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Abstract

We propose an interactive multi-agent clas-
sifier that provides provable interpretability
guarantees even for complex agents such as
neural networks. These guarantees consist
of lower bounds on the mutual information
between selected features and the classifica-
tion decision. Our results are inspired by
the Merlin-Arthur protocol from Interactive
Proof Systems and express these bounds in
terms of measurable metrics such as sound-
ness and completeness. Compared to existing
interactive setups, we rely neither on opti-
mal agents nor on the assumption that fea-
tures are distributed independently. Instead,
we use the relative strength of the agents as
well as the new concept of Asymmetric Fea-
ture Correlation which captures the precise
kind of correlations that make interpretabil-
ity guarantees difficult. We evaluate our re-
sults on two small-scale datasets where high
mutual information can be verified explicitly.

1 Introduction

Safe deployment of Neural Network (NN) based
AI systems in high-stakes applications requires that
their reasoning be subject to human scrutiny. The
field of Explainable AI (XAI) has thus put forth a
number of interpretability approaches, among them
saliency maps [Mohseni et al., 2021], mechanistic in-
terpretability [Olah et al., 2018] and self-explaining
networks [Alvarez-Melis and Jaakkola, 2018]. These
have had some successes, such as detecting biases in
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Figure 1: The Merlin-Arthur classifier consists of two in-
teractive agents that communicate over an exchanged fea-
ture. This feature serves as an interpretation of the classi-
fication.

established datasets [Lapuschkin et al., 2019]. How-
ever, these approaches are motivated primarily by
heuristics and come without any theoretical guaran-
tees. Thus, their success cannot be verified. It has
also been demonstrated for numerous XAI-methods
that they can be manipulated by a clever design of
the NNs [Slack et al., 2021, 2020, Anders et al., 2020,
Dimanov et al., 2020]. On the other hand, formal ap-
proaches run into complexity barriers when applied to
NNs and require an exponential amount of time to
guarantee useful properties [Macdonald et al., 2020,
Ignatiev et al., 2019]. This makes any “right to expla-
nation,” as in the EU’s GDPR [Goodman and Flax-
man, 2017], unenforceable.

In this work, we design a classifier that guaran-
tees feature-based interpretability under reasonable as-
sumptions. For this, we connect classification to the
Merlin-Arthur protocol [Arora and Barak, 2009] from
Interactive Proof Systems (IPS), see Figure 1. Our
setup consists of a feature classifier called Arthur (act-
ing as a verifier) and two feature selectors referred to
as Merlin and Morgana (acting as provers). Merlin
and Morgana choose features from the input and send
them to Arthur. Merlin aims to send features that
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“Isle!”“Boat!”

Original Images:

Masked Images:

P (C = “boat”|“sea”) = 1

P (C = “isle”|“sea”) = 0

I(C ; “sea”) = 1

P (C = “boat”|“sea”) = 0.5

P (C = “isle”|“sea”) = 0.5

I(C ; “sea”) = 0

Figure 2: Illustration of “cheating” behaviour. In
the original dataset, the features “sea” and “sky” appear
equally in both classes “boat” and “island”. In the partial
images created by Merlin, the “sea” feature appears only
in “boat” images and the “sky” feature only for “islands”.
Thus, these features now strongly indicate the class of the
image. This allows Merlin to communicate the correct class
with uninformative features — in contrast to our concept
of an interpretable classifier.

cause Arthur to correctly classify the underlying data
point. Morgana instead selects features to convince
Arthur of the wrong class. Arthur does not know who
sent the feature and is allowed to say “Don’t know!”
if he cannot discern the class. In this context, we
can then translate the concepts of completeness and
soundness from IPS to our setting. Completeness de-
scribes the probability that Arthur classifies correctly
based on features from Merlin. Soundness is the prob-
ability that Arthur does not get fooled by Morgana,
thus either giving the correct class or answering “Don’t
know!”. These two quantities can be measured on a
test dataset and are used to lower bound the informa-
tion contained in features selected by Merlin.

1.1 Related Work

Formal approaches to interpretability, such as mutual
information [Chen et al., 2018] or Shapley values Frye
et al. [2020], generally make use of partial inputs to
the classifier. These partial inputs are realised by con-
sidering distributions over inputs conditioned on the
given information. However, modelling these distribu-
tions is difficult for non-synthetic data. This has been
pursued practically by training a generative model as
in Chattopadhyay et al. [2022]. But as of yet there is
no approach that provides a bound on the quality of
these models. We discuss these approaches and their
challenges in greater detail in Appendix A.2.

Interactive classification in form of a prover-verifier
setting has emerged as a way to design inherently in-
terpretable classifiers [Lei et al., 2016, Bastings et al.,
2019]. In this setup, the feature selector chooses a fea-
ture from a data point and presents it to the classifier
who decides the class, see Figure 2. The classification
accuracy is meant to guarantee the informativeness of

the exchanged features. However, it was noted by Yu
et al. that the selector and the classifier can cooper-
ate to achieve high accuracy while communicating over
uninformative features, see Figure 2 for an illustration
of this “cheating”. Thus, one cannot hope to bound
the information content of features via accuracy alone.
Chang et al. include an adversarial selector to prevent
the cheating. The reasoning is that any “cheating”
strategy can be exploited by the adversary to fool the
classifier into stating the wrong class, see Figure 3 for
an illustration. Anil et al. investigate scenarios in
which the three-player setup converges to an equilib-
rium of perfect completeness and soundness. However,
this work assumes that a perfect strategy exists and
can be reached through training. For many classifi-
cation problems, such as the ones we explore in our
experimental section, no strategies are perfectly sound
and complete when the size of the certificate is limited.

Alternative adversarial setups have been proposed in
Yu et al. [2019] and Irving et al. [2018], but without
information bounds. We discuss these ideas in de-
tail in Appendix A.4 and show via counterexamples
why these formulations cannot straightforwardly yield
bounds similar to ours.

An additional theoretical focus has been the learnabil-
ity of interpretations Goldwasser et al. [2021], Yadav
et al. [2022], Poulis and Dasgupta [2017]. In this work,
we do not focus on the question of learnability. We in-
stead propose to evaluate soundness and completeness
directly on the test dataset, as state-of-the-art mod-
els are too complex to guarantee generalisation from a
realistic number of training samples.

