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Abstract

This paper studies a class of simple bilevel
optimization problems where we minimize
a composite convex function at the upper-
level subject to a composite convex lower-
level problem. Existing methods either pro-
vide asymptotic guarantees for the upper-
level objective or attain slow sublinear con-
vergence rates. We propose a bisection al-
gorithm to find a solution that is ϵf -optimal
for the upper-level objective and ϵg-optimal
for the lower-level objective. In each it-
eration, the binary search narrows the in-
terval by assessing inequality system fea-
sibility. Under mild conditions, the to-
tal operation complexity of our method is

Õ
(

max{
√
Lf1/ϵf ,

√
Lg1/ϵg}

)
. Here, a unit

operation can be a function evaluation, gradi-
ent evaluation, or the invocation of the prox-
imal mapping, Lf1 and Lg1 are the Lipschitz
constants of the upper- and lower-level objec-
tives’ smooth components, and Õ hides loga-
rithmic terms. Our approach achieves a near-
optimal rate, matching the optimal rate in
unconstrained smooth or composite convex
optimization when disregarding logarithmic
terms. Numerical experiments demonstrate
the effectiveness of our method.

1 INTRODUCTION

In this paper, we focus on the following convex bilevel
optimization problem:

(P) min
x∈Rn

f(x) := f1(x) + f2(x)

s.t. x ∈ arg min
z∈Rn

g(z) := g1(z) + g2(z). (1)
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Here, functions f1 and g1 : X → R are convex and
continuously differentiable over an open set X ∈ Rn.
Their gradients, ∇f1 and ∇g1, are Lf1- and Lg1-
Lipschitz continuous, respectively. f2 and g2 : Rn →
R∪∞ are proper lower semicontinuous (l.s.c.) convex
functions. We assume that g is not strongly convex,
and the lower-level problem has multiple optimal so-
lutions; in other words, the optimal solution set of the
lower-level problem, denoted as X∗

g , is not a singleton.
Otherwise, the optimal minimum is determined by the
lower-level problem.

This specific class of problems, often known as “simple
bilevel optimization” in the existing literature (Dempe
et al., 2010; Dutta and Pandit, 2020; Shehu et al., 2021;
Jiang et al., 2023), is a subclass of the general bilevel
optimization problems. In a general bilevel optimiza-
tion, the lower-level problem is parametrized by some
upper-level variables. Bilevel optimization has gar-
nered significant interest owing to its versatile appli-
cations across domains such as reinforcement learning
(Hong et al., 2020), meta-learning (Bertinetto et al.,
2018; Rajeswaran et al., 2019), hyper-parameter opti-
mization (Franceschi et al., 2018; Shaban et al., 2019),
and adversarial learning (Bishop et al., 2020; Wang
et al., 2021, 2022).

Let p∗ be the optimal value of problem (1) and g∗

be the optimal value of the unconstrained lower-level
problem

min
x∈Rn

g(x) := g1(x) + g2(x). (2)

The goal of this paper is to find an (ϵf , ϵg)-optimal
solution x̂ satisfying

f(x̂) − p∗ ≤ ϵf and g(x̂) − g∗ ≤ ϵg.

A possible approach for solving problem (1) is to refor-
mulate it to a constrained optimization problem with
functional constraints and apply primal-dual methods.
Specifically, problem (1) can be reformulated as a con-
strained convex optimization problem as follows:

min
x∈Rn

f(x) s.t. g(x) ≤ g∗. (3)
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A critical issue of applying primal-dual-type methods
is that problem (3) does not satisfy the regularity con-
dition required for their convergence (the strict feasi-
bility does not hold and hence Slater’s condition fails).
Furthermore, classical first-order algorithms, such as
projected gradient descent, may also be ineffective due
to the difficulty of computing the orthogonal projec-
tion onto the level-set of the lower-level objective. If
we relax the constraint and solve the following problem
to ensure strict feasibility

min
x∈Rn

f(x) s.t. g(x) ≤ g∗ + ϵ, (4)

these challenges remain. Indeed, as ϵ approaches zero,
causing the problem to become nearly degenerate, the
dual optimal variable may tend towards infinity. This
phenomenon hinders convergence and results in nu-
merical instability (Bonnans and Shapiro, 2013). Con-
sequently, problem (1) cannot be straightforwardly
addressed as a conventional constrained optimization
problem; instead, it necessitates novel theories and al-
gorithms customized for its hierarchical structure.

1.1 Our Approach

Our main technique is a bisection method that itera-
tively narrows an interval [l, u] that includes p∗. The
binary search is based on the feasibility of the following
system:

f(x) ≤ c, g(x) ≤ g∗, (5)

where c = l+u
2 . The key observation is that if System

(5) is feasible, then c is an upper bound of p∗; other-
wise, System (5) is infeasible and c is a lower bound
of p∗. This process divides the interval in half. The
feasibility of the system can be checked by solving the
following problem

min
x∈Rn

g(x), s.t. f(x) ≤ c. (6)

The above is only a basic idea, the detail of our algo-
rithm that considers the inexactness of solving (6) is
detailed in Section 3. Moreover, by showing that each
iteration and the initial lower and upper bounds can
be solved by Accelerated Proximal Gradient (APG)
methods (Nesterov, 1983; Beck and Teboulle, 2009),
we derive a comprehensive complexity analysis for our
algorithm.

We state our contributions in the following:

• Under mild conditions, we propose a novel bisec-
tion method that finds an (ϵf , ϵg)-optimal solu-
tion of problem (1) with an operation complex-

ity Õ
(

max{
√
Lf1/ϵf ,

√
Lg1/ϵg}

)
, where the no-

tation Õ suppresses a logarithmic term. Our

method achieves near-optimal non-asymptotic
guarantees on both upper- and lower-level prob-
lems, i.e., our rate aligns with the optimal rate
observed in unconstrained smooth or composite
convex optimization, with the exception of omit-
ting the logarithmic term (Nemirovsky and Yudin,
1983; Woodworth and Srebro, 2016).

• With an additional r-th-order (r ≥ 1) Hölderian
error bound assumption on the lower-level prob-
lem and incorporating other smoothness assump-
tions, our method can find a solution x̂ that sat-
isfies |f(x̂) − p∗| ≤ ϵf and g(x̂) − g∗ ≤ ϵg with an

Õ
(

1/
√
ϵrf

)
operation complexity. This complex-

ity arises under the setting ϵg = α
γ

(
ϵf
Bf

)r
, where

α, γ,Bf are defined in Section 4.1.

• With an additional assumption on the optimal
value of (4), our method can find a solution x̂ that
satisfies |f(x̂)−p∗| ≤ ϵf and g(x̂)−g∗ ≤ ϵg with an

Õ
(
max{1/

√
Lϵgϵg, 1/

√
ϵg}
)

operation complex-
ity. This operational complexity is observed when
ϵf = Lϵgϵg, where Lϵg is defined in Section 4.2.

