, 1],
for any prior distribution π ∈ M(H) on H, for any parametric function µ :H×(X×Y)m→R, for any δ∈ (0, 1],
with probability at least 1−δ over S∼Dm, h′∼π, h∼ρS we have

Rℓ
D(h) ≤ inf

c>0

{
1

1− e−c

{
1− exp

(
−cRℓ

S(h)−
1

m

[
µ(h′,S)− µ(h,S) + ln

π(h′)

π(h)
+ ln

8
√
m

δ2

])}}
= kl

[
Rℓ

S(h)

∣∣∣∣ 1

m

(
µ(h′,S)− µ(h,S) + ln

π(h′)

π(h)
+ ln

8
√
m

δ2

)]
︸ ︷︷ ︸

Bound of Corollary 6

,

where ρS is the Gibbs distribution (see Equation (1)).

Proof. We apply the same proof of Letarte et al. [2019]’s Theorem 3 where in our case their “LD(Gθ)”, “LS(Gθ)”

are respectively Rℓ
D(h) and Rℓ

S(h) and “ξ” is defined by ξ ≜ 1
m

(
µ(h′,S)− µ(h,S) + ln π(h′)

π(h) + ln 8
√
m

δ2

)
.

In other words, the bound of Corollary 6 is a Catoni-like bound where the parameter c > 0 is optimized. At
first sight, the bound in Corollary 10 might appear slightly tighter than Corollary 6 (in light of Proposition 11).

Indeed, Corollary 6’s bound has an additional cost of ln(2
√
m)

m , which is negligible for a large number of examples
m. However, the parameter c > 0 in Corollary 10 cannot be optimized since the bound holds for a fixed parameter.
In order to optimize the bound, the bound must hold for a set of parameters c. This can be done through the
union bound (that adds an additional cost to the bound). Hence, in order for Corollary 10 to be tighter, the

additional cost cannot be larger than ln(2
√
m)

m , which is challenging for large m. Hence, for the experiments, we
did not consider the bound of Corollary 10, which is only as tight as Corollary 6 or larger.

B.3 About Equation (8)

Lever et al. [2013, Lemma 5] proved a (classical) PAC-Bayesian bound on the expected risk with µ(h,S)=αRℓ′

S (h),
i.e., they proved a bound on kl[Eh∼ρS Rℓ

S(h)∥Eh∼ρS Rℓ
D(h)]. For the sake of comparison, we prove the following

disintegrated bound that is similar to the one of Lever et al. [2013]. We consider this bound as a baseline for the
experiments in Section 4.
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Theorem 12. For any distribution D on X×Y, for any hypothesis set H, for any losses ℓ : H× (X×Y)→ [0, 1]
and ℓ′ : H× (X×Y)→ [0, 1], for any δ∈(0, 1], with probability at least 1−δ over S∼Dm, h∼ρS we have

kl[Rℓ
S(h)∥Rℓ

D(h)] ≤
1

m

[
α2

8m
+

√
α2

2m
ln

6
√
m

δ
+ ln

6
√
m

δ

]
,

where the posterior ρS and the prior π are defined respectively by ρS(h) ∝ e−αRℓ′
S (h) and π(h) ∝ e−αRℓ′

D(h).

Compared to the other bounds, Theorem 12 does not depend on a parametric function µ. Instead, it depends only
on the concentration parameter α ∈ R and the number of examples m. To obtain such a bound, the disintegrated

KL divergence ρS(h)
π(h) is upper-bounded. Hence, to prove Theorem 12, we first prove the following lemma (that is

also inspired by Lever et al.’s Lemma 4).

Lemma 13 (Disintegrated version of Lever et al.’s Lemma 4). Given the posterior ρS and the prior π defined as
ρS(h) ∝ e−µ(h,S) and π(h) ∝ e−ω(h), we have the following upper-bound:

∀h ∈ H, ln+
ρS(h)

π(h)
≤ [ω(h)− µ(h,S)]+ +

[
E

h′∼π
µ(h′,S)− ω(h′)

]
+

,

where [·]+ ≜ max(·, 0) and ln+(·) ≜ [ln(·)]+.

Proof. First of all, we denote as ZρS =
∫
H exp [−µ(g,S)] dλ(g) and Zπ =

∫
H exp [−ω(g)] dλ(g), the normalization

constant of the Gibbs distributions ρS and π respectively while λ is the reference measure on H. Then, we have

ln+
ρS(h)

π(h)
= ln+

Zπe
−µ(h,S)

ZρSe
−ω(h)

≤ [ω(h)− µ(h,S)]+ + ln+
Zπ

ZρS

(17)

= [ω(h)− µ(h,S)]+ +max

(
ln

Zπ

ZρS

, 0

)
= [ω(h)− µ(h,S)]+ +max

(
− ln

(
1

Zπ

∫
H
e−µ(g,S)dλ(g)

)
, 0

)
= [ω(h)− µ(h,S)]+ +max

(
− ln

(
1

Zπ

∫
H
eω(g)e−ω(g)e−µ(g,S)dλ(g)

)
, 0

)
= [ω(h)− µ(h,S)]+ +max

(
− ln

(∫
H
π(g)eω(g)−µ(g,S)dλ(g)

)
, 0

)
= [ω(h)− µ(h,S)]+ +max

(
− ln

(
E

h′∼π
eω(h′)−µ(h′,S)

)
, 0

)
≤ [ω(h)− µ(h,S)]+ +max

(
− E

h′∼π
[ω(h′)− µ(h′,S)] , 0

)
(18)

= [ω(h)− µ(h,S)]+ +

[
E

h′∼π
µ(h′,S)− ω(h′)

]
+

,

where Equation (17) is obtained thanks to the inequality [a+b]+ ≤ [a]++[b]+ while Equation (18) holds thanks
to Jensen’s inequality and because [·]+ is monotonically increasing.

Moreover, in order to prove Theorem 12, we need the following lemma, which is an application of Theorem 1
given by Rivasplata et al. [2020].

