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Abstract

We study robust linear regression in high-
dimension, when both the dimension d and
the number of data points n diverge with
a fixed ratio α = n/d, and study a data
model that includes outliers. We provide ex-
act asymptotics for the performances of the
empirical risk minimisation (ERM) using ℓ2-
regularised ℓ2, ℓ1, and Huber losses, which
are the standard approach to such problems.
We focus on two metrics for the performance:
the generalisation error to similar datasets
with outliers, and the estimation error of the
original, unpolluted function. Our results
are compared with the information theoretic
Bayes-optimal estimation bound. For the
generalization error, we find that optimally-
regularised ERM is asymptotically consistent
in the large sample complexity limit if one per-
form a simple calibration, and compute the
rates of convergence. For the estimation error
however, we show that due to a norm calibra-
tion mismatch, the consistency of the estima-
tor requires an oracle estimate of the optimal
norm, or the presence of a cross-validation set
not corrupted by the outliers. We examine in
detail how performance depends on the loss
function and on the degree of outlier corrup-
tion in the training set and identify a region
of parameters where the optimal performance
of the Huber loss is identical to that of the
ℓ2 loss, offering insights into the use cases of
different loss functions.
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1 INTRODUCTION

The problem of robust regression — i.e. linear re-
gression with spurious outliers in the training set
— has been extensively studied in the classical low-
dimensional setting [Huber, 2011]. More recently, the
high-dimensional setting has also been considered
mainly concerning the characterisation of the asymp-
totic performance of robust estimators — see Section 2
for a review of related works. In this paper, we provide
new theoretical results on the problem in the high-
dimensional regime where the dimensionality of the
problem d is comparable to the number of training sam-
ples n available (n, d → ∞ with fixed ratio α = n/d),
investigating in particular the phenomenology arising
due to the presence of outliers.

We build upon the recent progresses in high-
dimensional statistics that characterise the asymptotic
performance of the Bayes Optimal (BO) and the Em-
pirical Risk Minimisation (ERM) estimators for general
data models learned with generalised linear models. In
particular, we consider a probabilistic model of training
datasets — first introduced in [Box and Tiao, 1968] —
that features a tunable presence of outliers and we in-
vestigate the high-dimensional setting performances
of some standard regression estimators. We focus
our attention on empirical risk minimisers under the
ℓ2-regularised ℓ2, ℓ1 and Huber losses [Huber, 1964],
and study how they asymptotically perform in various
outlier settings (e.g. small/large outlier percentage,
small/large outlier variance). We focus on two metrics
for the performance, the generalisation error to sim-
ilar datasets with outliers, and the estimation error
of the original, noiseless function, and we compare to
information theoretic Bayes-optimal bounds.

For the probabilistic model of outliers we consider,
eq. (1), we provide closed-form expressions for the
high-dimensional limit of the generalisation error of
ERM for the ℓ2, ℓ1 and Huber losses, and for the BO
estimator (for which we compute exact rates at large
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sample complexity α). Our main results are:

• Optimally-regularised ERM is not always con-
sistent. Based on the value of the parameters charac-
terising the outliers’ distribution, optimally-regularised
ERM estimation can fail to achieve BO performance
for large sample complexity α, i.e. fail to achieve consis-
tency. This happens for both the generalisation error
and for the estimation error, in different regions of
the parameter space. Notably, for the generalisation
error there is a regime in which optimally-regularised
ERM with ℓ1 loss or the Huber loss (with un-optimised
scale parameter) is not consistent, while optimally-
regularised ERM with ℓ2 and optimally-scaled Huber
loss is consistent. This demonstrates the superiority of
optimally-scaled Huber loss over the other losses.
• Calibration of ERM minimiser norm restores
consistency. In the aforementioned cases in which
ERM is not consistent, the inconsistency is caused
exclusively by a mismatch between the norm of the
ERM minimiser and that of the ground-truth. We
show that consistency for the generalization error, and
optimal rates, can be recovered by cross-validating on
a test set to find the optimal norm.
• Non-consistency of the estimation error. Even
when the cross-validated estimator is consistent and
achieves optimal rates for the generalization error, it
may remain inconsistent for the estimation error on
the original, unpolluted function, which is arguably
a more interesting objective. While this, too, can be
calibrated, such a calibration requires either having
access to an oracle knowledge of the BO norm, or to
a clean, unpolluted dataset to cross-validate for the
optimal norm. In the absence of such an ideal hold-
out dataset, the Huber and ℓ1 methods do not lead
to consistent estimates of the objective functions, and
robust estimation is biased.
• Dependency of the generalisation error on
the parameters. We study the dependency of the
generalisation error on the amount and strength of the
outliers in the training dataset. We find that there is an
extended region of parameters where the performance
of the Huber loss is the same as the simpler ℓ2 function,
offering insights into the use cases of different loss
functions.

In Section 2 we discuss related works. In Section 3 we
introduce the data model we consider, and the noise
model accounting for outliers. In Section 4 we provide
the analytical characterisation for the estimation and
generalisation errors for the ERM and BO estimators.
In Section 5 we discuss the large sample complexity
limit, and prove our results concerning the consistency
of ERM estimators. In Section 6 we discuss the de-
pendency of the generalisation error on the parameters
characterising the outliers’ distribution. We provide

more details and proofs figures in the Supplemental
Materials. The code to reproduce the figures can be
found at github.com/IdePHICS/RobustRegression.

2 RELATED WORKS

The problem of regression in the presence of outliers
has been studied extensively, starting with Huber’s
seminal works [Huber, 1964, Huber, 1965] where he
first introduced M-estimators as a robust alternative to
classical estimators and secondly extended the concept
of robustness to hypothesis testing. A comprehensive
framework for understanding and defining robustness in
statistical procedures was then given by [Hampel, 1968,
Hampel, 1971].

Several algorithms have been proposed to approach
problems with outliers — see the review [Huber, 2011].
In most cases, these are variants of standard
linear regression based, for example, on custom
loss functions [Huber, 1964], on hard-thresholding
[Bhatia et al., 2017], on some sparsity assumption
[Suggala et al., 2019] or on the sum of squares method
[Raghavendra and Yau, 2020].

The choice of the outlier model greatly affects both
the theoretical analyses and practical algorithms.
The double Gaussian noise model that we consider
has been first introduced in [Box and Tiao, 1968].
A similar model that considers outliers as a two-
way process is studied in [Berger and Berliner, 1986].
Recently this model has been reconsidered by
[Bellec, 2020], where they provide bounds on the gen-
eralisation error in the case of Huber-loss regres-
sion. Other models have also been proposed; see,
for example, [Bean et al., 2013, Tsakonas et al., 2014,
Yuen and Ortiz, 2017, Dalalyan and Thompson, 2019,
Gagnon et al., 2020].

There have been numerous works analysing the gen-
eralisation error for M-estimation and robust re-
gression in high dimensions. In [Karoui et al., 2013,
Bean et al., 2013, Donoho and Montanari, 2016], they
consider high-dimensional M-estimation for a model
of data with exponentially-distributed outlier noise.
They provide results on exact asymptotics and study
the trade-off between using ℓ2 and ℓ1 loss. In
[Hastie et al., 2022], they prove bounds for the pre-
cise asymptotics of the generalisation error of ℓ2 reg-
ularised ℓ2 loss, while in [Thrampoulidis et al., 2018],
they prove asymptotics for M-estimation using Gordon
min-max techniques. In [Liu et al., 2019], they con-
sider a sparse model under an almost-high-dimensional
limit n ∼ log(d). In [Huang, 2020], a comparison of
the precise asymptotics of ℓ1-regularised ℓ2, ℓ1 and
Huber loss is presented, with a focus on the interplay
between the sparsity and the sample complexity of the

https://github.com/IdePHICS/RobustRegression
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problem. In [Bellec et al., 2022], they present results
on the asymptotic normality of M-estimators.

The characterisation of the generalisation error
for ERM that we use and specialise to our spe-
cific data model eq. (1) has been proven in
[Aubin et al., 2020] and more recently in greater gener-
ality in [Loureiro et al., 2022]. The characterisation of
the Bayes optimal performance has been rigorously es-
tablished in [Barbier et al., 2019]. We are using these
results as the basis of our investigations in this paper.
We stress that all these works do not model outliers,
thus providing no direct insight on robust regression.

3 DATA AND NOISE MODEL

We will consider a linear regression task in Rd, i.e. we
will fit a linear model — the “student” — ŷ(x;w) =
x · w/

√
d to a dataset D = {(xi, yi)}ni=1 made of n

pairs of data-points xi ∈ Rd and labels yi ∈ R sam-
pled independently from a joint probability distribution
P (x, y).

We will consider a probabilistic generative model
P (x, y) = Pout(y|x ·w⋆/

√
d)Pinput(x). In this model,

the dataset labels are generated by corrupting the
output of a “teacher” linear model with weights w∗

through an output channel Pout. We will consider
the simple Gaussian case where the teacher vector
is distributed as w⋆ ∼ N (0,1d), and the samples x
have Gaussian distribution Pinput = N (0,1d). As-
suming Gaussian data may seem limiting, but a long
line of work has proven to various degrees that real
data often behave as Gaussian data due to an under-
lying mechanism called “Gaussian universality”, see
for example [Hu and Lu, 2023]. Notice also that cor-
related feature may be addressed under the setting of
[Loureiro et al., 2022]. We do not do that, as we found
an interesting phenomenology already for uncorrelated
features.