• Numerical experiment results on different prob-
lems demonstrate the superior performance of our
method compared to the state-of-the-art.

1.2 Related Work

One class of algorithms to solve problem (1) is based on
solving the Tikhonov-type regularization (Tikhonov
and Arsenin, 1977):

min
x∈Rn

ϕ(x) := g(x) + λf(x),

where λ > 0 is a regularization parameter. How-
ever, these kinds of algorithms fail to provide any non-
asymptotic guarantee for either the upper- or lower-
level objective. For a review of these algorithms, see
Doron and Shtern (2023) and Jiang et al. (2023).

Another class of algorithms aims to establish non-
asymptotic convergence rates for problem (1). Beck
and Sabach (2014) presented the Minimal Norm Gra-
dient (MNG) method for the case where f is strongly
convex. They demonstrated that MNG converges
asymptotically to the optimal solution and possesses
an O

(
L2
g1/ϵ

2
)

complexity bound for the lower-level
problem. In their setting, g ≡ g1 and g2 ≡ 0. De-
veloped from the sequential averaging method (SAM)
framework, the Bilevel Gradient Sequential Averaging
Method (BiG-SAM) is proposed by Sabach and Shtern
(2017). This algorithm can achieve an O (Lg1/ϵ) com-
plexity bound for the lower-level problem. Solodov
(2007) introduced the Iterative Regularized Projected
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Table 1: Summary of simple bilevel optimization algorithms. The abbreviations “SC”, “C”, “C3” stand for
“strongly convex”, “convex”, “Convex objective with Convex Compact constraints” respectively. When the
connection between complexity and the gradient’s Lipschitz constant is clear, we include it in the complexity
result; otherwise, we omit it.

References
Upper-level Lower-level Convergence
Objective f Objective g Upper-level Lower-level

MNG (Beck and Sabach, 2014). SC, differentiable C, smooth Asymptotic O
(
L2
g1/ϵ

2
)

BiG-SAM (Sabach and Shtern, 2017) SC, smooth C, composite Asymptotic O (Lg1/ϵ)

IR-IG (Amini and Yousefian, 2019) SC C3, Finite sum Asymptotic O
(
1/ϵ4

)
Tseng’s method (Malitsky, 2017) C, composite C, composite Asymptotic O (1/ϵ)

ITALEX (Doron and Shtern, 2023) C, composite C, composite O
(
1/ϵ2

)
O (1/ϵ)

a-IRG (Kaushik and Yousefian, 2021) C, Lipschitz C, Lipschitz O
(

max{1/ϵ4f , 1/ϵ
4
g}
)

CG-BiO (Jiang et al., 2023) C, smooth C3, smooth O (max{Lf1/ϵf , Lg1/ϵg})

Our method C, composite C, composite Õ
(

max{
√

Lf1/ϵf ,
√

Lg1/ϵg}
)

Gradient (IR-PG) method, which involves applying
a projected gradient step to the Tikhonov-type reg-
ularization function ϕ(x) at each iteration. Amini
and Yousefian (2019) extended the IR-PG method
(Solodov, 2007) for the case where f is strongly con-
vex but not necessarily differentiable. Their method
achieves a convergence rate of O

(
1/k0.5−b

)
for the

lower-level problem, where b ∈ (0, 0.5). Malitsky
(2017) studied a version of Tseng’s accelerated gradi-
ent method that obtains a convergence rate of O (1/k)
for the lower-level problem. These prior works only
establish the convergence rate for the lower-level prob-
lem, while the rate for the upper-level objective is miss-
ing.

Several algorithms have recently provided convergence
rates for both upper- and lower-level objectives. Doron
and Shtern (2023) presented a scheme called Iterative
Approximation and Level-set Expansion (ITALEX) to
solve problem (1). Their algorithm achieves conver-

gence rates of O (1/k) and O
(

1/
√
k
)

for the lower-

and upper-level problems, respectively. Kaushik and
Yousefian (2021) showed that an iteratively regular-
ized gradient (a-IRG) method can obtain complexity
O
(
1/k0.5−b

)
for the upper-level problem and O

(
1/kb

)
for the lower-level, where b ∈ (0, 0.5). To balance the
two rates, one can set b = 0.25, and the complexity

bound is O
(

max{1/ϵ4f , 1/ϵ
4
g}
)

as stated in Table 1.

Jiang et al. (2023) presented a conditional gradient-
based bilevel optimization (CG-BiO) method, which
requires O (max{Lf1/ϵf , Lg1/ϵg}) operation complex-
ity to find an (ϵf , ϵg)-optimal solution. In their setting,
f ≡ f1 and f2 ≡ 0.

2 PRELIMINARIES

In this paper, we use an Accelerated Proximal Gra-
dient (APG) method to approximately solve subprob-
lems, which have the following form:

min
x∈Rn

φ(x) := φ1(x) + φ2(x), (7)

where the function φ1 : X → R is convex and con-
tinuously differentiable on an open set X ∈ Rn. The
gradient ∇φ1 is Lφ1

-Lipschitz continuous. The func-
tion φ2 : Rn → R ∪ {∞} is proper, lower semicon-
tinuous, convex, possibly non-smooth, and proximal-
friendly. A function h is proximal-friendly means that
the proximal mapping of h, defined as

proxh(y) = arg min
x∈Rn

h(x) +
1

2
∥x− y∥2,

is easy to compute. In this paper, we take the clas-
sical Fast Iterative Shrinkage Thresholding Algorithm
(FISTA) proposed in Beck and Teboulle (2009) as an
APG algorithm (see more details in the appendix).
Next, we give a definition of an APG oracle.

Definition 1. Given φ1, φ2, Lφ1
, and xφ

0 ∈ Rn

as defined above, an APG oracle, denoted by x̃φ =
APG(φ1, φ2, Lφ1

,xφ
0 , ϵ), is a procedure that imple-

ments the classical FISTA scheme within O(
√

Lφ1
/ϵ)

iterations to obtain an ϵ-optimal solution to problem
(7), denoted as x̃φ.

If the Lipschitz constant Lφ1 is unknown or compu-
tationally infeasible, we can apply the FISTA scheme
with line search as an alternative to the APG algo-
rithm (see the appendix).

For any fixed c, problem (6) can be rewritten in the
following form:

min
x∈Rn

gc(x) := g1(x) + hc(x), (8)
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where hc(x) := g2(x) + δc(x) and δc(x) is an indicator
function with the definition that δc(x) = 0 if f(x) ≤ c;
δc(x) = +∞ if f(x) > c. We provide some motivat-
ing examples in which the proximal mapping of hc is
easy to compute. These examples can be found in the
appendix.

2.1 Assumptions

Assumption 1. We adopt the following basic as-
sumptions.