Lemma 14. For any D on X×Y, for any hypothesis set H, for any loss ℓ : H× (X×Y)→ [0, 1], for any prior
distribution π ∈M(H) on H, for any δ∈(0, 1], with probability at least 1−δ over S∼Dm, h∼ρS we have

kl[Rℓ
S(h)∥Rℓ

D(h)] ≤
1

m

[
ln+

ρS(h)

π(h)
+ ln

2
√
m

δ

]
, (19)

and
∣∣∣Rℓ

S(h)− Rℓ
D(h)

∣∣∣ ≤
√

1

2m

[
ln+

ρS(h)

π(h)
+ ln

2
√
m

δ

]
, (20)
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where ρS ∈M(H) is a posterior distribution.

Proof. We apply Theorem 1 with φ(h,S) = m kl[Rℓ
S(h)∥Rℓ

D(h)] to obtain

kl[Rℓ
S(h)∥Rℓ

D(h)] ≤
1

m

[
ln

ρS(h)

π(h)
+ ln

[
1

δ
E

V∼Dm
E

g∼π
em kl[Rℓ

S(g)∥Rℓ
D(g)]

]]
.

From Fubini’s theorem and Maurer [2004], we have

E
V∼Dm

E
g∼π

em kl[Rℓ
V(g)∥Rℓ

D(g)] = E
g∼π

E
V∼Dm

em kl[Rℓ
V(g)∥Rℓ

D(g)] ≤ 2
√
m. (21)

By definition of ln+(·), we have ln ρS(h)
π(h) ≤ ln+

ρS(h)
π(h) , which is Equation (19). Finally, thanks to Pinsker’s

inequality, we have 2(Rℓ
S(h)− Rℓ

D(h))
2 ≤ kl[Rℓ

S(h)∥Rℓ
D(h)] and we obtain Equation (20).

Thanks to Lemmas 13 and 14, we are now able to prove Theorem 12.

Proof of Theorem 12. Starting from Lemma 14 (and Equation (19)) with probability at least 1− δ/3 instead of
1− δ, we have

kl[Rℓ
S(h)∥Rℓ

D(h)] ≤
1

m

[
ln+

ρS(h)

π(h)
+ ln

6
√
m

δ

]
. (22)

From Lemma 13, we have

ln+
ρS(h)

π(h)
≤ α

[
Rℓ′

D(h)− Rℓ′

S (h)
]
+
+ α

[
E

h′∼π
Rℓ′

S (h
′)− Rℓ′

D(h
′)

]
+

. (23)

From [Maurer, 2004, Equation (4)] and Pinsker’s inequality, we have with probability at least 1−δ/3 over S ∼ Dm

α

[
E

h′∼π
Rℓ′

S (h
′)− Rℓ′

D(h
′)

]
+

≤ α

∣∣∣∣ E
h′∼π

Rℓ′

S (h
′)− Rℓ′

D(h
′)

∣∣∣∣ ≤
√

α2

2m
ln

6
√
m

δ
. (24)

Moreover, from Lemma 14 (and Equation (20)), we can obtain with probability at least 1− δ/3 over S ∼ Dm and
h ∼ ρS

α
[
Rℓ′

D(h)− Rℓ′

S (h)
]
+
≤ α

∣∣∣Rℓ′

S (h)− Rℓ′

D(h)
∣∣∣ ≤

√
α2

2m

[
ln+

ρS(h)

π(h)
+ ln

6
√
m

δ

]
. (25)

From combining Equations (23) and (24) with a union bound, we have with probability at least 1− 2δ/3 over
S ∼ Dm and h ∼ ρS

ln+
ρS(h)

π(h)
≤
√

α2

2m

[
ln+

ρS(h)

π(h)
+ ln

6
√
m

δ

]
+

√
α2

2m
ln

6
√
m

δ

⇐⇒ ln+
ρS(h)

π(h)
+ ln

6
√
m

δ
− ln

6
√
m

δ
≤
√

α2

2m

[
ln+

ρS(h)

π(h)
+ ln

6
√
m

δ

]
+

√
α2

2m
ln

6
√
m

δ

⇐⇒ ln+
ρS(h)

π(h)
+ ln

6
√
m

δ
− ln

6
√
m

δ
−
√

α2

2m

[
ln+

ρS(h)

π(h)
+ ln

6
√
m

δ

]
−
√

α2

2m
ln

6
√
m

δ
≤ 0.

We obtain the upper-bound on ln+
ρS(h)
π(h) by solving the quadratic (in)equation

ax2 + bx+ c ≤ 0 such that x ∈ R+ with a = 1, b = −
√

α2

2m
, and c = − ln

6
√
m

δ
−
√

α2

2m
ln

6
√
m

δ
.
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Hence solving the quadratic (in)equation gives

x ∈

0,
√

α2

8m
+ ln

6
√
m

δ
+

√
α2

2m
ln

6
√
m

δ
−
√

α2

8m

 .

Hence, we can deduce that√
ln+

ρS(h)

π(h)
+ ln

6
√
m

δ
≤

√
α2

8m
+ ln

6
√
m

δ
+

√
α2

2m
ln

6
√
m

δ
−
√

α2

8m

≤

√
α2

8m
+ ln

6
√
m

δ
+

√
α2

2m
ln

6
√
m

δ

and

ln+
ρS(h)

π(h)
≤ α2

8m
+

√
α2

2m
ln

6
√
m

δ
. (26)

Combining Equations (22) and (26) gives the desired result.

Note that the proof technique differs from the one of Lever et al. [2013] because we have to use two disintegrated
PAC-Bayesian bounds and one classical PAC-Bayesian bound instead of only one classical PAC-Bayesian bound.
Indeed, since the disintegrated bounds are valid only for one posterior distribution, we have to use one bound to
obtain Equation (22) and one, in Equation (25), that serves to upper-bound the disintegrated KL divergence.
The classical PAC-Bayesian bound in Equation (24) serves to upper-bound the second term for the disintegrated
KL divergence.