Chang et al. introduced prover-verifier games for in-
terpretable classification. The authors show that the
best strategy for the provers is to select features with
high mutual information with respect to the class,
and demonstrate that this setup can be stably trained
for large-scale text data. However, these results have
three restriction that we resolve in this work: (i) The
features are assumed to be independently distributed.
This is an unrealistic assumption for most dataset, in-
cluding the ones used by Chang et al., since features
are generally correlated. In this regime, simply mod-
elling the data distribution directly is possible. (ii)
The provers can only select one feature at a time with-
out context. This strategy is unlikely to yield useful
rationalizations for most types of data where the im-
portance of a feature strongly depends on the features
surrounding it, like images and text. Chang et al. do
not keep this restriction for their numerical investi-
gation. (iii) The result is not quantitative. Since we
cannot expect the agents to play optimally on complex
data, we need measures of their performance and how
this relates to the mutual information of the features.
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a) b) c) d)

Figure 3: Strategy evolution with Morgana. a) Due to the \cheating" strategy from Figure 2, Arthur expects the \sea"
feature for boats and the \sky" for islands. Morgana can exploit this and send the \sky" feature to trick Arthur into
classifying a \boat" image as an \island" (and vice versa with \sea"). b) To not be fooled into the wrong class when
represented with an ambiguous feature, Arthur refrains from giving a concrete classi�cation. c) Since Arthur does not
know who sends the features, he now cannot leverage the uninformative features sent by Merlin. d) Merlin adapts his
strategy to only send unambiguous features that cannot be used by Morgana to fool Arthur.

1.2 Contribution

We provide what we believe to be the �rst quantitative
lower bound on the information content of the features
in an interpretive setup, eliminating the need to trust
a model of the data distribution. Additionally, we im-
prove existing analyses in the following ways:

1. We do not assume our agents to be optimal.
In Theorem 2.7, Merlin is allowed to have an ar-
bitrary strategy and in Theorem 2.11, all three
players can play suboptimally. We rather rely on
the relative strength of Merlin and Morgana for
our bound. We also allow our provers to select the
features with the context of the full data point.

2. We do not make the assumption that features
are independently distributed. Instead, we intro-
duce the concept of Asymmetric Feature Correla-
tion (AFC), which captures the correlations that
complicate establishing an information bound.
In Theorem 2.7 we circumvent the issue by reduc-
ing the dataset, and in Theorem 2.11 we incorpo-
rate the AFC explicitly. In Section 4 we discuss
why the AFC also matters for other interactive
settings.

We numerically demonstrate how the interactive setup
prevents a major manipulation that has been demon-
strated for other XAI-methods. Finally, we evalu-
ate our theoretical bounds on the MNIST dataset for
provers based on Frank-Wolfe optimisers and U-Nets.

2 Theoretical Framework

In this section we develop the theoretical framework
for the Merlin-Arthur classi�er. What reasonably con-
stitutes a feature strongly depends on the context and

prior work often considered subsets of the input as
features. W.l.o.g we will stay with this convention for
ease of notation. But nothing in our framework relies
on these speci�cs and our theoretical results can be
extended to more abstract features as in Chen et al.
[2018] or Ribeiro et al. [2018].

We consider abstract datasetsD � [0; 1]d, where D
is possibly in�nite, e.g., the set of all images of hand-
written digits. D is a distribution on this set. The
�nite training and test sets, e.g., MNIST, are assumed
to be faithful samples from this distribution. Given a
vector x 2 D , we usexS to represent a vector made of
the components ofx indexed by the setS � f 1; : : : ; dg.

De�nition 2.1. Given a datasetD � [0; 1]d, we de-
�ne the corresponding partial dataset Dp as

Dp =
[

x 2 D

[

S� [d]

xS :

Every vector x 2 D � [0; 1]d can be uniquely repre-
sented as a setf (1; x1); (2; x2); : : : ; (d; xd)g. A partial
vector z 2 Dp can then be a subset ofx. Thus, z � x
indicates that x contains the feature z. The set Dp

might be further restricted to include only connected
sets (for image or text data) or only sets of a certain
size as in our numerical investigation.

In our theoretical investigation, we restrict ourselves
to two classes and assume the existence of a unique
class for every data point. These are restrictions that
we hope to relax in further research.

De�nition 2.2 (Two-class Data Space). We consider
the tuple D = ( D; D; c) a two-class data spaceconsist-
ing of the datasetD � [0; 1]d, a probability distribu-
tion D along with the ground truth class mapc : D !
f� 1; 1g. The class imbalanceB of a two-class data
space ismaxl 2f� 1;1g Px �D [c(x) = l ]=Px �D [c(x) = � l ]:
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We will oftentimes make use of restrictions of the
set D and measureD to a certain class, e.g.,D l =
f x 2 D j c(x) = lg and D l = DjD l .

De�nition 2.3 (Feature Selector). For a given
dataset D , we de�ne a feature selector as a map
M : D ! Dp such that for all x 2 D we have
M (x) � x . This means that for every data point
x 2 D the feature selectorM chooses a feature that
is present in x. We call M (D) the space of all feature
selectors for a datasetD .

De�nition 2.4 (Feature Classi�er) . We de�ne a fea-
ture classi�er for a dataset D as a function A : Dp !
f� 1; 0; 1g. Here, 0 corresponds to the situation where
the classi�er is unable to identify a correct class. We
call the space of all feature classi�ersA .

2.1 Mutual Information, Entropy and
Precision

We consider a feature to carry class information if it
has high mutual information with the class. For a
given feature z 2 Dp and data points x � D the mu-
tual information is

I x �D (c(x); z � x) := H x �D (c(x)) � H x �D (c(x) j z � x):

When the conditional entropy H x �D (c(x) j z � x) goes
to zero, the mutual information becomes maximal and
reaches the pure class entropyH x �D (c(x)) which mea-
sures how uncertain we are about the class a priori.
A closely related concept isprecision. Given another
data point y with feature z, precision is de�ned as
Pr(z; y ) := Px �D [c(x) = c(y ) j z � x ] and was intro-
duced in the context of interpretability by Ribeiro
et al. [2018] and Narodytska et al. [2019]. We extend
this de�nition to a feature selector.