(i) Functions f1 and g1 are convex and continuously
differentiable. The gradients of the functions f1,
g1, denoted by ∇f1 and ∇g1 are Lf1- and Lg1-
Lipschitz continuous, respectively.

(ii) Functions f2 and g2 are proper, lower semicontin-
uous, convex, possibly non-smooth, and proximal-
friendly.

(iii) The upper- and lower-level functions are lower
bounded:

f∗ := inf
x∈Rn

f(x) > −∞, g∗ := inf
x∈Rn

g(x) > −∞.

In addition, we assume that g is not strongly con-
vex, and the lower-level problem has multiple op-
timal solutions.

(iv) For any fixed c, the function hc := g2 + δc in
problem (8) is proximal-friendly.

Remark 1. We assume that the upper-level problem
involves the minimization of a composite convex func-
tion, which comprises the sum of a smooth convex
function and a potentially non-smooth convex func-
tion. This assumption is significantly weaker than the
strong-convexity assumption made in certain previous
studies (Beck and Sabach, 2014; Sabach and Shtern,
2017; Amini and Yousefian, 2019). This assumption is
also less restrictive than the requirement for the upper-
level objective function to be smooth (Jiang et al.,
2023). We also assume that the lower-level problem is
a composite convex minimization. This assumption is
less restrictive than the smoothness assumption made
in Beck and Sabach (2014). Additionally, this assump-
tion is weaker than the requirement that the lower-level
objective function is convex with convex compact con-
straints, as described in Amini and Yousefian (2019)
and Jiang et al. (2023).

Remark 2. We make Assumption 1(iv) to enable
the efficient application of the APG oracle for solving
problem (6). The function hc is the sum of two con-
vex functions, and the study of proximal mapping for
such sums can be found in the literature (Yu, 2013;
Pustelnik and Condat, 2017; Bauschke et al., 2018;
Adly et al., 2019).

g(c)

f∗ p∗ϵg p∗ p∗ + ϵf

g∗ + ϵg
g∗

c

Figure 1: Variation of ḡ(c) over (f∗,+∞)

3 MAIN ALGORITHM AND
CONVERGENCE ANALYSIS

Before the presentation of the main algorithm, we de-
scribe our idea in the next subsection.

3.1 Bisection Method

Our method is a bisection method whose heart is the
feasibility of System (5). Let f∗ be the optimal value
of the unconstrained upper-level problem

min
x∈Rn

f(x) := f1(x) + f2(x). (9)

For a given c > f∗, we let ḡ(c) be the optimal value of
problem (6). Then ḡ(c) is a univariate function of c on
(f∗,+∞). According to Theorem 5.3 in Rockafellar
(1970), the function ḡ(c) is convex. The function ḡ(c)
is also non-increasing as the feasible set of problem (6)
becomes larger when c increases. Moreover, if f∗ <
c < p∗, then the inequality ḡ(c) > g∗ holds; otherwise
c ≥ p∗ and we have ḡ(c) = g∗. Therefore, p∗ is the
left-most root of the equation ḡ(c) = g∗. Let p∗ϵg be
the optimal value of (4) with ϵ = ϵg, then it is a root
of the equation ḡ(c) = g∗ + ϵg. We illustrate the graph
of ḡ(c) in Figure 1.

To illustrate the basic idea of our method, we make an
ideal assumption that the exact values of g∗ and ḡ(c)
can be obtained. We can observe that if ḡ(c) > g∗

holds, then System (5) is infeasible; otherwise, ḡ(c) =
g∗ and System (5) is feasible. For a guess point c, if
the condition ḡ(c) > g∗ holds, then c is a lower bound
of p∗; otherwise, c is an upper bound of p∗.

However, the ideal assumption that the exact values
of g∗ and ḡ(c) can be obtained does not hold. Instead,
we solve problem (2) and problem (6) to approximate
them, respectively. For problem (2), we invoke the
APG oracle x̃g=APG(g1, g2, Lg1 ,x

g
0, ϵg/2) to solve it.
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Then we can find an approximate solution x̃g that sat-
isfies

0 ≤ g̃ − g∗ ≤ ϵg/2, (10)

where g̃ = g(x̃g).

Under Assumption 1(iv), the proximal mapping of hc

is easy to compute. Then we can apply an APG oracle
to problem (6). For a given c, we invoke the APG
oracle x̃c=APG(g1, hc, Lg1 ,x

c
0, ϵg/2) to solve problem

(6). Then we can obtain an approximate solution x̃c

that satisfies

0 ≤ g(x̃c) − ḡ(c) ≤ ϵg/2. (11)

Since the condition ḡ(c) > g∗ cannot be verified di-
rectly, we replace it with the following verifiable con-
dition

g(x̃c) > g̃ + ϵg/2. (12)

If Condition (12) holds, then we have

ḡ(c)
(11)

≥ g(x̃c) − ϵg/2
(12)
> g̃

(10)

≥ g∗,

i.e., the inequality ḡ(c) > g∗ holds. Thus, System (5)
is infeasible, and c is a lower bound of p∗.

If Condition (12) does not hold, we have g(x̃c) ≤ g̃ +
ϵg/2 and thus

ḡ(c)
(11)

≤ g(x̃c) ≤ g̃ + ϵg/2
(10)

≤ g∗ + ϵg. (13)

We cannot infer that ḡ(c) = g∗ holds in this case. Also,
we cannot claim that System (5) is feasible. Thus c
might not be an upper bound of p∗. By (13), x̃c is a
feasible solution of (4) with ϵ = ϵg. Therefore, f(x̃c)
is an upper bound on p∗ϵg , where p∗ϵg represents the
optimal value of (4) with ϵ = ϵg as previously defined.
In addition, as the inequality g(x̃c) ≤ g∗ + ϵg holds,
x̃c is an ϵg-optimal solution of the lower-level problem
(2).

Summarizing the above analysis, we present the fol-
lowing lemma.

Lemma 1. For any fixed c, if Condition (12) is sat-
isfied, then System (5) is infeasible, and c is a lower
bound of p∗. If Condition (12) is not satisfied, then we
can obtain x̃c as an ϵg-optimal solution of the lower-
level problem and f(x̃c) is an upper bound of p∗ϵg .

Next, we show how to obtain the initial interval [l, u]
for the bisection procedure. Here l is a lower bound
of p∗ and u is an upper bound of p∗ϵg , but possibly
not an upper bound of p∗. We invoke the APG or-
acle x̃f=APG(f1, f2, Lf1 ,x

f
0 , ϵf/2) to solve problem

(9). Then we can obtain an approximate solution x̃f

that satisfies

0 ≤ f(x̃f ) − f∗ ≤ ϵf/2. (14)

We have f(x̃f )− ϵf/2 ≤ f∗ ≤ p∗. We use l = f(x̃f )−
ϵf/2 as an initial lower bound of p∗. Moreover, since
x̃g satisfies (10), we have x̃g is a feasible solution of
(4) with ϵ = ϵg. Then we use u = f(x̃g) as an initial
upper bound of p∗ϵg .