In order to model datasets with outliers, we consider
the following generative process for the labels

y(x) =

{
y⋆ + z

√
∆IN with prob. 1− ϵ

βy⋆ + z
√
∆OUT with prob. ϵ

(1)

where y⋆ = x ·w⋆/
√
d is the clean teacher-generated

label, z is a standard Gaussian noise, ∆IN is the vari-
ance of the non-outlying training points, ∆OUT is the
variance of the outlying training points, ϵ is the fraction
of outliers and β ≥ 0 is a parameter controlling the
outliers’ norm. In the following, we will consider often
the special case of β = 0, but all of our results can be
extended for any value β ∈ R+ (see Appendix A.2).

We will consider two different metrics to analyse the
performance of the estimators. The first metric is the

generalisation error of a model with weights w, defined
as

Egen(w) = E(xnew,ynew)

[(
ynew − xnew ·w√

d

)2
]
, (2)

where the average is over a sample-label pair
(xnew, ynew) generated with the same distribution as
the training set. This metric is relevant for assessing
the predictive power of the fitted model, as it computes
the average error that the model achieves on an unseen
input xnew, extracted from the same distribution of the
training dataset. The second metric we will consider
is the estimation error, which is the mean-square error
between the teacher and student weights, defined as

Eestim(w) =
1

d
∥w⋆ −w∥22 , (3)

This metric is relevant for parameter estimation, where
one is interested in recovering the value of the parame-
ters used to generate the distribution. We remark that,
as the sample distribution Pinput(x) is Gaussian, the
estimation error also coincides with the generalisation
error evaluated on a clean dataset

Eestim(w) = Ex

[(
y⋆(x)− x ·w√

d

)2
]
, (4)

where the average is over the sample distribution
Pinput(x), and y⋆ = x ·w⋆/

√
d is the noiseless teacher-

generated label. Thus, in this setting, cross-validation
on clean datasets is equivalent to cross-validation on
the mean-square error with the ground truth. We will
be interested in characterising the behaviour of the gen-
eralisation error and the estimation error when both
the dimension d and the number of training samples
n are large, d, n → ∞ with finite sample complexity
α = n/d.

4 CHARACTERISATION OF THE
PERFORMANCE OF BO AND
ERM ESTIMATORS

Bayes Optimal estimator. The BO estimator is
defined as the estimator achieving, on average over the
data distribution, the lowest value of a given perfor-
mance metric. Define the posterior distribution as

P (w | D) =
1

ZD
P (w)P (D | w) , (5)

where ZD is a normalisation factor, D is the training
dataset, and in our case P (w) = N (0,1d). It is well
known [Cover and Thomas, 1991] that the optimal es-
timator error, as defined in eq. (3), is achieved from
the posterior average

ŵBO
estim(D) = Ew|D[w] (6)



Asymptotic Characterisation of the Performance of Robust Linear Regression in the Presence of Outliers

Instead, the optimal estimator for the generalisation
error, as defined in eq.(2) is given by (see Appendix A.1)

ŵBO
gen(D) = Ew|D

[
Ex̄,ȳ|w[ȳ x̄]

]
, (7)

where Ew|D[·] is the posterior average, and Ex̄,ȳ|w[·] is
the average over a sample-label pair (x̄, ȳ) generated
with the data model eq. (1) using w as a teacher vector.

In the high-dimensional limit, one can characterise an-
alytically the behaviour of both the BO generalisation
error and the BO estimation error. This was first rigor-
ously proven in [Barbier et al., 2019], whose results we
adapt to our situation to characterise the information
theoretic Bayesian bound. In [Barbier et al., 2019] the
authors showed that in generalized linear models, the
value of the estimation error concentrates on

EBO
estim = 1− qb , (8)

while the value of the generalisation error concentrates
on (here we specify their equations to the particular
model of data used in the present paper)

EBO
gen = 1 + ϵ(β2 − 1)− qb(1 + ϵ(β − 1))2 +∆eff , (9)

where ∆eff = (1− ϵ)∆IN + ϵ∆OUT and the order param-
eter qb — which can be interpreted as the normalised
overlap between the posterior average and the teacher
vector — can be found by solving the system of two
equations

qb =
q̂b

1 + q̂b
,

q̂b = α

∫
Eξ

[
Zout (·) fout

(
y, q

1/2
b ξ, ρw⋆ − qb

)2]
dy,

(10)
with fout and Zout defined as

Zout(y, ω, V ) = Ez∼N (ω,V ) [Pout(y|z)] ,
fout(y, ω, V ) = ∂ω log(Zout(y, ω, V )) ,

(11)

and evaluated both in the same parameters.

As α → ∞, qb → 1, showing that for large sample
complexity the BO estimation goes to zero, while the
BO generalisation error does not, as a non-zero excess
error remains. For this reason, in the following we will
often work with the excess generalisation error, defined
as

Eexcess
gen (w) = Egen(w)− EBO

gen(α = +∞)

= Egen(w)− ϵ(1− ϵ)(1− β)2 −∆eff .
(12)

Notice that, in practical scenarios, computing the poste-
rior average, or more generally providing an algorithm
that efficiently reaches Bayes optimal performance —
for example, in polynomial time in n, d — is challeng-
ing. In this specific case, an efficient algorithm to

compute the BO estimator accurately in the considered
limit on large n, d and fixed ratio n/d exists. It is
the generalised approximate message passing (GAMP)
algorithm [Kabashima and Uda, 2004, Rangan, 2011,
Barbier et al., 2019], which we will use to plot numer-
ical simulations for BO errors in the following (see
Appendix B.3 for details).

We will use the BO estimator as a baseline to compare
the performance of ERM with the selected losses to
the optimal one in the presence of outliers. Specifically,
eq. (8) and eq. (9) provide the information-theoretical
lower bounds for the estimation error and generalisation
error, respectively.

Empirical risk minimisation. Define the risk func-
tion

R(w) =

n∑
i=1

L(yi, ŷi(w)) + λ r(w) , (13)

where ŷi(w) = xi ·w/
√
d are the labels predicted by

the model on each training sample, yi are the noisy
labels of the training dataset, L is a convex function
of ŷ, r a convex function of w and λ ≥ 0. Minimising
the risk function R(w) provides an estimate ŵ of the
teacher vector w⋆, and this estimate is uniquely defined
thanks to convexity of the risk.

The risk function is a sum of a data-dependent term
L(y, ŷ) and of a regularisation function r(w). For the
data-dependent loss function L, we will consider three
convex losses: ℓ2, ℓ1 and Huber loss. The ℓ2 loss
ℓ2(y, ŷ) = 1

2 (y − ŷ)2 is the most common choice in
regression and will provide a good baseline for more
outlier-robust losses. The ℓ1 loss ℓ1(y, ŷ) = |y − ŷ| is
the simplest choice for outlier-robust regression, as it
penalises less poor interpolation of outliers w.r.t. the
ℓ2 loss. The Huber loss

ℓHuber
a (y, y′) =

{
1
2 (y − y′)2 if |y − y′| < a

a|y − y′| − a2

2 if |y − y′| ≥ a
(14)

has been proposed as a middle-ground between ℓ2 and
ℓ1 [Huber, 1964]. It is more resilient to outliers than
the ℓ2 loss, while remaining smooth and convex as
the ℓ2 loss. Proper tuning of the scale parameter a
effectively produces an ℓ2 loss landscape for the non-
outlying data points and an ℓ1-like one for the outliers.
For a → +∞ the Huber loss reduces to the ℓ2 loss,
while for a → 0 there is a straightforward mapping to a
ℓ1 loss (one needs to rescale the total loss by a factor a
to take this limit, obtaining an effective regularisation
λa). While our analysis could be carried on for any
choice of convex regulariser r(w), we will only study
the ℓ2 regularisation r(w) = 1

2∥w∥22. Notice that due
to our choices of scaling, for λ to have an effect on the
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norm of the learned weights in the limit α → ∞, one
needs the scaling λ = O(α).

We will mostly consider optimally-tuned risk minimisa-
tion, meaning that we will set λ, and a in the case of
the Huber loss, such as to minimise either the generali-
sation or the estimation error. In practice, the former
is equivalent to cross-validation on a dataset statisti-
cally identical to the training set, while the latter to
cross-validation on a clean dataset, without any noise
or outliers. We will perform numerical simulations for
the errors of ERM estimators using, for the ℓ2 loss,
the explicit solution for its minimiser. For Huber loss,
we use the L-BFGS method [Liu and Nocedal, 1989]
initialised on a random Gaussian weight. For the ℓ1
loss we use its mapping onto Huber with small scale
parameter, setting a = 10−3.

Our first main result is the analytic characterisation of
the generalisation and estimation errors of the ERM
estimator.

Theorem 4.1. For the ERM estimator of the risk
function eq. (13) with ℓ2 regularisation and λ ≥ 0,
under the data model defined in eq. (1) with β = 0 and
in the high dimensional limit n, d → ∞ with n/d = α
fixed, we have that the excess generalisation error and
the estimation error concentrate on

Eexcess
gen = 1− ϵ+ q − 2m(1− ϵ) ,

Eestim = 1 + q − 2m,
(15)

where the values of q and m are the solutions of a
system of six self-consistent equations for the unknowns
(m, q,Σ, m̂, q̂, Σ̂). Three equations are loss-independent

m =
m̂

λ+ Σ̂
, q =

m̂2 + q̂

(λ+ Σ̂)2
, Σ =

1

λ+ Σ̂
, (16)

while the other three are loss-dependent. For the ℓ2 loss
we have that

m̂ =
α

1 + Σ
(1− ϵ) , Σ̂ =

α

1 + Σ
,

q̂ =
α(1 + q + (1− ϵ)∆IN + ϵ∆OUT − ϵ− 2m(1− ϵ))

(1 + Σ)2
.