B.4 About Equation (9)

More recently, Dziugaite and Roy [2018, Theorem 4.2] proved a (classical) PAC-Bayesian bound on the expected
risk with µ(h,S)=αRℓ

S(h) and considers data-dependent priors obtained from a ϵ-differentially private mech-
anism. However, their proof relies on the approximate max-information [Dwork et al., 2015] that we cannot
straightforwardly adapt to the disintegrated setting. Instead, our proof is based on the definition of ϵ-differential
privacy (given by Mironov [2017, Section III]).

Definition 15. A randomized mechanism π is ϵ-differentially private if and only if for any learning samples T ′

and T differing from one example we have

D∞(πT ′∥πT ) ≜ ln

(
esssup
h∼πT ′

πT ′(h)

πT (h)

)
≤ ϵ.

Put into words, a randomized mechanism (i.e., the sampling from the prior π) is ϵ-differentially private if the ratio
between the densities obtained from the two learning samples T ′ and T (differing from one point) is bounded by
ϵ. Intuitively, the two densities must be close when the learning samples T and T ′ differ from only one example.

From the definition, we are able to prove the following bound.

Lemma 16. For any distribution D on X×Y, for any ϵ-differentially private randomized mechanism π, for any
measurable function φ : H× (X×Y)m → R, for any δ∈(0, 1], we have with probability at least 1− δ over S ′ ∼ Dm,
S ∼ Dm and h ∼ ρS

φ(h,S) ≤ ln
ρS(h)

πS(h)
+mϵ+ ln

[
1

δ
E

V∼Dm
E

g∼πS′
eφ(g,V)

]
.

Proof. First of all, note that we can apply Theorem 1 with the data-dependent prior πS′ depending on the ghost
sample S ′. Indeed, we have with probability at least 1− δ over S ′ ∼ Dm, S ∼ Dm and h ∼ ρS

φ(h,S) ≤ ln
ρS(h)

πS′(h)
+ln

[
1

δ
E

V∼Dm
E

g∼πS′
eφ(g,V)

]
. (27)
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Let’s denote by S(i) the learning sample S such that the examples from index 1 to i have been replaced by the
examples coming from the learning sample S ′. By convention, we have thus S(0) = S and S(m) = S ′. We can
hence upper-bound the disintegrated KL divergence by

ln
ρS(h)

πS′(h)
= ln

ρS(h)

πS(m)(h)

≤ ln
ρS(h)

πS(m−1)(h)
+ ϵ

· · ·

≤ ln
ρS(h)

πS(0)(h)
+mϵ

= ln
ρS(h)

πS(h)
+mϵ. (28)

By combining Equations (27) and (28), we obtain the stated result.

Lemma 16 can be interpreted as a special case of Theorem 1 where π is a ϵ-differentially private randomized
mechanism. Note that the bound is also in probability over S ′ ∼ Dm, which is a ghost sample (that we do not
have in practice). However, it is not problematic since Equation (9) does not depend explicitly on S ′ ∼ Dm. In
order to prove further Equation (9), we now specialize Lemma 16 to obtain a bound with a parametric function µ
and a ϵ-differentially private randomized mechanism π.

Theorem 17. Let ℓ : H×(X×Y)→R be a loss function and ϕ :R2→R be a generalization gap. For any distribution
D on X×Y, for any hypothesis set H, for any ϵ-differentially private randomized mechanism π, for any parametric
function µ :H×(X×Y)m→R, for any δ∈ (0, 1], we have with probability at least 1− δ over S ′ ∼ Dm, S ∼ Dm,
h′ ∼ πS and h ∼ ρS

ϕ(Rℓ
D(h),R

ℓ
S(h)) ≤ µ(h′,S)− µ(h,S) + ln

πS(h
′)

πS(h)
+mϵ+ ln

[
4

δ2
E

V∼Dm
E

g∼πS′
eϕ(R

ℓ
D(g),Rℓ

V(g))

]
,

where ρS is the Gibbs distribution (see Equation (1)).

Proof. Starting from Lemma 16, we follow the same steps as for Theorem 3 to obtain the result. Indeed, we first

develop the term ln ρS(h)
πS(h) to have

ln
ρS(h)

πS(h)
= −µ(h,S)− ln

(
E

g∼πS

πS(h)

πS(g)
e−µ(g,S)

)
.

Hence, we obtain the following inequality

P
S∼Dm,h∼ρS

[
ϕ(Rℓ

D(h),R
ℓ
S(h)) ≤ ln

[
2

δ
E

V∼Dm
E

g∼πS′
eϕ(R

ℓ
D(g),Rℓ

V(g))

]
−µ(h,S)− ln

(
Eg∼πS

πS(h)
πS(g) e

−µ(g,S)
)]
≥ 1− δ

2
.

(29)

We can now upper-bound the term − ln
(
Eg∼πS

πS(h)
πS(g) e

−µ(g,S)
)
. To do so, since πS(h)

πS(h′)e
−µ(h′,S) > 0, we apply

Markov’s inequality to obtain

∀h ∈ H, ∀S ∈ (X×Y)m, P
h′∼πS

[
πS(h)

πS(h′)
e−µ(h′,S) ≤ 2

δ
E

g∼πS

πS(h)

π(g)
e−µ(g,S)

]
≥ 1− δ

2

⇐⇒ P
h′∼πS

[
− ln

(
E

g∼πS

πS(h)

πS(g)
e−µ(g,S)

)
≤ ln

2

δ
− ln

(
πS(h)

πS(h′)
e−µ(h′,S)

)]
≥ 1−δ.

Moreover, by simplifying the right-hand side of the inequality, we have

− ln

(
πS(h)

πS(h′)
e−µ(h′,S)

)
= ln

πS(h
′)

πS(h)
+ µ(h′,S).
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Hence, we obtain the following inequality

P
h′∼πS

[
− ln

(
E

g∼πS

πS(h)

πS(g)
e−µ(g,S)

)
≤ ln

2

δ
+ ln

πS(h
′)

πS(h)
+ µ(h′,S)

]
≥ 1−δ

2
. (30)

By using a union bound on Equations (29) and (30) and rearranging the terms, we obtain the claimed result.