Now we can do a binary search over [l, u]. For a given
c = l+u

2 , we check whether Condition (12) is satisfied.
If Condition (12) is satisfied, we let l = c be a new
lower bound of p∗. If Condition (12) is not satisfied,
we let u = f(x̃c), which is less than or equal to c, be
a new upper bound of p∗ϵg . We summarise our method
in Algorithm 1.

Algorithm 1 Bisection-based method for simple
Bilevel Optimization (Bisec-BiO)

Input: f1, f2, g1, g2, Lf1 , Lg1 , ϵf , ϵg
Output: An (ϵf , ϵg)-optimal solution x̂
1: Invoke APG oracles to obtain initial bounds l and

u, and the approximate solutions x̃f and x̃g.
2: while u− l > ϵf do
3: let c = l+u

2 and invoke an APG oracle to obtain
an approximate solution x̃c.

4: if Condition (12) is satisfied then
5: let l = c,
6: else
7: let u = f(x̃c). ▷ f(x̃c) ≤ c
8: end if
9: end while

10: Let c = u and return the corresponding x̃c as x̂.

3.2 Convergence Analysis under Assumption
1

In this subsection, we give the complexity result of our
method.

Theorem 1. Suppose Assumption 1 holds. Algorithm
1 produces an (ϵf , ϵg)-optimal solution for problem (1)
after at most T evaluations of the function values f1,
f2, g1 and g2, the gradients ∇f1 and ∇g1, and the
calls of proximal mapping with respect to function hc,
where

T = Õ

(
max

{√
Lf1

ϵf
,

√
Lg1

ϵg

})
,

and Õ suppresses a logarithmic term.

Theorem 1 demonstrates that our complexity achieves
the near-optimal rate for both upper- and lower-level
objectives and matches the optimal rate of first-order
methods for unconstrained smooth or composite con-
vex optimization when disregarding the logarithmic
term (Nemirovsky and Yudin, 1983; Woodworth and
Srebro, 2016). Comparing with existing works (Beck
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and Sabach, 2014; Sabach and Shtern, 2017; Amini and
Yousefian, 2019; Malitsky, 2017; Doron and Shtern,
2023; Kaushik and Yousefian, 2021; Jiang et al., 2023),
our result provides the best-known non-asymptotic
bounds for both upper- and lower-level objectives.
Specifically, our complexity bound improves upon the
result by Jiang et al. (2023) by orders of magnitude.
They considered a different setup where the upper-
level function is smooth, and the lower-level objective
is a smooth convex function with convex compact con-
straints.

Remark 3. Assumption 1(iv) essentially implies that
projecting onto the sublevel set of f is straightforward,
as observed in the motivating examples. Consequently,
we can employ a bisection method to locate f∗ by veri-
fying the solvability of the projection onto the sublevel
set of f . This approach eliminates the dependency on
Lf1 from the overall complexity.

4 CONVERGENCE ANALYSIS
UNDER OTHER ASSUMPTIONS

In this section, we provide an analysis of the metric
f(x̂)− p∗. Our method guarantees that f(x̂) serves as
an upper bound for p∗ϵg ; however, it may not necessar-
ily be an upper bound for p∗, which could result in a
negative value for f(x̂) − p∗. In fact, as x̂ may not be
an exact optimal solution to the lower-level problem, it
may not be a feasible point for problem (1). Hence, the
value of f(x̂)−p∗ may be negative. In essence, we cur-
rently offer an upper bound metric for f(x̂)− p∗ while
lacking a corresponding lower bound metric. Although
this may appear a bit unconventional, it is noteworthy
that Kaushik and Yousefian (2021) and Jiang et al.
(2023) similarly employed f(x̂) − p∗ as their perfor-
mance metric.

In this section, we introduce additional assumptions
to establish a lower bound for f(x̂) − p∗, allowing us
to provide a metric expressed as |f(x̂) − p∗|.

4.1 Convergence Analysis under Hölderian
Error Bound Assumption

In this subsection, we make some additional assump-
tions to provide a lower bound for f(x̂) − p∗.

Assumption 2. (i) The domain of g2 is bounded.

(ii) The function f2 is lf2-Lipschitz continuous on
dom(g2), i.e. |f2(x) − f2(y)| ≤ lf2∥x− y∥.

In the following, we give some remarks on Assumption
2. Assumption 2(i) is fulfilled by many examples, see
Section 5 in Amini and Yousefian (2019) and Section
2 in Jiang et al. (2023). In particular, in Section 5.2,
we have C = {x ∈ Rn : ∥x∥1 ≤ λ}, then dom(g2)

is bounded. As f1 is continuous, ∇f1 is bounded on
dom(g2). Hence Assumption 2(i) implies

Bf1 = max
x∈dom(g2)

∥∇f1(x)∥.

Then by mean-value theorem, the function f1 is Bf1-
Lipschitz continuous on dom(g2).

Assumption 2(ii) is mild. For example, if f2(x) =
∥x∥1, then lf2 =

√
n, where n is the dimension of x.

Let Bf = Bf1 + lf2 . Under Assumption 2(i) and (ii), it
follows that f is Bf -Lipschitz continuous on dom(g2),
namely,

|f(x1) − f(x2)| ≤ Bf∥x1 − x2∥ ∀x1,x2 ∈ dom(g2)
(15)

Assumption 3. The function g satisfies the
Hölderian error bound for some α > 0 and r ≥ 1 on
the lower-level optimal solution set X∗

g , i.e,

α

r
dist(x, X∗

g )r ≤ g(x) − g∗, ∀x ∈ dom(g2). (16)

It is important to highlight that the error bound condi-
tion described in (16) has received considerable atten-
tion in the literature, as evidenced by studies such as
Pang (1997); Bolte et al. (2017); Zhou and So (2017),
and the associated references therein. Bolte et al.
(2017) demonstrated that this error bound condition
typically holds when the function g exhibits proper-
ties of being semi-algebraic and continuous, while also
ensuring that dom(g2) remains bounded. They also
showed that there is an equivalence between Hölderian
error bound condition and the Kurdyka- Lojasiewicz
inequality. There are two notable special cases: (i)
r = 1, X∗

g is a set of weak sharp minima of g (Burke
and Deng, 2005); (ii) r = 2, Condition (16) is known
as the quadratic growth condition (Drusvyatskiy and
Lewis., 2018). Based on Corollary 5.1 in Li and Pong
(2018) and Theorem 5 in Bolte et al. (2017), it is
evident that in the motivating examples provided in
the appendix, the lower-level objectives satisfy the
Hölderian error bound assumption with r = 2.

Given Assumptions 2 and 3, we can derive the fol-
lowing lower bound for f(x̂) − p∗. Importantly, this
result is an inherent characteristic of problem (1) and
remains unaffected by the choice of algorithm.