(17)
For the ℓ1 loss and for the Huber loss we have that:

m̂ =
α

ν
[(1− ϵ) erf (χIN)] ,

Σ̂ =
α

ν
[(1− ϵ) erf (χIN) + ϵ erf (χOUT)] ,

q̂ =
α

ν2

[
(1− ϵ)

(
ζIN − µ2

)
erf (χIN)

+ ϵ
(
ζOUT − µ2

)
erf (χOUT) + µ2

− µ

√
2

π

(
(1− ϵ)

√
ζIN e−χ2

IN + ϵ
√
ζOUT e−χ2

OUT

)]
,

(18)

where ζIN = ∆IN − 2m+ q+1, ζOUT = ∆OUT + q, while
the other constants depend on the loss. For ℓ1 loss

µℓ1 = νℓ1 = Σ ,

χℓ1
IN = Σ/

√
2ζIN , χℓ1

OUT = Σ/
√
2ζOUT ,

(19)

and for Huber loss

νHuber = Σ+ 1 , µHuber = aνHuber ,

χHuber
IN = µHuber/

√
2ζIN ,

χHuber
OUT = µHuber/

√
2ζOUT .

(20)

The previous Theorem can be proven following the
proof of Theorem 1 in [Loureiro et al., 2022], through a
reduction to our case and a computation of loss-specific
quantities (namely their proximal operators) that is
provided in detail in Appendix A.2. We also provide
a similar result for β > 0. The parameters m and
q appearing in the previous statement have a simple
interpretation as the values around which the teacher-
student and student-student overlaps concentrate in
high dimension

m =
1

d
w⋆ · ŵ , q =

1

d
∥ŵ∥22 . (21)

In the case of Ridge regression we have that the equa-
tions can be solved explicitly and get to an explicit
form for the generalisation error. We show this in
Appendix A.2.1.

5 CONSISTENCY (AND LACK
THEREOF) OF THE
GENERALISATION &
ESTIMATION ERROR

We now study, for both generalisation and estima-
tion error and at large sample complexity α, whether
optimally-regularised ERM estimators achieve BO per-
formance or not, i.e. whether ERM is a consistent
estimator.

We start by remarking that the large sample complexity
asymptotics of the BO generalisation error and of the
BO estimation error is

EBO
estim = 0 +O

(
α−1

)
,

EBO
gen = ϵ(1− ϵ)(1− β)2 +∆eff +O

(
α−1

) (22)

which can be found by expanding around qb = 1 +
c/α + O

(
α−2

)
in eq. (10). We prove the (fast) rate

1/α for the errors in Appendix A.3. This rate is
a typical feature of BO estimators, see for example
[Aubin et al., 2020, Haussler et al., 1991].
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Figure 1: Generalisation and estimation errors as a function of the sample complexity α for β = 0, in two regimes
where ERM do not always achieve BO performance for large α. (Left) Here we plot the excess generalisation
error for ϵ = 0.6, ∆IN = 1 and ∆OUT = 0.5, and for all losses we use the optimal value of λ. We plot two versions
of the Huber loss, one with optimal scale parameter a and the other with fixed a = 1. We see that only the error
of the ℓ2 and Huber loss with optimal scale a (superimposed in the plot) vanishes at large sample complexity,
reaching BO performance. For fixed-scale Huber loss, and ℓ1 loss, the error converges to a finite value. The
parameters used for the simulations (dots) of BO are d = 1000 averaged over 50 samples, while for the ERM
d = 200 averaged over 1000 samples. (Right) Here we plot the estimation error for ϵ = 0.3, ∆IN = 1.0 and
∆OUT = 5.0, and for all losses we use optimal (λ, a). We see that all losses converge to a finite value of the
estimation error, while the BO error goes to zero for large sample complexity. The parameters used for BO are
d = 4000 averaged over 10 samples, while for the ERM d = 200 aveaged over 1000 samples.

We then consider ERM. We find that ERM always
estimates correctly the direction of the teacher weights.
One could then expect that by adjusting the ℓ2 regular-
isation parameter, ERM estimators could also achieve
the BO norm for the metric under consideration (gen-
eralisation/estimation error). We show that this is not
always possible if we restrict λ ≥ 0 — a very natural
constraint given that for λ < 0 the risk function for ℓ1
and Huber losses becomes non-convex and unbounded
from below. This is due to the fact that for some values
of the parameters characterising the outliers’ distribu-
tion, the norm of ERM estimators is shorter than the
BO one, requiring a priori a negative regularisation to
push it to larger norms.

Theorem 5.1. Under the same conditions of Theorem
4.1, as α → ∞ (taken after the n, d → ∞ limit), we
have that

• the normalised scalar product between ERM estima-
tors (for the three losses considered) with the teacher
weights converges to one, regardless of the value of the
regulariser λ and of the scale parameter a of the Huber
loss.
• ℓ2 and optimally-scaled Huber ERM estimators
achieve consistency with respect to the generalisation
error for all fixed values of λ > 0 with the BO rate
1/α for all values of the parameters of the outliers’
distribution.
• Optimally-regularised ℓ1 and Huber ERM estimators
(with the scale parameter of the Huber loss left fixed,
un-optimised) achieve consistency with respect to the
generalisation error with the BO rate 1/α if and only
if ∆OUT −∆IN ≥ (1− β)2(2ϵ− 1) for 0 < β < 1, and
∆OUT −∆IN ≤ (1− β)2(2ϵ− 1) for β > 1.
• Optimally-regularised ERM estimators (for the three

losses considered) achieve consistency with respect to
the estimation error with the BO rate 1/α if and only
if β > 1.

We prove Theorem 5.1 in Appendix A.4 by expanding
at large α the self-consistent equations presented in
Theorem 4.1. Thus, we proved that there exists some
regions of parameters in which, for both generalisation
and estimation error, ℓ2 regularisation is not sufficient
to reach BO performance. In those regimes, consistency
for the generalisation error can always be recovered
by cross-validating on a test set to find the best norm,
given that the angle between teacher and student van-
ishes. Due to homogeneity properties of the three losses
considered, the rescaling can also be performed before
training on the labels, as discussed in Appendix A.4.6.
The estimation error can be calibrated similarly, but
we stress that such a calibration requires either having
access to an oracle knowledge of the BO norm, or to
a clean, unpolluted dataset to cross-validate for the
optimal norm. In the absence of such an ideal hold-out
dataset, the Huber and ℓ1 methods do not lead to con-
sistent estimates of the objective functions, and robust
estimation is biased.

In Figure 1 we show, for both the generalisation and
estimation error, the dependency of the error on the
sample complexity α in two regimes were some of the
losses do not achieve consistency. It is worth notic-
ing that consistency could be achieved by carefully
allowing for negative ℓ2 regularisation. In the case of
the ℓ2 loss, a negative regularisation does not immedi-
ately break the convexity of the risk function. Indeed,
the risk function is convex up to λ = −(1 −

√
α)2

(see Appendix A.5). Thus, for ℓ2 loss consistency for
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Figure 2: Excess generalisation error (top panels) as a function of the percentage of outliers’ ϵ (left) and of the
outliers’ variance ∆OUT (right), along with the respective optimal hyper-parameters (λ, a) (bottom panels). In
both plots α = 10, β = 0, ∆IN = 1, and for all numerical simulations (dots) have d = 200, and are averaged
over 1000 samples. (Left) In this plot ∆OUT = 5. We observe that for small ϵ both the ℓ2 and the Huber loss
converge to BO performance, while ℓ1 does not. (Right) In this plot ϵ = 0.3. For ∆OUT < ∆IN we notice that
the Huber scale parameter diverges, so the Huber and ℓ2 loss become identical. Furthermore, the BO estimator
has a non-monotonic behaviour as a function of ∆OUT, while ERM estimators are monotonic.

the estimation error can be achieved without using
an oracle norm up to (in the large sample complexity
limit) β > 1 − ϵ−1, by allowing for negative lambda
and retaining convexity of the risk function. On the
other hand, for ℓ1 and Huber loss, even an arbitrar-
ily small negative regularisation implies a non-convex
and unbounded-from-below risk function. It is reason-
able to think though that an optimisation procedure
restricted to small enough norms would still result in
a well-defined ERM procedure, allowing for negative
regularisation also in these case. We leave a more thor-
ough exploration of this effect for future work. We
also mention that negative regularisation has been con-
sidered in a series of recent works [Wu and Xu, 2020,
Kobak et al., 2022, Hastie et al., 2022].

6 DEPENDENCY OF THE
GENERALISATION ON THE
PARAMETERS

We now investigate the dependence of on the parame-
ters characterising the amount of corruption caused by
outliers. As in the previous section, we plot the excess
generalisation error, and we always consider optimally
tuned hyperparameters λ and a. Again, we discuss
the phenomenology arising for a particular value for
the parameters of the model, but we stress that the
phenomenology is qualitatively the same for other val-
ues of the parameters, see Appendix D for additional
experiments, as well as Appendix C for a more realistic
scenario.

Dependency of the generalisation error on the
amount of outliers. We investigate the influence of
the percentage of outliers ϵ on the generalisation error
in Figure 2 left panel. We identify two qualitatively
different regimes where the behaviour is different: the
regime with small ϵ where outliers are rare and vice-
versa the regime with ϵ close to 1, where the samples
that would be considered outliers in the ϵ → 0 limit
dominate the dataset.