De�nition 2.5 (Average Precision). For a given two-
class data spaceD and a feature selectorM 2 M (D),
we de�ne the average precisionof M wrt. D as

PrD (M ) := Ey �D [Px �D [c(x) = c(y ) j M (y ) � x ]]:

The average precision PrD (M ) can be used to bound
the average conditional entropy of Merlin's features,
de�ned as

H x ;y �D (c(x) j M (y ) � x) :=

Ey �D [H x �D (c(x) j M (y ) � x)]; (1)

and accordingly the average mutual information,
see Appendix B.1. Using this, we can lower-bound
the mutual information as follows:

Ey �D [I x �D (c(x); M (y ) � x)]

� H x �D (c(x)) � Hb(Pr D (M )) : (2)

When the precision goes to 1, the binary entropy
Hb(p) = � p log(p) � (1 � p) log(1 � p) goes to 0 and
the mutual information becomes maximal. Our results
are easier to state in terms of PrD (M ), because of the
in�nite slope of the binary entropy.

We can connect PrD (M ) back to the precision of any
feature selected byM in the following way.

Lemma 2.6. Given D = ( D; D; c), M 2 M (D) and
� 2 [0; 1]. Let x; y � D , then with probability 1 �
� � 1(1 � PrD (M )) , M (y ) is a feature s.t.

Px �D [c(x) = c(y ) j M (y ) � x ] � 1 � �:

The proof follows directly from Markov's inequality,
see Appendix B.1. We will now introduce a new frame-
work that will allow us to prove bounds on PrD (M )
and thus assure feature quality. ForI and H , we will
leave the dependence on the distribution implicit when
it is clear from context.

2.2 Merlin-Arthur Classi�cation

For a feature classi�er A (Arthur) and two feature se-
lectors M (Merlin) and cM (Morgana) we de�ne

EM; cM;A :=

(

x 2 D

�
�
�
�
�

A(M (x)) 6= c(x) _

A
�

cM (x)
�

= � c(x)

)

(3)

as the set of data points for which Merlin fails to con-
vince Arthur of the correct class or Morgana is able
to trick him into returning the wrong class, in short,
the set of points where Arthur fails. We can now
state the following theorem connecting the competi-
tive game between Arthur, Merlin and Morgana to the
class conditional entropy.

Theorem 2.7. [Min-Max] Let M 2 M (D) be a fea-
ture selector and let

� M = min
A 2A

max
cM 2M

Px �D

h
x 2 EM; cM;A

i
:

Then a setD 0 � D with Px �D [x 2 D 0] � 1� � M exists
such that for D0 = DjD 0 we have

PrD 0(M ) = 1 ; thus H x ;y �D 0(c(y ) j M (y ) � x) = 0 :

The proof is in Appendix B. This theorem states that
if Merlin's strategy allows Arthur to classify almost
perfectly, i.e., small � M , then there exists a set that
covers almost the entire original dataset and on which
the class entropy conditioned on the selected features
is zero. Note that these guarantees are for the setD 0

and not the original set D . A bound for the set D , such
as PrD (M ) � 1 � � M ; is complicated by a factor we
call asymmetric feature correlation (AFC) , and which
we explain in Section 2.3.
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Figure 4: Example of a dataset with an AFC � = 6. The \fruit" features are concentrated in one image for class l = � 1
but spread out over six images for l = 1 (vice versa for the \�sh" features). Each individual feature is not indicative of the
class as it appears exactly once in each class. Nevertheless, Arthur and Merlin can exchange \fruits" to indicate \ l = 1"
and \�sh" for \ l = � 1". The images where this strategy fails or can be exploited by Morgana are the two images on the
left. Applying Theorem 2.7, we get � M = 1

7 and the set D 0 corresponds to all images with a single feature. Restricted to
D 0, the features determine the class completely.

This bound is tight, and we provide an example of a
dataset and Merlin that achieve it in Figure 4. The ex-
ample shows a rather unintuitive image dataset with
classes \One �sh or many fruit" and \One fruit or
many �sh". Merlin selects a �sh feature for the �rst
and a fruit feature for the second class. The best strat-
egy for Arthur is then to accept these features as proof
for the respective class. The only images where this
strategy fails are the two images with many �sh or
fruit, leading to a small � M no matter what Morgana
does. Note, however, that each individual feature ap-
pears once in each class, which means the precision
is 0:5 and the conditional entropy is 1. On the other
hand, when we restrict the dataset to all images with
only a single fruit or �sh as D 0, then covers almost
the whole dataset and restricted toD 0 the features de-
termine the class completely. This illustrates why the
restriction to D 0 is necessary: It allows us to connect
the informativeness of a set of features (e.g., each �sh
feature) to the informativeness of each single feature.

2.3 Asymmetric Feature Correlation

AFC describes a possible quirk of datasets, where a set
of features is strongly concentrated in a few data points
in one class and spread out over almost all data points
in another. We give an illustrative example in Fig-
ure 4. If a data spaceD has a large AFC � , Merlin
can use features that individually appear equally in
both classes (low precision) to indicate the class where
they are spread over almost all points. Morgana can
only fool Arthur in the other class where these fea-
tures are highly concentrated, thus only in a few data
points. This ensures a small� M even with uninforma-
tive features.

For a given set of featuresF � Dp, we de�ne the set

F � := f x 2 D j 9 z 2 F : z � xg;

i.e., all data points that contain a feature from F .

De�nition 2.8 (Asymmetric feature correlation). Let
(D; D; c) be a two-class data space, then the asymmet-
ric feature correlation � is de�ned as

� = max
l 2f� 1;1g

max
F � D p

Ey �D l jF �

2

4 max
z2 F

s.t. z� y

� l (z; F )

3

5

with

� l (z; F ) =
Px �D � l [z � x j x 2 F � ]
Px �D l [z � x j x 2 F � ]

:

We derive this expression in more detail in Ap-
pendix B.3, but give an intuition here. The proba-
bility Px �D l [z � x j x 2 F � ] for z 2 F is a measure of
how correlated the features are. If all features appear
in the same data points this quantity takes a maxi-
mal value of 1 for eachz. If no features share the
same data point the value is minimally 1

jF j for the av-
eragez. The � l (z; F ) thus measures the di�erence in
correlation between the two classes. In the example
in Figure 4 the worst-caseF for l = � 1 correspond to
the \�sh" features and � l (z; F ) = 6 for each feature.
To take an expectation over the featuresz requires a
distribution, so we take the distribution of data points
that have a feature from F , i.e., y � D l jF � , and select
the worst-case feature from each data point. Then we
maximise over class and the possible feature setsF .
Since in Figure 4, the \�sh" and \fruit" features are
the worst case for each class respectively, we arrive at
an AFC of 6.