Proposition 1. Under Assumptions 2 and 3, let x̂ be
an ϵg-optimal solution of the lower-level problem, i.e.,
x̂ satisfies g(x̂) − g∗ ≤ ϵg. Then it holds that:

f(x̂) − p∗ ≥ −Bf

(rϵg
α

) 1
r

.

This result is similar to Proposition 1 in Jiang et al.
(2023), which also gives a lower bound for f(x̂) − p∗

with similar assumptions. Combining Theorem 1 with
Proposition 1, we have the following result.
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Corollary 1. Under Assumptions 1-3, let x̂ be the

output of Algorithm 1 and set ϵg = α
γ

(
ϵf
Bf

)r
. Then

with an operation complexity of Õ
(

1/
√
ϵrf

)
, we can

find an x̂ such that

|f(x̂) − p∗| ≤ ϵf , g(x̂) − g∗ ≤ ϵg.

Corollary 1 illustrates that, under Assumptions 1-3, we
can find an iteration point to be ϵf -close to optimality

with an operation complexity Õ
(

1/
√
ϵrf

)
.

4.2 Convergence Analysis under an
Additional Assumption on the Optimal
Value of (4)

In this subsection, we present an alternative approach
to establishing a lower bound for f(x̂)−p∗. Denote the
optimal value of problem (4) as v(ϵ). Here, v(ϵ) is a
function of ϵ defined on the interval [0,+∞). Accord-
ing to the definitions of p∗ and p∗ϵg , we can establish
that v(0) = p∗ and v(ϵg) = p∗ϵg . As illustrated in Fig-
ure 1, we can define an angle function θ(ϵ) on [0, π/2)
such that

ϵ = (v(0) − v(ϵ)) · tan θ(ϵ).

Similar to the monotonicity of ḡ(c), functions v(ϵ) and
θ(ϵ) are also monotonically non-decreasing. If ϵ = 0,
then θ(ϵ) = 0; otherwise ϵ > 0 and θ(ϵ) > 0. It is
hard to compute the exact value of tan θ(ϵ). Instead,
for any fixed ϵ > 0, we assume that there exists a
parameter Lϵ > 0 such that Lϵ tan θ(ϵ) ≥ 1 holds. In
other words, we make the following assumption.

Assumption 4. For any fixed ϵ > 0, we assume that
there exists a parameter Lϵ > 0 such that v(0)−v(ϵ) ≤
Lϵϵ holds.

In the following, we consider a simple two-dimensional
toy example in which Assumption 4 holds.

Example 1 (A toy example).

min
x∈R2

f(x) = |x1| + |x2|
s.t. x ∈ arg min

z∈R2

g(z) = (z1 − 1)2. (17)

In this example, the optimal solution and the optimal
value of (17) are (x∗

1,x
∗
2) = (1, 0) and v(0) = p∗ =

1, respectively. Next, we consider problem (4) with
0 < ϵ < 1. It can be easily obtained that the optimal
solution and the optimal value of (4) are (x∗

1,x
∗
2) =

(1 −
√
ϵ, 0) and v(ϵ) = 1 −

√
ϵ, respectively. Then we

have
v(0) − v(ϵ) =

√
ϵ.

By setting Lϵ ≥ 1/
√
ϵ, Assumption 4 holds.

Under Assumption 4, we can derive a lower bound for
f(x̂)−p∗ that is independent of the choice of algorithm.

Proposition 2. Under Assumption 4, let x̂ be an ϵg-
optimal solution of the lower-level problem, i.e., x̂ sat-
isfies g(x̂) − g∗ ≤ ϵg. Then it holds that:

f(x̂) − p∗ ≥ −Lϵgϵg.

By combining Theorem 1 with Proposition 2, we have
the following result.

Corollary 2. Under Assumption 1 and Assump-
tion 4, let x̂ be the output of Algorithm 1 and set
ϵf = Lϵgϵg. Then with an operation complexity of

Õ
(
max{1/

√
Lϵgϵg, 1/

√
ϵg}
)
, we can find an x̂ such

that

|f(x̂) − p∗| ≤ ϵf , g(x̂) − g∗ ≤ ϵg.

Corollary 2 demonstrates that with Assumptions 1 and
4 in place, we can obtain an iteration point to be
Lϵgϵg-close to optimality with an operation complexity

Õ
(
max{1/

√
Lϵgϵg, 1/

√
ϵg}
)
.

5 NUMERICAL EXPERIMENTS

In this section, we apply our method (Bisec-BiO) to
two bilevel optimization problems from the motivat-
ing examples in the appendix and compare its per-
formance with other existing methods in the liter-
ature (Beck and Sabach, 2014; Sabach and Shtern,
2017; Kaushik and Yousefian, 2021; Gong and Liu,
2021; Jiang et al., 2023). For all experiments, we set
ϵf = 10−5 and ϵg = 10−6, and we adopt the Greedy
FISTA algorithm proposed in Liang et al. (2022) as
the APG method. The Greedy FISTA algorithm can
achieve superior practical performance compared to
the classical FISTA.

5.1 Minimum Norm Solution Problem
(MNP)

We first consider the linear regression problem on the
YearPredictionMSD dataset1, which contains informa-
tion on 515, 345 songs, with a release year from 1992
to 2011. For each song, the dataset contains its release
year and an additional 90 attributes. We use a sam-
ple of 1, 000 songs randomly selected from the dataset
with uniform i.i.d distribution, and denote the feature
matrix and the release years by A and b, respectively.
Additionally, in line with Merchav and Sabach (2023),
we adopt a min-max scaling technique and add an in-
terceptor and 90 co-linear attributes to A.

1https://archive.ics.uci.edu/dataset/203/
yearpredictionmsd

https://archive.ics.uci.edu/dataset/203/yearpredictionmsd
https://archive.ics.uci.edu/dataset/203/yearpredictionmsd
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For the lower-level, we let g1(x) = 1
2∥Ax− b∥2, which

exhibits a Lg1-Lipschitz continuous gradient, where
Lg1 = λmax(ATA). Simultaneously, we set g2(x) ≡ 0.
For the upper-level, we let f1(x) = 1

2∥x∥
2 and f2(x) ≡

0. This configuration corresponds to finding the min-
imum norm solution. Now, our goal is to solve the
following bilevel problem:

min
x∈Rn

1
2∥x∥

2

s.t. x ∈ arg min
z∈Rn

1
2 ∥Az− b∥2 . (18)

We compare the performance of our Bisec-BiO with
several existing methods to solve this problem, namely
averaging iteratively regularized gradient method (a-
IRG) (Kaushik and Yousefian, 2021), bilevel gradi-
ent SAM method (BiG-SAM) (Sabach and Shtern,
2017), minimal norm gradient method (MNG) (Beck
and Sabach, 2014), and dynamic barrier gradient de-
scent method (DBGD) (Gong and Liu, 2021). In this
experiment, the feasible set of the lower-level problem
is unbounded. Therefore, we cannot directly apply
CG-BiO (Jiang et al., 2023). We use MATLAB func-
tion lsqminnorm to solve problem (18) and obtain the
optimal values g∗ and p∗ for benchmarking purposes.
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Figure 2: The performance of Bisec-BiO compared
with other methods in MNP.