We observe that in the small ϵ regime, for all losses,
the ERM excess generalisation error increases as the
percentage of outliers increases. In the limit of small
ϵ, the Huber loss performs similarly to ℓ2, which is
known to be Bayes optimal at ϵ = 0 if optimally regu-
larised [Cover and Thomas, 1991]. In contrast, the ℓ1
loss converges to a higher value for the generalisation
error not reaching BO performances. For all finite
values ϵ, ERMs fails to reach BO performance for all
three choices of the loss we studied. By expanding the
explicit asymptotic form for the generalisation error of
ERM with ℓ2 loss presented in Corollary A.1, we are
able to provide an analytical characterisation of the
small ϵ behaviour of ℓ2 ERM.

Theorem 6.1. As ϵ → 0 (taken after the n, d →
∞ limit), we have that the generalisation error of
optimally-regularised ℓ2 loss and the optimal regulari-
sation satisfy

Eℓ2
gen = EBO

gen + κϵ+O(ϵ2) , λ = ∆IN + λ1ϵ+O(ϵ2)
(23)

where EBO
gen is the Bayes optimal generalisation error,

and κ and λ1 are functions of the model parameters
that we provide in Appendix A.6.
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Figure 3: Difference between the generalisation error
of optimally-regularised ℓ2 and Huber loss losses as a
function of ϵ and ∆OUT for ∆IN = 1, β = 0. Each
shaded region denotes where the two losses have a non-
zero difference, i.e. where it is better to use the Huber
loss, for different values of α as indicated by the labels.
Focusing on the region of small ϵ and large ∆OUT, i.e.
when dealing with just a few extremely noisy outliers,
the plot suggests that having many samples (large α)
makes using the Huber loss not advantageous.

In the ϵ ≳ 0.5 regime, where outliers are dominant, we
observe a decrease in the excess generalisation error,
which eventually vanishes as ϵ approaches one. In this
limit the majority of the dataset is composed of data
generated from a β-rescaled teacher, so that ERM will
be biased to smaller (0 < β < 1) or larger (β > 1)
norms than if trained on a dataset with no outliers. As
discussed previously, the optimal ℓ2 regularisation will
counterbalance as much as possible this effect, aiming
at the BO norm. In the extreme case where β = 0,
outlier samples provide no meaningful information on
the ground truth and the BO estimator equals the null
vector w = 0. This is compatible with what we observe
in the figure, where λopt diverges as ϵ approaches one.

Dependency of the generalisation error on the
variance of outliers. In Figure 2, right panel, we
consider the dependency of the generalisation error
as a function of the variance of the outliers ∆OUT.
We start by noticing that all ERM estimators have
a generalisation error that grows monotonically with
∆OUT, while the BO generalisation error has a non-
monotonic behaviour, with a local maximum. This
behaviour is also present for β > 0. Moreover, we notice
that for large outliers’ variance the ℓ2 loss performs
worse than the more resilient ℓ1 and Huber losses, as
expected.

Performance difference between Huber and ℓ2
loss We observe an interesting behaviour in compar-

ing the Huber loss and the ℓ2 loss. Observing Figure 2,
right panel, we observe that as ∆OUT decreases the
scale parameter value aopt of the Huber loss diverges
to infinity at a finite value of ∆OUT. When a → +∞
the Huber loss converges to the ℓ2 loss, as confirmed by
the fact that their predicted generalisation errors coin-
cides (Figure 2 right). It is remarkable that optimally-
regularised Huber loss is not always strictly better
than the simpler ℓ2 loss in a whole region of model
parameters.

We explore further this phase transition by plotting
the difference between the generalisation error of the
optimal ℓ2 and Huber losses as a function of both ϵ and
∆OUT in Figure 3. We remark that the two plots in
Figure 2 correspond respectively to horizontal and ver-
tical slices in this plot. Also, we see that the difference
in performance between the two losses is relevant just
in the region of large ∆OUT and intermediate ϵ. More-
over, focusing on the region of small ϵ, large ∆OUT and
large α, i.e. for really rare and noisy outliers, Figure 3
suggests that the more samples one has (larger α), the
less convenient it becomes to use the Huber loss, at
fixed value of all other parameters.

7 CONCLUDING REMARKS

We studied robust ERM in a model of data with outliers,
focusing on three commonly used losses (ℓ2-regularised
ℓ2, ℓ1, and Huber loss). The percentage of outliers,
variance, and typical norm can be varied, allowing
for a thorough exploration of the effect of outliers on
the regression task. We derived analytically exact
asymptotics for the generalisation and estimation errors
of ERM estimators trained on this data model in the
high-dimensional limit, where the number of samples n
and the dimension d are large with a fixed finite ratio,
and we compared them with BO estimators.

For the generalisation error, we found that optimally
regularised ERM is asymptotically consistent in the
large sample complexity limit at the condition of per-
forming a norm calibration. For the estimation error,
we showed that due to a norm calibration mismatch,
the consistency of the estimator requires an oracle
estimate of the optimal norm or the presence of a cross-
validation set not corrupted by the outliers. We also
observed an interesting phase transition as a function
of the outlier parameters. In a full region of the pa-
rameter space (ϵ,∆OUT), the optimal scale parameter
of the Huber loss aout diverges, and the error of the
ERM with Huber and ℓ2 losses coincides.

Our work opens the way to the study of more com-
plicated settings, for instance random features regres-
sion [Rahimi and Recht, 2007] or deep learning in the
lazy/neural tangent kernel regime [Chizat et al., 2019],
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where one could study effects that are not directly ex-
plorable in the vanilla generalised linear regression set-
ting, such as over-parametrization [Belkin et al., 2020],
benign overfitting [Bartlett et al., 2020], implicit regu-
larisation [Gunasekar et al., 2017], and their interplay
with outliers.
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A Mathematical details

A.1 Claim: Bayes optimal estimator for the generalisation error

Define the generalisation error as in eq. (2)

Egen(w) = E(x̄,ȳ|w⋆)

[(
ȳ − x̄ ·w√

d

)2
]
, (24)

where the average is over a sample-label pair (x̄, ȳ) generated with the same distribution as the training set,
namely with the same teacher vector w⋆. The posterior-averaged generalisation error is

R(w) = Ew⋆|D

[
E(x̄,ȳ)|w⋆

[(
ȳ − x̄ ·w√

d

)2
]]

(25)

where D is the observed training dataset, Ew⋆|D[·] is the posterior average and (x̄, ȳ) is a sample label pair.
Differentiating and setting the derivative to zero (in order to minimise the posterior-averaged generalisation error)
gives that the minimiser ŵ, i.e. the BO estimator, satisfies

ŵBO
gen(D) = Ew|D

[
Ex̄,ȳ|w[ȳ x̄]

]
, (26)

which for our specific choice of data model reduces to

ŵBO
gen(D) = (1− ϵ+ βϵ)Ew|D[w] . (27)

A.2 Theorem 4.1: self-consistent equations for the errors of ERM

The more general proof of the form of the self-consistent equations can be found in [Loureiro et al., 2022]. Our
case corresponds to taking φs(x) = φt(x) = x which is equivalent to the setting presented in [Aubin et al., 2020],
of which we will follow the notation.

In the following we will refer to the loss function as L(·, ·) and to the regularisation function as r(·). We then
define the general quantities that will appear in the fixed point equations, they are:

Zout⋆(y, ω, V ) = Ez∼N (ω,V ) [Pout(y|z)] ,
fout⋆(y, ω, V ) = ∂ω log(Zout∗(y, ω, V )) ,

fout(y, ω, V ) = (PV [L(y, ·)](ω)− ω)/V ,

Zw∗(γ,Λ) = Eω∼Pw∗

[
e−

1
2Λω2+γω

]
,

fw∗(γ,Λ) = ∂γ logZw∗(γ,Λ) ,

fw(γ,Λ) = PΛ−1 [r(.)]
(
Λ−1γ

)
,

(28)

where ω in the definition of Zw∗(γ,Λ) is sampled with the teacher weight distribution and PV [f ](x) is the proximal
operator defined as follows

PV [f(y, ·)](x) = argmin
z

[
f(y, z) +

1

2V
(z − x)2

]
. (29)
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The self-consistent equations in general form then read

m = Eξ

[
Zw⋆(

√
η̂ξ, η̂)fw⋆(

√
η̂ξ, η̂)fw

(
q̂1/2ξ, Σ̂

)]
,

q = Eξ

[
Zw⋆(

√
η̂ξ, η̂)fw

(
q̂1/2ξ, Σ̂

)2]
,

Σ = Eξ

[
Zw⋆(

√
η̂ξ, η̂)∂γfw

(
q̂1/2ξ, Σ̂

)]
,

m̂ = α

∫
Eξ

[
Zout⋆(y,

√
ηξ, (1− η)) · fout⋆ (y,

√
ηξ, (1− η)) fout

(
y, q1/2ξ,Σ

)]
dy,

q̂ = α

∫
Eξ

[
Zout⋆ (y,

√
ηξ, (1− η)) fout

(
y, q1/2ξ,Σ

)2]
dy ,

Σ̂ = −α

∫
Eξ

[
Zout⋆ (y,

√
ηξ, (1− η)) ∂ωfout

(
y, q1/2ξ,Σ

)]
dy .

(30)

where we have denoted with Eξ the expectation value over a standard Gaussian variable ξ ∼ N (0, 1), and we
defined η = m2/q and η̂ = m̂2/q̂.