Though it is di�cult to calculate the AFC for complex
datasets, we show that it can be bounded above by the
maximum number of features per data point in D .

Lemma 2.9. Let D be a two-class data space with
AFC of � . Let K = max x 2 D jf z 2 Dp j z � xgj be the
maximum number of features per data point. Then
� � K:

We prove this in Appendix B. K depends on the type
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of features one considers, e.g., for image data a rectan-
gular cutout of given size,K � d, when any subset of
pixels is allowed, thenK � 2d. See also Appendix B
for an example dataset with an exponentially large
AFC.

2.4 Realistic Algorithms and Relative
Success Rate

In Theorem 2.7, we make use of a perfect Morgana.
For complex classi�ers this implies exhaustive search,
which is indeed possible for low-dimensional data of-
ten used in recruitment and criminal justice, where
interpretability is crucial. Consider the UCI Census
Income dataset Dua and Gra� [2017] with 14 dimen-
sions. When restricting features to a maximal size of
seven, the search space is at most

� 14
7

�
= 3432, well

within range for exhaustive search. Contrary to this,
modelling the UCI data distribution explicitly is still
an involved task, and when done incorrectly, leads to
incorrect explanations Frye et al. [2020].

However, we also aim to apply our setup to high-
dimensional datasets, where exhaustive search is not
possible. It turns out we can relax the requirement for
Morgana to play optimally in two important ways: (i)
She only has to �nd the features that can also be found
by Merlin (ii) She only has to do so with a success rate
comparable to Merlin.

De�nition 2.10 (Relative Success Rate). Let D =
(D; D; c) be a two-class data space. LetA 2 A and
M; cM 2 M (D). Then the relative success rate� of cM
with respect to A; M and D is de�ned as

� := min
l 2f� 1;1g

Px �D � l

h
A( cM (x)) = l j x 2 F �

l

i

Px �D l [A(M (x)) = l j x 2 F �
l ]

;

where F �
l := f x 2 D j 9z � x : z 2 M (D l ); A(z) = lg.

The set Fl is the set of all features that Merlin uses
in class l to successfully convince Arthur, and F �

l is
the set of all data points containing such a feature.
Thus, we only evaluate Morgana's performance on
data points where, in principle, she can identify one of
Merlin's features. The question is then how the con-
text of the other features makes this computationally
easier or harder. We discuss this idea in more depth
in Appendix B and give a worst-case example in Fig-
ure 13. We argue that realistically, we can assume a
large � when using an algorithm for Morgana that is at
least as powerful as the one for Merlin. Together with
the AFC, this allows us to state the following theorem.

Theorem 2.11. Let D = ( D; D; c) be a two-class data
space with AFC of � and class imbalanceB . Let A 2
A, and M; cM 2 M (D) such that cM has a relative
success rate of� with respect to A; M and D. De�ne

1. Completeness:

min
l 2f� 1;1g

Px �D l [A(M (x)) = c(x)] � 1 � � c;

2. Soundness

max
l 2f� 1;1g

Px �D l

h
A

�
cM (x)

�
= � c(x)

i
� � s:

Then it follows that

PrD (M ) � 1 � � c �
�� � 1� s

1 � � c + �� � 1B � 1� s
:

The proof is provided in Appendix B. This bound
is asymptotically tight. Consider again the example
in Figure 4, but generalised ton �sh and fruit features
instead of six. Then we have PrD (M ) = 1

2 , � c = 1
n +1 ,

� s = 1
n +1 , � = n, B = 1 and � = 1, since both Merlin

and Morgana will always succeed in �nding a feature
to convince Arthur if it exists in the data point. Then
we have

1
2

� 1 �
1

n + 1
�

n 1
n +1

1 � 1
n +1 + n 1

n +1

=
1
2

�
1

n + 1
;

which approaches equality as the number of features
grows larger.

The core assumption we make when comparing our
lower bound with the measured average precision
in Section 3 is the following:

Assumption 2.12. The AFC � of D and the relative
success rate� of cM w.r.t. A, M, D are O(1).

Currently, we cannot con�rm whether a dataset ex-
hibits a small AFC. However, we conjecture that, even
in cases where a dataset may include a feature set that
realises large AFC, identifying such a set poses a com-
putationally challenging task for Merlin. We leave this
issue open for further investigation.

Finitely Sampled and Biased Dataset We usu-
ally have access to only �nitely many samples of a
dataset. Additionally, the observed samples can be bi-
ased as compared to the true distribution. We prove
bounds for both cases in Appendix B.5. We show that
any exchanged feature is either informative, or it is in-
correctly represented in the dataset|thus highlighting
the bias!

In conclusion, the theoretical results presented show
that (i) For optimal feature selectors and classi�ers,
we can guarantee highly informative features without
the need to model the data distribution, see Theorem
2.7. (ii) For suboptimal agents we can still assure in-
formative features as long as the success probability of
Morgana is comparable to the one of Merlin, see The-
orem 2.11. (iii) We can certify feature quality with
measurable quantities soundness and completeness.
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1a)
� = 0
 = 0 1b)

� = 3:5
 = 0

2a)
� = 3:5
 = 0:67 2b)

� = 10
 = 0:67

Figure 5: The objective is hiring only men while hiding \sex" as the explanation. 1. No soundness is required (  = 0).
a) Merlin has no punishment for showing \sex" ( � = 0). He sends Arthur the \sex" feature and they discriminate
successfully (high completeness). b) Merlin is incentivised not to use \sex" ( � > 0). He successfully communicates the
\sex" to Arthur via di�erent features, here \hours per week" and \education". Morgana can exploit this strategy with
the same features switched. 2. High soundness is now required ( = 0 :67). Merlin either a) shows the \sex" feature
despite the punishment ( � = 3 :5) and achieves high completeness, or b) hides the \sex" feature (� = 10) and reduces
completeness to below 50%, ceasing the discrimination.