As Figure 2 demonstrates, our Bisec-BiO converges
much faster than the other baseline methods for both
the lower- and upper-level objectives, confirming our
complexity results (see Table 1). Our method is shown
in the figure as an oscillating curve, which depends on
the feasibility of System (5) at each iteration point and
the update mode of our method. Moreover, the left
and right subfigures in Figure 2 show that the output
of our algorithm meets the (ϵf , ϵg)-optimal solution
criterion, as proven in Theorem 1.

5.2 Logistic Regression Problem (LRP)

We address the logistic regression binary classification
problem using the ’a1a’ dataset from LIBSVM2, which

2https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/binary/a1a.t

contains m = 30, 956 instances, each with n = 123 fea-
tures. We randomly select a sample of 1, 000 instances
and denote the feature matrix and labels as A and b,
respectively.

For the lower-level, we let g1(x) = 1
m

∑m
i=1 log(1 +

exp(−a⊤i xbi)), which has a Lg1-Lipschitz continuous
gradient with Lg1 = 1

4mλmax(ATA). Here, ai repre-
sents an instance and bi ∈ {−1, 1} is the corresponding
label. Additionally, we set g2(x) = IC(x), where IC(x)
is the indicator function of C = {x ∈ Rn : ∥x∥1 ≤ λ}
with λ = 10. For the upper-level, we let f1(x) = 1

2∥x∥
2

and f2(x) ≡ 0, as well. We need to solve the following
problem:

min
x∈Rn

1
2∥x∥

2

s.t. x ∈ arg min
z∈Rn

1
m

∑m
i=1 log(1 + exp(−a⊤i zbi))

+IC(z).
(19)

In this experiment, we compare the performance of our
Bisec-BiO with the methods proposed in Section 5.1
and the CG-based bilevel optimization method (CG-
BiO) (Jiang et al., 2023). For benchmarking pur-
poses, we utilize the Greedy FISTA algorithm (Liang
et al., 2022) and MATLAB function fmincon to solve
problem (18) and obtain the optimal values g∗ and
p∗, respectively. We employ the method proposed in
Liu et al. (2020) to compute the proximal operator of
hc := g2 + δc in problem (8). Their method is demon-
strated to have a worst-case complexity of O(n2) and
an observed complexity of O(n) in practice.
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Figure 3: The performance of Bisec-BiO compared
with other methods in LRP.

Figure 3 also shows that Bisec-BiO converges much
faster than the other baseline methods for both the
lower- and upper-level objectives. We have similar ob-
servations as in Figure 2.

6 CONCLUSION

In this paper, we address the problem of mini-
mizing a composite convex function at the upper-

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/a1a.t
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/a1a.t


Jiulin Wang, Xu Shi, Rujun Jiang†

level within the optimal solution set of a compos-
ite convex lower-level problem. We introduce a bi-
section algorithm designed to discover an ϵf -optimal
solution for the upper-level objective and an ϵg-
optimal solution for the lower-level objective. Our
method attains a near-optimal convergence rate of

Õ
(

max{
√
Lf1/ϵf ,

√
Lg1/ϵg}

)
for both upper- and

lower-level objectives. Notably, this near-optimal rate
aligns with the optimal rate observed in unconstrained
smooth or composite optimization, neglecting the log-
arithmic term. We enhance convergence guarantees
by imposing a Hölderian error bound assumption on
the lower-level problem. Numerical experiments con-
vincingly illustrate the substantial improvement our
method offers over the state-of-the-art. In future re-
search, we will explore the possibility of eliminating
the logarithmic term from our complexity result.

Acknowledgements

Rujun Jiang is partly supported by the National Key
R&D Program of China under grant 2023YFA1009300,
National Natural Science Foundation of China under
grants 12171100 and 72394364, and Natural Science
Foundation of Shanghai 22ZR1405100. Jiulin Wang is
supported by China Postdoctoral Science Foundation
under grants BX20220085 and 2022M710798.

References
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A THE FAST ITERATIVE SHRINKAGE THRESHOLDING ALGORITHM
(FISTA) AND CONVERGENCE RESULTS

We adopt the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) proposed in Beck and Teboulle (2009)
as the APG method (see Definition 1) to solve problem (7). For any L > 0, define pL(y) as the unique minimizer
of the following quadratic approximation of φ(x) at a given point y:

pL(y) := arg min
x∈Rn

QL(x,y) :=

{
φ1(y) + ⟨x− y,∇φ1(y)⟩ +

L

2
∥x− y∥2 + φ2(x)

}
,

where L actually plays the role of a step-size.

The classical FISTA scheme with a constant step-size for solving problem (7) is presented in Algorithm 2.

Algorithm 2 FISTA with constant step-size

Input: Lφ1
, t1 = 1, y1 = x0 ∈ Rn

1: for k = 1, · · · do
2: xk = pLφ1

(yk),

3: tk+1 =
1+

√
1+4t2k
2 ,

4: yk+1 = xk + tk−1
tk+1

(xk − xk−1),

5: k = k + 1.
6: end for

As discussed in Section 2, a potential limitation of this classical scheme is its dependence on the knowledge
or computation of the Lipschitz constant Lφ1

, which may not be practical. To overcome this issue, Beck and
Teboulle (2009) further proposed a variant of FISTA that incorporates a backtracking line search, we present it
in Algorithm 3.

Algorithm 3 FISTA with backtracking line search

Input: L0 > 0, η > 1, t1 = 1, y1 = x0 ∈ Rn

1: for k = 1, · · · do
2: Find the smallest nonnegative integer value ik such that with L̄ = ηikLk−1,

φ(pL̄(yk)) ≤ QL̄(pL̄(yk),yk).

3: Lk = ηikLk−1,
4: xk = pLk

(yk),

5: tk+1 =
1+

√
1+4t2k
2 ,

6: yk+1 = xk + tk−1
tk+1

(xk − xk−1),

7: k = k + 1.
8: end for

The next lemma shows the convergence results of the objective function under the FISTA scheme (Algorithm 2
or 3).

Lemma 2 ((Beck and Teboulle, 2009), Theorem 4.4.). Denote X∗
φ as the optimal solution set of problem (7)

and x∗
φ ∈ X∗

φ be any optimal solution. Let xφ
0 ∈ Rn be an initial point. Let {xk} be the sequence generated by

the FISTA scheme (Algorithm 2 or 3). Then for any k ≥ 1, we have

φ(xk) − φ(x∗
φ) ≤ 2αLφ1

(k + 1)2
∥xφ

0 − x∗
φ∥2, ∀x∗

φ ∈ X∗
φ.