In the main text we fixed the regularisation function to the ℓ2 regularisation, i.e. r(w) = 1
2∥w∥22 and the teacher

weights to be extracted from the distribution w⋆ ∼ N (0,1d). The quantities Zw⋆ and fw⋆ can be written as

Zw∗(γ,Λ) =
e

γ2

2(Λ+1)

√
Λ + 1

, fw∗(γ,Λ) =
γ

Λ + 1
. (31)

Also we have that

Zℓ2,λ
w (γ,Λ) =

e
γ2

2(λ+Λ)

√
λ+ Λ

, f ℓ2,λ
w (γ,Λ) =

γ

λ+ Λ
. (32)

This allows to write the first three self consistent equations as:

m =
m̂

λ+ Σ̂
, q =

m̂2 + q̂

(λ+ Σ̂)2
, Σ =

1

λ+ Σ̂
. (33)

As explained in [Aubin et al., 2020] these first three equations only depend on the regularisation term and they
will be thus fixed during our analysis.

Thus, to compute the performance of ERM with a given loss, we just need to compute Zout⋆ , fout∗ and fout, and
solve the corresponding system of self-consistent equations. For our noise model Pout we have that

Zout⋆(y, ω, V ) = Ny(ω, V +∆IN) +Ny(βω, V + β2∆OUT) , (34)

and fout⋆ is given from the definition in eq. (28).

In the following subsections we specialise these equations to the ℓ2, ℓ1 and Huber losses by computing fout, which
is the only loss-dependent part in the equations.

ℓ2 loss case. In this case, the fout in eq. (28) reads

f ℓ2
out(y, ω, V ) =

y − ω

1 + V
. (35)

Then, the remaining integrals can be solved explicitly as they are all expectation of Gaussian variables, giving

m =
m̂

λ+ Σ̂
, q =

m̂2 + q̂

(λ+ Σ̂)2
, Σ =

1

λ+ Σ̂
,

m̂ =
α

1 + Σ
(1 + ϵ(β − 1)) , Σ̂ =

α

1 + Σ
,

q̂ =
α

(1 + Σ)2
[
1 + q +∆eff + ϵ

(
β2 − 1

)
− 2m(1 + ϵ(β − 1))

]
.

(36)

For this specific case we have that one can find an explicit form for the order parameters which is presented in
Appendix A.2.1.
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Useful Integrals. To perform the double integration over (y, ξ) for the last three equations in eq. (30) we will
use a linear change of variables. The relevant change of variables is (u, v) = (y − β

√
ηξ, y −√

qξ). The associated
Jacobian is constant and equal to

∣∣β√η −√
q
∣∣. With this change of variable, we obtain explicit expressions for

the following integrals, that will be used below. The first integral integral is

I1(∆, β, κ,Λ, a,m, q) =

∫
R2

dξ dy e
− 1

2 ξ
2− 1

2

(β
√

ηξ−y)2

∆+β2(1−η) (β
√
ηξ − y)


a if y −√

qξ > κ
y−√

qξ

Λ if
∣∣y −√

qξ
∣∣ < κ

−a if y −√
qξ < −κ

=
2π

Λ

(
(1− η)β2 +∆

) 3
2

√2(κ− aΛ)e
− κ2

2(β2+∆−2βm+q)√
π(q − 2mβ + β2 +∆)

− erf
(
κ/
√
2(β2 +∆− 2βm+ q)

) .

(37)

The second integral is:

I2(∆, β, κ,Λ, a,m, q) =

∫
R2

dξ dy e
− 1

2 ξ
2− 1

2

(β
√

ηξ−y)2

∆+β2(1−η)


(

y−√
qξ

Λ

)2
if
∣∣y −√

qξ
∣∣ < κ

a2 otherwise

=
2π

Λ2

√
(1− η)β2 +∆

[
a2 − κ

√
2(q − 2mβ + β2 +∆)/π e

− κ2

2(β2+∆−2βm+q)

+
(
q − 2mβ + β2 +∆− a2

)
erf
(
κ/
√
2(β2 +∆− 2βm+ q)

)]
.

(38)

The third integral is

I3(∆, β, κ,Λ, a,m, q) =

∫
R2

dξ dy e
− 1

2 ξ
2− 1

2

(y−β
√

ηξ)2

∆+β2(1−η) I|y−√
qξ|<κ

= 2π
√
(1− η)β2 +∆erf

(
κ/
√
2(β2 +∆− 2βm+ q)

)
/Λ ,

(39)

Using these integrals we can write explicitly the self-consistent equations, leading to the equations presented in
Theorem 4.1.

ℓ1 loss case. For the ℓ1 loss, the fout in eq. (28) reads

f ℓ1
out(y, ω, V ) =

{
1
V (y − ω) if |ω − y| ≤ V

sign(ω − y) otherwise
. (40)

With the integration technique explained above we have that the explicit form of the self-consistent equations is

m̂ =
α

Σ
[(1− ϵ) erf (χIN) + βϵ erf (χOUT)] ,

q̂ =
α

Σ2

[
(1− ϵ)

(
ζIN − µ2

)
erf (χIN) + ϵ

(
ζOUT − µ2

)
erf (χOUT)

− µ

√
2

π

(
(1− ϵ)

√
ζIN e−χ2

IN + ϵ
√
ζOUT e−χ2

OUT

)
+ µ2

]
,

Σ̂ =
α

Σ
[(1− ϵ) erf (χIN) + ϵ erf (χOUT)] ,

(41)

where, as in the main text, we defined ζIN = ∆IN − 2m+ q + 1, ζOUT = ∆OUT + β2 + q − 2βm and

µℓ1 = νℓ1 = Σ , χℓ1
IN = Σ/

√
2ζIN , χℓ1

OUT = Σ/
√

2ζOUT , (42)
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Huber loss case. For the Huber loss, the fout in eq. (28) reads

fHuber
out (y, ω, V ) =


−a if y − ω > a(V + 1)
y−ω
V+1 if |y − ω| < a(V + 1)

a otherwise

. (43)

we have that the integrals in eq. (30) become

m̂ =
α

Σ+ 1
[(1− ϵ) erf (χIN) + βϵ erf (χOUT)] ,

q̂ =
α

(Σ + 1)
2

[
(1− ϵ)

(
ζIN − µ2

)
erf (χIN) + ϵ

(
ζOUT − µ2

)
erf (χOUT)

− µ

√
2

π

(
(1− ϵ)

√
ζIN e−χ2

IN + ϵ
√
ζOUT e−χ2

OUT

)
+ µ2

]
,

Σ̂ =
α

Σ+ 1
[(1− ϵ) erf (χIN) + ϵ erf (χOUT)]

(44)

where ζIN = ∆IN − 2m+ q + 1, ζOUT = ∆OUT + β2 + q − 2βm and

νHuber = Σ+ 1 , µHuber = aνHuber , χHuber
IN = µHuber/

√
2ζIN , χHuber

OUT = µHuber/
√

2ζOUT . (45)

A.2.1 Corollary: explicit form of the error for ℓ2

Corollary A.1. In the Ridge regression case, for a generic value of β, with fixed regularisation λ ≥ 0 the
generalisation error has the explicit form

Egen = 1 + (β2 − 1)ϵ+ q − 2m(1 + (β − 1)ϵ) ,

m =
2αΓ

p+ t+ 1
,

q =
4α
[
αΓ2(p+ t− 3) + Λ(p+ t+ 1)

]
(p+ t+ 1)[p2 − 2c+ t2 + 2t(p+ 1) + 1]

,

(46)

where ∆eff = (1 − ϵ)∆IN + ϵ∆OUT, p = α + λ, c = α − λ, t =
√
(p− 1)2 + 4λ, Γ = 1 + ϵ(β − 1) and

Λ = 1 +∆eff + ϵ(β2 − 1).

Proof. The form for the excess generalisation error is the same as in Theorem 4.1, so we look for a solution for
the self-consistent equations, eqs. (36). The equations can be simplified if one defines Γ = 1 + ϵ(β − 1) and
Λ = 1 +∆eff + ϵ

(
β2 − 1

)
with ∆eff = (1− ϵ)∆IN + ϵ∆OUT. To solve them we first notice that the equations for Σ

and Σ̂ only depend on themselves and thus can be solved, getting:

Σ =
1− α− λ+ t

2λ
, Σ̂ =

−1 + α− λ+ t

2
, (47)

where here and in the following we have that t =
√

4λ+ (−1 + α+ λ)2. Plugging these values in the equations
for m and m̂ gives

m =
2αΓ

α+ λ+ t+ 1
, m̂ = − 2αΓλ

−α+ λ+ t+ 1
(48)

Finally, plugging everything in the equations for q and q̂, we obtain

q =
4α
(
αΓ2(p+ t− 3) + Λ(p+ t+ 1)

)
(p+ t+ 1) (−2c+ (p+ t)2 + 2t+ 1)

q̂ =
4αλ2

(2λ− p+ t+ 1)2

(
4α
(
αΓ2(p+ t− 3) + Λ(p+ t+ 1)

)
(p+ t+ 1) (−2c+ (p+ t)2 + 2t+ 1)

+ Λ− 4αΓ2

p+ t+ 1

) (49)

where we defined p = α+ λ and c = α− λ. Upon rearranging of terms we have the same form for q as in the
Corollary.
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A.3 The rate of BO is 1/α

The equations for the BO are presented in the main text eq. (10). If we suppose that qb = 1− c/α+O(α−2) and
q̂b = ĉα+O(1) we have that

qb =
q̂b

1 + q̂b
= 1− 1

ĉα
(50)

thus the relation between the expansion coefficients which is ĉ = 1/c. The coefficient ĉ is found from the first
order expansion of the self-consistent equations and it is equal to

ĉ =

∫
dξ dy e−

1
2 ξ

2

(
ϵ(βξ−y)e

− (y−βξ)2

2∆OUT√
2π∆OUT

+ (ϵ−1)(y−ξ)e
− (y−ξ)2

2∆IN√
2π∆IN

)2

ϵe
− (y−βξ)2

2∆OUT√
2π
√

∆OUT
− (ϵ−1)e

− (y−ξ)2

2∆IN
√
2π
√

∆IN

(51)

Note that even if we supposed a faster decay for the second term of qb we would find anyway that q̂b ∝ α.