We are now able to prove the bound stated in Equation (9).

Corollary 18. For any distribution D on X×Y, for any hypothesis set H, for any losses ℓ : H×(X×Y)→R and
ℓ′ : H×(X×Y)→R, for any α, α′ ≥ 0, for any δ ∈ (0, 1], we have with probability at least 1 − δ over S ′ ∼ Dm,
S ∼ Dm, h′ ∼ πS and h ∼ ρS

kl[Rℓ
S(h)∥Rℓ

D(h)] ≤
1

m

[
α
[
Rℓ′

S (h
′)−Rℓ′

S (h)
]
+ α′

[
Rℓ′

S (h)−Rℓ′

S (h
′)
]
+ 2α′ + ln 8

√
m

δ2

]
,

where the posterior ρS and the prior π are defined respectively by ρS(h) ∝ e−αRℓ′
S (h) and π(h) ∝ e−α′Rℓ′

S (h).

Proof. We instantiate Theorem 17 with ϕ(Rℓ
D(h),R

ℓ
S(h)) = m kl[Rℓ

S(h)∥Rℓ
D(h)]. Additionally, from Fubini’s

theorem and Maurer [2004] we have EV∼Dm Eg∼π exp(m kl[Rℓ
V(g)∥Rℓ

D(g)]) ≤ 2
√
m. Hence, we can deduce that

kl[Rℓ
S(h)∥Rℓ

D(h)] ≤
1

m

[
µ(h′,S)− µ(h,S) + ln

πS(h
′)

πS(h)
+mϵ+ ln

8
√
m

δ2

]
.

Let the posterior distribution ρS and the prior distribution π defined respectively by ρS ∝ exp(−αRℓ′

S (h)) (i.e.,

µ(h,S) = αRℓ′

S (h)) and πS ∝ exp(−α′Rℓ′

S (h)). From these definitions, we obtain

kl[Rℓ
S(h)∥Rℓ

D(h)] ≤
1

m

[
α
[
Rℓ′

S (h
′)−Rℓ′

S (h)
]
+ α′

[
Rℓ′

S (h)−Rℓ′

S (h
′)
]
+mϵ+ ln

8
√
m

δ2

]
. (31)

From McSherry and Talwar [2007, Theorem 6], we can deduce that the randomized mechanism πS (i.e., the prior)
gives ϵ = 2α′ 1

m -differential privacy. Hence, by simplifying the Equation (31), we have the desired result.

Even though Corollary 18 does not use the approximate max-information as done by Dziugaite and Roy [2018], we
are still able to provide a bound with a prior that gives a hypothesis h′ from an ϵ-differentially private randomize
mechanism. The main advantage of these bounds compared to the others is that the prior can depend on the
learning sample S. This is why this bound is a good candidate for a baseline in Section 4.

B.5 Related Works

The Gibbs distribution has been used in information-theoretic generalization bounds5 that upper-bound the
expected generalization gap ES∼Dm,h∼ρS Rℓ

D(h)−Rℓ
S(h) . For instance, Raginsky et al. [Theorem 4, 2016] provided

bounds for µ(h,S)=αRℓ
S(h) with losses bounded between 0 and 1, while Kuzborskij et al. [Theorem 1, 2019] with

sub-Gaussian losses. Aminian et al. [Theorem 1, 2021] proved a closed-form solution of the expected generalization
gap with the Gibbs distribution with µ(h,S)=αRℓ

S(h) (where the loss is non-negative); they also considered
regularized empirical risks. Xu and Raginsky [2017], Kuzborskij et al. [2019] upper-bound the expected true risk
ES∼Dm,h∼ρS Rℓ

D(h) by excess risk bounds, i.e., bounds w.r.t. the minimal true risk over the hypothesis set. In

the PAC-Bayesian literature, Alquier et al. [2016] develop PAC-Bayesian bounds on the true risk Eh∼ρS Rℓ
D(h)

with µ(h,S)=αRℓ
S(h). However, all these bounds consider a (regularised) empirical risk scaled by α for the

parametric function, while we are interested in user-defined parametric functions µ. Moreover, these bounds are
in expectation over h ∼ ρS , while we are interested in the risk of a single hypothesis h sampled from ρS . Hence,
to the best of our knowledge, our contribution is the first to derive probabilistic bounds for a single hypothesis
sampled from a Gibbs distribution with general parametric functions µ.

5See Xu and Raginsky [2017], Goyal et al. [2017], Bu et al. [2020] for some examples of information-theoretic bounds.
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C OBTAINING UNIFORM-CONVERGENCE AND
ALGORITHMIC-DEPENDENT BOUNDS

In this section, we theoretically compare generalization bounds with arbitrary complexity measures and the
literature’s bounds. To do so, we prove in Corollaries 21 and 23 that, from an appropriate parametric function µ,
we can obtain two types of generalization bounds: the uniform-convergence-based and the algorithmic-dependent
generalization bounds. Hence, Corollaries 21 and 23 do not present new uniform-convergence bounds but
show how to obtain existing bounds by integrating a specific complexity measure. In other words, we show
that Theorem 3 is general enough to obtain one bound belonging to one of these frameworks. As we see
in Appendices C.2 and C.3, this is done by (i) assuming that we can effectively find an upper bound of the
generalization gap and (ii) fixing the appropriate function µ. In order to present our results in Corollaries 21
and 23, we first recall the definitions of the literature’s bounds.

C.1 Types of Generalization Bounds in the Literature

The uniform-convergence-based bounds were the first type to be introduced, notably in Vapnik and Chervo-
nenkis [1971] using the VC-dimension. Other bounds were later developed based on the Gaussian/Rademacher
complexity [Bartlett and Mendelson, 2002]. The definition of this type of bounds is the following.