3 Numerical Implementation

Let us describe how to train the agents Arthur, Merlin,
and Morgana in a generaln-class interactive learning
setting for image data of dimensiond, where n; d 2 N.
We explain in Appendix A.3 why we chose a multi-
class neural network for Arthur and compare with the
approaches of Chang et al. [2019] and Anil et al. [2021].
The training process for tabular data is equivalent, a
detailed overview is provided in the appendix.1

Arthur is modelled by a feed-forward neural network.
He returns a probability distribution over his possible
answers, so letA : [0; 1]d ! [0; 1](n +1) , corresponding
to the probabilities of stating a class or \Don't know".
The provers select a setS of at most k pixels from
the image via a mask s 2 B d

k , where B d
k is the space

of k-sparse binary vectors of dimensiond. A masked
image s � x has all its pixels outside ofS set to a base-
line or a random value. We de�ne the Merlin-lossL M

as the cross-entropy loss with regard to the correct
class, whereas the Morgana-lossL cM considers the to-
tal probability of either answering the correct class or
the \I don't know" option, so

L M (A; x; s) = � log
�
A(s � x)c(x )

�
and

L cM (A; x; s) = � log
�
A(s � x))0 + A(s � x)c(x )

�
:

Arthur's total loss is then L = Ex �D [L (x)], where

L(x) = (1 �  )L M (A; x; M (x)) + L cM (A; x; cM (x)) ;

and  2 [0; 1] is a tunable parameter. In our experi-
ments, we choose > 0:5 since we always want to en-

1The code is available at https://github.com/
ZIB-IOL/merlin-arthur-classifiers .

sure good soundness. Note that Merlin wants to min-
imise L M , whereas Morgana aims to maximiseL cM . In
an ideal world, they would solve

M (x) = argmin
s2 B d

k

L M (A; x; s) and

cM (x) = argmax
s2 B d

k

L cM (A; x; s):
(4)

The above solutions can be obtained either by solving
the optimisation problem (Frank-Wolfe solver [Mac-
donald et al., 2022]) or by using U-Nets to predict the
solutions. We describe the training algorithm in Al-
gorithm 1: For N epochs we iterate over the dataset
and alternately train Arthur on masked images and on
the original, unmasked images. The update steps for
Merlin and Morgana (steps 8 and 9) only apply when
the feature selectors are realised by U-Nets.

Algorithm 1 Merlin-ArthurTraining
1: Input: dataset: D train , Epochs: N , 
2: Output: Classi�er Network (A), Optional: Mask-

ing Networks Merlin ( M ) and Morgana (cM )
3: for i 2 [N ] do
4: for x j ; l j 2 D train do
5: sM  M (x j ; l j ); scM  cM (x j ; l j )
6: L A (x j ; l j ) = (1 �  )L M (A(sM � x j ); l j ) +

L cM (A(scM � x j ); l j )
7: � A  � A � � r � L A (x j ; l j )
8: � M  � M � � r � L M (A(M (x j ) � x j ); l j )
9: � cM  � cM � � r � L cM (A( cM (x j ) � x j ); l j )

10: end for
11: for x j ; l j 2 D train do
12: � A  � A � � r � L(A(x j ); l j ))
13: end for
14: end for
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Figure 6: Left: For four di�erent setups of Merlin and Morgana, we compare the lower bound on Pr D (M ) with the
experimental results on the MNIST dataset. The top row is for the labels f \2" ; \4" g, and the bottom row for f \6" ; \9" g.
The bound is tight for large masks, but loosens sharply for very small mask sizes k. Middle: Examples of the features
selected by Merlin for two images. For the \4" feature, there are 13 images in MNIST that share it, all of them of class
\4" (we show four here). For the \2" there are 16 images, all of them in \2". Right: The average number of images found
for a feature selected by Merlin. These images were used to estimate PrD (M ).

3.1 Preventing Manipulation

XAI algorithms without guarantees cannot exclude
the possibility for manipulation. Indeed, arbitrarily
changing the interpretation by slightly modifying the
classi�er has been demonstrated for many XAI ap-
proaches. Slack et al. fool LIME and ShAP by making
use of the fact that these methods sample o�-manifold
evaluations of the classi�er. We are robust against this
approach, since the Merlin-Arthur classi�er only takes
on-manifold inputs, see Appendix C.1.3 for further de-
tails. Dimanov et al., Heo et al. and Anders et al. op-
timise manipulated classi�er networks to give the de-
sired explanations by penalising any deviation. They
introduce a penalty term in the network objective that
measures the distance between the produced and the
desired relevance scores. The equivalent for our setup
is to put a penalty on Merlin to hide the true (poten-
tially biased) explanations in the exchanged features.
Our theory predicts this scheme to be unsuccessful,
and we con�rm numerically that either: (i) The bias
becomes visible, (ii) Morgana can exploit the setup,
i.e., soundness is low or (iii) the completeness, i.e.,
prediction accuracy, drops.

We demonstrate this on a modi�ed UCI Census In-
come dataset2. We train a classi�er to discriminate by
\sex" | one of the remaining 12 features. We change
the Merlin-loss to

L 0
M (A; x; s) := L M (A; x; s) + � kssexk;

2For this experiment, we have removed the \relation-
ship" and \marital status" features, since they strongly
correlate with sex. See Appendix C.1 for experiments that
include them.

where� > 0, to train Merlin to hide the sensitive \sex"
feature. We then train the Merlin-Arthur classi�er to
accept only men and setk = 1 to only send one feature.
We compare a setup where soundness is ignored to one
where we choose such that a soundness of at least
90% is achieved.

The results are illustrated in Figure 5. When sound-
ness is ignored ( = 0), setting � = 3 :5 causes Mer-
lin to hide the \sex" feature and communicate \sex"
via selecting \education" for men, \working hours" for
women. When soundness is required ( = 0 :67), Mer-
lin starts to reveal the \sex" feature again. Increasing
the penalty to � = 10, causes him to hide \sex", but
now the prediction accuracy reduces to 0:45, i.e., close
to chance and thus ceasing the discrimination. When
high soundness is required, Merlin is unable to both
discriminate and hide his bias.

In Appendix C.1.3, we apply this approach to di�erent
post-hoc XAI methods and show that they are indeed
susceptible to manipulation.