A.4 Theorem 5.1: large sample size limit for the self-consistent equations for ERM

In this Appendix we derive the asymptotic value of the generalisation and estimation errors of ERM for α → ∞.
We will first consider the case for the ℓ2 loss where the explicit solution of the order parameters gives a more direct
approach to study the above mentioned limit. After we will consider the ℓ1 and Huber loss with a framework
together.

ℓ2 loss. In this case we can leverage Corollary A.1 to get the large α limit of the order parameters and thus
of the generalisation error. We notice that the solution presented in Corollary A.1 are formal solution that do
not suppose anything on the scalings in α of the other parameters, i.e. λ. We will consider the case where λ is
constant in α and see that this suffices to have BO rates for the generalisation error. From eq. (46) we have by
expanding

q = Γ2 +
Λ− Γ2(2λ+ 1)

α
+

Γ2
(
3λ2 − 1

)
− 2λΛ + Λ

α2
+O

(
1

α3

)
, (52)

and

m = Γ− Γλ

α
+

Γ(λ− 1)λ

α2
+O

(
1

α3

)
, (53)

with the same definition of Γ = 1 + ϵ(β − 1) and Λ = 1 + ∆eff + ϵ(β2 − 1). By the knowledge of the order
parameters and the formula for the generalisation and estimation error one has that

Egen =
∆eff − (β − 1)2(ϵ− 1)ϵ

α

+
2(β − 1)2λ(ϵ− 1)ϵ+ ((β − 1)λϵ+ λ)2 −

(
(β − 1)2(ϵ− 1)ϵ

)
− 2∆effλ+∆eff

α2
+O(α−3) ,

Eestim = (β − 1)2ϵ2 +
(β − 1)ϵ((2λ+ 1)(ϵ− 1)− β(2λϵ+ ϵ− 1)) + ∆eff

α

+
λ((β − 1)ϵ(λ(3(β − 1)ϵ+ 4)− 2β) + λ)−

(
(β − 1)2(ϵ− 1)ϵ

)
− 2∆effλ+∆eff

α2
+O(α−3) .

(54)

Notice that in the estimation error the value of the plateu depends only on the noise parameters ϵ and β but not
on the noise variances.

ℓ1 and Huber loss We make the following ansatz for the leading order form of the following parameters in α

m = m0 , q = q0 , Σ =
Σ0

α
, m̂ = m̂0α , q̂ = q̂0α , Σ̂ = Σ̂0α , (55)

where m0, q0,Σ0, m̂0, q̂0 and Σ̂0 are constants not depending on α in the limit. We use the following ansatz for λ
as a function of α

λ = λ0 + λ1α , (56)
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again with λ1 and λ2 finite in the large α limit. We now show that this ansatz leads to a system of self-consistent
equations involving only m0, q0,Σ0, m̂0, q̂0 and λ1, λ0 and additionaly find the conditions for which the first order
term in λ vanishes. This system characterises at leading order the behaviour of the errors of ERM.

From the loss-independent self-consistent equations presented in Theorem 4.1

m =
m̂

λ+ Σ̂
, q =

m̂2 + q̂

(λ+ Σ̂)2
, Σ =

1

λ+ Σ̂
(57)

we obtain at large α the equations

m0 =
m̂0

λ1 + Σ̂0

, q0 =
m̂2

0

(λ1 + Σ̂0)2
= m2

0 , Σ0 =
1

λ1 + Σ̂0

(58)

Notice that the expressions are independent of λ0, which means that for λ to have an effect on the generalisation
error it needs to have a non-vanishing coefficient for the term linear in α, i.e. λ1 ̸= 0. At leading order, the
loss-independent constants defined in Theorem 4.1 read

ζIN,0 = ∆IN + (m0 − 1)2 , ζOUT,0 = ∆OUT + (m0 − β)2 . (59)

ℓ1 loss. For the ℓ1 loss we have at leading order

χIN = χOUT = µ = ν = O(1/α) , (60)

giving for the three loss-dependent self-consistent equations

m̂0 =

√
2

π

(
1− ϵ√
ζIN,0

+
βϵ√
ζOUT,0

)
,

Σ̂0 =

√
2

π

(
1− ϵ√
ζIN,0

+
ϵ√

ζOUT,0

)
,

q̂0 = 1 .

(61)

Huber loss. For the Huber loss we will consider the scale parameter a to be α independent. Thus we have at
leading order

χIN = a/
√
2ζIN,0 , χOUT = a/

√
2ζOUT,0 , µ = a , ν = 1 , (62)

giving for the three loss-dependent self-consistent equations

m̂0 = (1− ϵ) erf

(
a√
2ζIN,0

)
+ βϵ erf

(
a√

2ζOUT,0

)
,

Σ̂0 = (1− ϵ) erf

(
a√
2ζIN,0

)
+ ϵ erf

(
a√

2ζOUT,0

)
,

q̂0 = (1− ϵ)
(
ζIN,0 − a2

)
erf

(
a√
2ζIN,0

)
+ ϵ
(
ζOUT,0 − a2

)
erf

(
a√

2ζOUT,0

)
.

(63)

At leading order, the generalisation and estimation error read

Egen = 1 + ϵ(β2 − 1) +m2
0 − 2m0(1 + ϵ(β − 1)) + ∆eff =

= (m0 − 1)2 − 2m0ϵ(β − 1) + ϵ(β2 − 1) + ∆eff ,

Eestim = 1 + q0 − 2m0 = (m0 − 1)2 .

(64)
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A.4.1 Rates of ERM

Before deriving any conclusion from the set of self-consistent equations that we just derived in the large α limit,
it is worth considering what is the scaling of the first subleading term for m and q, as it determines the scaling of
the first subleading term for the generalisation and estimation errors.

It is easy to see that a general expansion in integer powers of alpha for the order parameters (so more general of
the leading order ansatz of eq. (55)) still satisfies the self-consistent equations, as the order parameters enter
the equations only through C∞ functions. We just need to check that our functions are indeed smooth. This is
contingent on the fact that Σ0 ≠ 0 and Σ̂0 + λ1 ≠ 0. The first condition can just assumed to be true because of
eq. (58). Indeed, for Σ0 to be zero we need Σ̂0 to diverge, which can’t be since ζIN,0 > 0, ζOUT,0 > 0 as long as

∆IN > 0, ∆OUT > 0 (equation (59)). For the second one we can simply notice that as long as ϵ ≤ 1, Σ̂0 > 0.

Thus, the subleading order of m and q, and thus of the errors, is at least of order O(α−1).

On the other hand, at the values of the parameters for which we have that the error of ERM converges to the BO
performance, we have that the subleading order of the errors, is at most of order O(α−1), which is the BO scaling.

Thus, whenever ERM is consistent, it also achieves BO rates. A more detailed computation would be needed to
asses whether ERM is identical to BO at order O(α−1), but we believe that this will not be the case in general.

A.4.2 Angle between ERM minimiser and teacher goes to zero

The angle between the student and the teacher weights is given in concentrates in high-dimension onto
[Aubin et al., 2020]

θw⋆,ŵ =
1

π
arccos

(
m
√
q

)
(65)

but from the loss-independent equations eq. (58) we have q → m2, so that θ → 0 for large α.

A.4.3 Consistency of generalisation error

In order for the generalisation error to be consistent, we need to impose that the excess generalisation error
vanishes, i.e. we require that

Egen = (m0 − 1)2 − 2m0ϵ(β − 1) + ϵ(β2 − 1) + ∆eff
!
= ϵ(1− ϵ)(1− β)2 +∆eff (66)

Which results in m0 = Γ = 1 + ϵ(β − 1). This imposes a condition on λ1 because of eq. (58) which reads

λ1 =
m̂0

Γ
− Σ̂0 (67)

This needs to be compatible with λ ≥ 0, which at large α implies λ1 ≥ 0. Firstly we will consider the ℓ2 loss. In
this case we have m̂0 = Γ and Σ̂0 = 1, so λ1 = 0 meaning that the value of λ doesn’t need to diverge with α to
have consistency of Egen. This result is compatible to the one obtained by looking at the explicit solution of the
order parameters as in Corollary A.1, where we have found that even with a finite value of λ in the limit α → ∞
the generalisation error has optimal rate.

For the other two losses the inequality in eq. (67) is equivalent to

(1− β)(1− ϵ)ϵ

[
erf

(
a√
2ζIN,0

)
− erf

(
a√

2ζOUT,0

)]
≥ 0 (68)

For β < 1, considering that ϵ ∈ (0, 1), remembering the definitions in eq. (59), this condition is equivalent to

∆OUT −∆IN ≥ (1− β)2(2ϵ− 1) . (69)

If β > 1 the condition in eq. (69) flips the order of the condition.

We remark that in the limit a → ∞ the equations is always satisfied. This tells us that whenever L2 is better
then Huber, the optimisation over a of Huber will lead to a → ∞, i.e. the Huber loss becomes the ℓ2 loss.
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A.4.4 Consistency of estimation error

In order for the estimation error to be consistent, we need to impose that the estimation error vanishes for α → ∞.
This is the condition

Eestim = (m0 − 1)2
!
= 0 , (70)

which is equivalent to m0 = 1. As in Appendix A.4.3 we use eq. (58) and obtain the value of λ1 as

λ1 = (β − 1)ϵ erf

(
a√

2ζOUT,0

)
, (71)

for the Huber loss. The other two losses can be obtained by setting a → ∞ for the ℓ2, and a → 0 with the
appropriate rescaling of λ1 for ℓ1. Both limits do not alter the overall sign of λ1, which just depends on β − 1.
This implies that the estimator is can only be consistent in estimation for β > 1 since we have the constraint
λ ≥ 0.