Definition 19 (Uniform Convergence Bound). Let ℓ : H×(X×Y)→R be a loss function and ϕ :R2→R be a
generalization gap. A uniform convergence bound is defined such that if for any distribution D on X ×Y, for any
hypothesis set H, there exists a function Φu : (0, 1]→R, such that for any δ ∈ (0, 1] we have

P
S∼Dm

[
∀h∈H, ϕ(Rℓ

D(h),R
ℓ
S(h)) ≤ Φu

(
δ
)]

= P
S∼Dm

[
sup
h∈H

ϕ(Rℓ
D(h),R

ℓ
S(h)) ≤ Φu

(
δ
)]
≥ 1− δ. (32)

This definition encompasses different complexity measures, such as Φu(δ)=rad(H)+
√

1
2m ln 1

δ for the Rademacher

complexity rad(H), or Φu(δ)=
√

1
m2vc(H) ln em

vc(H)+
√

1
2m ln 1

δ for the VC-dimension vc(H) [see Theorem 3.3 and

Corollary 3.19 of Mohri et al., 2012] where the generalization gap is defined by ϕ(Rℓ
D(h),R

ℓ
S(h)) = Rℓ

D(h)−Rℓ
S(h)

and ℓ is the 01-loss. This definition also highlights the worst-case nature of the uniform-convergence bounds:
given a confidence δ, the generalization gap ϕ(Rℓ

D(h),R
ℓ
S(h)) is upper-bounded by a complexity measure

Φu(δ) constant for all (h,S)∈H×(X×Y)m. The upper bound Φu(δ) can generally be improved by considering
algorithmic-dependent bounds [Bousquet and Elisseeff, 2002, Xu and Mannor, 2012]. This kind of bounds
upper-bound the generalization gap for the hypothesis hS learned by an algorithm from a learning sample S.
The definition of such bounds is recalled below.

Definition 20 (Algorithmic-dependent Generalization Bound). Let ℓ : H×(X×Y)→R be a loss function and
ϕ :R2→R be a generalization gap. An algorithmic-dependent generalization bound is defined such that if for any
distribution D on X × Y, there exists a function Φa : (0, 1]→R, such that for any δ ∈ (0, 1] we have

P
S∼Dm

[
ϕ(Rℓ

D(hS),R
ℓ
S(hS)) ≤ Φa(δ)

]
≥ 1−δ, (33)

where hS ∈ H is the hypothesis learned from an algorithm with S ∼ Dm.

For example, when ϕ(Rℓ
D(hS),R

ℓ
S(hS)) = Rℓ

D(hS)−Rℓ
S(hS), the upper bound Φa(δ) = 2β+(4mβ+1)

√
ln 1/δ
2m where

β is the uniform stability parameter [see, Bousquet and Elisseeff, 2002] and a bounded loss ℓ : H×(X×Y)→[0, 1].
Similarly to the uniform-convergence-based bounds, the upper bound Φa(δ) is a constant w.r.t. the hypothesis hS
and the learning sample S.

C.2 Obtaining Uniform-convergence Bounds

Since the parametric function µ in Theorem 3 depends on the learning sample S and the hypothesis h, we can
obtain from a specific µ a uniform-convergence-based bound (Equation (32)). Indeed, from Theorem 3, we obtain
the following uniform-convergence-based bound.
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Corollary 21. Let ℓ : H×(X×Y)→R be a loss function, ϕ :R2→R be the generalization gap and assume that
there exists a function Φu : (0, 1]→ R fulfilling Definition 19. Applying Theorem 3 with the parametric function µ
defined by

∀(h,S) ∈ H×(X×Y)m, µ(h,S) = −ϕ(Rℓ
D(h),R

ℓ
S(h))− Φu(

δ
2 )− lnπ(h)

gives the following bound

P
S∼Dm,h′∼π

[
sup
f∈H

ϕ(Rℓ
D(f),R

ℓ
S(f)) ≤ Φu(

δ
2 ) + ln

[
16

δ2
E

V∼Dm
E

g∼π
eϕ(R

ℓ
D(g),Rℓ

V(g))−ϕ(Rℓ
D(h′),Rℓ

S(h′))

]
︸ ︷︷ ︸

≜ Φ′
u(δ)

]
≥ 1−δ. (34)

Proof. Given the definition of ρS (with the parametric function µ defined above), we deduce from Theorem 3 that

P
S∼Dm, h′∼π,h∼ρS

[
ϕ(Rℓ

D(h),R
ℓ
S(h)) ≤−ϕ(Rℓ

D(h
′),Rℓ

S(h
′))− Φu(

δ
2 )− lnπ(h′)︸ ︷︷ ︸

µ(h′,S)

+ ϕ(Rℓ
D(h),R

ℓ
S(h)) + Φu(

δ
2 ) + lnπ(h)︸ ︷︷ ︸

−µ(h,S)

+ ln
π(h′)

π(h)
+ ln

[
16

δ2
E

V∼Dm
E

g∼π
eϕ(R

ℓ
D(g),Rℓ

V(g))

] ]
≥ 1−δ

2
.

Moreover, thanks to Definition 19, with probability at least 1− δ
2 over the random choice of S, we have −Φu(

δ
2 ) ≤

− supf∈H ϕ(Rℓ
D(f),R

ℓ
S(f)). Hence, with the union bound, we have that

P
S∼Dm, h′∼π,h∼ρS

[
ϕ(Rℓ

D(h),R
ℓ
S(h)) ≤− ϕ(Rℓ

D(h
′),Rℓ

S(h
′))− sup

f∈H
ϕ(Rℓ

D(f),R
ℓ
S(f))− lnπ(h′)

+ ϕ(Rℓ
D(h),R

ℓ
S(h)) + Φu(

δ
2 ) + lnπ(h)

+ ln
π(h′)

π(h)
+ ln

[
16

δ2
E

V∼Dm
E

g∼π
eϕ(R

ℓ
D(g),Rℓ

V(g))

]]
≥ 1−δ.