Here, α = 1 for the classical FISTA scheme (Algorithm 2), and α = η for the FISTA scheme with a backtracking
line search (Algorithm 3), where η is the backtracking parameter. This lemma demonstrates that an ϵ-optimal
solution of problem (7) can be obtained by Algorithm 2 or 3 within at most O(

√
Lφ1

/ϵ) iterations.
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B MOTIVATING EXAMPLES

Many applications in machine learning and signal processing involve regularized problems, where the upper-level
objectives represent the regularization terms, and the lower-level objectives consist of the loss functions and the
additional constraint terms. We present some motivating examples below.

Example 2 (Minimum Norm Solution of Least Squares Regression Problem (MNP)). Linear inverse problems
aim to reconstruct a vector x ∈ Rn from a set of measurements b ∈ Rm that satisfy the following relation:
b = Ax+ρε, where A : Rn → Rm is a given linear mapping, ε ∈ Rm denotes an unknown noise vector, and ρ > 0
denotes its magnitude. Linear inverse problems can be solved using various optimization techniques, and we focus
on the bilevel formulation (Beck and Sabach, 2014; Sabach and Shtern, 2017; Dempe et al., 2021; Latafat et al.,
2023; Merchav and Sabach, 2023).

The lower-level objective function in this formulation is given by

g(x) =
1

2
∥Ax− b∥2 + IC(x),

where the set C is a closed convex set that can be chosen as C = Rn, C = {x ∈ Rn : x ≥ 0} or C = {x ∈ Rn :
∥x∥1 ≤ λ} for some λ > 0, and IC(x) is the indicator function of the set C, defined as IC(x) = 0 if x ∈ C and
IC(x) = +∞ if x /∈ C.

This problem may have multiple optimal solutions. Therefore, a natural choice is to consider the minimal norm
solution problem, which seeks to find the optimal solution with the smallest Euclidean norm (Beck and Sabach,
2014; Sabach and Shtern, 2017; Latafat et al., 2023):

f(x) =
1

2
∥x∥2 .

We then solve the bilevel optimization problem:

min
x∈Rn

1
2∥x∥

2

s.t. x ∈ arg min
z∈Rn

1
2 ∥Az− b∥2 + IC(z).

For this example, the proximal mapping of hc reduces to an orthogonal projection onto the ℓ2-norm ball when
C = Rn. This scenario corresponds to the experiment in Section 5.1.

When C = {x ∈ Rn : x ≥ 0}, we have

proxhc
(y) =

√
2c

max{∥PC(y)∥,
√

2c}
· PC(y),

where PC(y) = max(y, 0). This result is an implementation of Theorem 7.1 in Bauschke et al. (2018).

When C = {x ∈ Rn : ∥x∥1 ≤ λ}, the proximal mapping of hc simplifies to an orthogonal projection onto the
intersection of a ℓ2-norm ball and a ℓ1-norm ball. This projection has a worst-case complexity of O(n2) and an
observed complexity of O(n) in practice (Liu et al., 2020). In this case, the lower-level objectives satisfy the
Hölderian error bound assumption (Assumption 3) with r = 2.

Example 3 (Sparse Solution of Least Squares Regression Problem (SSP)). Considering the same settings as in
Example 2. To simplify the model and save computational resources and efficiency, we seek to reduce the number
of features in the vector x ∈ Rn that minimizes the linear inverse regression function g(·). This means that our
goal is to find a sparse solution among all the minimizers of g(·). Therefore, any function that promotes sparsity
can be used for this purpose. For example, the well-known elastic net regularization is a good choice (Zou and
Hastie, 2005; Friedlander and Tseng, 2008; De Mol et al., 2009; Rodola et al., 2013; Amini and Yousefian, 2019;
Merchav and Sabach, 2023). The elastic net regularization is defined as

f(x) = ∥x∥1 +
α

2
∥x∥2 ,

where α > 0 regulates the trade-off between ℓ1 and ℓ2 norms.
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For this example, the proximal mapping of hc reduces to an orthogonal projection onto the elastic-net constraints
when C = Rn (Duchi, 2009; Mairal et al., 2010; Gong et al., 2011; Rodola et al., 2013).

Example 4 (Logistic Regression Classification Problem (LRP)). The goal of a binary classification problem is
to establish a mapping from the feature vectors ai to the target labels bi. A common machine learning approach
for this task is to minimize the logistic regression function of the given dataset (Amini and Yousefian, 2019;
Gong and Liu, 2021; Jiang et al., 2023; Latafat et al., 2023; Merchav and Sabach, 2023). More precisely, we
have a feature matrix A ∈ Rm×n and a corresponding label vector b ∈ Rm, where each bi ∈ −1, 1. The logistic
loss function is then given by

g1(x) =
1

m

m∑
i=1

log(1 + exp(−a⊤i xbi)).

Over-fitting may occur when the number of features is not negligible relative to the number of instances m. A
common way to address this problem is to regularize the logistic objective function with a specific function or add
a constraint (Jiang et al., 2023; Merchav and Sabach, 2023). For example, we can choose g2(x) = IC(x), where
IC(x) is the indicator of the set C = {x ∈ Rn : ∥x∥1 ≤ λ} as shown in Example 2.

Similarly, this problem may have multiple optimal solutions. Therefore, it is natural to consider the minimal
norm solution problem with the smallest Euclidean norm as described in Example 2. Now, we need to solve the
following bilevel optimization problem (Gong and Liu, 2021; Jiang et al., 2023; Latafat et al., 2023):

min
x∈Rn

1
2∥x∥

2

s.t. x ∈ arg min
z∈Rn

1
m

m∑
i=1

log(1 + exp(−a⊤i zbi)) + IC(z).

The proximal mappings of hc are the same for the choices of the set C in Example 2. In particular, when
C = {x ∈ Rn : ∥x∥1 ≤ λ}, this scenario corresponds to the experiment in Section 5.2.

Example 5 (Sparse Solution of Logistic Regression Classification Problem (SSLRP)). Considering the same
settings as in Example 4, and we seek to reduce the features in the vector x ∈ Rn that minimizes the logistic
regression function with a regularization term. For this purpose, we can choose the elastic-net regularization,
which is proposed in Example 3.

Similarly, for this example, the proximal mapping of hc is an orthogonal projection onto the elastic-net constraints
when C = Rn, as shown in Example 3.

C PROOF OF THE MAIN THEOREMS

C.1 Proof of Theorem 1

Proof. We first show that x̂ is an (ϵf , ϵg)-optimal solution of problem (1). In Step 10, we let c = u. Then
Condition (11) is not satisfied. According to Lemma 1, the inequality g(x̂) ≤ g∗ + ϵg holds. Next, we prove
f(x̂) ≤ p∗ + ϵf also holds. We break the proof into two cases.