A.4.5 Consistency of estimation error for ℓ2 with negative regularisation

In Appendix A.5 we show that the Ridge regression risk can endure negative regularisation without losing strict
convexity for all λ > −(1−

√
α)2.

Using eq. (71), in the limit a → ∞ to recover the ℓ2 loss, we see that the condition above for lambda implies, at
leading order in α and for the ℓ2 loss that

(β − 1)ϵ > −1 . (72)

A.4.6 Oracle norm/label rescaling restores consistency

We notice that since the angle between the teacher and the student goes to zero as shown in Appendix A.4.2, it
suffices to rescale the student optimally to achieve consistency. This can be achieved either by knowing the norm,
or by cross-validation on the appropriate validation set to find the best norm.

Notice that all losses satisfy some kind of homogeneity property, i.e.

ℓHuber
a

(
c y,

x ·w√
d

)
= c2 ℓHuber

c a

(
y,

x ·w
c
√
d

)
, (73)

ℓ1

(
c y,

x ·w√
d

)
= c ℓ1

(
y,

x ·w
c
√
d

)
, (74)

ℓ2

(
c y,

x ·w√
d

)
= c2 ℓ2

(
y,

x ·w
c
√
d

)
. (75)

For this reason, the rescaling of the ERM estimator can be produced equivalently by rescaling the labels of the
training set, and the hyperparamters, appropriately.

A.5 Claim: Ridge regression risk is still convex for not-too-large negative regularisation

Consider the Ridge regression risk

Rridge(w) =
1

2

n∑
i=1

∥∥∥∥yi − xi ·w√
d

∥∥∥∥2
2

+
λ

2
∥w∥22 . (76)

This is a quadratic form in the d-dimensional vector w, with quadratic part

Rquad.
ridge (w) =

1

2

d∑
a,b=1

wawb

(
α

n

n∑
i=1

xa
i x

b
i + λδab

)
def
=

1

2

d∑
a,b=1

wawbHa,b , (77)

where the Hessian of the quadratic form is the matrix H = X + λ Id. The matrix X is a d× d Marchenko-Pastur
random matrix. Supposing α = n/d > 1, this matrix has minimal eigenvalue concentrating on (1 −

√
1/α)2,

giving minimal Hessian eigenvalue equal to

minimal eigenvalue = (1−
√
α)2 + λ . (78)
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Thus, the Ridge regression risk is convex as long as the Hessian is positive definite, meaning

∀λ : λ > −(1−
√
α)2 . (79)

A.6 Theorem 6.1: small outliers’ percentage ϵ limit of the error of ERM with ℓ2 loss

We start from the knowledge of the explicit form of the order parameters in the Ridge regression case, presented
in Corollary A.1. If one expands m and q up to second order in ϵ one has that:

m = m0 +m1ϵ+m2ϵ
2 +O(ϵ3) , q = q0 + q1ϵ+ q2ϵ

2 +O(ϵ3) , λ = λ0 + λ1ϵ+ λ2ϵ
2 +O(ϵ3) , (80)

with coefficients that are constants in ϵ. The generalisation error up to second order in ϵ is

Egen = Egen0 + Egen1ϵ+ Egen2ϵ
2 +O(ϵ3)

= 1 + q +
(
β2 − 1

)
ϵ+∆eff − 2m((β − 1)ϵ+ 1)

= (1− 2m0 + q0 +∆IN) + ((β − 1)(β − 2m0 + 1) + ∆OUT −∆IN − 2m1 + q1)ϵ

+ (1− 2(β − 1)m1 − 2m2)ϵ
2 +O

(
ϵ3
) (81)

This shows that the generalisation error has the correct expansion in powers of ϵ. We now need to find the
optimal regularisation λ, and plug it back in in the generalisation error to complete the proof.

To start, we notice that at ϵ = 0 the BO generalisation error can be found explicitly, as the output channel
become a single Gaussian, giving

EBO
gen0

=
1

2

(√
(α+∆IN + 1)2 − 4α− α+∆IN + 1

)
Eℓ2

gen0
=

1

2

(
λ0(α+∆IN) + α(α+∆IN − 2) + ∆IN + λ0 + 1√

(α+ λ0 − 1)2 + 4λ0

− α+∆IN + 1

)
(82)

where in the second line we compare with the zero-th order term of ℓ2 ERM. The two generalisation errors match
for λ0 = ∆IN, giving us the zero-th order value of the expansion of the optimal regularisation.

To find the next orders for the optimal regularisation λ we compute order-by-order the derivative of the
generalisation error with respect to λ. At first order we have

∂Egen1

∂λ1
=

2α(λ0 −∆IN)

(α2 + 2α(λ0 − 1) + (λ0 + 1)2)
3/2

= 0 (83)

which vanishes as soon as λ0 = ∆IN as computed previously. Looking at the derivative at second order in ϵ allows
to fix λ1 as

λ1 =

(
α2 + 2α(λ0 − 1) + (λ0 + 1)2

) (
β2 − 2β(λ0 + 1)−∆IN +∆OUT + 2λ0 + 1

)
α2 + α(3∆IN − λ0 − 2) + (λ0 + 1)(3∆IN − 2λ0 + 1)

. (84)

Thus the optimal order parameter can be written as λopt = ∆IN + λ1ϵ+O(ϵ2) and the value of the error is

Eℓ2
gen = EBO

gen0
+

[
1

2κ

(
2α2(β − 1) + α(β(β + 2∆IN − 6)− 3∆IN +∆OUT + 5)

+ (∆IN + 1)
(
β2 −∆IN +∆OUT − 1

) )
+

1

2

(
−2α(β − 1) + β2 +∆IN −∆OUT − 1

) ]
ϵ

+O(ϵ2) ,

(85)

with the definitions of eq. (82) and

κ =
√
α2 + 2α(∆IN − 1) + (∆IN + 1)2 . (86)
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B Simulations details

B.1 Solving the self-consistent equations for ERM and BO

The self-consistent equations from Proposition 4.1 are written in a way amenable to be solved via fixed-point
iteration. From a random initialisation, we iterate through both the hat and non-hat variable equations until the
maximum absolute difference between the order parameters in two successive iterations falls below a tolerance of
10−9.

To speed-up convergence we use a damping scheme, updating each order parameter at iteration i, designated as
xi, using xi := xiµ+ xi−1(1− µ), with µ as the damping parameter (µ ∈ [0.7, 0.9] was found most effective).

The Bayes-optimal (BO) fixed-point equations involve integrals which we could not express explicitly, necessitating
a numerical integrator. The integration region must be subdivided into smaller regions to improve accuracy. In
the iteration of the self-consistent equations, the above-mentioned damping trick is employed.

Once convergence is achieved for fixed λ and possibly a, hyper-parameters are optimised using the Nelder-Mead
optimiser, a gradient-free numerical minimisation procedure.

B.2 Numerical simulations for ERM

We obtain numerical simulations for the Empirical Risk Minimisation (ERM) by sampling synthetic datasets
using eq. (1). The ERM problem is solved as follows:

• for ℓ2 ERM is performed using the closed form solution. If we define the data matrix Φ ∈ Rn,d as Φij = xj
i ,

then the ℓ2 ERM problem is solved by:

ŵ =

(
Φ⊤Φ

d
+ λ Id

)−1
Φ⊤y√

d
(87)

• For the Huber loss, ERM is performed using the routine of the Scikit-learn library [Pedregosa et al., 2011],
which uses a L-BFGS optimiser [Liu and Nocedal, 1989].
• For the ℓ1 loss we use its mapping onto Huber with small scale parameter, setting a = 10−3. To obtain the
same result as the Huber regression with regularisation parameter λ oen has to consider the ℓ1 regression with
regularisation parameter aλ.

For the comparison with synthetic data in Figure 1 we first find the optimal parameters (λ, a) for the generalisation
error from the explicit solution of the fixed point equations. These values are then plugged into the ERM procedures
described above.

To evaluate the estimation error it is pretty straightforward from the definition in eq. (3). To evaluate the excess
generalisation error from the definition of eq. (2), we generated nt sample dataset from the same teacher and,
given an estimate for the weights ŵ we evaluated the following

1

nt

nt∑
i=1

(
yi −

x · ŵ√
d

)2

− 1

nt

nt∑
i=1

(
yi − (1− ϵ+ βϵ)

x ·w⋆

√
d

)2

, (88)

where the rescaling (1− ϵ+ ϵβ) is the one with minimal generalisation error.

The error bars presented in all the Figures are the standard deviation on the mean over all the realisations for
the specific cases.