Therefore, by rearranging the terms, we obtain the desired result.

Corollary 21 underlines the fact that our framework is general enough to allow us to obtain a uniform-convergence-
based bound. Indeed, if we are able to find (with high probability) an upper bound of the worst-case generalization
gap supf∈H ϕ(Rℓ

D(f),R
ℓ
S(f)) denoted by Φu(δ), then our framework allows us to obtain a bound depending on

Φu(δ). For instance, when we consider the bound Φu(δ) = rad(H)+
√

1
2m ln 1

δ depending on the Rademacher

complexity rad(H), we are able to obtain a bound depending on Φu(δ) thanks to our framework; it is shown in
the following corollary.

Corollary 22. Let ℓ : H×(X×Y)→[0, 1] be a loss function. By applying Theorem 3 with the parametric function
µ defined by

∀(h,S) ∈ H×(X×Y)m, µ(h,S) = −√m[Rℓ
D(h)−Rℓ

S(h)]−
√
m

[
rad(H)+

√
1

2m ln 2
δ

]
− lnπ(h),

we can deduce the following bound

P
S∼Dm

[
sup
f∈H

Rℓ
D(f)− Rℓ

S(f) ≤ rad(H)+
√

1

2m
ln

4

δ
+

ln 128
δ3 +2√
m

]
≥ 1−δ.
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Proof. We apply Corollary 21 with the generalization gap ϕ(Rℓ
D(h),R

ℓ
S(h)) =

√
m[Rℓ

D(h)−Rℓ
S(h)] and with

Φu(δ) = rad(H)+
√

1
2m ln 1

δ (see Theorem 3.3 of Mohri et al. [2012]). To obtain with probability at least 1− δ/2

over S ∼ Dm and h′ ∼ π we have

sup
f∈H

Rℓ
D(f)− Rℓ

S(f) ≤ Φu(
δ
4 ) +

1√
m

ln

[
64

δ2
E

V∼Dm
E

g∼π
e
√
m[Rℓ

D(g)−Rℓ
V(g)]−

√
m[Rℓ

D(h′)−Rℓ
S(h′)]

]
.

Moreover, thanks to Markov’s inequality and the union bound, we obtain with probability at least 1− δ over
S ∼ Dm we have

sup
f∈H

Rℓ
D(f)− Rℓ

S(f) ≤ Φu(
δ
4 ) +

1√
m

ln

[
128

δ3
E

S∼Dm
E

h′∼π
E

V∼Dm
E

g∼π
e
√
m[Rℓ

D(g)−Rℓ
V(g)]−

√
m[Rℓ

D(h′)−Rℓ
S(h′)]

]
.

Then, we upper-bound the term ES∼Dm Eh′∼π EV∼Dm Eg∼π e
[Rℓ

D(g)−Rℓ
V(g)]−[Rℓ

D(h′)−Rℓ
S(h′)]. To do so, we first use

Fubini’s theorem to have

E
S∼Dm

E
h′∼π

E
V∼Dm

E
g∼π

e
√
m[Rℓ

D(g)−Rℓ
V(g)]−

√
m[Rℓ

D(h′)−Rℓ
S(h′)]

= E
h′∼π

E
g∼π

E
S∼Dm

E
V∼Dm

e
√
m[Rℓ

D(g)−Rℓ
V(g)]−

√
m[Rℓ

D(h′)−Rℓ
S(h′)].

Moreover, we upper-bound the term ES∼Dm EV∼Dm e
√
m[Rℓ

D(g)−Rℓ
V(g)]−

√
m[Rℓ

D(h′)−Rℓ
S(h′)] thanks to Hoeffding’s

lemma, to obtain

E
V∼Dm

E
S∼Dm

exp
(√

m[Rℓ
D(g)− Rℓ

V(g)]−
√
m[Rℓ

D(h
′)− Rℓ

S(h
′)]
)

=

m∏
i=1

[
E

(x′
i,y

′
i)∼D

E
(xi,yi)∼D

exp

(
1√
m

[
E

(x,z)∼D
ℓ(g, (x, y))− ℓ(g, (x′

i, y
′
i))− E

(x,z)∼D
ℓ(h′, (x, y)) + ℓ(h′, (xi, yi))

])]

≤
m∏
i=1

[
exp

(
2

m

)]
= exp (2) .

Hence, by rearranging the terms, we obtain the stated result.

The bound that we can obtain in Corollary 22 is greater than the bound of Mohri et al. [2012]’s Theorem 3.3. This
is normal since we use the bound in the parametric function µ. However, the higher the number of examples m, the
closer our bound will be to the original bound of Mohri et al. [2012]. Obtaining new uniform-convergence bound
(without relying on previously known bounds) by setting a specific parametric function µ is highly non-trivial
and is thus an exciting line of research that can be explored in the future.

C.3 Obtaining Algorithmic-dependent Bounds

Similarly, we can obtain an algorithmic-dependent generalization bound (Definition 20) by using the same
technique as in Corollary 21. Indeed, we can obtain the following result.

Corollary 23. Let ℓ : H×(X×Y)→R be a loss function, ϕ :R2→R be the generalization gap and assume that
there exists a function Φa : (0, 1]→ R fulfilling Definition 20. Applying Theorem 3 with the parametric function µ
defined by

∀(h,S) ∈ H×(X×Y)m, µ(h,S) = −ϕ(Rℓ
D(h),R

ℓ
S(h))− Φa(

δ
2 )− lnπ(h)

gives the following bound

P
S∼Dm,h′∼π

[
ϕ(Rℓ

D(hS),R
ℓ
S(hS)) ≤ Φa(

δ
2 ) + ln

[
16

δ2
E

V∼Dm
E

g∼π
eϕ(R

ℓ
D(g),Rℓ

V(g))−ϕ(Rℓ
D(h′),Rℓ

S(h′))

]
︸ ︷︷ ︸

≜ Φ′
a(δ)

]
≥ 1−δ. (35)
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Proof. The proof is similar to the one of Corollary 21. Given the definition of ρS (with the parametric function µ
defined above), we deduce from Theorem 3 that

P
S∼Dm, h′∼π,h∼ρS

[
ϕ(Rℓ

D(h),R
ℓ
S(h)) ≤−ϕ(Rℓ

D(h
′),Rℓ

S(h
′))− Φa(

δ
2 )− lnπ(h′)︸ ︷︷ ︸

µ(h′,S)

+ ϕ(Rℓ
D(h),R

ℓ
S(h)) + Φa(

δ
2 ) + lnπ(h)︸ ︷︷ ︸

−µ(h,S)

+ ln
π(h′)

π(h)
+ ln

[
16

δ2
E

V∼Dm
E

g∼π
eϕ(R

ℓ
D(g),Rℓ

V(g))

] ]
≥ 1−δ

2
.