3.2 Evaluation of Theoretical Bounds

Low-dimensional datasets serve to evaluate our mu-
tual information bounds. For small features there
are multiple data points that contain them and the
ground truth information of the feature can be esti-
mated. We evaluate Assumption 2.12 on the MNIST
dataset restricted to two classes for three setups of fea-
ture selectors, one with Frank-Wolfe optimisers (Opt ),
one where Merlin is a U-Net and Morgana an opti-
miser (Hybrid ), and with U-Nets for both ( Net ). We
want to stress that this is not a comparison to other
XAI methods, which do not generally make predic-
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tions about the precision of the highlighted features.
Standard classi�ers might be easier to train or achieve
higher accuracy compared to a Merlin-Arthur classi-
�er. But they are not interpretable, as there are no
post-hoc methods robust to manipulation.

In Figure 6, the lower bound is tight for larger masks,
but drops o� when k is small. One reason is that for
small masks, Arthur tends to give up on one of the
classes, while keeping the completeness in the other
class high. Regularising Arthur to maintain equal
completeness is a potential solution. When Merlin and
Morgana are realised by the same method (both opti-
misers or NNs), the bound is the tightest. In our hy-
brid approach, the bound is pessimistic since Merlin
is at a disadvantage. He needs to learn on the train-
ing set to select good features, whereas Morgana can
optimise directly on the test set. In Appendix C Fig-
ure 17, we show error bars sampled over 10 training
runs. Our lower bound is always below the empirical
estimate, which is evidence that Assumption 2.12 is
correct. This must be evaluated more extensively on
di�erent datasets.

4 Discussion and Limitations

We can draw a connection between soundness and Ad-
versarial Robustness [Goodfellow et al., 2015]. Con-
sider the generation of adversarial examples :

� � = argmin
k� k� �

L(x + � ):

The intuition is that minuscule changes to the input,
imperceptible to humans, should not change the classi-
�er decision. Likewise, the intuition behind soundness,
i.e., robustness with respect to Morgana, is that hiding
parts of an object should not convince the classi�er of
a di�erent class. At most, one could hide the whole
object, which is reected in the \Don't know!" op-
tion. In this sense, soundness should be expected of
classi�ers that generalise to partially hidden objects.

AFC seems to be more generally relevant to interac-
tive interpretability, even in di�erent setups than ours.
In Yu et al. [2019], a prover sends part of an image to
a cooperative classi�er and the rest to an adversarial
classi�er. The goal is to allow correct classi�cation for
the cooperator and prevent it for the adversary. How-
ever, as in our example in Figure 4, the prover can use
completely uninformative features (\�sh" and \fruit")
and the adversary is unable to exploit this except for
a small number of image, inversely proportional to the
AFC. This means the AFC would need to be part of an
information bound, assuming it is formulated in terms
of the accuracy of the cooperator and adversary on the
whole dataset. For details, see Appendix A.4.2.

High completeness and soundness can be mandated for
commercial classi�ers, e.g., in the context of hiring de-
cisions with past decisions by the Merlin-Arthur clas-
si�er as ground truth. An auditor uses their own Mor-
gana to verify su�cient soundness. If Arthur is sound,
the features selected by Merlin are veri�ably the ba-
sis of the hiring decisions and can be inspected for
protected attributes, e.g., race, sex or attributes that
strongly correlate with them [Mehrabi et al., 2021].
This hinges on the fact, as explained in in Section 2.4
in terms of the relative success rate, whether the Mor-
gana used by the auditor is computationally as pow-
erful as the Merlin used by hiring department.

However, simply identifying features with high mutual
information does not necessarily point to causal mech-
anisms, since they can include spurious correlations.
While the adversary prevents such correlations in the
masks, they might still be present in the original data.
In the UCI dataset, the removed features \marital sta-
tus" and \relationship" are correlated with sex and
thus can be used by Merlin to communicate \sex" to
Arthur when included, see Appendix C.1. It is up to
society to determine whether the exchanged features
constitute discrimination. This is a problem shared
generally by interpretability tools, however, there has
been progress to adapt interactive classi�cation to �nd
causal features Chang et al. [2020].

In future work, we aim to move beyond the restric-
tion to the deterministic two-class case. We discuss
the training stability of the three-player game and nu-
merical challenges in Appendix C.2.2.

5 Conclusion

We extend the framework of adversarial interactive
classi�ers to provide quantitative mutual information
bounds on the exchanged features in terms of the mea-
surable criteria completeness and soundness. We also
move beyond the common assumptions of optimally
playing agents and of feature independence. Instead,
we consider the relative strength of the provers and in-
troduce Asymmetric Feature Correlation, which cap-
tures the relevant aspect of the feature dependence.
Finally, we evaluate our results on the UCI Census
Income and MNIST datasets. Our experiments show
that the Merlin-Arthur classi�er can prevent manipu-
lation that is successful for other XAI methods, and
that our theory matches well with our numerics.
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Supplementary Material: Interpretability Guarantees with
Merlin-Arthur Classi�ers

A Conceptual Overview

Formal interpretability faces two hurdles: a complexity barrier, as well as a modelling problem. Here, we further
explain these challenges and how we overcome them. Furthermore, we also compare our architecture in detail
with that proposed in Chang et al. [2019] and Anil et al. [2021] and provide an explanation for the di�erences
in Appendix A.3. For two alternative interactive classi�cation setups with an adversary, the debate setup [Irving
et al., 2018] and the adversarial classi�er setup Yu et al. [2019], Dabkowski and Gal [2017], we show that they
cannot be used to derive bounds with the same generality as in our work. Instead, it would require stronger
assumptions on either the classi�er or the data space to exclude our counterexamples, see Appendix A.4.

A.1 Computational Complexity

Prime Implicant Explanations [Shih et al., 2018], a concept from logical abduction, can be e�ciently computed
for simple classi�ers like decision trees [Izza et al., 2020] and monotonic functions [Marques-Silva et al., 2021].
This concept has been extended to NNs [Ignatiev et al., 2019] in the form ofprobabilistic prime implicants,
which correspond to features with high precision. However, it has been shown that even approximating small
implicants within any non-trivial factor is NP-hard [Waeldchen et al., 2021] for networks of two layers or more.
In Blanc et al. [2021], the authors construct an algorithm that circumvents these hardness results by further
relaxation of the problem. While this is a noteworthy theoretical breakthrough, the polynomial bound on the
feature size grows so quickly with the dimension of the data space that the algorithm does not guarantee useful
features for real-world data. For reasonably sized images, one would get guarantees only for features that cover
the whole image.