Case (1), if u ≤ p∗, then we have f(x̂) = u ≤ p∗.

Case (2), if u > p∗, then p∗ lies on [l, u] since l ≤ p∗ always holds. Therefore, we have

f(x̂) = u ≤ u + p∗ − l ≤ p∗ + ϵf ,

where the last inequality is from the stop criterion that u− l ≤ ϵf . To sum up, the point x̂ is an (ϵf , ϵg)-optimal
solution of problem (1). In the following, we present the total operation complexity of our method.

In Step 1, we invoke APG oracles to obtain initial bounds l and u. To obtain the initial lower bound of p∗,
we invoke the APG oracle x̃f=APG(f1, f2, Lf1 ,x

f
0 , ϵf/2) to solve problem (9). By Lemma 2, this can be done

within O
(√

Lf1/ϵf

)
iterations. The corresponding initial lower bound is l = f(x̃f )− ϵf/2. To obtain the initial

upper bound of p∗ϵg , we invoke the APG oracle x̃g=APG(g1, g2, Lg1 ,x
g
0, ϵg/2) to solve problem (2). Similarly, we
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can approximately solve problem (2) within O
(√

Lg1/ϵg

)
iterations. The corresponding initial upper bound is

given by u = f(x̃g).

In Step 3, we invoke APG oracle x̃c=APG(g1, hc, Lg1 ,x
c
0, ϵg/2) to solve problem (6). According to Lemma 2,

this can be done within O
(√

Lg1/ϵg

)
iterations. The number of invoking APG oracle does not exceed⌈

log2

u− l

ϵf

⌉
+

=

⌈
log2

f(x̃g) − f(x̃f ) + ϵf/2

ϵf

⌉
+

= O
(

log
1

ϵf

)
where l and u are initial lower and upper bounds, and ⌈a⌉+ represents the smallest non-negative integer that is
no less than a.

Thus, the total number of evaluations of the function values f1, f2, g1, and g2, the gradients ∇f1 and ∇g1, and
the calls of the proximal mapping concerning function hc does not exceed T , where

T = O

(√
Lf1

ϵf

)
+ O

(√
Lg1

ϵg

)
+ O

(√
Lg1

ϵg

)
· O
(

log
1

ϵf

)
= Õ

(
max

{√
Lf1

ϵf
,

√
Lg1

ϵg

})
,

where Õ suppresses a logarithmic term.

C.2 Proof of Proposition 1

Proof. By Assumption 2(i), the set X∗
g is closed and compact. Then we can let x̂∗ = arg min

x∈X∗
g

∥x− x̂∥ such that

∥x̂− x̂∗∥ = dist(x̂, X∗
g ). It can be easily demonstrated that X∗

g is a convex set, ensuring the well-definedness of
x̂∗. By Assumption 3, we have

α

r
∥x̂− x̂∗∥r ≤ g(x̂) − g∗ ≤ ϵg =⇒ ∥x̂− x̂∗∥ ≤

(rϵg
α

) 1
r

. (20)

By Assumption 2, it follows that f is Bf -Lipschitz continuous on dom(g2) (see (15)). Combining this result with
(20), we have

f(x̂) − p∗ ≥ f(x̂) − f(x̂∗) ≥ −Bf∥x̂− x̂∗∥ ≥ −Bf

(rϵg
α

) 1
r

,

where the first inequality is from that p∗ is the optimal value of problem (1) and x̂∗ ∈ X∗
g .

C.3 Proof of Corollary 1

Proof. Let x̂ be the output of Algorithm 1. Then x̂ is an (ϵf , ϵg)-optimal solution of (1) satisfying

f(x̂) − p∗ ≤ ϵf , g(x̂) − g∗ ≤ ϵg.

By Proposition 1 and the setting ϵg = α
γ

(
ϵf
Bf

)r
, we have

f(x̂) − p∗ ≥ −Bf

(rϵg
α

) 1
r

= −ϵf .

Then according to Theorem 1, with an operation complexity Õ
(

1/
√

ϵrf

)
, we can find an x̂ such that

|f(x̂) − p∗| ≤ ϵf , g(x̂) − g∗ ≤ ϵg.

C.4 Proof of Proposition 2

Proof. Since x̂ satisfies g(x̂) − g∗ ≤ ϵg, then x̂ is a feasible solution of (4) with ϵ = ϵg, and f(x̂) is an upper
bound of p∗ϵg (see Lemma 1). Applying Assumption 4 with ϵ = ϵg, we have

f(x̂) − p∗ ≥ p∗ϵg − p∗ = v(ϵg) − v(0) ≥ −Lϵgϵg.
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C.5 Proof of Corollary 2

Proof. This proof closely resembles the one presented in Corollary 1. Nevertheless, for the sake of thoroughness,
we provide a complete exposition. Let x̂ be the output of Algorithm 1. Then x̂ is an (ϵf , ϵg)-optimal solution of
(1) satisfying

f(x̂) − p∗ ≤ ϵf , g(x̂) − g∗ ≤ ϵg.

By Proposition 2 and the setting ϵf = Lϵgϵg, we have

f(x̂) − p∗ ≥ −Lϵgϵg = −ϵf .

Then according to Theorem 1, with an operation complexity Õ
(
max{1/

√
Lϵgϵg, 1/

√
ϵg}
)
, we can find an x̂ such

that
|f(x̂) − p∗| ≤ ϵf , g(x̂) − g∗ ≤ ϵg.

D ADDITIONAL NUMERICAL EXPERIMENTS

We consider the SSP problem from Example 3 on the YearPredictionMSD dataset, setting C = Rn and α = 0.02.
Our objective is to solve the following bilevel problem:

min
x∈Rn

α
2 ∥x∥

2 + ∥x∥1
s.t. x ∈ arg min

z∈Rn

1
2 ∥Az− b∥2 . (21)

We compare the performance of our Bisec-BiO method with the averaging iteratively regularized gradient (a-
IRG) method (Kaushik and Yousefian, 2021). It’s worth noting that a-IRG can handle non-smooth upper-level
objectives, a capability that other methods lack. For benchmarking purposes, we use the MATLAB functions
lsqminnorm and fmincon to obtain the optimal values g∗ and p∗, respectively. Moreover, we adopt the method
proposed by Gong et al. (2011) to compute the proximal operator of hc := g2 + δc in problem (8). The other
settings are consistent with Section 5.1.
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Figure 4: The performance of Bisec-BiO compared with other methods in SSP.

As illustrated in Figure 4, Bisec-BiO converges significantly faster than a-IRG for both lower- and upper-level
objectives. The numbers on the right-hand side of the last iterates of our method (denoted as x̂) represent the
differences between g(x̂) − g∗ and f(x̂) − p∗, respectively. This confirms that x̂ is an (ϵf , ϵg)-optimal solution.
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