Moreover, thanks to Definition 20, with probability at least 1− δ
2 over the random choice of S, we have −Φa(

δ
2 ) ≤

−ϕ(Rℓ
D(hS),R

ℓ
S(hS)). Hence, with the union bound, we have that

P
S∼Dm, h′∼π,h∼ρS

[
ϕ(Rℓ

D(h),R
ℓ
S(h)) ≤− ϕ(Rℓ

D(h
′),Rℓ

S(h
′))− ϕ(Rℓ

D(hS),R
ℓ
S(hS))− lnπ(h′)

+ ϕ(Rℓ
D(h),R

ℓ
S(h)) + Φa(

δ
2 ) + lnπ(h)

+ ln
π(h′)

π(h)
+ ln

[
16

δ2
E

V∼Dm
E

g∼π
eϕ(R

ℓ
D(g),Rℓ

V(g))

] ]
≥ 1−δ.

Therefore, by rearranging the terms, we obtain the desired result.

Hence, our framework is also general enough to retrieve algorithmic-dependent bounds. More precisely, the
generalization gap ϕ(Rℓ

D(hS),R
ℓ
S(hS)) associated with the hypothesis hS is upper-bounded by a constant Φ′

a(δ).
As for Corollaries 21 and 22, the drawback of Corollary 23 is that we have to rely on a previously known bound
to obtain our result. Therefore, further investigations must be done to derive entirely new algorithmic-depend
bounds by setting a specific parametric function µ.

D ADDITIONAL INFORMATION ON THE EXPERIMENTS

In this section, we first provide more experiments about Section 4.3 by varying α. Appendix D.3 presents how
Neural is obtained and more experiments on this parametric function (along with NeuralD).

D.1 About Computing the Bounds (with kl)

The evaluated bounds that we consider have all the same structure: with high probability, we have kl(q∥p) ≤ τ ,
where q is the empirical risk, p is the true risk, and τ is the bound. As shown, e.g., in Equation (5), we can
evaluate the bound on the true risk p by computing

kl[q|τ ] = max
{
p ∈ (0, 1)

∣∣∣ kl(q∥p) ≤ τ
}
.

We use the bisection method to solve this optimization problem, as proposed by Reeb et al. [2018]. This method
consists of refining the interval [pmin, pmax] in which p belongs. To do so, we first initialize pmin = q and pmax = 1.
Then, for each iteration, we first set ptmp = 1

2 (pmax − pmin), and then we change the values of pmin and pmax

depending on the value of the temporary parameter ptmp. Indeed, if kl(q∥ptmp) > τ (resp., kl(q∥ptmp) < τ),
we update pmax = ptmp (resp., pmin = ptmp). Moreover, if we have kl(q∥ptmp) = τ , a small interval (with
pmax− pmin < ϵ), or if we attain the maximum number of iterations, we return ptmp as kl[q|τ ]. In the experiments,
we set ϵ = 10−9 and the maximum number of iterations to 1000.

D.2 About Section 4.3

In the experiments introduced in Section 4.3, we fix α = m. We propose additional experiments in Figures 5
and 6 where α varies between

√
m and m. As we can remark in Figures 5 and 6, the concentration parameter α
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plays an important role: the higher α, the lower the test risks Rℓ
T (h). Moreover, the bounds are tighter than

those in Figure 3; however, the test risks remain high, so the bounds are not sufficiently concentrated. In this
setting, there is a trade-off between concentrating the distribution (by increasing α) and having a tight bound.

D.3 About Section 4.4

In this section, we first introduce in Appendix D.3.1 the setting to learn the parametric functions Neural and
NeuralD with neural networks, and we show additional experiments in Appendix D.3.2.

D.3.1 Training the Neural Parametric Functions

Neural’s dataset. In order to learn the neural networks associated with Neural, we have to train first neural
networks (to have the weights as input) and save their corresponding generalization gap (that is further used
as a label). To do so, for MNIST and FashionMNIST, we train models with a size of the validation set that
varies in order to obtain models with diverse generalization gaps. Starting from the original training set of
MNIST or FashionMNIST, we split the dataset into a training set and a validation set (to compute the gaps);
we denote by mval the size of the validation set and mtrain the size of the training set. After fixing the split,
we launch training and save the model with its corresponding gap after each epoch. We launch 1000 trainings
with the split ratio mval

mval+mtrain
∈ {0.99, 0.97, 0.95, 0.93}, 120 trainings with mval

mval+mtrain
= 0.90 and 110 trainings

with mval

mval+mtrain
∈ {0.80, 0.70, 0.60, 0.50, 0.40, 0.30, 0.20, 0.10}. In each training, we learn the model with the same

architecture as in Section 4.1, and we optimize in the same way as for the sampling from ρS , except that we run
SGD instead of SGLD (i.e., we remove the Gaussian noise) for at least 8000 iterations (we finish the epoch after
reaching the number of iterations). We show in Figure 7 the histogram of the obtained generalization gaps. Note
that our method of creating the dataset is similar to Lee et al. [2020], except that the size of our validation set
varies more, and we save the parameters directly (instead of the predictions).