We circumvent the hardness of this problem using a method that is very typical of Deep Learning: Use a heuristic
and verify success afterwards! Our approach can be put alongside the regular training of classi�ers, which is a
theoretically hard problem as well. A heuristic like Stochastic Gradient Descent is not a priori guaranteed to
produce a capable classi�er. However, we can check the success of the procedure by evaluating the accuracy on
a test dataset. In our case, training the Merlin-Arthur classi�er is not guaranteed to converge to an equilibrium
with informative features. But we can check whether this is the case via the test dataset, where soundness and
completeness take the role of the accuracy.

A.2 Modelling the True Data Distribution

We introduce Merlin-Arthur classi�cation as it provides us a way to measure the feature quality via the com-
pleteness and soundness values over a test dataset. This would not be necessary if we could directly measure the
feature quality over the dataset (though it would still be faster than measuring every individual feature). The
reason we need the Merlin-Arthur setup is that for general datasets the conditional entropy

H y �D (c(y ) j z � y ) = H y �Dj z � y
(c(y )) ;

is di�cult to measure, since we do not generally know the conditional distribution Dj z� y . This measurement
is possible for MNIST for small features since the dataset is very simple. However, for more complex data, a
feature which is large enough to be indicative of the class will in all likelihood not appear more than once in
the same dataset. We will now discuss some existing approaches that aim to approximate the conditional data
distribution and what problems they face.

Modelling the conditional data distribution has been pursued in the context of calculating Shapley values. These
are di�erent interpretability method based on characteristic functions from cooperative game theory that assign
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Figure 7: Di�erent failure modes of unrepresentative distributions. Left: Independent, random inpainting,
similar to Macdonald et al. [2019]. From a black image, the shape of a cat is selected, and the rest is �lled with
uniform noise. The shape of a cat is detected by a classi�er.Right: Data-driven inpainting, similar to Agarwal
and Nguyen [2021]. The image of a ship is given and the ship-feature is selected. The data driven distribution
inpaints the water back into the image, since in the dataset, ships are always on water. The faulty classi�er that
relies on the water feature is undetected, as the ship-feature indirectly leads to the correct classi�cation.

a value to every subset of a number of features [Shapley, 2016]. We will shortly discuss the approach proposed
in Lundberg and Lee [2017], where features correspond to partial vectors supported on sets.

Let f : [0; 1]d ! f� 1; 1g be a classi�er function. Then we can naturally de�ne a characteristic function � f; x :
P([d]) ! [� 1; 1] as

� f; x (S) = Ey �D [f (y ) j yS = xS ] =
Z

f (yS ; xSc )dPy �D (ySc j yS = xS ):

The Shapley value for the input componentx i is then de�ned as

Shapley Value(x i ) =
1
d

X

S� [d]nf i g

�
d � 1
jSj

� � 1

(� f; x (S [ f ig) � � f; x (S)) :

In Macdonald et al. [2022], the characteristic function is instead used to de�ne a feature selection method as

xS � where S� = argmin
jSj� k

dist( � ([d]); � (S)) ;

where k 2 [d] is a cap on the set size and dist is an appropriate distance measure.

As in our setup, the problem is that these approaches depend on how well the conditional probability
Py �D (ySc j yS = xS ) is modelled. Modelling the data distribution incorrectly makes it possible to manipu-
late many existing XAI-methods. This is done by changing the classi�er in such a way that it gives the same
value on-manifold, but arbitrary values o�-manifold. To get feature-based explanations independent of the o�-
manifold behaviour, one needs to model the data manifold very precisely [Aas et al., 2021, Dombrowski et al.,
2019]. The authors of Anders et al. [2020], Heo et al. [2019] and Dombrowski et al. [2019] demonstrate this e�ect
for existing techniques, such as sensitivity analysis, LRP, Grad-Cam, IntegratedGradients and Guided Backprop.
They are able to manipulate relevance scores at will and demonstrate how this can be used to obfuscate discrim-
ination inside a model. LIME and SHAP can be manipulated as well [Slack et al., 2020] by using a classi�er that
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behaves di�erently outside o�-distribution if the wrong distribution for the explanation. For RDE [Macdonald
et al., 2019] it is assumed that features are independent and normally distributed, and it was demonstrated that
the o�-manifold optimisation can create new features that weren't in the original image [W•aldchen et al., 2022].

We now discuss two approaches proposed to model the data distribution and why each leads to a di�erent
problem by under- or over-representing correlation in the data respectively.

Independent distribution: Which means that the conditional probability is modelled as

Py �D (ySc j yS = xS ) =
Y

i 2 Sc

p(yi );

where p(yi ) are suitable probability densities on the individual input components. This approach has been used
in Fong and Vedaldi [2017] and Macdonald et al. [2022], where optimisers are employed to �nd small features
that maximise the classi�er score. In fact, Macdonald et al. [2022] has to make a new approximation of the
data distribution in every layer and it has been shown that for neural networks one cannot do much better than
applying either this or sampling Macdonald and W•aldchen [2022]. It was highlighted in W•aldchen et al. [2022]
how this approach, when modelling the data distribution incorrectly, will create arti�cial new features that were
not present in the original image. Employing an optimisation method with this distribution can result in masks
that generate new features that were not present in the original image. We illustrate this problem in Figure 7.
Cutting a speci�c shape out of a monochrome background will with high likelihood result in an image where
this shape is visible. If the distribution was true, a monochrome shape would likely lead to an inpainting that
is monochrome in the same colour, destroying the arti�cial feature. But an independent distribution under-
represents these reasonable correlations.

Taking a data-determined distribution via generative model: Which means that the conditional prob-
ability is modelled as

Py �D (ySc j yS = xS ) = G(ySc ; xS );

where G is a suitable generative model. Generative models as a means to approximate the data distribution in
the context of explainability have been proposed in a series of publications [Agarwal and Nguyen, 2021, Chang
et al., 2018, Liu et al., 2019, Mertes et al., 2020]. This setup introduces a problem. If the network and the
generator were trained on the same dataset, the biases learned by the classi�er will appear might be learned by
the generator as well (see Figure 7 for an illustration)! The important cases will be exactly the kind of cases that
we will not be able to detect. If the generator has learned that horses and image source tags are highly correlated,
it will inpaint an image source tag when a horse is present. This allows the network to classify correctly, even
when the network only looks for the tag and has no idea about horses. The faulty distribution over-represents
correlations that are not present in the real-world data distribution.