B.3 Numerical simulations for BO: the Generalised Approximate Message Passing (GAMP)
algorithm

We summarise here the Generalised Approximate Message Passing (GAMP) algorithm, firstly introduced in
[Rangan, 2011]. We will follow the notation in [Aubin et al., 2020]. Given loss and regularisation functions fout
and fw, computed as in Appendix (A.2), we can estimate the student weight ŵ of the associated ERM problem
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Figure 4: Sketch of the dependence of the various quantities in GAMP algorithm.

by iterating the following fixed point system

fout
t
µ = fout(yµ, ω

t
µ, V

t
µ)

ŵt+1
i = fw(γ

t
i ,Λ

t
i)

ct+1
i = ∂γfw(γ

t
i ,Λ

t
i)

Λt
i = −1

d

n∑
µ=1

X2
µi∂ωfout

t
µ

γt
i =

1√
d

n∑
µ=1

Xµifout
t
µ + Λt

iŵ
t
i

V t
µ =

1

d

d∑
i=1

X2
µiĉ

t
i

ωt
µ =

1√
d

n∑
µ=1

Xµiŵ
t
i − V t

µfout
t−1
µ

(89)

It has been shown [Barbier et al., 2019] that if fw = fw⋆ and fout = fout⋆ then GAMP provides a Bayes Optimal
estimation ŵ = wBO as per Section 4. We sketch in Figure 4 the dependence of the parameters of GAMP during
one iteration step going from iteration time t to iteration time t+ 1.

C Experiments with non-Gaussian data

We provide here some numerical experiments for a model of data for which the samples x are not Gaussian and
non-i.i.d. In particular, we consider a regression problem on the MNIST dataset [Lecun et al., 1998], preprocessed
by extracting 300 random Fourier data features. The experiments are presented in Figure 5. We find results
which are qualitatively compatible with what we presented in the main text. We observe (Figure 5, left) that
the estimation error is not consistent for all the three losses we consider. We also observe (Figure 5, center and
right) the sharp transition behaviour where Huber collapses to the ℓ2 loss, with aopt diverging (the fact that the
parameter does not diverge is to be expected, as for finite sample complexity α, there will be a value a = aopt
above which the Huber loss behaves as the ℓ2 loss at all points in the training dataset, and increasing a above such
a threshold will not affect the learning problem anymore.). In particular, Figure 5, center, shows the performance
of the ℓ2 and Huber losses, and Figure 5, right, the corresponding optimal value of the Huber scale parameter.
We can see that the phase transition in ∆OUT is conserved even with real data.

The data is generated as follows. We select n MNIST images, each considered as vector Xi ∈ Rd0 for i = 1, . . . , n,
and we compute for each of them p random Fourier features by generating a random real-valued Gaussian matrix
Ω ∈ Rp×d0 , and computing X̂i = exp(−iΩXi) ∈ Cp, where the exponential is taken component-wise. This
provides p complex features for each sample, which, when unpacked into their real and imaginary parts, translate
into 2p random real Fourier features for each sample. We collect the features into the data matrix X̂ ∈ R2p×n,
whose aspect ratio α = n/2p defines the sample complexity of the linear regression problem. The labels are
generated using the model of outliers considered in the manuscript (1) with a random w⋆ ∈ R2p. The regression
problem is solved, as detailed in Appendix B.2, for the three choices of losses considered in the submission. In
this case, we fix p = 300 and choose n depending on the value of α.

The optimal values of the regularisation λ and the scale parameter a are computed by cross-validation on the
estimation error.
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Figure 5: The points represent the mean and error of the mean of 16 instances of the simulations with data as
described before. The simulations are performed with 30% of outliers (ϵ = 0.3), with an additive noise variance of
the inliers ∆IN = 1 and correlation coefficient of the outliers β = 0. The ℓ2 regularisation parameter is chosen
to be the one that minimises the estimation error in all three Figures. (Left) This plot is the counterpart to
Figure 1 (right) of the main text. Here we vary the sample complexity α and fix the noise variance of the outliers
∆OUT = 5. Additionally for the Huber loss we fixed the scale parameter a = 1. (Center) & (Right) These two
plots are the counterparts of Figure 2 (right) of the main text. In these plots we are varying ∆OUT with a fixed
sample complexity α = 10.

D Exploration of parameters’ phenomenology

In this appendix we complement the figures in the main text by offering a more comprehensive exploration
of the dependence of parameters α, ϵ, ∆IN, ∆OUT and β. In most of the figures we plot both the error
(generalisation or estimation) in the upper panel and the value of the optimal hyper parameters in the bottom
panel. Hyperparameters are plotted with colors matching the associated upper panel.

Gray lines correspond to the optimally tuned value of the scale parameter a for Huber.

In Figure 6, 7, 8, 9, 10 and 11 we explore the dependence on α:

• in Figures 6 and 7 we plot the optinally-tuned excess generalisation error as a function of α for two choices
of β. In figure 6 we displayed the dependence on ∆OUT. We notice that the phenomenology is qualitatively
the same for the two different values of β (β = 0 on the left column and β = 0.2 on the right column). As
we expect from Theorem 5.1. for large enough values of ∆OUT we achieve consistency with all losses, in
particular with a diverging λopt. On the other hand if the value of ∆OUT is smaller than the threshold in
5.1 no choice of λ ≥ 0 restores consistency in the large α limit. In Figure 7 we show also that the same
phenomenology holds when changing ϵ. As in Figure 6 we see that for certain choices of the parameters, at
large enough ϵ the estimator is not consistent.

• In Figures 8 and 9, we consider the optimally-tuned estimation error. In the figure 8 we focus on β < 1
and see that estimation cannot be found for positive values of λ. In figure 9 we have instead β > 1. Here
consistent estimation can be achieved for an optimally tuned λ, but we stress that this requires a clean
dataset.

• In Figure 10 we plotted the teacher-student angle as per eq. (65). We see that the figures are consistent with
the claims of Section A.4.2 since even for non-optimised values of the parameters, the angle between the
teacher and student vector is going to zero with α.

• In Figure 11 we plotted both the generalisation error and the estimation error after the rescaling procedure
explained in Section 5. We see that by tuning the norm in this way, without considering optimising over the
ℓ2 regularisation parameter we regin consistency.

Figure 12 and Figure 13 explore the dependency of the generalisation error on ϵ and ∆OUT. We have qualitatively
the same behaviour as in Figure 2 of the main text. Interestingly, the excess generalisation error is not zero in
the limit ϵ → 1 for β ̸= 0 for the parameters chosen in figures. The outlier regression problem in this limit is
equivalent to regression without outlier, but with variance ∆OUT.
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Figure 14 shows quantitatively how the Huber loss performs better than the ℓ2 loss in the regression task at hand
when optimally tuned. This complements Figure 3 of the main text, where we simply delimited the region where
the two losses are identical. Interestingly, the advantage of Huber over ℓ2 grows the further away one is from the
borders of this region.
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Figure 6: Excess generalisation error as a function of sample complexity for different value of the noise models’
parameters. The hyper parameters, λ and optionally a, for the ERM procedures are optimised to obtain the best
generalisation error.
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Figure 7: Excess generalisation error as a function of sample complexity for different value of the noise models’
parameters. In all the plots shown we fixed ∆IN = 1. The hyper parameters, λ and optionally a, for the ERM
procedures are optimised to obtain the best generalisation error.
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Figure 8: Estimation error as a function of sample complexity for different value of the noise models’ parameters
for β < 1. In all the plots shown we fixed ∆IN = 1. The hyper parameters, λ and optionally a, for the ERM
procedures are optimized to obtain the best generalisation error.
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Figure 9: Estimation error as a function of sample complexity for different value of the noise models’ parameters
for β > 1. In all the plots shown we fixed ∆IN = 1. The hyper parameters, λ and optionally a, for the ERM
procedures are optimized to obtain the best generalisation error.
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Figure 10: Angle between the teacher and the student — eq. (65) — as a function of the sample complexity α.
The figures are generated for a fixed value of regularisation parameter λ = 10−3 and in the case of the Huber loss
for a = 1. For each plot we fixed ∆IN = 1 and the other parameters chosen are indicated on top of the plot.
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Figure 11: Excess generalisation error (first column) and estimation error (second column) after the rescale
procedure explained in Section 5 as a function of the sample complexity α. The figures are generated for a fixed
value of regularisation parameter λ = 1 and in the case of the Huber loss for a = 1. For each plot we fixed
∆IN = 1 and ϵ = 0.3 the other parameters chosen are indicated on top of the plot.
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Figure 12: Excess generalisation error as a function of ϵ. In all the plots shown we fixed α = 10. The hyper
parameters, λ and optionally a, for the ERM procedures are optimized to obtain the best generalisation error.

10−1

E
e
x
c
e
ss

g
e
n

∆IN = 1.0, ε = 0.1, β = 0.0
`2

`1

Huber

BO

10−1 100 101 102

∆OUT

2

4

6

(λ
o
p
t
,a

o
p
t
)

10−1

E
e
x
c
e
ss

g
e
n

∆IN = 1.0, ε = 0.1, β = 0.2
`2

`1

Huber

BO

10−1 100 101 102

∆OUT

2

4

6

(λ
o
p
t
,a

o
p
t
)

10−1

E
e
x
c
e
ss

g
e
n

∆IN = 2.0, ε = 0.1, β = 0.0
`2

`1

Huber

BO

10−1 100 101 102

∆OUT

2

4

6

(λ
o
p
t
,a

o
p
t
)

10−1

E
e
x
c
e
ss

g
e
n

∆IN = 2.0, ε = 0.1, β = 0.2
`2

`1

Huber

BO

10−1 100 101 102

∆OUT

2

4

6

(λ
o
p
t
,a

o
p
t
)

Figure 13: Excess generalisation error as a function of ∆OUT. In all the plots shown we fixed α = 10. The hyper
parameters, λ and optionally a, for the ERM procedures are optimized to obtain the best generalisation error.
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Figure 14: Difference between the Huber and ℓ2 generalisation error as a function of ∆OUT and ϵ. Here we
fix ∆IN = 1. Hyper-parameters for both losses are optimally tuned. In the dark blue region the difference is
identically zero.
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