Neural’s model. As summarized in Section 4.4, the parametric function Neural is a neural network that is
learned with the dataset created previously. This model is a feed-forward neural network with 3 hidden layers of
width 1024. The input is the weights and biases w of the network h, whereas the output is a scalar representing
Neural(h,S), i.e., the value of the parametric function learned from the neural network. After the input, we
normalize the parameters w with its ℓ2 norm, and we use a batch normalization layer [Ioffe and Szegedy, 2015]
(with a momentum of 0.1 and ϵ = 0.0). Moreover, the activation functions are leaky ReLU, and the output is
squared to obtain a positive output. The weights are initialized with the Xavier Glorot uniform initializer [Glorot
and Bengio, 2010]. The biases are initialized with a uniform distribution between −1/

√
1024 and +1/

√
1024 for

all biases, except for the first layer, they are initialized uniformly in [−1/
√
d,+1/

√
d], where d is the number of

parameters of the models in the dataset. The model is learned from Adam optimizer [Kingma and Ba, 2015]
for 100 epochs by minimizing the mean absolute error. The model is selected by early stopping: the Neural’s
dataset is split between a training set (of size mtrain) and a validation set (of size mval). Moreover, in order to
handle the fact that the Neural’s dataset is unbalanced, we rebalance it by (i) putting the gaps into 50 bins, (ii)
merging neighboring bins if they represent less than 1% of the dataset and (iii) sampling a bin with a probability
proportional to the inverse of the number of examples in the bin (the examples in the bin are sampled uniformly).
The merging procedure is done as follows: we merge the bin with its neighbor (that contains higher gaps) when
it has less than 1% of the dataset; we perform this until stabilization. We learn different networks (that give
several parametric functions Neural), with a batch size of 64, 128, or 256; Adam’s learning rate is either 0.001
or 0.0001 (the other parameters remain the default ones); and the ratio mval

mtrain+mval
is either 0.1, 0.3 or 0.5. Note

that the work of Lee et al. [2020] differs from ours by the fact that (i) we have a simpler architecture, and (ii) we
take the parameters as input in order to have a differentiable parametric function (for sampling from ρS).

D.3.2 Additional Experiments

In Figures 8 to 11, we show the bar plots of the parametric functions Neural and NeuralD learned with the
different hyperparameters. The figures highlight that hyperparameter tuning is extremely important. Indeed,
the performance of the parametric functions can change drastically between two sets of hyperparameters. We
believe that understanding the role of these hyperparameters is an exciting future work that might improve the
performance of such parametric functions.
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Figure 5: Evolution of the bounds (the plain lines) and the test risks Rℓ
T (h) (the dashed lines) w.r.t. the trade-off

parameter β for varying α and m′

m′+m = 0.0. The lines correspond to the mean, while the bands are the standard
deviations.
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Figure 7: Histograms of the generalization gaps associated with the neural networks in the dataset to learn
Neural.
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Figure 8: Bar plot of the bound value associated with Corollary 4 and MNIST for the parametric function
Neural learned with different hyperparameters. On the y-axis, the bar labels “A / B / C” represent the three
hyperparameters that vary: “A” is the batch size, “B” is the size of the validation set compared to the original
dataset (of neural networks), and “C” is the learning rate of the Adam optimizer. The mean bound values of the
sampled hypotheses h ∼ ρS are shown with the hatched bars, and the mean test risks Rℓ

T (h) are plotted in the
colored bars. Moreover, the standard deviations are plotted in black.
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Figure 9: Bar plot of the bound value associated with Corollary 4 and FashionMNIST for the parametric function
Neural learned with different hyperparameters. On the y-axis, the bar labels “A / B / C” represent the three
hyperparameters that vary: “A” is the batch size, “B” is the size of the validation set compared to the original
dataset (of neural networks), and “C” is the learning rate of the Adam optimizer. The mean bound values of the
sampled hypotheses h ∼ ρS are shown with the hatched bars, and the mean test risks Rℓ

T (h) are plotted in the
colored bars. Moreover, the standard deviations are plotted in black.



Paul Viallard, Rémi Emonet, Amaury Habrard, Emilie Morvant, Valentina Zantedeschi

0.0 0.2 0.4 0.6 0.8 1.0

128 / 0.1 / 0.0001

128 / 0.1 / 0.001

128 / 0.3 / 0.0001

128 / 0.3 / 0.001

128 / 0.5 / 0.0001

128 / 0.5 / 0.001

256 / 0.1 / 0.0001

256 / 0.1 / 0.001

256 / 0.3 / 0.0001

256 / 0.3 / 0.001

256 / 0.5 / 0.0001

256 / 0.5 / 0.001

64 / 0.1 / 0.0001

64 / 0.1 / 0.001

64 / 0.3 / 0.0001

64 / 0.3 / 0.001

64 / 0.5 / 0.0001

64 / 0.5 / 0.001

MNIST (NeuralD)

Figure 10: Bar plot of the bound value associated with Corollary 4 and MNIST for the parametric function
NeuralD learned with different hyperparameters. On the y-axis, the bar labels “A / B / C” represent the three
hyperparameters that vary: “A” is the batch size, “B” is the size of the validation set compared to the original
dataset (of neural networks), and “C” is the learning rate of the Adam optimizer. The mean bound values of the
sampled hypotheses h ∼ ρS are shown with the hatched bars, and the mean test risks Rℓ

T (h) are plotted in the
colored bars. Moreover, the standard deviations are plotted in black.
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Figure 11: Bar plot of the bound value associated with Corollary 4 and FashionMNIST for the parametric
function NeuralD learned with different hyperparameters. On the y-axis, the bar labels “A / B / C” represent
the three hyperparameters that vary: “A” is the batch size, “B” is the size of the validation set compared to
the original dataset (of neural networks), and “C” is the learning rate of the Adam optimizer. The mean bound
values of the sampled hypotheses h ∼ ρS are shown with the hatched bars, and the mean test risks Rℓ

T (h) are
plotted in the colored bars. Moreover, the standard deviations are plotted in black.
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