A.3 Design of the Three-Way Game

The basic setup for a prover-veri�er game for classi�cation was proposed by Chang et al. with a veri�er, a
cooperative prover and an adversarial prover for one speci�c class. The veri�er either accepts the evidence for
the class or rejects it. Both provers try to convince the veri�er, the cooperative prover operates on data from
the class, the adversary on data from outside the class. The authors suggest that the way to scale to multiple
classes is to have three agents for every class.

In our work, we combine the agents over all classes, to have a single veri�er (Arthur), cooperator (Merlin), and
adversary (Morgana). The veri�er rejecting all the classes in their paper corresponds to our \Don't know!"
option. In our design in Section 3, we make the implicit assumption that the class of the data point is unique.
Combining the veri�ers gives us a numerical advantage for two reasons. First, since a lot of lower-level concepts
(e.g. edges and corners for image data) are shared over classes, the lower levels of the neural network bene�t by
being trained on more and more diverse data. Second, we can leverage the knowledge that the class is unique
by outputting a distribution over classes (and \Don't know!"). Both lines of reasoning are standard for deep
learning Bridle [1989].

Anil et al. further combine Merlin and Morgana into a single prover that probabilistically produces a certi�cate
for a random class. This has the advantage that it allows for further weight-sharing among the provers. However,
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the probabilistic nature of the certi�cate is also a disadvantage. The probability of generating the certi�cate for
the correct class is the inverse of the total number of classes. When applied after training, one only occasionally
gets a valid classi�cation. In our case, we can always use Merlin together with Arthur to obtain the correct class
together with an interpretable feature

A.4 Alternative setups

Here we discuss alternatives to the Merlin-Arthur setup. Both these alternatives present an interactive classi-
�cation setup as well. However, we show that they cannot prove bounds with the same generality as we have
proven.

A.4.1 Debate Model

The debate setting introduced in Irving et al. [2018] is an intriguing alternative to our proposed setup. However,
we are now going to present an example data space on which, in debate mode, Arthur and Merlin can cooperate
perfectly without using informative features. For this, we use the fact that in the debate setting, Arthur receives
features from both Merlin and Morgana for each classi�cation. Our example illustrates that the debate setting
would need stronger requirements on either the data space or Arthur to produce results similar to ours.

Consider the following example of a data spaceDex , illustrated in Figure 8.

Example A.1. Given n 2 N; n � 4, we de�ne the data spaceDex = ( D; D; c) with

ˆ D = D � 1 [ D1 where D s =
S n

k=1 [2k + s;2k]

ˆ for T 2 P (D) : D(T) = jT j
N ,

ˆ c(x) =

(
� 1 x 2 D � 1

1 x 2 D1:

None of the features inDp are informative of the class and the mutual information I (c(x); z 2 x) for any z 2 Dp

is zero. Nevertheless, in a debate setting, Arthur can use the following strategy after receiving a total of two
features from Merlin and Morgana

A(f z1; z2g) =

(
c(x � ) where x � = argmax x 2 D kxk1 s.t. z1 � x ; z2 � x ;
0 if 6 9x 2 D : z1 � x ; z2 � x :

This means he returns the class of the data point with the largest 1-norm that �ts the presented features. But
now Merlin can use the strategy

M (x) = argmin
z

kzk1 s.t. z � x ;

which returns the feature with the smaller 1-norm. It is easy to verify that no matter what Morgana puts
forward, a feature with smaller or larger entry, nothing can convince Arthur of the wrong class. If she gives the
same feature as Merlin, the data point will be correctly determined by Arthur. If she gives the other feature,
the true data point is the unique one that has both features. Arthur's strategy works as long assomeonegives
him the smaller feature.

In a setting where Arthur has to evaluate every feature individually, the best strategy that Arthur and Merlin can
use achieves� c = � s = 1

3 , by making use of the asymmetric feature concentration. The AFC forDex is � = 2, as
can be easily veri�ed by taking F = f [� ; 2]; [3; � ]; [� ; 6]; [7; � ]g in the de�nition of the AFC, see De�nition 2.8, and
observing that they cover 4 data points in classl = � 1 and only two in classl = 1. But since the AFC-constant
appears in the bound, the lower bound for PrD (M ) is 1

6 , well below the actual average precision of12 .

This example demonstrates that Arthur and Merlin can successfully cooperate even with uninformative features,
as long as Arthur does not have to classify on features by Morgana alone. This implies that to produce similar
bounds as in our setup, the debate mode needs stronger restrictions on either the allowed strategies of Arthur
or the structure of the data space, such that this example is excluded.
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l = -1 l = 1
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[7; � ]
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a) b)

Figure 8: Schematic ofDex as de�ned in Example A.1. a) The data space forms a bipartite graph, where every
data point shares exactly one feature each with two data points from the opposite class. b) Classi�cation on
data point [3; 4]. Merlin chooses the feature with the smallest 1-norm from this data point, so [3; � ]. Arthur
chooses the class of the data point with the highest 1-norm compatible with the presented features, so correctly
[3; 4]. Morgana can choose? , [� ; 2] or [3; � ], but in all cases Arthur can correctly identify the original data point
and return class l = � 1.

A.4.2 Adversarial Classi�er

An alternative interactive setup has been proposed in Yu et al. [2019], Dabkowski and Gal [2017], see Figure 9
a) for an illustration. In this setup, a single prover selects a feature from the data point and sends it to a
cooperative classi�er that decides the class. The rest of the data point is sent to an adversarial classi�er that
also tries to classify correctly. The aim of the prover is to maximise the probability that the cooperator classi�es
correctly, and that the adversary cannot perform much better than chance. This setup prevents cheating (in
the sense illustrated in Figure 2), because selecting uninformative features would leave the informative features
for the adversary. The optimal selections thus captures all the features that are su�cient to decide the class,
whereas our Merlin-Arthur setup captures just the features that are necessary to decide the class. We should
expect the latter set to be contained in the former.

a) b)

Figure 9: a) Illustration of the adversarial classi�cation setup. Here, the prover selects a feature from the data point and
sends it the cooperative veri�er that decides the class. The data point without the feature is send to an adversary that
also aims to decide the class. b) An example dataset that illustrates why this setup might fail to select for informative
features. All selected features appear once in each class, thus have zero mutual information. Nevertheless, it is possible
to classify perfectly with the selection, but not better than chance with the leftover.
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